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ON OPTIMAL CONTROL OF LINEAR STOCHASTIC EQUATIONS
WITH A LINEAR-QUADRATIC CRITERION*

JEAN-MICHEL BISMUT’

Abstract. The purpose of this paper is to apply the stochastic maximum principle previously
obtained by the author to the control of a linear quadratic criterion.

1. Introduction. We consider a stochastic differential equation:

(1.1) dx =(Ax +Cu) dt+(Bx +Du) dw,
x(0)=0,

and a criterion to minimize

(1.2) I(u)=E IMtxtl2 dt+ (Ntblt, Ut) dt+lMlXrl2-2(h,xr)

where h is a random variable and coefficients are random.
The purpose of this paper is to find the optimal control in feedback form, by

using the results obtained by the author in [1] and [2].
In 2, as in [2], we introduce a dual state, and we discuss some of the

problems related to this dual state. In 3, we find the control in random feedback
form.

2. The problem. Assumptions and notations are taken from [2], to which we
refer constantly.

Equation (1.1) and criterion (1.2) satisfy the same assumptions as in [2]. We
also assume that h L’.

THEOREM 2.1. I has a unique optimum.
Proof. The argument is the same as in [2, Thm. 3.1]. [3
We apply the stochastic maximum principle given in [1, Thm. V-l]. The

maximum principle equations are

dp (M*Mx A*p B’H) dt +H dw +dM,
(2.1) PT -M*I MlXT + h,

Nu C*p + D’H,
with (Po, H, M) in L x L22 x Wx-.

As in [2], for => 0 we consider the system

dx (Ax + Cu) dt + (Bx +Du) dw,

x(0)=0,

(2.2) dp (M*Mx A*p B’H) dt +H dw +dM,

pt= h,

Nu C*p +D’H,
* Received by the editors June 6, 1975, and in revised form February 23, 1976.
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where h L.
It is easily checked as in [2] that

{I0 I0(2.3) E IMsxl ds + (Nsus, us) ds E(pt, xt).

As in [2], we can then prove that the mapping Qt:h xt has the following
properties"

(a) Qt is linear and continuous from L into L2-

(b) Qt is self-adjoint.
(c) Qt is a positive operator.
(d) The operators Qt are uniformly bounded on compact sets of R /.
However, in total contrast to [2], we do not have

(2.4) Qt(1ah q- 1cah’)= 1AQth + 1caQth’

whenA t. The operators Qt are of interest because they would allow us to write

(25) Xt OtPt.
However, this is not a feedback relation in the sense that this operator generally
acts on the whole random variable and not only on its values at time t. (This last
assumption is verified only in the deterministic case where Ot solves a Riccati
equation.)

We then have to use other methods.

3. The feedback form. P0 is the unique solution in the sense of [2] of

dpo -(A *po +B*Ho) dt +Ho dw + dMo,
(3.1)

Po h.

Then Pl =P-Po must verify

dp (M*Mx A *pa B*H) dt +H1 dw +dM
(3.2)

Pl -MMIXT.
We then have

(3.3) Nu (C*po+D*Ho) + (C’p1 + D’HI).
If u0 and u are defined by

.(3.4) Uo N-I(C*po +D*Ho),
(3.5) u N-a(C*pa +D’H1),
then we have the following system:

dx (Ax + Cu + Cuo) dt + (Bx +Du +Duo). dw,

x(O)=O,

(3.6) dpa (m*Mx A*pa B’Ha) dt +H dw + dMa,
p -M*lMaXr,

Nu C*pa +D’H1.
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But this system is a system of the type already studied in [2], with

(3.7) f Cuo; g Duo.

We have then

(3.8) pl -(Ptx, + rt),

where Pt and rt are defined in [2].
We assume that (fl, t, P) (II’ x W, 5g’t @ ’, P’ @ P"), that A, B, C, D, M,

M1, N are defined on IT and adapted to {r’,},>__o, that w is defined on l)" and
adapted to {’},->_o, and that h is defined on f, is square integrable and T-
measurable. We have then in the sense of Theorems 6.1 and 6.2 of [2]:

(3.9)

dP+{PA +A*P+B*PB -(B*PD +PC)(N+D*PD)-1

(D*PB + C’P) +M’M} dt dl/l O,

PT=MM,
dr {(PC+B*PD)(N+D*PD)-C*-A*}r dt

+ [{(PC+B*PD)(N+D*PD)-D*-B*}(PDuo+)-PCuo] dt
+ h dw +dM’

rT O,

u -(N+D*PD)-{(C*P+D*PB)x + C*r +D*(PDuo +/)}.

Knowing Uo we find the optimal control u"

(3.10) U=Uo+Ul.

Then

(3.11) P Po- r-Px.

4. An example: The deterministic coefficients. We assume that all the
coefficients A, B,..., h are deterministic. In this case, Po, r and Uo are deter-
ministic. Then p and u will be sums of a deterministic process and of a process in
feedback form.

Remark. When B and D are null, it is easily proved that the operators Ot are
found by solving a simple Riccati equation:

dO A0 + OA* + CN- C* OM*MO,
(4.1)

O(0) 0.

Then

(4.2) xt-- Qtpt.

In the general case, we are not able to construct the Ot directly.
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ON THE UNIFORM ASYMPTOTIC STABILITY OF CERTAIN LINEAR
NONAUTONOMOUS DIFFERENTIAL EQUATIONS*

A. P. MORGANf AND K. S. NARENDRA:t:

Abstract. In this paper we give a simple characterization of the uniform asymptotic stability of
equations -P(t)x where P(t) is a bounded piecewise continuous symmetric positive semi-definite
matrix. In the course of developing this characterization, a new and general sufficient condition is given
for uniform asymptotic stability in terms of Lyapunov functions. The stability of this type of equation
has come up in various control theory contexts (identification, optimization and filtering).

1. Introduction. The stability of the ordinary differential equation

(1) -P(t)x,

where P(t) is symmetric positive semi-definite time-varying matrix arises often in
mathematical control theory. (See, for example, Narendra and McBride [8, p. 34,
(20)], Lion [7, p. 1837, (10)], and Sondhi and Mitra [11, p. 5, (7)].)

In this paper we consider the stability properties (in the sense of Lyapunov) of
the equilibrium state x 0. Since for V(x) x rx, (/’(x) <= O, the origin is uniformly
stable. However (uniform) asymptotic stability does not generally hold unless P(t)
is positive definite. The semi-definite case arises much more frequently in practice
than the definite one, and the main effort in this paper is directed towards finding
conditions characterizing uniform asymptotic stability in such a case.

The treatment of uniform asymptotic stability (u.a.s.) rather than mere
asymptotic stability is important here. This uniformity assures the "stability under
persistent disturbances" of the system. (See Hahn [3, p. 275]; also see Hale I-4, pp.
86, 313].) On the other hand, this type of stability is not necessarily possessed by
(nonuniform) asymptotically stable systems. (See Hale [4, p. 87] for an example.)
Further, u.a.s, proofs yield "rate of convergence" information, and this is fre-
quently not the case if only asymptotic stability is established. Note also that since
(1) is linear, all stability properties are global.

The principal results are stated in Theorems 1 and 2, Proposition 1, and the
Lemma. The following theorem, which is a part of Theorem 1, gives a simple and
complete characterization of uniform asymptotic stability and is illustrative of the
type of result derived in this paper.

THEOREM. Suppose P(t) is a symmetric positive semi-definite matrix of
bbunded piecewise continuous functions. Then the equation

-P(t)x

is uniformly asymptotically stable if and only if there are real numbers a > 0 and b

* Received by the editors June 11, 1975, and in final revised form November 3, 1975. The
research reported in this document was sponsored in part by support extended to Yale University by
the U.S. Office of Naval Research under Contract N00014-67-A-0097-0020.

" Department of Mathematics, University of Miami, Coral Gables, Florida. Now at Medical
College of Georgia, Augusta, Georgia 30902.

t Department of Engineering and Applied Science, Yale University, New Haven, Connecticut
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such that

IP(s)wl >=a(t-to)+bds
0

]:or all t >-_ to >= 0 and all fixed unit vectors w.
In 2 we discuss some examples. In 3 and 4 the principal results for

uniform and nonuniform asymptotic stability are stated. A key lemma used to
establish the results is given in great generality in 3 and should be useful to show
uniform asymptotic stability for other classes of linear and nonlinear systems of
equations. Sections 5 and 6 contain the proofs of the theorems in 3 and 4,
respectively.

2. Preliminary discussion. Before stating all our main results, we will discuss
some implications of the Theorem above. Our discussion divides naturally into
five parts ((a), (b), (c), (d) and (e) below). First however, we state the following.

DEFINITION. The equilibrium state x 0 of the uniformly stable differential
equation : =[(x, t) is uniformly asymptotically stable (U.aoS.) if for some e> 0
and all e2 >0 there is a T= T(el, e2)>0 such that if x(t) is a solution and
Ix(t0)l<e , then Ix(t)l<e if t>=to+T. If T depends on to, then =f(x,t) is
(nonuniformly) asymptotically stable (a.s.). (See Fig. 1.)

We should also make the following comment on notation. We use the n-tuple
notation (xl, x2, , x) for the column matrix [x, x, ..., Xn]r.

(a) If P(t) P is a constant matrix, then (1) is u.a.s, if and only if P has rank n.
If P(t) is periodic and continuous, then (1) is u.a.s, if and only if, for each unit

w, [e(t)wl > 0 for some t.
(b) Let A (t) denote the eigenvalue of. minimal length of P(t). Then u.a.s.

holds if there are a > 0 and b such that

I,’ (s)l >=a(t-to)+bds

for all t _>-to.
In particular, if P(t) has (maximal) rank n for all t and A (t) is bounded above

E OF RADIUS I1

IRCLE OF RADIUS :E;2

FIG. 1
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zero or periodic, then -P(t)x is u.a.s. Thus if P(t) is rank n and periodic, then
u.a.s, holds. However,

IA(s)l >=a(t-to)+bds

is not necessary but only sufficient. This will be clear from the discussion of the
2 2 rank 1 case in part (c) below.

(c) Suppose there is u’[0, o)--> R such that

Ul Ul 2P(t)=u(t). u(t)r
UlU2 U 2 ..I

The eigenvalues of P(t) are then lu(t)la u(t) / u(t)2 and 0. Now

=-e(t) .x

becomes =-(u(t), x) u(t) where ( ) denotes the canonical inner product on
R 2. Thus the condition

ftt i[P(s)w[ ds I(u(s), w)[ lu(s)Ids >=a(t-to)+b

for fixed unit vectors w requires that both ](u(s), w)l and lu(s)l "not get too small
for too long". Thus u(s) must change direction uniformly so that its inner product
with any fixed direction w does not converge too quickly to zero, and also u(s)
itself must not converge too quickly to zero. To further illustrate this, consider the
following explicit examples.

(d) Let el (1, 0) and e2 (0, 1). Define vectors u(t) and u’(t) to alternate
between el and e2 according to the following formulas.

(i) u(t) el if t 6 [2n, 2n + 1),
u(t) e2 if [2n + 1, 2n + 2),

(ii) u’(t) el if t [0, 1],
=ez if t[1, 2),

el if [2, 4),
ez if t [4, 5),

=el if t[5, 8),

=el if t[k,k+n),
=e2 if ts[k+n,k+n+l),
=el if t[k+n+l,(k+n+l)+(n+l)),

Now : =-u(t)u(t)rx is u.a.s., because

I(u(s), w)l [(u(s))l I(u(s), w)[_>-- either for alls 612n, 2n + 1)

or for all s [2n + 1, 2n + 2), where n 0, 1, 2, 3, ....
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But =-u’(t)u’(t)Tx is not u.a.s., because u’ spends longer and longer in the
el direction. Solutions with initial conditions on the y-axis must wait longer and
longer before they can go to zero. It is clear that

](u’(s), e2)[ lu’(s)l as I(u’(s), e=)l ds

equals zero for longer and longer intervals and can dominate no linear function
with positive slope. However, the above integral does go to infinity as t , and
we shall see in 4 that this implies x=-u’(t)u’(t)Tx is asymptotically stable.

(e) Consider the following final example. Let u(t)= (1, I/x/}). Then

u(t)u(t)

1

1 !
t t

and I(u(s), w)l lu(s)l +(1/)w] 141+ 1/t]. Thus for w (0, 1), we require
that

Itt l 1 2L.s 1+7 ds<- /-s
ds=2-s

to

dominate a linear function; but this is false.
It is easy to confirm that if u(t) (1, ) where a < 0, then -u(t)u(t)rx is

not u.a.s. We shall see in 4 that such equations are not even a.s.
We close this section by noting that the comments made in (c), (d) and (e)

clearly hold for the general n n case.

3. Uniform asymptotic, stability. If P(t) is symmetric positive semi-definite,
then there is a symmetric u(t) such that P(t)= u(t)2= u(t)u(t) r. (See Reed and
Simon [10, p. 196].) We will usually assume P(t) is in this form. As a special case
we consider P(t)= u(t)u(t) 7" with u(t) an n k matrix with k =<n. In this case,
u(t)u(t)T can have at most rank k. In general, u(t) is n n but not necessarily of
full rank. In fact, the rank of u(t)u(t) may change with t. We do assume u(t) is
piecewise continuous and uniformly .bounded.

Letting V(x)=x+x+. "]"X2n, we see that Q(x)=-xT"P(t)x<O= for :---
-P(t)x. Thus the equation is easily seen to be uniformly stable. If P(t) is constant
or periodic, we have the well-known result of LaSalle by which if V is not constant
on any solution of -P(t)x, then asymptotic stability follows. (See LaSalle [5].)
This result breaks down for general nonautonomous P(t). This can be seen as a
result of the lack of an invariance property for the to-limit set. (See LaSalle [6].)

The following theorem gives a characterization of uniform asymptotic stabil-
ity for -P(t)x. The statement of the theorem is followed by a key Lemma and
some remarks. Proofs are deferred until 5. In reading the following material, the
reader may find the case u [0, oo)R 2 an illuminating example.

THEOREM 1. Let u’[O, )-*R’ be a piecewise continuous and bounded
function, where R , denotes the space of real n x k matrices. (We identify R and
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Rn.) Then the following are equivalent.
1. =-u(t)u(t)x is uniformly asymptotically stable.
2. There are real numbers a > 0 and b such that ify R is a fixed unit vector,

then

yTu(s)u(s)Ty ds >=a(t-to)+b
0

for all >= to >= O.
Equivalently, we may replace the above integral expression by

or by

I,’ lu(s)u(s) yl as >=a(t-to)+b

lu(s) yl ds >=a(t-to)+b.

3. There are real numbers a > 0 and b such that

A u(s)u(s)rds >-a(t-to)+b fori= 1,2, ,n,
0

where A denotes the i-th eigenvalue o the n x n matrix

u(s)u(s) 

4. Given y a unit vector in R, there is a conical neighborhoodCory and there
are real numbers a > 0 and b such that

lu(s)l forallttoO,ds ay(t-to)+br
to,t]--y

where y {t [0, )[u(t)x Cy 0}, u(t) orthogonal complement of u(t)
kernel (u(t)), and "conical neighborhood Cy of y" is defined as below.

Part 4 is more technical than the others and helps to bridge the gap between
parts 1 and 2 in the proof. It says, intuitively, that u(t) is bounded away from each
direction for a sufficient part of time over any reasonably long period of time.
However, it is formulated to say that u(t) is bounded away from any unit
direction, which is actually more to the point.

Let OSr denote a sphere of radius r about 0 and Sr a ball of radius r about 0.
us OSr {x ]x r} and St {X Ix[ r}. By a "conical neighborhood
Cy for y we mean that a is an open subset of the unit sphere 0S R y/[y[ s a or
-y/[y[ if y 0, and is defined to be the union of all lines through 0 in R
that intersect a. The width of is defined to be the diameter of . For simplicity,
we sometimes omit the a and write Cy instead of . (See Fig. 2.)

By f [0, ) piecewise continuous, we mean that there is a decomposi-
tion of 0, ) into half-open intervals, [0, )== [a, a+) such that the
restriction u[(a, a+) is continuous for all n.

is completes the statement of eorem 1.
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FIG. 2

The Theorem in 1 asserts the equivalence of parts 1 and 2 of Theorem 1,
except that only one of the three formulations of part 2 is given there. We will
present an explicit proof later that each of these formulations implies the other
two. In practice, it would seem that the equivalence of parts 1 and 2 would be the
most useful implication of this theorem, as is illustrated in 2. We should also note
that the equivalence of part 2 and the eigenvalue condition (part 3) is not hard to
show.

After the acceptance of this paper for publication, it was pointed out to the
authors that Anderson in [1, p. 2.13], for the case that u(t) is almost periodic, had
established results from which the 2 :ff 1 part of Theorem 1 could be derived.

The following key Lemma will be applicable to many cases besides those
discussed in this paper. To indicate this, we present some corollaries after the
statement of the Lemma, but first we need a definition.

DEFINITION. A function b :[0, oo) - [0, oo) is said to belong to class K, b K,
if it is continuous, strictly increasing and b(0) 0.

LEMMA. Let [(x, t) S, x [0, oo) - R be continuous in x and piecewise con-
tinuous in t with]’(O, t) 0]’or all >- O, where e > 0 is somefixed constant. Assume

1. them is qb K such that

I[(x, t)-[(y, t)l <=k(x y) forallx, y S, t >-O,

2. them are real numbers a > 0 and b and (2 K such that

I[(x, s)l ds >=qb2(Ixl)[a(t- to)+ b]
0

]’or all fixed x S, and >-_ to >-_ 0,
3. there is a continuous differentiable ]’unction V: S x [0, oo) [0, oo) and

b3 Ksuch that 4,3(Ix I) --> V(x, t) >-_ 0 and (x, t) <-_ 0for all t >- 0 andx S, where

0 V.
xQ(x, t) -( t) +V V(x, t) f(x, t),

4. there is a (4 Ksuch that- Q(x, t)>-_ ]]’(x, t)]2 qb4(lx l) [or allx S, t >- O,
5. the solution x 0 o[ the equation ]’(x, t) is uni[ormly stable.
Then the solution x 0 is uni[ormly asymptotically stable.
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Remarks. 1. Condition 1 is satisfied if f(x, t) A (t)x and [A (t)[-<_M for
some constant M, all t. It is also satisfied if [ is differentiable in x and its derivative
with respect to x is bounded uniformly in t.

2. Intuitively, something like condition 2 seems necessary for u.a.s. How-
ever, it probably is not necessary as written.

3. Since Lyapunov function converse theorems for uniform asymptotic
stability exist, condition 3 is very natural. (See Hale [4, Chap. X].)

4. We know from Krasovskii’s theorem that if A (t)x is u.a.s., then a
quadratic Lyapunov function exists (Narendra and Taylor, [9, p. 62]). In this case,
if IA (t)l is uniformly bounded, it is easy to see that we can choose 4’3 to make
condition 4 hold. Thus, for f(x, t) linear and V quadratic, condition 4 is necessary
for u.a.s.

5. If there is a 4’ K such that V(x, t)_->(Ixl) for all x and t, then uniform
stability (condition 5) follows.

DEFINITION. A _--> B means A-B is positive semi-definite.
COROLLARY 1. If](X, t)=-P(t)x where P(t) is a symmetric positive definite

uniformly bounded matrix and if there are real numbers a > 0 and b such that

IP(s)wl >-a(t-to)+bds
0

for all t >- to >- 0 and all fixed unit vectors w, then Y -P(t)x is u.a.s.
Proofi Applying the Lemma, conditions 1 and 2 are immediate. Letting

V(x) Ix 2, we have f’(x, t) -x TP(t)x <-0 so conditions 3 and 5 are also easy.
Condition 4 follows because 0 _-< P(t) <= I implies P(t)2 <-_ P(t) for symmetric P _-> 0.
(We may as well assume P(t)<-_L) Thus-Q(x,t)=xTP(t)x>-_xP(t)2x=
Ie(t)xl. Q.E.D.

COROLLARY 2. Suppose A (t)x is uniformly stable, A (t) is uniformly
bounded, and there are real numbers a > 0 and b such that

[A(s)wl >-_a(t-to)+bds

for all t >- to and all unit vectors w. Assume there is a positive definite Q(t) uniformly
bounded such that

-(Q(t)A (t) +A (t) 7"Q(t) + O(t)) >- cA (t)rA (t)

]’or all t where c is some positive constant. Then A (t)x is u.a.s.

Proof. Let V(x, t) x rQ(t)x. Then the result follows immediately from the
Lemma. Q.E.D.

4. Asymptotic stability. We now consider the asymptotic (nonuniform)
stability of (1). Theorem 2 provides sufficient conditions for asymptotic stability.
The relation between Theorems 1 and 2 is discussed at the end of this section.

THEOREM 2. Let u" [0, oo) --> R’ bepiecewise continuous and bounded. Then

-u(t)u(t)rx
is asymptotically stable i.f there are n linearly independent unit vectors Yl, ", Yn
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with closed disjoint conical neighborhoods Crl, Cr2, Cr. such that

lu(s)l=

[or 1, 2,..., n, where Ai {s [0, oo)lu(s) fq Cr, 0}. By Cy, closed, we mean
that Cy, is the closure of an open conical neighborhood.

Since Theorem 2 gives only sucient conditions for asymptotic stability, we
present the following as a step in the direction of obtaining necessary conditions.

PROPOSVIO 3. Let u’[0,)R be bounded piecewise differentiable with
lUl(t)l bounded away from zero where u(t) (Ul(t),’’’, u(t)), ff

ffo la(s)l ds <,
then =-u(t)u(t) is not asymptoacally stable.

Examples and Comments. 1. We now see that u’ in 2(d) yields an asymp-
totically stable system, even though not u.a.s.

2. e one-dimensional equation -(1/(1 + t))x obeys

o

1 dt=ln(l+t)l=

and so is a.s. but not u.a.s. Note that this example indicates why something like the
conditions of the Lemma are required. With V=x2, Q=-2xZ/(l+t); with
V (1 + t)x 9 -x

However, Proposition 3 shows that =-u(t)u(t) where u(t)=
(1, (1 + t)-) with a > 0 is not a.s. is is because

and

fi(t) (O, -a(l + t)--1)

]ti (s)[ ds a (1 -- S)-c-I ds --(1 - S)-C I 1.

In particular, the above applies to u(t)= (1, 1/(1 +t)), u(t)= (1, 1/x/ +t), and
u(t) (1, 1/(1 + t)2).

3. The condition of Theorem 2 is roughly similar to condition 4 of Theorem
1. (Note, however, the difference in the definitions of Or and At,. The question of
whether there are conditions implying asymptotic stability analogous to parts 2
and 3 of Theorem 1 is interesting. Letting u(t)= (1, 1//i + t) as in example 2
above shows that

yTu(t)U(t)Ty dt=

does not imply =-u(t)u(t)rx is a.s. Also, it would be very useful to have a
nonuniform version of the lemma for Theorem 1.
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4. Proposition 3 suggests the following as a conjecture. Let u "[0, ) --> R be
bounded, piecewise differentiable with k < n and lu(s)l 0 for all s. If

a(s)

then =-u(t)u(t)x is not a.s.

5. Proo|s. In this section we prove the Lemma and Theorem 1.
ProofofLemma. 1. The hypotheses of the Lemma hold in a ball of radius e

about the origin. Since f(x, t) is uniformly stable, there is an e > 0 such that if
x(t) is a solution and Ix(t0)l_-< then ]x(t)l =< e for all t-> to. Fix this el.

2. All that is required to establish u.a.s, is to show that, given e2 with
0<e2<el, there exists a T(e)>0 such that for all to>=O, Ix(to)l<e implies
IX(to + t’)l < e2 for some t’ [to, to + T(e2)].

3. Now we state two fundamental inequalities. Let x(t) be a solution to
=f(x, t) such that IX(to)l_<- and ]x(s)l>-e2 for s [tl, t] where 0<e<el and

0 =< to =< tl -<- t2. Let L(tl, ta) denote the arc length of x(s) from t to t2. Then

(2) La(tl, t2)<--2(t2-tl), where j2__ t3(E1)/4(E2)

(3)
where

2(e2)[a(tz -/1) 4- b]- bl(SC:(tl, t2))[t2 tl] <=L(h, t2),

:(q, t2) max {Ix(s)-x(ta)l ;s [t, t2]}.

We postpone the proof of (2) and (3) until after completing the proof of the
Lemma.

Define 6 b]-l(1/2abz(e2)) and

2/3 i]
2

Y =- a4(e + b

Then, combining (2) and (3) into a single inequality eliminating L(tl,/2), we see
that (ta, tz) < 6 for t2- t > 3’ is a contradiction. Thus t2- t > y implies sc(t, t2) =>
6. Note that neither , nor depends on to.

4. Now assume Ix(s)l >= ez fpr s [to, t] and use (2) with tl replaced by to and t2
replaced by t. This yields x/t- to>=L(to, t). Now clearly L(q, t2) ----> :(tl, t2) for any
ta =< t2. Also we have :(tl, t2) 6 if t2--tl -> "Y by part 3 of the proof above.

Therefore, if t- to my for some positive integer m we have

flV-m: flx/t- to >- L(to, t) E L(t, t+a) ->- Y m 6,
k =0 k =0

where tk +1--tk Y and t,. t. This yields

which puts an upper bound on the length of an interval [to, t] with ]x(s)l => e2 for
s 6fro, t]. Since this upper bound is independent of to, we have established the
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existence of T(ez). Specifically, we may define

22

5. We now prove (2). Using the integral expression for arc length and the
Cauchy-Schwarz inequality, we obtain

L(q, tz)= I (s)l ds

I [f(x(s), s) ds <= Lf(x(s), s)]2 ds x/tz- t.

But, by hypothesis 4 in the statement of the Lemma, we have

t2 I t2

4(E2) If(X(S), S)I2 ds- vZ(x(s), s) ds

V(x(q), q)- V(x(tz), t2)-<- V(X(tl), t)

3(Ix(q)l) =< 3(ea).

Now (2) follows by combining the above two inequalities.
6. We now prove (3). Consider

Ie(x(ta), s)-f(x(s), s)l ds >- [f(X(tl), s)Ids- [f(x(s), s)l ds

>=c2(Ix(tl)l)[a(t2- tl)+ b]- []:(x(s), s)[ ds

=> 2(t2)[a(t2--/1)+ b]-L(tl, t2)

and also

t2 I t2
If(X(tl), S)--f(X(S), S)l ds <-- ds

t2

=< tl((/1, t2)) ds tl(:(tl, t2))[t2-

Now (3) follows by combining the above two inequalities.
This completes the proof of the Lemma.
Proof of Theorem 1. For simplicity assume lu(s)l_-< 1 for all s. We shall show

the equivalence of tile four parts of the theorem by proving in succession that 2
implies 1, 4 implies 2 and 1 implies 4 and that 2 and 3 imply each other.

(i) 2 ff 1. This will follow from Corollary 1 to the Lemma, once we show
that the three formulations of condition 2 are equivalent.
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Claim. The following are equivalent:
(a)

yu(s)uT(s)y ds >=a(t-to)+b
0

for some constants a > 0, b
and all unit vectors y.

(b)

]u(s)uT(s)Yl ds >-_a’(t-to)+b’
0

for some constants a’ > 0, b’
and all unit vectors y.

(c)

[u(s)yl ds >-a"(t-to)+b" for some constants a"> 0, b"
and all unit vectors y.

Proo[ofClaim. First observe that yuuy lu yl). Also lyl I and lu(s)l =< 1
implies ly’u(s)u(s)’yl<=[u(s)u(s)’yl<-_lu(s)’yl. Thus (a)=),(b), (a)(c), and
(b)::)>(c) follow at once. We need only show (c)::),(a). This follows because if
’,o I (s)l as >-_a(t-to)+b, then

a2(t to)2 + ab(t- to) <= ds <- ds (t- to)
0 0

by the Cauchy-Schwarz inequality. Q.E.D.
(ii) 4::>2. Assume conditiQn 4 holds. We then have the conical open cover

for R", {C]y s R ", y # 0}, with associated {llv } as given by condition 4.
The Cy cover aS1, the unit sphere. Choose a finite subcover Cy1,

, Cy,. Fix
yS Then y e Cy,o for some io. Then there is an e >0 such that lu(s) yl=-yu(s)u(s)y>-elu(s)l for all s s[0, oo)-Ify,o. This is because, for such an
s, u(s)+/-= ker (u(s)) is bounded away from y. (See Fig. 3.)

Cyio

u(s)Z, outside Cyio
for s [O=]-f}Yio

FIG. 3
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Thus

i y u(s)u(s  y >-_ y u(s)u(s) y
o to,t]--fYio

-_> lu(s)l 2 ds >- e[ay,o(t- to)+ by,o].
to,t]--Yio

This inequality is valid for all unit vectors in some small neighborhood of y.
By compactness of 0S1, we conclude

for some a >0, b and all t_-> t0->O,yu(s)u(s)y ds >-a(t-to)+b
all y OS1.

(iii) l:ff4. Assume =--u(t)u(t)Tx is u.a.s.
(a) Suppose condition 4 is false. Then there is some w 0S1 such that for

every conical neighborhood Cw, the following holds:
Given any N> 0 and e > 0, there are tl and t2 such that t2-tl ->_N and

I lu(s)l ds < E,
tl,

where f {t [0, eo)[u (t)" fq w 0}.
(b) By u.a.s, of = -u(t)u(t)x, given el > ez >0, there is a y > 0 such that if

x(t) is a solution and X(to)Sl, then x(t)S,_ if >-to+y.
Let e 1, ez 1/2, and choose y for these e
(c) By (a), for any e > 0 and conical neighborhood C, there are tl and t2 such

that tz-ta , and

lu(s)l < E.
tl,t2]-v

(This w is the one fixed in (a).)
(d) Let w" denote an n (n 1) matrix which consists of columns which are a

basis for the orthogonal complement to w, an(n- 1)-dimensional hyperplane.
Define v(t) w +/-. ((w+/-)T. u(t)) "projection of u(t) onto w +/-’’. If u(t) is n k,
then v(t) is n k also. If u(t) is "close to w’," then v(t) is "close to u(t)."

The equation : =--V(t)v(t)Tx has stationary solutions (any initial condition
on the line through w). We shall show that =--u(t)u(t)Tx is close enough to
=--v(t)v(t)Tx to have "almost stationary" solutions; at least to an extent

sufficient to contradict u.a.s.
(e) If A (t)x, [A (t) + B(t)]y, and x(t), y(t) are respective solutions

with X(to)= y(to), then

y(t) x(t) + X(t)X(s)-B(s)y(s) ds,

where X(t) is a fundamental matrix solution for 2 A (t)x.
Let A(t)=-u(t)u(t)r and B(t)=[-v(t)v(t)r]-A(t). Define the constant

function x(t)= w, and note that x(t) is a constant solution for 2 A (t)x.
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Then, for any initial to, we have solution y(t) with y(to)= w, and

y(t) w + X(t)X(s)-lB(s)y(s) ds.
0

Now

X(t)X(s)-lB(s)Y(s) as
0

<= ]X(t)X(s)-l[ IU(s)l ]y(s)] ds <-_ IU(s)l as,
0 0

since ]X(t)X(s)-ll <= Iwl 1 and ]y(t)] _-< ly(to)l [w] 1.

[B(t)l I-v(t)v(t)r-A (t)l <- Iv(t)v(t)T + lu(t)u(t)rl
< lU (t)l2 + lU (t)l 21u (t)l2.

Choose w of width less than 1/(8y); i.e., if za, z2w are unit vectors, then
Iz-z21<-_1/(8). Then, for t flT,, IB(t)l < l/(8), because u(t)-CI C# O. (See
Fig. 4.) In other words, since u(t)- is close to w, we may conclude that v(t)=-
"projection of u(t) on w +/-’’ is close to u(t). Then it follows that v(t)v(t)T is close to
u(t)u(t)T.

FIG. 4a
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W

W1

U

FIG. 4b. The rank oiu equals 1

w

u v wi

FG. 4c. The rank ofu equals 2
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By (c) we can choose tl and t2 with 12-tl ’ and

1
lu(s)l <

Now, letting to ll in (e), we have
t
X(t)X(s)-B(s)Y(s) ds [U(s)[ ds

tl,t2]CIf/
[B(s)l ds

I 1<= + 2 lu(s)l ds
tl,t2]f 8’)/ tl,t2]--a

<t2--/!+2 1 y 1 1
8y 16 8,/ 8 4"

Thus

w + X(t)X(s)-IB(s)y(s) ds

’X(t)X(s)-lB(s)y(s) ds
1 3 1

>1= --=>.4
This contradicts the choice of % which was based on u.a.s, of A =--U(t)u(t)Tx. In
particular, ]y(t2)l should be less than 1/2.

(iv) 2:3. The.smallest eigenvalue of A tto u(s)u(s)rds is equal to

(I’ )inf {yrAy}= inf yru(s)u(s)Tyds
ly[=l lyl=l

The equivalence of 2 and 3 is now obvious. Q.E.D.

6. Proofs of Theorem 2 and Proposition 3. In this section we prove
Theorem 2 and Proposition 3. First, however, we sketch the proof of Theorem 2
and discuss briefly its relation to the Lemma for Theorem 1.

Outline ofprooffor Theorem 2. Let x(t) be a solution. We want x(t)+ 0 as
t m. To get a contradiction, suppose the length of x(t) is bounded away from 0.
Then there are two possibilities.

(i) x(t) is eventually bounded away from some y- {x e Rnl(x, Yi} 0} an
(n 1)-dimensional "hyperplane."

(if) x(t) gets close to each y]-, 1, 2, n, repeatedly as t oo.
If the first possibility occurs, it is easy to show that we get a contradiction. If

the second holds, then we argue as follows. First x(t) must repeatedly spend a
certain minimal amount of time away from all the y ]-. For this time we may relate
the decrease in r(/(x(t)) to the increase in arc length of x(t). We conclude that
Q(x(t)) decreases by a certain fixed increment as x(t) "travels the circuit" to each
of the y-. Since Q(x(t)) is bounded below, this also leads to a contradiction.
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It is reasonable to suggest that the Lemma in 3 for the special case
f(x, t) -u(t)u(t)x could be established by a proof analogous to that of Theorem
2. However, it does not appear that this proof would work for the general case,
and also this proof is not as simple as the one given for the Lemma. Since the proof
of the lemma does not seem to be adaptable to the nonuniform case, we have
chosen not to attempt a unified proof of the two results.

Proofof Theorem 2. For simplicity, assume lu(s)l--< 1 for all s and denote
by C.

(a) We have defined y={x Rl(x, y)=0} to be an (n-1)-dimensional
subspace of R n. We extend the definition of "conical neighborhood" by defining a
conical neighborhood Di of y- by

Di [Cy,]+/- {x R"l(x, y)= 0 for some y Cy,}.

Then it follows that Di is the union of all lines in R intersecting a neighborhood/3
of y f3 9S1 in 9S. (cS1 is the unit (n 1)-dimensional sphere in R y fq 9S is an
(n 2)-dimensional "subsphere" (a "great circle");/3 is an open subset of OS that
contains y-f30S1). In fact, if C/= Cy where a is an open neighborhood of Yi in
0S, then/3 c +/- f319S1 X tgSI[(X y> 0 for some y a}. (See Fig. 5).

It is clear that if u(t)fq C 30, then u(t) Di. Since the yi are linearly
independent, we may further assume that D1 fq D2 f’l fq Dn 0.

(b) Now if t A, then u(t) f’l C : 0 and therefore u(t) +/- D. Expand C and
D slightly to closed conical neighborhoods C* and D* so that interior (C*) _-__ C,.,
interior * * *(D) Di, C fq C) 0 If ], and DI* f’)" f) D* 0. Do not change A.
Then if t A, we have u(t) +/- D* and bounded away from the boundary of D*.
Therefore, we may conclude that there is an e > 0 such that if A and x D/*,
then lu(t)xl >-_ elx lu(t)l. This is because, for t Ai andxD*, x is bounded away
from u(t)+/-= ker (u(t)7").

FIG. 5a
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.-------------HIS
DISK IS a

THIS GREAT THIS BAND IS
/

oS1 ny

FIG. 5b

Yi

FIG. 5c. The surface of revolution of the shaded part of the figure equals Di C{

(c) Thus if x(t) is a solution that is eventually not in some D/* (say for t -> to),
we have

ds lu(s) x(s)l2 ds  2lu(s)l=lx(s)12 ds

which is unbounded if Ix(s)l =>a > 0 for some a. This would be a contradiction, so
Ix(s)l- 0.

(d) Suppose x(t) is a solution which enters each D.*,, 1, , n, repeatedly
as t oo. Suppose Ix (s)l => a > 0.

Now letting D D*I 1.3 D2* L/. LI D*, we conclude x(t) must spend a mini-
mal amount of time in R" D when it travels to all of the D*, 1, , n. This is
because, in going to each of the D.*,, x(t) must cover a minimal distance in R" -D.
Since I (t)l is bounded above, this implies x(t) must spend at least a fixed amount
of time in Rn_D. Thus we have a minimal distance 8 and a minimal time y.

Without loss of generality we have the following. If x(t) travels to all the D*
as e[c, d], then there is [a, b]<=[c, d] with b-a >-_ y such that x(t)eR"-D for
all t e [a, b] and the arc length of x(t) from a to b is at least 6.
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Thus

Note that when x(t)6R"-D, we have lu(t)x(t)J>-_elu(t) Ix(t)l>-_ealu(t)l
(e) Let f {t [0, oo)lx(t) R" D}. Then,

== I lu()12 ds.lu(s)x(s)l as >-

lu(s)12ds<= 2 2 lu(s)x(s) ds.

(f) If [a, b]___ O, then L(a, b)-=arc length of x(s) from a to b

I(s)l ds lu(s)u(s)x(s)l ds lu(s)l lu(s)(s)l ds.

Applying the Cauchy-Schwarz inequality, we get

[L(a, b)]2 lu(s)l=ds lu(s)(s) ds

lu(s)(s)l ds lu(s)x(s) ds

by (e).
We conclude that ifx(s) enters eachD as s ranges over values in [c, d], then

there is [a, b] [c, d] [c, d] such that

Ilu(s)’(s)lZdsc,d]a,b]
[U(S)’(S)12dse"

(g) By assumption, x(t) enters each D repeatedly. Therefore [0, )=
UiZl[Ci, di) where x(t) enters each D as t[ci, di), and there are [ai, bi)G
[ci, di) [ci, di) as above.

us

(x(s) s lu(s)(s)l s lusx(sl s
[c,di)

lu(s)(s)l as e x lu(s)(s)l as
ci,di) ai,bi)

i=1

Therefore, [x(s)l _->a >0 is false. Q.E.D.
Proof of Proposition 3. (a) We will use the technique of putting u(t)u(t)T

into "L-diagonal form" as described by Cesari [2, p. 39]. We will find piecewise
differentiable P(t) such that

(i) P(t)-u(t) ru(t) P(t)= A(t)= diag (lu(t)l2, O, 0,..., 0),
[e(t)- are bounded above, and(ii) IP(t)l and

(iii) IP(t)-lp(t)] < oo.
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Then 2=-u(t)u(t)rx is asymptotically stable if and only if =
A(t)x +P(t)-lp(t)x is. It is easy to confirm that this second system is not
asymptotically stable.

(b) Let

P(t)

Ul --u2 --u3

u u 0
U3 0 Ul

0 0

u, 0 0

Ul

Ul

0 U2 Un

Condition (i) is easy to check. The columns of P are eigenvectors for uu r. Since
det (P) (-1)-1u-211ul, P- exists.

Condition (ii) follows from the fact that lu(t)l is bounded above and lu(t)l is
bounded below.

Condition (iii) follows because IP-(s)l_-< k implies

io io ioIP-,l ds <-_ It-ll IPl ds <-_ k I,(s)l as

-<_k .la(s)l ds < o. Q.ED.

Aekaowledgmelat. We would like to express our appreciation to Professor J.
P. La Salle for his many helpful comments and especially for his suggestions on
rewriting the proof of the Lemma to improve its readability.

Note. A proof of the converse of the lemma, in the sense that u.a.s, and 1
imply 2, has been discovered by the first named author.
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PROJECTION ON A CONE,
PENALTY FUNCTIONALS AND DUALITY THEORY
FOR PROBLEMS WITH INEQUALITY CONSTRAINTS

IN HILBERT SPACE*

ANDRZEJ P. WIERZBICKI AND STANISLAW KURCYUSZf

Abstract. Each element p of a real Hilbert space H can be uniquely decomposed into two
orthogonal components, p pO +p-O* where pD D is the projection ofp on a closed convex coneD
and p-O* is the projection of p on the minus dual cone -D*. Hence, if the cone D generates a partial
order in H, then the positive partpD and the negative partp-O* of each p Hcan be distinguished. For
a general optimization problem: minimize Q(y) over Yp {y E p P(y) e D c H}, where Q E
R, P:E H, E is Banach, H is Hilbert: the violation of the constraint can be determined by
(p_p(y))-o*. Hence a generalized penalty functional and an augmented Lagrange functional can be
defined for this problem. The paper presents a short review of known penalty techniques, some
properties of the projection on a cone, basic properties of penalty functionals for a general optimiza-
tion problem and duality theory for nonconvex problems in infinite-dimensional spaces.

Properties of minimizing sequences in constrained optimization are discussed and the con-
vergence of increased and shifted penalty techniques is studied in detail. Conditions of stability of the
optimization problem, implying convergence conditions, are discussed in the closing section.

1. Introduction. R. Courant in [3] suggested that in order to solve the
problem

(1.1) minQ(y);Yo={yR":P(y)=0Rm}; Q:R’* R, P:R"R"
yYo

a penalty function can be minimized

(1.2) o(Y, ’) Q(y) + 1/2srlIP(y)ll2; o" R" R+ R

for a sequence of parameters {’}, ’ -. This idea was later generalizedsee
Fiacco and McCormick [7]for problems with inequality constraints

(1.3) min O(y); YI=(yR’*:P(y)ORm},
YY1

where the partial in R is generated by the positive orthant. The exterior penalty
function for the problem (1.3) has the form

(1,4) I(Y, sr) Q(y)+1/2 Y. Pi(y) max (0, Pi(y)).
i=1

It is also possible [7] to define interior penalty functions for the problem (1.3), but
these are not investigated in this paper.

The problem of minimizing a penalty function for large penalty coefficients r
is badly conditioned numerically, since the spectral radius of the Hessian matrix of
a penalty function increases with st. To overcome this difficulty, two equivalent

* Received by the editors July 16, 1974, and in revised form February 24, 1976. This work was
supported by the National Science Foundation Grant GF-37298 to the Institute of Automatic Control,
Technical University of Warsaw, Warsaw, Poland and the Center for Control Sciences, University of
Minnesota, Minneapolis, Minnesota.

f Institute of Automatic Control, Technical University of Warsaw, Warsaw, Poland.

25



26 ANDRZEJ P. WIERZBICKI AND STANISLAW KURCYUSZ

approaches have been developed independently. M. D. J. Powell in [20] intro-
duced the shifted penalty function for the problem (1.1):

(1.5) o(y,(,u)=O(y)+1/2(llP(y)-u]]2; o’RnR+R R
which is minimized in respect to y for a sufficiently large sr and a sequence of
penalty shifts {u,}. J. Szymanowski, A. Wierzbicki and others (see [25], [15])
investigated shifted penalty functions for problems with inequality constraints
(1.3). M. R. Hestenes in [8] introduced the augmented Lagrange function for the
problem 1.1):

(1.6) a0(sr, r/, y)=O(y)+(rl, P(y))+1/2(]lP(y)l]2" Ao’R+R’+"-R
where the additional term 1/2(IIP(y)II2 "convexities" the usual Lagrange function. R.
T. Rockafellar in [40] introduced the augmented Lagrange function for the
problem (1.3) and developed a duality theory for nonconvex problems. It should
be noted that the minimization of the functions o(’, r, v) and Ao(r, r/,. are
equivalent, since

(1.7) A0(’, y)--a,(y,  )-1/2 llvll2,
but the augmented Lagrange function has useful properties, particularly in duality
theory.

A penalty functional approach in infinite-dimensional problems has been
applied by A. V. Balakrishnan, [2]. For the optimal control problem

i
tl

(1.8) min O(x, u) fo(x, u, t) dt + h(x(tl)); 2 f(x, u, t); X(to) Xo

a penalty functional has the form

(1.9) q% x, u,- O(x, u)+ 112(" )-f(x( ), u( ), )11,
where the norm is in L(to, t); additional constraints can also be taken into
consideration. The functional (1.9) results in the so-called e-technique and in a
computational approach to the maximum principle. The method of multipliers
based on a functional similar to (1.9) in application to optimal and variational
problems was discussed in the works of Rupp [42], [43].

A more abstract approach was used by Levitin and Poliak [13] for an
optimization problem"

(1.10) minO(y);A0={yeE:K(y)<-0}; O:ER, K:ER+,
yAo

where E is a topological space or, more specifically, a Banach space. A general
form of the penalty functional is then

(1.11) (y, ()= O(y)+(K(y).

One of the authors of this paper observed in [26] that for a problem with
operator inequality constraints

(1.12) min O(y); Yp={yE:p-P(y)6DH}; O:ER, P:EH,
YYp
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where D is a positive cone in the Hilbert space H, the functional K can be defined
by

(1.13) K(y) 1/211(P(y) p

where D* is the dual cone and (.)o* is the projection on this cone. This approach
las been developed in order to solve optimal control problems with state space
constraints and, particularly, optimal control problems with delays and final
complete state constraints. The corresponding shifted penalty techniques have
been applied successfully to solve various optimal control problems [27]. How-
ever, the projection on a cone has many useful properties, which make it possible
to develop a generalized theory of penalty functionals, augmented Lagrange
functional and duality for nonconvex problems. The aim of this paper is to present
an outline of this theory.

Beside the references cited above, a number of works have been devoted to
the study of penalty functionals for various extremal problems. See, for instance,
[34], [35], [36], [41]. The shifted penalty technique (often called the method of
multipliers) has been recently investigated by numerous authors. Besides two
important papers [15], [31], a good review of related problems along with a rather
complete list of references is available by Bertsekas [32].

Part I. Fundamentals.
2. Projection on a cone and its properties. Let H be a Hilbert space, D a

nonempty, convex closed set in H.
LEMMA 2.1 (see [5], [28]). For any p Hthere exists a unique elementp D

satisfying

(2.1) lipD -pll min lid
dD

The lemma holds also if H is a complete strictly normed space (if IIx + Yll
Ilxll+llyll implies x ay, a R). The element pD is called the projection of p onto
D, the mapping (.)o, the projection onto D.

Projections on linear subspaces play a fundamental role in functional
analysis; but projection on more general convex sets and, in particular, on convex
cones have been investigated relatively recently. A basic result, stated in Theorem
2.4 in this section, was announced by J. J. Moreau [18] in 1962. E. H. Zaran-
tonello [29] used the projection on a cone to develop the spectral theory for a class
of nonlinear operators. The application to penalty functional techniques have
been introduced in [26]. The properties of a projection on a cone are presented
here from the point of view of this application.

Throughout the paper, D is assumed to be a nonempty, closed convex cone in
Hwith vertex at the origin, that is, aD +flD cD for a,/3 ->- 0. Recall that the dual
cone D* is defined by D*={d* H: (d*, d)_->0/d D}. D* is a closed convex
cone and (D*)* D.

LEMMA 2.2. For any p H, p D, the equality p pD holds iff
(2.2i) (i) p-p D*,

(2.2ii) (ii) (p,/0-p) 0.
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Proof. Let ,0 satisfy (i) and (ii). Then IId-pl[= IId-pl[+
2(d,-p)+l[-p[[2>-[[p-pl]2 for any dD. Since pD is determined uniquely,
=pD. Conversely, if p =pD and not (i), then there exists dD such that

(pD--p,d)<O and, for some e>0, also e(pD-p,d)+e2[[d[[<O. Hence
[[pD + ed -p[[ <[[pD _p[12; since D is a convex cone, pD + ed D and (2.1)cannot
be satisfied. If not (ii), then (pD, pD _p) > 0 in virtue of (i). There is an e 0 such
that inequality--e(pD, pD--p)+e2[lpD[[e<o holds for all e(0, el). Hence
[[(1--e)pD--p[le<[IpD--pll2; since D is a cone, (1-e)pDD for e(0, 1) and
(2.1) cannot again be satisfied.

LEMMA 2.3. For any p H the following holds"
O(2.3i) (i) P =p+(_p)O,

(2.3ii) (ii) (_p)O _p-O,
(2.3iii) (iii) (hp)=hp Vh>=O.

(iv) For any p D the equality p holds iff

(2.3iv) 11/511 min
dD*+p

Proof. (i) We have (p + (_p)D)--P (_p)D 6 D (D*)* and
(p+(--p)D,(p+(--p)D)--p)=((--p)D--(--p),(--p))=O by (2.2ii). Hence /5=
P + (_p)D satisfies conditions (i), (ii) of Lemma (2.2) with D changed to D*. Part
(ii) is proven similarly. To prove (iii) observe that
A mindeD Ild-pll min,eaD=D l/aT-ap[I for A >0 since then AD D. If h 0, (iii)
is obvious. Part (iv) follows from (i), since mindD.+pl[d[[=minaD.
[](_p)D* +P pD

The following statement, announced first by J. Moreau [18] in 1962 in a
slightly different formulation, is a generalization of the classical decomposition
theorem for Hilbert space [5], [28]: if D T is a closed subspace of H, then each
p eH can be uniquely represented by p pT+pT where p T, pT are projections
on the orthogonal subspaces T, T+/-

respectively. Note that any subspace is a cone
and T T* T*.

THEOREM 2.4. Decomposition theorem. Any element peH can be rep-
resented in the form

D -D*(2.4i) p=p +p

with

(2.4ii) (pO, p-O.)_ 0; Ilpll= --IIp’ll= / Ilp-*ll=.
This decomposition is un!que: the relationsp =Pl +P2, Pl D, p2-D*, (Pl, P2)
0 imply pl pO, P2 p-D This decomposition is also norm-minimal: the relations
p =pl +P2, pl D, pz-D* imply [[pl[[_-> [[pO[I,

Proof. The theorem follows directly from Lemmas 2.2 and 2.3. The minimal-
ity property holds by (2.3iv): pa =p-pzeD* +p; hence

The decomposition theorem is fundamental for determining constraint viola-
tion in the problem (1.12) and thus defining a penalty functional. But the
projection on a cone has further useful properties.



PROBLEMS WITH INEQUALITY CONSTRAINTS 29

LEMMA 2.5. The projection on a convex closed cone has the followingproper-
ties"

(2.5i) (i) ][Pll Ilpll, p H,

(2.5ii) (ii) ]]p’-p]] Ilpl-p2l], pa, p2 H,

(2.5iii) (iii) II(pa+p2-d*)Dll<=llplo+p2o]l, Pl, P2 E H, d* E D*.

Proof. Part (i) follows from Theorem 2.4. Part (ii) follows from the in-
equalities"

--D* *)][pF_p]]2 (p_p, Pl--Pz--P1 +p-O
=(p-p, p,-pz)+(p, pO*)_(p, p-O*)
<-- (P-P, P,-P2) -<- IIp-pll" lip,-p211;

these estimations are based on Lemma 2.2. To prove (iii) we apply (2.3iv):

since
II(pl +p2 d*)D minaD.+p,+pz-a. Ildll ]]pF+p’l],

ptff+p= (P-Pl +P-P2+d*)+pl +p2- d* 6D* +Pl +p2- d*
by (2.2i).

Corollary 2.6. The functional I](" )l] is convex.

Proof. Any subadditive ((2.5iii) with d*= 0)) and positively-homogeneous
(2.3iii) functional is convex.

More important are the properties of the functional 11(" )DII2. Anticipating
the applications to penalty functionals, we shall state the following lemma in terms
of D* rather than D though the roles of both cones are fully symmetric.

LEMMA 2.7. Let q(p)- 1/2llp’*ll2. Then
.(i) q(,Pl+(1-,)p2-d)<=Aq(Pl)+(1-,)q(P2), Pl, P2eH, d6D,

,t (0, 1). In particular, q is convex.
(ii) 7he functional q is Frechet-differentiable with the derivative

D(2.7ii) qp(p) =p

Proof. Part (i) follows from (2.5iii) with D replaced by D*"

[l(Xpa + (1 A )P2 d)D*ll2 <= I[(Xpl)D* + ((1 , )p2)D*l]2 Ilxp’* + (1 ,)p’*ll2

_-<, [Ip*[I2 / (1 ;t )ll p’*ll2.
The proof of (ii) is omitted; various proofs are given in [9], [26], [29].

An extensive treatment of the projection on convex sets is given in [29]. We
close this section with examples.

Example 2.8. Let H R n, D {p (pl,.. ", p,) R .pi =>0 ’q’i} (the posi-
tive orthant). Then D*=D and from Lemma 2.2 it follows that pO=
(p/, ’’, p_) where p_ max (0, pi), pi Eg.

Example 2.9. Let H W[0, 3]. This is the space of absolutely continuous
real functions on [0, 3] with square integrable derivatives and with the scalar
product

(2.9) {p, p}=p(O)p(O)+ (t)a(t) dr.
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Let D {p H p(t) >- OVt [0, 3]}. One can verify that: D* {p 6 H: p is
nonincreasing, 0_-</(t)_<-p(0) a.e.}. Let p(t) =-1, [0, 1], p(t)= t-2, [1, 3].

--D* pDThen from Lemma 2.2 it follows that p (t)----1 and (t)=0, t
[0, 1]; t- 1, t [1, 3].

Example 2.9 shows that the projection on a cone can in general have quite a
complicated form. The projection is simple in the space of L2 type.

Example 2.10. Let be a separable Hilbert space, @ a closed convex
cone and (lq, X//,/z) a measure space. Let H L2(1q, /, Yg); this is the space of
equivalence classes of the Bochner square integrable function from f into , with
the scalar product

(2.10) (Pl, P2) Ia (p(to), p2(to))/z(dto),

where (-,.) is the scalar product in Y(. Let D be the closed convex cone
D={peH:p(to)eN a.e.}. Then D*={peH:p(to)e@* a.e.} and p(to)=
(p(to)) a.e. If, in particular, =R, @= R/, then p(to)= (p(to))+.

3. Penalty functionals for a general optimization problem. In this and the
following sections, let E be a real Banach space, H a real Hilbert space, D a
nonempty closed convex cone inH with vertex at zero, P"E Han operator and
Q"E R a functional.

Problem 3.1.

(3.1) min Q(y); Yp --{y E’p-P(y)eD}.
Y Yp

This is a rather general optimization problem, which includes most of the
problems of optimal control, nonlinear programming, etc. The assumption that H
be a Hilbert space is not really restrictive, since it is the most natural setting for
many infinite-dimensional optimization problemsfor example, problems with
constraints described by partial differential equations. On the other hand, the
Hilbert space has a useful and strong mathematical structure; here, the most
important feature of the space H is the notion of the projection on the cone D.

Observe that p-P(y)D if and only if (p-P(y))-*=O (Theorem 2.4).
Define the constraint violation functional

(3.2) g(y) 1/2II(P(y)-p)*ll2; K-E R+.

Since (p_p(y))-o*= _(p(y)_p)O. by (2.3ii), then the condition p-P(y)D is
6quivalent to K(y)=0. Thus, the notion of the projection on a cone makes it
possible to reformulate the general problem (3.1) with operator constraints into a
simpler one with functional constraints.

Simplified problem 3.1’.

(3.1’) min Q(y)" A0={y E’K(y)<O}.
yAo

Moreover, the functional K preserves some properties of the operator P.
LEMMA 3.3. (i) ff P is D-convex, that is, (1- A )P(y) +AP(y2)

P((1 -,)y +AY2) D[or all [0, 1], y, y2 E, then K is convex. I, in addition,
P is continuous, then K is weakly lower semicontinuous.
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(ii) If P is continuous, then K is also. If P is weakly continuous (in weak
topologies of both E and H), then K is weakly lower semicontinuous.

(iii) IfP is differentiable, then K is also and

(3.3iii) Ky(y) P*y (y)(P(y) _p)D*.

Proof. [i) P((1-)yl+yz)-p=(1-,)(P(yl)-p)+(P(yz)-p)-d for
some d D, if [0, 1], yl, Y2 G O. Since K(y)= q(P(y)-p) the convexity of K
follows from (2.7i). Since q is continuous by (2.5ii), then K is continuous; being
convex, K is weakly lower semicontinuous. Part (ii) is immediate and (iii) follows
directly from (2.7ii).

xample 3 4. Let H= R" x R", D R_X{Om}= {p (p ...,p ,p
+m pi pi R ".’’,p )6R xR -->0, l<i<n,= =0, i>n+l}.= ThenD*=R"x+

+mLetPi’ER,i=l,...,n+m,P=(pl,...,Pn+,,),andp=(p’,...,p" )eH.
Then

n+m
)2/((y) 1/2 Y (e,(y)-p)++ E (e,(y)-p,

i=1 i=n+l

Infinite dimensional examples.
Example 3.5a. Nonlinear operator with values in L2(0, 1). Let H---L2(0, 1),

D ={p6La(0, 1) p(t)=>0 a.e.}. Let P EL2(0, 1):p6L2(0, 1). K is defined
by

lI0 (3.5a’) K(y) (P(y)(t)-p(t))+ dt.

Examples 3.4, 3.5a are general and simple. The constraint violation functional
(3.2) appears in various problems with complex structure. The examples below
are described without details, which can be easily filled in by the reader.

Example 3.5b. A controlled system with inequality constraints. Suppose the
constraints are:

2(t) f(x(t), u(t), t) a.e. in [to, tl],

X(to) Xo, g(x(h)) O,

h(x(t))>=O Vt[to,

Assume the customary hypothesis on f to guarantee for any u(. )L(to, tl; R)
the existence of a unique solution x(u)(. to the initial value problem (the first two
equations). Suppose g" R - R’, h" R -. R k. Define H R" L2(t0, h; Rk),
E=L(to, q; Rr). Thus y=u(. ). Define P:EHby

P(u) (g(x(u)(tl)), h(x(u)( ))).

Define the cone

D {(,/(. )) e H" 0,/(t) _>- 0 a.e. in [to,/1]}.

Then the whole set of constraints can be written as

-P(u)eD.
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Functional K is here

1 1 ft/1 [h(x(y)(t))+ll2 dt.(3.5b’) K(y) -llg(x(y)(tl))ll= +- .to

Example 3.5c. A controlled system with delay. For simplicity,- consider the
linear case:

(t) =A(t)x(t)+B(t)x(t- 1)+C(t)u(t)z

x t) Oo(t)

x(t)=q91(t)

a.e. in [to, tl],

Vt [to- 1, o],

Vt[tl-l,q],

where A, B, C are measurable bounded matrices of suitable dimensions. Pro-
vided u(. is square integrable and {po, e.g., continuous we have that
x(. )ltto.tl? e W(to, ta; Rn)--that is, x is absolutely continuous with an L deriva-
tive. Similarly as above, the first two equations define x(u) for each u E
L2(t0, &; Rr); therefore the constraining operator P can be defined as

P E - H, P(u) x(u)ltt,_l,,13- {1}1.

Generally, the Hilbert space H can be chosen in at least two ways: H=
L2(q 1, tl; R n) or H= W(tl- 1, tl; Rn). The corresponding penalty terms
K(y) (setting y u) would have the form

(3.5c’) Ix(y)(t)-q91(t)]2 dt
2 1-1

or

I (y)(t) bl(t)l2dt.(3.5c")
2
Ix(y)(t)- {o(ta)l2+ --a

For particular problems of this type, other spaces and norms could also be
employed; for instance, if the state equations were

.,(t) Xl(t)--Xl(t- 1) +x2(t),

2(t) x2(t) + x2(t- 1) + u(t),

one could readily use the constraint violation term of the form (abbreviating
x(u)(t) to x(t))

(3.5c’")

Example 3.5d. A problem described by partial differential equation (the

This is the square norm in the product Sobolev space W(tl- 1, tl) W(tl- 1, q).
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model of a gas pipe-line system [27]).
Op.__i A

OO__i
Ot Ox

(t, X)E -: [0, T]X[0, Li], 1,2,
pi

-BiOiOx

(where p, O are the gas pressure and flow). Initial and boundary conditions are

pi(x, 0)=fi(x), i= 1, 2,

pl(0, t)-- g(t),

Qx(Ll, t)=u(t),

Q2(0, t)= u(t),

Qz(L2, t)= h(t)

(u is the control). Additional constraints:

P min -P (X, t) --<p 1, 2, ’X, t

Fjmin -Fj(/g(l), FI(L1, t), p2(0, t))--<F max, /"- 1, 2

For any control u E E C(0, T), the state equations along with boundary and
initial conditions define the pressures pl(U), p2(U) belonging to L2(). Denote
briefly F(u(t), px(Li, t), pz(0, t)) by F.(u). Define the Hilbert space H to be

H= L2(1); g4) L2([0, T]; g4)
and the operator P"E-H by:

P(u) (pl(u)--Plmax, Plmin--Pl(U), p2(u)--P2max, P2min--P2(U),

Fa(n)-Flm,x, Flmin-Fl(U), F2(u)-Fzm,x, Fzmin-Fz(u)).

Define also the cone D cH by

D {(/, F) H"/(x, t) -> 0 a.e. in , F(t) >= 0 a.e. in [0, T]},

where the inequalities are taken in R4. Then the set of constraints is equivalent to

-P(u)D
and consequently

K(u)= ((p(u)-pm)++(pi-p(u))+ dtdx
i=1

"- (F/.(N) F] max)2+ d- (F/- min -Fj(u))2+) dr.
=1

Given the functional K it is routine to define the penalty functional for

problem (3.1) by

(3.6) (y, st)= O(y)+ ’K(y)= Q(y)+1/2sr]](P(y)_p)D*{]2.
It is also possible to define a shifted penalty functional by substituting the constant
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element p in (3.6) by a variable penalty shift v H:

(3.7) W(y, st, v) O(y) + 1/2srll(e(y)- y e E, sr-> 0, vH.

Clearly, (y, sr) W(y, sr, p).
As was shown before, this form of penalization is well justified by numerous

examples arising in computational experience. Functional (3.6) with (3.5a’) has
already beert suggested by Levitin-Poljak [13]. Functionals (3.6) and (3.7) with
(3.5b’, c’, c", c"’, d’) have been effectively used for solving optimization problems of
(3.1) type. See [27], [38], [39] for computational results.

The penalty functionals (3.6), (3.7) can also be used for optimal control
problems reformulated in a manner different from that shown in the examples
above, where state equations along with initial and/or boundary conditions have
been excluded from the set of constraints and the optimization has been carried
out in the space of controls u. Another approach, proposed by Balakrishnan
(e-technique) and Rupp consists in carrying out the optimization in the space of
pairs y (u( ), x( )) (control, state), and treating state equations as principal
constraint; other constraints, e.g., endpoint conditions on x can be included in the
definition of the space E of optimized trajectories. See Balakrishnan [2] for the
use of (3.6) and Rupp [41], [42] for the use of (3.7) for optimal control problems.
Some computational results are given in [42], [43] and [27].

It is also possible to include all constraints in the. functional K; in Example
3.5d one could augmentfunctional (3.5d’) by the term:

,=1 Ot B, Ox 2 dt dx+ i=1
]pi(x, O)--i(X) dx

+ (IQI(L1, t)-u(t)12+lQ2(O, t)-u(t)12+lO2(L2, t)-h(t)l2) dt

in order to avoid solving numerically partial differential equations.
The properties of and W are related to the Lagrange multiplier theory in

optimization techniques. Recall the following.
DEFINITION 3.8. Let Q, P be both differentiable or Q be convex, P be

D-convex. The functional L :H E R defined by

(3.8i) L(r/, y)= Q(y)+(rt, P(y)-p)

is called the normal Lagrange functional for the problem (3.1). An element rt e H
is called a normal Lagrange multiplier for the problem (3.1) at a (optimal) point
9 Yp if

(3.8ii)

and

(3.8iii)

for O, P differentiable, or

(3.8iv)

in the convex case.

"r/6 D*, (r/, PO3)-p) 0

Ly (’r/, )= 0

L(’r/, )3) _-<L(’r/, y) Vy E
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It is well known that rather severe additional assumptions are needed in order
to ensure the existence of normal Lagrange multipliers at an optimal point for the
problem (3.1)msee, for example, 1], 1 1 ].

LEMMA 3.9.2 Suppose y minimizes ( , v) over E. Then y is a solution of
the problem

(3.9i) min O(y); Y ={y E’p-P(y)D},
yYP

where

(3.9ii) /5 (e(y)- v)*+ v

is a normal Lagrange multiplier for the problem (3.9i) at Yo.
Proof. -P(y) (P(7)- v)O*-(P() v) by (2.3i); hence 7 Yr. Moreover,

for y Yv, P P(Y) D and

II(e(y) )*11 -I1( p(y))O (v P(y))ll= _-< lip P(y) -(v e(y)ll

I1 11 II(e()- )’ll
by (2.3i) and the definition of projection. Since ff(37, r, u) _-< if(y, st, u) for all y e E,
then O(37)=<O(y) for y.o__. Thus 37 solves (3.9i). Clearly, ,jeD* and
(,, P(y)-p) (-(P(y)- ) ( -e(y))) (( P()7))-*, ( P()7))) 0
by Theorem 2.4. If O,P are differentiable, then 4,y(37, r, u)=0 and Ly(, 37)
o (y) +&*(y), ()7, , ) 0 by (3.3iii). Thus (3.8ii) and (3.8iii) are satisfied at
(, 37). Now, let O be convex, P be D-convex and suppose (3.8iv) is not satisfied,
i.e., there exists 7 eE such that O()-O(y)+(l,e()-P(y))=a <0. Let y
37+e(37-37)=(1-e))7+e)7 for 0<e<l. By convexity, (1-e)O(37)+eO(37)=>
O(y) and e(y)=(1-e)e(y)+ee()-d(e),d(e)eD. Hence Lemma 2.7ii
implies the following estimate"

xI,(y, (, v) xI,(, (, v)- O(y, O(Y) + 1/2ff(II(P(y, )"*11- II(e(y) )"*ll=
_-< (o(7)- o(y)) +(ll(P()7) + (e(p)- P(y)) )"*11=

-ii(P(y)- )’*ll-
D*e(O();)-O(9))+ -((e(37)- v) e(e(9)-P(y)))+o(e)

o(e(O(f)-O())+(,P(f)-P()))+o(e)= e + (e) ]"

Thus (y, (,. v)- (7, ’, v)< 0 for small e and 17 cannot minimize (., (, v) if it
does not minimize L(,. ). This proves (3.8iv).

Without substantially changing the proof, the lemma can be restated for the
case of a local or constrained minimum.

LEMMA 3.9’. Suppose f minimizes q( , v) over a set A c E. Then is a
solution of the problem

(3.9’i) min O(y); Ya =(y E’p-P(y)D},yYpfqA

This is the Everett theorem for the penalty functional (3.7).
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wherep is defined by (3.9ii); the element defined by (3.9iii) satisfies (3.8ii). IrA is
open and O, P are differentiable, then Ly(, 37) 0; hence is a normal Lagrange
multiplier. If A, 0 are convex and P is D-convex, then L(I, y)<=L(q, y) for all
y A; hence q is also a normal Lagrange multiplier for the problem (3.9’i) at

The Lemmas 3.9, 3.9’ are fundamental for understanding penalty functional
techniques. First, it is assumed that qt(., (, u) does have a minimum; conditions
for, the existence of minimal points of penalty functionals are investigated in the
next sections. Secondly, when minimizing a penalty functional, one actually solves
not the original problem (3.1), but a slightly modified (3.9i); observe that
p (p()_p)O*+p for unshifted penalty functionals. The modified problem is a
normal one, i.e., it has normal Lagrange multipliers. The original problem need
not be normal. If it is possible to choose a sequence {(n, un } such that/5, converges
to p, then the original problem is approximated by a sequence of normal ones.
Since pn--p=u--p+(P()--un)D*=u--p+(1/(n)l one can expect a fast
convergence of p, to p when choosing suitable shifts u and keeping st, constant.
But/5, can be equal to p only if the original problem is normal. If it is not, (, must
be increased in order to approximate p by/Sn. The suitable algorithms and their
covergence are discussed in 6 and 7.

4. Augmented Lagrangians and duality theory. An augmented Lagrange
functional can be defined by adding to the shifted penalty functional (3.7) a term
independent from y; hence these two functionals are equivalent when minimized
in y. But the study of augmented Lagrangians results in an extensive duality theory
for nonconvex problems. See [22], [30], [34], [35], [36] for the discussion of this
theory for nonconvex problems with H Rn. In infinite dimensions, the convex
case was studied--e.g., in [10], [12], [21]. The authors are not aware of any
presentation of duality theory for nonconvex, infinite-dimensional problems.
Nevertheless, the presentation here is brief and confined to main points which
allow a generalization of the extensive theory presented in [22]. Those proofs
which are obvious modifications of the proofs in R" given in [22] are omitted in
the sequel.

DEVINITION 4.1. The augmented Lagrange functional for the problem (3.1)
is defined by introducing an equivalence between the Lagrange multiplier r/and
the penalty shift u and coefficient (

(4. li) r/= ((p- u).

Then the augmented Lagrangian is

(4.1ii)
A((, v, y)= ((, n, y)= *(y, (, u)-1/2(llp-vii2

O(y)+1/2(]](P(y) v)*[]2- 1/2(lip v[[).

In the sequel, only the functional A(sr, u, y) will be studied.
LEMMA 4.2. The optimization problem (3.1) is equivalent to the primal

problem

(4.2i) (P) min sup A(’, u, y min O(y, p),
yE \((,v)R+H yE
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where

(4.2ii) ((y, p) de___f / Q(Y)’ y E Yp,
+00, yfg: Yp.

Proof. It is sufficient to show that

)o.11). { 0, Yp,(4.2iii) sup (srll(P(y) , srllp- ull) Y
(c,) +00, y yp.

To prove this, note that for p-P(y)D the following inequality holds:

II(P(y) )*ll- lip 11 II(P(y)-p +p )*11- lip

--<ll(p- )*ll-IIp-
due to (2.5iii)with D changed to D*. If p-P(y)D, then (P(y)-p)*#O; take
(st,, u,) (n, p) to obtain

g’ (II(P(y)- )*[12- lip- ll2) nll(e(y)-p)*ll ..,

DEFINITION 4.3. The functional

(4.3i) (sr,/2) clef
inf A(sr, v, y)= inf O(Y, sr, )-1/2ffllp- 112
yeE yeE

is called the dual functional. The dual problem is defined by

(4.3ii) (D) max (inf A(r, v, y))= max X(r, v).
(,v)R+H \yE (,v)R+H

Observe that the optimization in both (4.2i) and (4.3ii) in respect to u (or
see (4. li)) is unconstrained in the space H, whereas in the classical convex duality
theory the optimization is performed in respect to r/ D*.

DEFINITION 4.4. Consider a family of optimization problems (3.1) with the
parameter p varying over H. The functional

(4.4i) 0(p) def
inf O(y)
ye Yp

is called the primal functional. Clearly,

(4.4ii) 0(p) inf 0(y, p).
yE

A crucial role in the generalization of Rockafellar’s duality theory is played
by the following representation lemma.

LFMA 4.5. The functionals A(sr, , y) and ((, v) satisfy the relations

(4.5i) (i) A(,,p+,y)=inf (O(y,p+p)+llpll2-,(p,)),pH

(4.5ii) (ii) (sr, p+ 7)= inf (((p+iO)+llffl]2--’(i0, if)).
(iii) The functionals (st, ,/)-A(sr, p+(1/()r/, y) and
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(’, p + (1/’)r/) are concave and weakly upper semicontinuous.
(iv) For ( > r >=0, 9 6 H,

(4.5iv) h(sr, p + 9) >max ((m P + e), 2(-) /"

Proof. Without loss of generality, let p 0 to simplify notation. By (2.3iv),
D*II(e(y)- ) mnD+< lip 11. Therefore

A(’, y) O(y)+ 1/2Curnnpy lip- 112-1/2C11112

min (O(y)+1/2IIPI-(P, ))= inf (0(y,p)+1/2ffl]NI2-ff(ff, >).
pD+P(y)

Thus (i) holds; the point (ii) follows from (i). Part (iii) holds since both functions
are biggest minorants of a family of affine functions; see [12]. To prove (iv),
observe that

(r; 9)-- inf (O(p)+&llll=-<, e>+}(-)llll+<, re->)
pH

=> inf. (((p)
pH pH

IIc-ell=

COROLLARY 4.6. For any rl H,

(4.6) lim (st, p +) sup
o0 (r, 2)R+h

A(cr, p + ’) sup (D),

where sup (D) denotes the supremum of the dual problem (4.3ii).
Proof. For any (r, )R/ H and any e > 0 it is possible to choose sr’ such

that

2(st_ er

>-(o’,p+Y.)-e, >=’.

Lemma 4.5 allows a straightforward generalization of several duality
theorems given in [22]. To state these theorems, some further definitions are
necessary.

DEFINITION 4.7. The primal functional (4.4i) for the problem (3.1) is called
quadratically bounded or, equivalently, it is said that the problem (3.1) satisfies
the quadratic growth condition if there exist q, sr R such that

(4.7) O(p +p) _--> q ’llPll2 vp H.
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THEOREM 4.8 [22]. If the primal functional (4.4i) is quadratically bounded,
then

(4.8) -oo < sup (D)= lim inf 0(p +,6)-< 0(p)= inf (P),
p0

where sup (D) and inf (P) denote the supremum of (4.3ii) and the infimum o]’ (4.2i),
respectively. If the primal functional is not quadratically bounded, then sup (D)=

The next definitions are related to the so-called stability of the problem (3.1)
in the family of perturbed problems defining the primal functional Q(p/).
Actually, stability is a kind of continuity of the primal functional. The notion of
stability was introduced in [21]; see also [10], [12], [6].

DEFINITION 4.9. The problem (3.1) is called in[-stable if the primal func-
tional is lower semicontinuous at p, that is,

(4.9) lim inf 0(p +/) >_- 0(p).

DEFINITION 4.10. The problem (3.1) is called stable of degree 2, if there is a
neighborhood 6 of zero, an element 9 H and a number sr > 0 such that

(4.10) O(p +iO)> O(p)+{{iO, 9) 2-  ’71p.ll vp

Conditions guaranteeing stability shall be discussed in Part II, 8 of this paper.
The notion of stability is the basis for two following theorems. The theorems are
stated and proven for the nonconvex finite-dimensional case in [22]; the first
theorem is also stated and proven for the general convex case in [21]. Due to the
Lemma 4.5, the proofs of the theorems remain valid also for the nonconvex
infinite-dimensional case.

THEOREM 4.11. Suppose the primal functional (4.4i) for the optimization
problem (3.1) is quadratically bounded. The duality relation inf (P) sup (D), that
is,

(4.11) inf sup A(sr, v, y) sup inf A(sr, v, y)
yE (,v)6R+xH (’,.v)R+xHyE

holds i[ and only i[ the problem (3.1) is inf-stable.
THEOREM 4.12.3 Suppose the primal functional (4.4i) for the optimization

problem (3.1) is quadratically bounded. The duality relation inf (P) max (D), that
is,

(4.12) inf sup A((, v, y)= max inf A(sr, v, y)
yE (,v)eR+xH (r,v)R+xH y eE

holds if and only if the problem (3.1) is stable of degree 2. Moreover, a pair
(, 9) R+ His an optimal solution to the dualproblem (4.3ii) iff it satisfies (4.10)
for some neighborhood of zero. If Q and P are differentiable or Q is convex, P is
D-convex, then rl =-( is a normal Lagrange multiplier for the problem (3.1).

Compare also [34], [35], [36].
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COROLLARY 4.13. Assume that is a solution of the problem (3.1) and let the
problem satisfy the quadratic growth condition. A necessary and sufficient condition
]:or the existence of (, ) R+ x Hsuch that minimizes the augmentedLagrangian
A(, , or, equivalently, the shifted penalty functional (., ) is that the
problem (3.1) be stable of degree 2. The set of all these pairs (, ) is identical with
the set of all pairs (, ) satisfying (4.10) for some neighborhood of zero.

Part II: Algorithms and convergence.
5. Minimizing sequences in constrained optimization. Consider the original

problem (3.1) in its equivalent functional-constrained form.
Problem 5.1.

(5.1i) min O(y); Ao={y 6E’K(y)<=O}
yAo

where

(5.1ii) K(y) 1/2II(P(y) p)’112
is the constraint violation functional for the operator constraint p-P(y)D
corresponding to the squared distance from p P(y) to the positive cone D. Recall
that E is a Banach space, H is a Hilbert space; Q, K"E-R, P"E-H, D is a
closed eonvex cone in H, D* is the dual cone, (.)o. is the projection on D*.

In a numerical method solving the problem (5.1i), a sequence of points
{Yn}n=1 is generated, with the aim to approximate a solution 33 of the problem.

DEFINITION 5.2 (Rockafellar [21]). A sequence {Yn}n=l c E is called an
asymptotically minimizing sequence (ASMS) if[

(5.2i) (i) lim O(yn) lim inf O(p
n-c

(5.2ii) (ii) lim K(yn)= 0,

where 0 is the primal functional (4.4i).
DEFINITION 5.3. A sequence {y,},_-I E is called a weakly approximately

minimizing sequence (WAMS) iff

(5.3i) (i) lim Q(yn) 0(p) inf (P),

(5.3ii) (ii) lim g(yn)-- O,

where inf (P) is the infimum of the primal problem (4.2i).
According to Theorem 4.8, if the primal functional is quadratically

bounded (4.7), then 0(p) ->_lim info_0 0(p +/) sup (D), where sup (D) denotes
the supremum of the dual problem (4.3ii). In this case, a WAMS gives a better
approximation of the solution of the original problem than an ASMS. However, if
the problem is inf-stable (4.9), ASMS and WAMS are equivalent.

DEFINITION 5.4 (Levitin-Poliak [13]). A .sequence {yn}=lCE is called
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approximately minimizing (AMS) iff

(5.4i) (i) lim O(yn)= 0(p),

(5.4ii) (ii) lim dist (y,, A0) 0.

An AMS is the strongest type of approximating sequence. If O, K are
uniformly convex, each AMS is norm convergent to the (unique) solution y of
(5.1i)--see [4], [13]. But it is usually easier to show that a sequence of points
generated by an algorithm is ASMS or WAMS rather than AMS. Under certain
regularity assumptions, it is possible to verify that a WAMS is AMS.

DEFINITION 5.5 (Levitin-Poliak [13]). The constraint functional K is called
correct if, for any sequence {y,},oo__ E (5.3ii) implies (5.4ii).

Several conditions of correctness of K are discussed in [13]. One of them is
the following:

LEMMA 5.6 [13]. Suppose K(y) >=O for all y E, K is Frchet-differentiable in
E, its derivative Ky(y) satisfies IIg(y)ll2 =>AK(y) for all y 6E and for some A >0,
and the mapping ky (.) is Lipschitzian. Then K is correct.

COROLLARY 5.7. Let P be affine continuous and its linear part Po be a
surjection. Then K defined by (5.1ii) is correct.

Proof. By (3.3iii), Ky(y)=Pd(P(y)-p)* and Kr(y) is Lipschitzian with
Lipschitz constant equal to IIPoll2 by (2.5ii). Moreover,

IlK, (y)ll Ile (P(y)p)*ll: -> a011(P(y)-p)*ll: 2AoK(y)

for some Ao> 0, since P is a normal injective operator; see [5; VI.6.2]. Hence all
assumptions of Lemma 5.6 are satisfied.

We close this section with a theorem on convergence of penalty techniques,
which is due to Rockafellar [22] in the case of H R n.

THEOREM 5.8. Let a sequence {(srn, Tn)} R+ Hbe given, such that (n >= 6 >
0 for all n and

(5.8i) lim (’n-6, p + ,(n )n-.oo sr, 7, sup (D) <

where is defined by (4.3i) and sup (D) is the supremum of (4.3ii).
Suppose each ynE minimizes approximately A((n, p + 9n," (or, equival-

ently, (n, p +) over E), that is,

(5.8ii)

where an O. Then

A(’n, p+ ,, yn)-< (Srn, p+ n) + an,

(5.8iii) (a) II(P(y.)-p)O*ll 0; II fll 0

or, equivalently, dist (P-P(Yn), D)O and dist (-gn, D*)- 0.
(b) If the sequence {&Tn} is bounded, then {y,} is ASMS for the problem

(5. li, ii).
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(c) ff the sequence {srnTn} is bounded and the problem (5.1i, ii) is inf-stable
(4.9), then {yn} is WAMS for the problem.

Proof. Without loss of generality, let p 0 to simplify notation.
(a) Denote/, Tn +(P(y,)-O,). According to (2.3iv) and (4.5i) the follow-

ing estimate holds:

A(’, , y) O(Yn) +&l/ll2-n<, >
O(y) +(ffn -)llPl12-(

X -,-n +111
This and (5.8ii) imply

sup (D)-X (-8, (,-8 if" +a" elll
D* D*hence p0 )_b (5.8i). Moreover, IIP(Y)

I1( +(e(y.)-. +(P(Y)-)o*)o*IIII( +(e(Y)-) ) I/=11 bY
Theorem 2.4 and Lemma 2.5(i), (iii) (all statements of 2 are obviously valid after
interchanging D and D*). Similarly, I111 I1( -(P(y)-
by (2.5i, iii). Thus, IIP(y)O)ll I111 0, I111 1111 0.

(b) {,} being bounded,-(ff,, p,) converges to zero. Since A(,, ,, y,)
o(y) +ffllll-ff(p,, > we have

lim sup 1/2(llp.II-< lim A(sr., 7., yn)-lim inf O(y,,)

-<_sup (D)-lim inf O(y,).

But lim inf,_ O(yn) >= lim infn_ O(P(y,)*) >= lim inf,_o"0(/5). Hence
lim supn_,o 1/2’llpll=-_<sup (D)-lim infp_,o ((p) 0 according to Theorem 3.8,
which can be applied here since sup (D)>-oo. Thus lim_,oo 1/2’1111=- 0 and
lim,_,o O(y)= lim,_oo A(’,, 7,, yn)= sup (D) so that {y,} is an ASMS.

(c) is an obvious consequence of (b).
Comment 5.9. If the assumptions (5.8i), (5.8ii) are satisfied, then--as it is

shown in the proof above--limn_,ooA(n,p+y,)=sup(D); hence also
lim,_oo (’,, p + Tn) sup (D). But lim,_o (sr,, p + 7,) sup (D) does not neces-
sarily imply (5.8i). Thus the assumption (5.8i) is somewhat stronger than a typical
dual approximation. But in some applications--for example, in the case of
increased penalty algorithms--the assumption (5.8i) is easy to check and
Theorem 5.8 implies quite powerful convergence results.

6. Increased penalty techniques. The problem (5.1) can be solved numeri-
cally by the following:

ALGORITHM 6.1 (pure increased). Given a > 0, e > 0, sro > 0, k > 1 define

(6.1i) srn kn’o.
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For each st,, take , =p and minimize approximately the penalty functional

(6.1ii) (y, (,) xIt(y, rn, p) O(y)+1/2sr, ll(P(y)-p)D*ll2

in order to determine Yn such that

(6.1iii) (y,, ’,)-<_ inf (y,
yE

where a, 0. If a, _-<a and II(p(y.)-p)*lle, stop.
It is known that the sequence {y,} generated by Algorithm 6.1 is a WAMS

under mild assumptions concerning O and Ksee [4], [13]. The numerical
effectiveness of the algorithm can be slightly improved by guessing a Lagrange
multiplier D* or penalty shift Uo p (1/() P0 90.

ALGORITHM 6.2 (increased-shifted). Given a > 0, e > 0, (o > 0,
9o -D*, k > 1 define

(6.2i) G=k"sro; ’n=P+G, u-,=k-"o.

For each (r,, ,,) minimize approximately the penalty functional

(6.2ii) (yx, st,, u,)= O(y) +1/2r,,l[(P(y) u,)D*[]2-

in order to determine y, such that

(6.2iii) xIt(y,, srn, un)-< inf (y, rn, un)+ an,
yE

where an - 0. If an --< a and [](P(Yn) un)D* + un p][ _-< e, then stop.
Observe that the stopping test in Algorithm 6.2 is slightly different than

in Algorithm 6.1. This stopping test is based on Lemma 3.9: yn, solves (approxi-
-un) +un; hence wemately) the problem minyvp. Q(y) where Pn =(P(Yn)

require that ]]p,, -p]] =< e.
Theorem 5.8 implies the following lemma.
LEMA 6.3. Suppose that sup (D) < +00 and a sequence {y,}= generated by

the Algorithms 6.2 or 6.1 is given. Then:
(i) {yn}n_-i is ASMS for the Problem 5.1;
(ii) if the problem is inf-stable, then it is WAMS.
Proof. Assume {y,}= is a sequence generated by Algorithm 6.2, Algorithm

6.1 being a special case of Algorithm 6.2 with o 0. We have st, >- 6 (o > 0 and

+ Srn 7,,)=(srn_6, p+
By Corollary 4.6, the assumption (5.8i) is satisfied; so are other assumptions of
Theorem 5.8.

The assumptions of Lemma 6.3 are rather weak and the lemma indicates the
strength of penalty functional techniques. However, the increased penalty tech-
nique becomes ill-conditioned numerically as (n oo; hence, one should avoid
increasing srn if it is possible. This possibility is discussed in the next section.
However, the increased penalty technique can also be used as a theoretical tool to
derive necessary conditions of optimality. A. V. Balakrishnan [2] was first to
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investigate this approach and to derive the maximum principle from his e-

technique. The theorem below is an abstract model of his reasoning.
TI-IZORZr 6.4. Suppose sup (D) < +oo, the Problem 5.1 is inf-stable and there

exists >-_ 0 such that (. ) has a minimal point over E for each >-_ . Let a
sequence n >--, nc be given, and {Yn}n=l be a sequence satisfying (6.1iii) with
a, O. Then"

(i) {yn } is WAMS for the Problem 5.1.
(ii) Denote

(6.4i) Pn =(P(Yn)--P)D*+P.
Then Pn -* 0 and yn solves the problem

(6.4ii) min O(y);
Y YPn

(iii) Denote

Y,. ={y E’pn-e(y)D}.

(6.4iii) "On n(P(Yn)-P)D*.

IfQ, Pare differentiable or Q is convex, Pis D-convex, then ln is a normaILagrange
multiplier for the problem (6.4ii) at

(iv) I[ Q, Kare (weakly) lower semicontinuous, then each (weak) accumula
tion point of {yn } is a solution to the Problem 5.1.

(v) Let Q, Pbe continuously differentiable or Q, Pbe continuous, Q be convex,
P be D-convex. If the sequence {Yn} converges in norm to a point being thus a
solution to Problem 5.1, then each weak accumulation pointo[the sequence {r/n} is a
normal Lagrange multiplier for the Problem 5.1 at

Proof. Points (i), (ii), (iii) follow directly from Lemmas 6.3, 3.9; points (iv)
and (v) are obvious.

This theorem relates the apparently crude Algorithm 6.1 to rather delicate
aspects of optimization theory. The original problem (not necessarily a normal
one) is approximated by a sequence of normal problems.

COROLLARY 6.5. Consider a family of problems (5.1) for various p
{p H: Y, (}. Denote by 1 the set of all p such that the corresponding
problems satisfy all the assumptions of Theorem 6.4. Denote by the set of all
p such that the correspondingproblems possess a normal Lagrange multiplier at
some solution. Then 2 is dense in 1.

Under moderate assumptionssee 81 and 2 is dense in . Thus,
the existence of normal Lagrange multipliers is a metrically typical property. In
other words, the normal problems are rich enough for computational purposes
just as rational numbers are rich enough for computations on the real axis.

7. Shifted penalty techniques. The goal of a shifted penalty technique is to
approximate, if possible, the saddle pointl2of the augmented Lagrangian
n(sr, u, y)= O(y)/1/2II(P(y)-  )"*ll=-1/2 llp without increasing the penalty
coefficient sr towards infinity. The shifted penalty techniques are usually more
effective computationally than the increased ones.

A natural algorithm for shifted penalty techniques is the following:
ALGORITHM 7.1. (saddle-point seeking). Given ct,/3, 3’ > 0, ’o > 0, u0
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H, Yo E determine a sequence of ((n, un, y,) by computing the gradient

(7. li) Ac(’, , Y)= 1/2(II(P(Y)- T*II=- lip 112),
(7.1ii) A(ff, u, y)= ((p v- (e(y)-

(7.1iii) At(( u, y)= Or(y)+ (p(y)(p(y)_
and by applying a saddle-point seeking gradient algorithm. If
IIA((., , y)]l , IIA ((, , y.)l] -, stop.

However, there are only a few saddle-point seeking algorithms known and
they are not very reliable computationally. Most of them are based on the
following:

ALGORITHM 7.2 (dual gradient). Given a, , y > 0, (0 > 0, Uo H, yo E
determine a sequence of ((., ., y.) by minimizing approximately A((., u.,. or,
equivalently, (., (., u.) over Ehence satisfying the condition (6.2iii)and by
choosing a step-size coefficient z. in the relations

(7.2i) (n+l (, +r, (I[(P(Y,)- Fn)D*I[2--[IP
(7.2ii) v.+ v. +..(p v. (P(y.)

If A(ff, v, y.) y, lIAr(&, v, y)ll , , stop.
But the augmented Lagrangian A(, v, y) has saddle points at many pairs of

((, v) if the problem is stable of degree 2 and ( is sufficiently large (see Theorem
4.12). In such cases, one may apply only the part (7.2ii) of the algorithm. The
choice ,, 1/(, 1/( is particularly useful.

ALGORITHM 7.3 (pure shifted). Given a sufficiently large (>0 and B >
0, v0 =p determine a sequence {(y,, v,)} by

(7.3i) y, arg inf qt(y, st, v,),
yE

D*(7.3ii) v,,+l p-(P(y,,)- v,,)

If IIv,,+l v, -<-/3, stop.
Here it is assumed for simplicity that W is minimized precisely (7.3i). The

stopping test results from the following consideration. Denote p,,
D*v,, +(P(y,,)- v,,) Then each y,, minimizes O(y) over

Yp.-{yE’p,,-P(y)D}---see Lemma 3.9. Denote ,=(P(y,_l)--u,_l)o*;
hence

IlV+l- vll- lip -pll--II(P(y.-,) ._x)D* (p(y.) v.)D*II
--IIP(y)-p + (P(y,, p +,,)-D >----II(P(Y)- P)D*II

by Lemma 2.3. Thus if the stopping test is satisfied, then
IIp,,-pll=llv,,+l-V,,ll<-fl whereby Yn 6

Algorithm 7.3 is a generalization of the penalty shift algorithm given by
Powell [20] in case of equality constraints in R" and by Szymanowski and
Wierzbicki [25] for inequality constraints. This algorithm can be further improved
by introducing an automatic choice of the penalty coefficient

ALGORITHM 7.4. (shifted-increased). Given sro>0, k > 1, 6 (0, 1), c0>0
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and/3 > 0, u0 p, determine a sequence {(y., st., v.)} by

(7.4i) y. arg inf q(y, (., v.),
yE

(7.4ii) p. un + (P(y.) u.)*.
If [[p, -PI[ > c,, set

)D*(7.4iii) .+1 p-(P(y.)- u. .+ &,

If lip.-pl[> c, set

Cn+ iCn.

1
(7.4iv) v.+l p-7(P(y.)- v.)*, .+ k(.,

K
Cn+l Cn"

If lip, -pll/ stop.
This algorithm is actually a combination of Algorithms 7.3 and 6.2. It is also

one of the most powerful penalty algorithms, most effective for solving various
static and dynamic optimization problems [27]. If the problem is only inf-stable,
the algorithm is convergent by a modification of Lemma 6.3. If the problem has a
higher order of stability, the penalty increase part (7.4iv) of the algorithm is
applied only as many times as it is necessary to secure the convergence.

DEFINITION 7.5. Assume that O, P are differentiable or O is convex, P is
D-convex. The Problem 5.1 will be called L-stable (locally in a nonempty open set
A c E) if there exists a neighborhood Up cH of zero such that the problems
min+oCAO(y),Yp+f-lA={yeA:p+-P(y)eD} have solutions and
unique normal Lagrange multipliers rt(p +P) for each/5 e Up and the mapping
/0 rt (p +/) is Lipschitz continuous in Up.

Similarlysee (4.10)one can define local stability of degree 2 in A.
The following theorem was given first in [25] for H= R and in [26] for

the general case. The theorem is valid also when A E but in numerical
implementations local minima are usually of interest; moreover, the conditions
guaranteeing local L-stability are somewhat simpler.

THEOREM 7.6. Suppose there exists (’>0 such that the ]’unctional
W(., (,p+ 9) attains its minimum over A ]’or any >-’ and each in a
neighborhood U cHof zero. I]" the Problem 5.1 is locally L-stable in A, then

(i) there exists (">-(’ such that for any (>-(" there is 9c U such that any
point minimizing ( , p +) is a local solution to Problem 5.1 in A

(ii) the Problem 5.1 is locally stable of degree 2 in A;
(iii) /]’ sr _-> ’", then Algorithm 7.3 has the following properties:

(7.6i) { 7. }.c U, 7. ----> ,
(7.6ii) Up, /6,,---* 0, p-. 9. +(P(y.)-p- 7.)*,

(7.6iii) {y.} is a WAMS ]’or Problem 5.1 in A.

(iv) Given any 6 (0, 1) denote by Rn the Lipschitz constant of the multiplier
mapping/-->r/(p +/); then there exists =max (’", 1 + 6/6Rn) such that
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implies that the Algorithms 7.4 and 7.3 are equivalent and

(7.6v) ,,+,- cll--< 11.
The proof of the theorem shall be based on a contraction mapping and is

different from the proof given in [26], but before proving the theorem, we need
the following:

LEMMA 7.7. Let y(9) denote an arbitrary element minimizing xlr( (, p + 9)
over A for each 9U. Define the mapping T’UH by T(u)=
-(P(y(9))-p-9)m*. Under the assumptions of Theorem 7.6, for each 6 (0, 1)
there exists a such that >-_ implies

(i) T B(-3/4) "-’>/3("-3/4) where B(r) is a closed ball ofradius r with center at
zero,

(ii) [IT(u’)- T(")II_-<[I’- "11 for u’, u"E B("-3/4).
Proof of the lemma. Without loss of generality, assume p 0. Let p(9)=

9- T(7). By Lemma 3.9, y(7) solves the problem infyA ny,<,) O(y) and -srT(ff) is
a normal Lagrange multiplier for this problem at y(7). Also, (’, 9)=
A(sr, 9, 7(9)). Similarly as in the proof of Theorem 5.8, the following estimate
holds"

) >-- ()112(7.7i) sup (D)- . \sr- 2,

Let e >0 be such that B(el/2)c Up. By Corollary 4.6, there is a sr _->2 such that

E
(7.7ii) A(sr, 2, 0) => sup (D) -.
By (4.5iv),

(7.7iii)
2((- ’,)

sup (D)- sr-( .113/4a112.
Take such that ,//(sr-sr)e for sr=> Since sup(D) is bounded by (7.7i),
combine (7.7i) and (7.7iii) to obtain

(7.7iv) IIp()ll2_-< e for (->sr- 7 G B(’-3/4).

Hence,/0(9) B(e 1/2) Up. Therefore, by the L-stability assumption,

(7.7v) ’T(7) -r/(p(7)).

Let 7’, 7" B("-3/4) and let R, denote the Lipschitz constant of the map

(7.7vi) Rn(’) (")
R,IIT(P’)- T(P")II + U,l[’- "ll
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and, for r _> " max (L Rn)"

(7.7vii) T(7")I]--< Rn I1 ’-  "11.sr-R
The relations (7.7v), (7.7vii) imply

(7.7viii)

and

t,’ E B(-3/4),
(-Rn (-Rn’

(7.7ix) II.T()IIIIn((O))II+U3/4 Re

[lln(p(O)ll e, )\ 1//4 +(-Rn"
erefore there exists ge g such that ( e g implies r( ll if and
the point (i) of the lemma is proved. Take max (g(1 +/)Rn); then the point
(ii) of the lemma follows from (7.7vii).

Proofof eorem 7.6. Again, assume p 0. (i) Choose an arbitrary 6 e (0, 1)
and take ("= (. By the contraction mapping theorem, there is a unique element
ff e B((-3/4) c Su such that p() r(c) 0. By Lemma 3.9’, Y(c) is a local
solution to Problem 5.1in A. Moreover, (9 =-(0) is the Lagrange multiplier
for the problem.

(ii) Since sup (D)>-see the proof of Lemma 7.7Problem 5.1 in A
satisfies the quadratic growth condition (4.7). Local stability of degree 2 in A
follows from (i) and Corollary 4.13.

(iii) Observe that Algorithm 7.3 is a fixed-point algorithm ,+ T(,).
Hence (7.6i), (7.6ii) follow from Lemma 7.7; Condition (7.6iii) is implied by
(7.5ii), Lemma 3.9’ and the fact that an optimization problem is inf-stable if it is
stable of degree 2. Part (iv) is a direct consequence of Lemma 7.7.

In the case ofH R" the convergence of this algorithm has been investigated
by many authors, starting from [25] up to the most complete discussion in [31]. In
[15] also other penalties different from the square norm were considered. In the
convex case the assumptions can be essentially relaxed, as shown in [24]. For
further references see the survey paper [32].

8. Conditions of stability and convergence conditions. Convergence condi-
tions in the previous section were stated in terms of various stability assumptions.
The aim of this section is to discuss the assumptions and to achieve more explicit
convergence conditions.

The simplest assumption is the quadratic growth condition (4.7). It is
obviously satisfied, if O is bounded from below. By Theorem 4.8, it is equivalent
to the condition sup (D)>-oo. The latter holds itI there is a pair (st, u)E R+ xH
such that (sr, u)= infy A(sr, u, y)>-oo.

Now consider the notion of inf-stability (4.9) and the question of the
existence of points minimizing A((, u,. or, equivalently, (., (, u) over E (this
assumption was used in Theorems 6.4, 7.6).
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THEOREM 8.1. Let E be reflexive, Q be weakly lower semicontinuous and P
continuous in weak topologies ore and H.4 Suppose there exist e and to > 0 and an
element Po int D such that the sets

(8.1) C=(y6E’Q(y) <- e,p+6o-P(y)6D}

are bounded and nonempty for 0 <-_ 6 <= 60. Then"
(i) Problem 5.1 is inf-stable.

if, in addition, Q(y) >- fl > -o for all y E, then"
(ii) there exists (>-0 and a neighborhood U of zero in Hsuch that for every

>-( and each 9 U satisfying Y={yE’Q(y)<=e,p+9-P(y)D}# ,
there is a point yc minimizing W( , p + 9) over E.

Proof. Assume p=0 without loss of generality. Denote S=
{y e E’6po-P(y) D} and Q(6) infys, Q(y). We prove first that Q(. is right
continuous at zero. Observe that 0(" )is nonincreasing for 6 =>0 and 0(6)_-< e for
6 [0, 60]. Thus, if 0(3-) e for some g> 0, then 0(6) e for 6 e [0, g] and 0("
is right continuous at zero. Assume therefore that 0(3)< e for all. 6 > 0. By its
monotonicity, it is sufficient to show that

(8. liii) ((0) _--<lim inf

for any sequence {6,}c (0, go] convergent to zero. For each n choose y, S.
satisfying

(8. liv) Q(yn)<-_O(6,)+min(, e-O(6,)).
Then Q(y,)_-<e, y, C. c Co and {y,} contains a subsequence {Y,k} weakly
convergent to some )7. By the weak continuity of P,

(8.1v) -P(37) w-lim (-P(y,k)) w-lim (6,/o-P(y,)) D
k->oo

since D is weakly closed. Thus 7 So(= Yp for p O) and Q(7) -> Q(O). On the
other hand,

Hence

Q()7)----<liminfK-->ct3 Q(Y"k)--<liminfk-oo (0(6")+kk)--<liminfk->oo O(nk)"

(8.1vi) O(0) -<lim inf O(6,k).

Since {y,} is a sum of its weakly convergent subsequences, (8. liii) holds and 0("
is right continuous at zero.

Take any sequence /,,-0. Since /0intD, there exists a sequence
{3,} c [0, go], 3, 0 such that 6,Po-p, D for sufficiently large n. The relation

4 If H R n, it is sufficient to assume that P is coordinate-wise weakly lower semicontinuous.
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Yp., then y e $. for large n and 0(/7,) _-> 0(6.). Therefore

(8.1vii) lim inf 0(/5,,)=> lim ((6)= ((0)= 0(0)

and (8.1i) holds.
To prove (8. lii), let r > 0 be the radius of a ball B(r).with center at zero such

that 6oPo + B(r) c D. Take U B(r/2). If 9 U, then Y c.C,o and is therefore
weakly compact. For any sr =>0 and any U such that Y is nonempty, the
following relation holds:

(8.1viii) -0o <a inf (y, (, 7) _--< inf (y, (, 7) inf O(y) <- e
yE yY yeYv

since [I(P(y)-7)D*I[2= 2Kv(y)=0 for y I7". If a e, take y to be any point
mini.rnizing the weakly lower semicontinuous functional O in the weakly compact
set Yo. If a < e, take a sequence {y,} satisfying

(8.1x)

(8.1ix) *(y,, , 9)<=a +min (, e-a) <-e.

Since K(y) 21-[l(P(y)- 7)’*112 _-> 0, then O(y,) <= e and

1 <1K(y,) =-(W(y,,, (, 9)- O(y,,))=-(e -B);

[[(P(Y,,)- <

By (2.5ii),

(8.1xi) [[(P(Y.))D*I[ I](P(Y,,) + I1 *11 -/)+-12 r-

Hence, for sufficiently large and sr => II(P(y.))*ll-< r. But (p(y,))o* p(y.) e D
which reads y, Y(e(y.))o*. Since _(p(y,))o* B(r), then {y,} = Co and contains
a weakly convergent subsequence, the limit of which can be taken for y.

The proof of part (i) of Theorem 8.1 is classical; the conclusion 8.1(i) seems
to be widely known. The criteria for inf-stability in the infinite-dimensional
.convex case were studied in [21], [10], [12]. See also [6], [25] for the nonconvex in
R", and [33], [38].

Observe that if there exists an element 7 e Co with p -P(37) e int D, then of
course I7" for any 7 in a neighborhood of zero. However, many optimization
problems are posed with positive cones of empty interior. In that case, a similar
theorem can be formulated.

THEOREM 8.2. Let E be reflexive, 0 be weakly lower semicontinuous and P
continuous in weak topologies orE and H. Suppose them exist numbers e and 6o > 0
such that the sets

(8.2) Ca {y E" O(y) =< e, K(y) _-< 6}
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are bounded and nonempty for each 3 [0, 30]. Then"
(i) Problem 5.1 is in-stable. I[, in addition, O(y) >- > -ofor all y E, then"
(ii) them exists (>-_ 0 and a neighborhood U of zero in H such that for each

>= ( and each U satisfying Y {y
there is a point yc minimizing (., (, p + ) over E.

The proof principally follows that of Theorem 8.1 with Ca changed to ; it is
therefore omitted.

Example 8.3. Suppose O is weakly lower semicontinuous with bounded
level sets and P weakly continuous, as in the theorem. Then K(y)=
1/21l(P(y)--e)D*ll2 is weakly lower semicontinuous, and there is an e e (p) such that
the sets Ca {y E" O(y) <= e, K(y) <= 3} are bounded and nonempty whenever
Yp is. Hence, if O, P are additionally either convex or ditterentiable, then by
Theorem 8.2 and Corollary 6.5, the set 2 Of all p such that the corresponding
problems are normal is dense in the set 1 of all p such that the sets Y, are
nonempty (thus in the set of all well-posed problems of the type (5.1) satisfying the
above moderate assumptions).

The questions of stability of order 2 and L-stability are more delicate and
require much stronger assumptions. We are only able to discuss here the case of a
finite number of inequality constraints. In the sequel it is assumed that H=
Ho xR", D {0/o} x R"+, P= (Po, P,,), Po" E-> Ho, P E--> R, i= 1,... n.
The elements p,q6H are understood as (n+l)-tuples (Po, pa," "’,P,),
(o, /, ", /,). Recall the following.

DEFINITION 8.4. For the problem minVo O(y), Yo {y 6 E "-P(y) D} it
is said that the second order sufficiency condition holds at a point 6 Yo, iff:

(i) O, P are twice continuously Frechet differentiable in a neighborhood of

(ii) there exists a normal Lagrange multiplier for the problem at )3 and the
range imPo() is closed in Ho,

(iii) the second derivative Lyy(, )3) of L(, y)= O(y)+(, P(y)) satisfies the
relation (Lrr(, )7, 37 >_- 1137112 for some >0 and all 37 such that Pr()37 0,
6 JO {0}, Piy()>-O, 6OJ where

(8.4iv) J {i" 1 -< _-< n, Pi03) 0, i # 0},

(8.4v) c3J= {i" 1 =< -<_ n, Pi (3) 0, , 0}.
For the same problem, it is said that strict complementarity holds, iff OJ .

It is proven easily (compare [37, p. 307] for the case of equality constraints
only) that these conditions are indeed sufficient for 3 to be a local (not necessarily
.iolated) minimum. They are similar in formulation to second order sufficiency
conditions for nonlinear programs inH R" [7] but may also be easily translated
into the language of the calculus of variations: the main condition is equivalent to
strict positivity of the second variation of Lagrange functional.

The following theorem was first proved by Rockafellar in the case E R’,
H=R".

THEOREM 8.5. Suppose the problem minyvo O(y), Y0 {y E: -P(y) D}
satisfies the quadratic growth condition. Suppose that the second order sufficiency
condition holds at. Assume that eitherE R or strict complementarity holds at.
Then the problem is locally stable ofdegree 2 in a neighborhood of. If, in addition,
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four any neighborhood A of them is a neighborhood Up of zero in H such that
Q(p) infr yp Q(y) infyarq yp Q(y) for all p
degree 2.

The proof is omitted since in the caseE R it is essentially given in [22] and
in the general case requires only some modification based on the closed range
theorem [28].

Somewhat stronger conditions are required for the L-stability. The following
theorem was proved in [25] for E R’, H

TI-IF.OM 8.6. Suppose E is Hilbert, and let the second order sufficiency
conditions with strict complementarity hold at 13 e Yo {y e "-P(y)e D} for the
problem minvo O(y). Denote Hj={peH:p=O,iJU{O}} and let Pj be the
restriction of P to Hj. Assume Pj() is surjective. Then the problem is locally
L-stable in a neighborhood of .

Proof. (a) Let A denote a neighborhood of such that P(y)<-e < 0 for
J U {0} and Pj (y) is surjective whenever y A. Let Ua be a neighborhood of

zero in H such that ]PI < e for iJU {0} whenever p e U. Denote by pj, r/ the
elements of the Hilbert space Hj. Observe that y(p) is a local solution to the
problem: minimize O(y) over YpflA (where p Ua), and rt(p) is a normal
Lagrange multiplier for this problem at y(p) if and only if y(p)= y(pj) is also a
local solution to the problem:

(8.6i) min O(y); Ypj={y eE:pj-Pj(y)eHjD}

while I(p)H, /(p)= /(p) is a normal Lagrange multiplier to the problem
(8.6i) at y(p):

(8.6ii) Oy (y (p)) +P*(Y(P))W(P) O,

(8.6iii) h(p)>=O, J; h(p)(P(y(p))-p)=O, J.

This is readily verified sincep P,. (y) > 0 for J U {0} whenever y A, p U.
It is therefore sufficient to investigate the local L-stability of the problem

(8.6i) at p 0, i.e., to establish the existence and Lipschitz-continuity of the
mapping U0 p /(p) on some neighborhood Uo of zero in H. Having this
done, one can set Uv U f3 (U0 H) in Definition 7.5 to obtain the local
L-stability of the original problem as claimed.

Notice first that sinceP(y) is surjective for y A then [11] any y(p), being
a local solution to (8.6i), must satisfy (8.6ii), (8.6iii) for a uniquely determined
w(p).

(b) Observe that, according to the closed range theorem [28], since the range
of Py(y)is closed, then Py(y) maps H onto ImPly(y)-(kerPy()))+/-. Let r
denote the projection operator in E onto ker Py@). According to the LaxMil-
gram theorem [28], the condition (Lyy(, fi)),
implies that roLyy(, ) maps ker Py ()) onto itself. Consider the operator

[Ly(, 13) Pj*y()))](8.6iv) M=
l_ Pjy())) 0

We shall show that the operator M is surjective, that is, for every (z, s)e E x Hj
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there exists a pair (y, r/j) satisfying Mo(y, r/j) (z, s). Indeed, since Pjy (33) is onto,
there exists y’ such that

(8.6v)

Let wl rz-Tr Lyy(, )y. Since w ker Pjy (), there is y" such that

(8.6vi) wl-- "//" Lyy(, 9)y", y"6 ker Pjy ().
Let wz=(I-r)(z-Lyy(, )(y’+y")). Since wz(kerPjy())+/-, there exists
such that

,
(8.6vii) w2 Pjy(y)rIj.

Combine (8.6v), (8.6vi), (8.6vii) to obtain

(8.6viii) M(y, r/j)= [Lyy (, PJy()y)3)y+ Pj*y(j3)’/j] [sZ] Y y, + y,,.

Hence the operator M is surjective since it is selfadjoint, it is also invertible. By
the implicit function theorem, the equations

(8.6ix)
Oy (y) +.Pj*y(y)rtj 0,

Pj(y pj O

determine (y, rtj) as a differentiable function of pj in a neighborhood U2j of zero
in Hj (observe that these equations are satisfied by (, j) for pj 0, the derivative
Mof the left-hand side is invertible at (33, j) and this derivative is continuous as a
function of (y,

(c) Denote (y, rtj) satisfying (8.6ix) by y =f(pj), rtj g(pj). It remains to
prove that, for pj in some Uoj, y f(pj) are uniquely defined local solutions to the
problems (8.6i) and r/j g(pj) are uniquely defined normal Lagrange multipliers
for these problems (being ditterentiable, g(. is Lipschitz continuous; hence the
conditions of local L-stability are all satisfied).

Take U2J smaller, if necessary, to obtain rt g(pj)>0, J for pjG U2Jo
Choose neighborhoods A A of and Uoj U2j of zero satisfying Pj(A) Uoj,
f(Uoj)=A and such that the inequality (z(g(p),f(p))y)>-1/2l]Yll hods for
37 e ker Pjy (f(pj)) whenever pj e U0j (the possibility of such a choice follows from
the assumption of continuous second order differentiability). Then the second
order sufficiency condition with strong complementarity holds at y f(pj), pj

Uoj so that f(pj) is a local solution to (8.6i) in A (not necessarily isolated). It
rmains to show that for fixed pj j Uoj, f(pj) is the unique local solution to
(8.6i) in A. Let y (/j) be any local solution to that problem; then (8.6ii) and (8.6iii)
are satisfied with pj =j for some 7qj(py)--j. If >0, J, then by (8.6iii),
Pj(y(j))=j so that (8.6ix) is satisfied by y y(/y), rti y and pj=j. In this
case y)=/j), j= g(j) and we are done. But , iJ, must be positive.
Indeed, y=yj) and lj"-’j always satisfy (8.6ix) with pj=P(y(ffj)) Uoj.
Therefore j g(pj) and > 0, J.

Therefore rlj(pj)= g(pj) is a unique Lagrange multiplier for the problem
(8.6i) in A; the mapping Uoj pj-->(pj) is continuously Fr6chet differentiable, in
particular, Lipschitz-continuous on sufficiently small Uoj.
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9. Condusions. The properties of the projection on a positive cone make it
possible to define penalty functionals and to develop a duality theory for infinite-
dimensional problems with operator constraints. Two groups of results are of
fundamental importance. The Theorems 4.11, 4.12 and the Corollary 4.13
explain the relations betwebn dual methods and penalty functional techniques.
Under appropriate stability assumptions, the solution of the original problem
inf (P) can be approximated by a sequence obtained by subsequent unconstrained
minimizations of the shifted penalty functional (., (n, un)---or, equivalently, of
the augmented Lagrangian A((n, un, )-- if the sequence {(st,, u,)} is maximizing
the dual problem. The saddle point (inf (P)--max (D)) can be achieved at a
bounded pair (, ) iff the original problem is stable of degree 2; in this case, a
sufficiently large sr can be kept constant and a penalty shift algorithm of changing
u, can be applied. If the original problem is inf-stable, but not stable of degree 2,
an approximate saddle point (inf (P)= sup (D)) can only be achieved at
hence a penalty increase algorithm with - oo must be applied, whereas u, can be
kept constant or changed. Thus the penalty techniques are actually dual methods
[44].

The Lemmas 3.9, 3.9’ explain other aspects of penalty techniques--or dual
methods. If the penalty functional (., (, u)--or A((, u,. )---does possess a
minimum at 17, then the point 17 is actually a solution of an optimization problem
which differs from the original one only in the constraining value (Everett
theorem). Thus, penalty techniques are two-level algorithms with coordination of
constraining values. The applications of dual methods to two-level coordination
algorithms are known; but they are not the only possible coordination methods.
In addition to typical saddle-point algorithms, two types of coordination methods
can be considered. The increased penalty technique coordinates the violation of
constraints by an increase of penalty coefficients only, and is convergent under
rather weak assumptions inf-stability. No normality assumptions are required,
although the original optimization problem is approximated by a sequence of
normal ones. But the increased penalty technique is badly conditioned numeri-
cally. Hence, if the problem satisfies stronger assumptions, normality, stability of
degree 2, L-stability and the shifted penalty technique is convergent, the latter
gives better numerical results. The shifted penalty technique coordinates the
violation of constraints by penalty shifts or, equivalently, by changing Lagrange
multipliers. Most universal is the shifted-increased Algorithm 7.4 which switches
to penalty increase if penalty shifts fail to provide for a given convergence rate.

The conditions for convergence of penalty techniques are related to various
ffegrees of stability of optimization problems. The inf-stability follows from the
weak continuity of a minimized functional and constraining operator, and from
the boundedness of some level sets related to these functions. The stability of
degree 2 and L-stability require much stronger assumptions, as second order
sufficiency conditions, etc.
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PROPER EFFICIENT POINTS FOR MAXIMIZATIONS
WITH RESPECT TO CONES*

J. BORWEINf

Abstract. Proper efficient points (Pareto maxima) are defined in tangent cone terms and are

characterized by the existence of equivalent real-valued maximization problems.

1. Introduction. Suppose that X and Y are (locally) convex (topological
vector) spaces over R and that S c y is a nontrivial closed convex cone which
induces a partial ordering -<s. The vector maximization problem for f mapping X
into Y and A c X,

max f(x) subject to x A (VMP),

is the problem of finding all efficient points A" is said to be efficient (Pareto
optimal) if x A and

f(x) >-_ f(2), f(x) #f(2) implies that 2A.

Geffrion [ 1] has studied this problem in finite dimensions with the coordinate
ordering and has suggested a restriction to "proper" efficient points which allows
for a reasonable characterization. Kuhn and Tucker [4] have also used the term
but their notion requires differentiability and appears too broad for satisfactory
analysis (see below).

This paper proposes a general notion of properness which is defined in terms
of tangent cones as developed by Varaiya [8], Guignard [2], Zlobec [9] and others
and which coincides with Geffrion’s definition in the central case.

2. Preliminaries. Throughout the paper all spaces are assumed Hausdorff
and convex and "-<" is the partial order induced by S.

DEFINITION 1. Suppose C X and $ C. The tangent cone to C at is
defined to be the set of limits of the form h lim t, (x $) with {t,, } a sequence of
nonnegative real numbers and {x} C a sequence with limit :. It is denoted
T(C,).

When X is metrizable, T(C, ) is closed. It is always a nonempty cone
containing 0, but need not be closed in general spaces unless defined in terms of
bets which leads to other embarrassments. The closed convex hull of T(C, ) is
called the pseudo-tangent cone and is denoted by P(C, ). Various properties of
pseudo-tangent cones can be fourld in [2], [8], [9] and a forthcoming paper of the
author.

DEFINITION 2. A point Y will be said to be a proper efficientpointo[ (VMP) if it
is efficient and

(1) T(f(A)- S, f(,)) CI S O.
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58 J. BORWEIN

DEFINITION 3. When f(x)=(fl(X),"’,fp(x)) maps R k into Rp, Gettrion
defines to be properly efficient with respect to the coordinate ordering if it is
efficient and if there is some real M> 0, such that for each one has

(2) /(x)-()
f(Y)-f/(x)

<=M

holding for some/" with ](x) <]($), whenever x A and ](x) >]().
It is a simple matter to verify that in this later framework, (1) is a weaker

requirement on (VMP) than (2) and, in fact, that when f is continuous (1) implies
the local efficiency of with respect to the coordinate ordering.

PROPOSITION 1. Suppose is Geffrion proper efficient for f over A. Then
satisfies

T(f(A)-gn+ f()) fq R+ 0

Proof. Suppose k # 0 R+ f’l T(f(A R+, [()). Without loss of generality
one may assume that k > 1, ki -> 0, 2,..., n. Let

t ([(x, r+, f($)) - k,
+where r,+ e R + tn > 0 and[(x,) r -[() with x,, A. By choosing a subsequence

one can assume that

is constant for all n (and nonempty since is Pareto efficient). SetM> 0. Then for
n _--> no,

Then for all L one has

and for n => no,

fi(x)-](f -t-a/2M.

0 <j(f) -1(xn) --< t-/2M,

fl(Xn) --fl (X) >
fi()--j(Xn) tl/2M M’

which contradicts Geffrion’s definition.
DEFINITION 4. Suppose X’ is the topological dual of X. The dual coneK+ ofa

convex cone K X is defined by

K+ {x’ X’lx’(x) >- O, Vx K},

while the dual cone (K’)+ of a convex cone K’ X’ is defined by

(K’)+ {x Xlx’(x) >= O, Vx K’}.

It follows from these definitions that (i) K+ is weakly* closed; (ii) (K+)+=/;
(iii) (/1 fq/2)/ cl (K+K-) (with closure in the weak* topology). K+ is well-
defined even if K is not a convex cone. In this case (K/)/ is the closed convex hull
of K (denoted [K]).
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These facts all hold in convex spaces. Proofs can be found for normed spaces
in [7].

3. Geometric motivation. The main aim of Definition 2 is to provide a notion
of properness which can be applied when the cone S is not the orthant ordering in
R and is not even polyhedral. Consider (VMP)"

max ll,x) max z max z.
xeA z.f(A) zef(A)--S=E

This last equivalence is introduced so that, in the case that f is concave with
respect to $ and A is convex, the optimization in the image space is still a concave
problem. Definition 2 says that is proper when, with =f(), one has

T(E, . 1"3 S O.

In general, then, the concept of properness is an attempt to remove those
efficient points which can be approached in directions which point into S. In the
case that $ Rn+, this can be done by considering the components separately; in
more general orderings a more technical notion of direction must be introduced.
This is done herein with tangent cones. Consider the following examples.

Example 1. Let X=R3, S {X [X (X I, X2, X3) X30 X4i-X@X23}. Let
A -{xlllxll -< x} and let f= 1. The efficient points for (VMP) are {xl Ilxll- x, x
s}. Since E A-S is convex, T(E, f()) is the smallest closed convex cone
containing E with vertex at f()= . It is easily seen that for those x with Ilxll- 1,

2 (or x3 2, x 12 +x 1/2), this cone has a boundary ray inxS and x+x=x3
common with $; while for any other efficient x this cannot happen. In this case the
efficient improper points form the relative boundary of the efficient points on A.

Example 2. Let X R 2, S {xlx2 >-O, xl =>x2}. Let A
{(Xl, X2)lX -" X27 < 1, X 20, X220} and letf= I. The efficient points are those x on
the arc in A for which Xl

2 +x 1. Again T(f(A)-S, f(x)) is the smallest closed
convex cone containing A S at f(x). This only intersects S[{0} when x f(x) lies
at the upper endpoint of the arc. There is, therefore, only one improper point
(0, 1).

Example 3. Consider X, S, f as in the previous example, and let A1
A (’l {(x 1, XE)lXl --< 1/2 or x2 0}. The efficient points are now

{(1, O)}U{(Xl, Xz)lXl <-1/2, x/ x@-- 1}U{(1/2, x2)lx2 >=O, x2 <-_1/2}.
The problem is no longer convex, and T(A S, f(x)) is easily calculated. Only

(1/2, 0) and (0, 1) are improper.
We see that properness gives us a criterion for excluding some efficient points

(those which can be "approached from within S") for which, as will be shown,
equivalent real maximizations fail to exist.

4. Some cone separation theorems. It is necessary to establish two abstract
separation theorems for convex cones before proving general multiplier theorems
for (VMP).

PROPOSITION 2. Suppose N, Sare closed convex cones in Xand thatN f’) S O.
Suppose that the dual cone S/ has nonernpty interior in some topology " which gives
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+ + N+Xas the dual ofX’. Then there is some s (S/) with -s and

(3) s (s) > 0 Us e S/{0}.
+ +)0In fact this last condition is equivalent to s (S

Proof. Using property (iii) under Definition 4 one sees that

{0}+ x’= (N tO S)+ -cl (N+ + S+),
since - is a topology of the dual pair (X’, X). Let s’ (S+). There is then some net

+ + + + + S+ + +-s, n,, +s with n, e N s e and n +s tending (z) to -s’. Since -s’ is a
r-interior point for -S/, it follows that for a > a0,

/ /

-s n +s e-(S/ o

Thus n =-(s’,, +s+) e-(S/)-S/ c-(S/). It follows that n and satisfies
(3). Conversely, if s

/ exists satisfying (3) and (S/) #, then

S{xls+(x)<-o}=o,

and one can apply the previous argument to the two sets S and {xls/(x)<-O} to
+ N+derive that some n {x ls+(x <-_ O}+ is also in (-S+). But N+= Clx<=oAS +

/ /and, since 0 (S/), n As A < 0, which implies that s
In particular, the theorem holds for any cone S in R" which is pointed

(S f)-S 0), since this means S/ c R has nonempty interior. In the case that
(S/) cannot be guaranteed nonempty, one can still prove the existence of s

/

satisfying (3) if one requires that S have a compact base B.
PROPOSITION 3. Suppose N, S are closed convex cones in Xsuch thatN f3 S

O. Suppose that S f’I-S =0 and that S is locally compact (has a compact
neighborhood base in the relative topology on S). Then one can find s/-N

/

satisfying (3).
Proof. The local compactness condition on S guarantees by [3, (2.4)] that one

can find a compact convex subset B of S, such that 0 B, with S (.J_>o AB.
It follows that B and N can be strictly separated [5] and that there is some

+ Xs e with

s+6-N+ and s+(x)>O VxeB.

It follows immediately that s+(s) > 0 Us S/{0}. [-1

Remark. It is easy to see that in a locally convex space a pointed cone S is
locally compact exactly when it has a compact generating base. That is: S-
C]a__>0 AB where B is compact, convex and 0 B.

5. Equivalences. One can now derive the basic characterization of proper
efficient points.

THEOREM 1. Suppose that is optimal for
max s+f(x) subject to x A (P(s/))

and that s
/

satisfies (3). Then is a proper efficient point.
Proof. Suppose h T(f(A)-S, ()). Then

h,, t. (f(x,, s,, f()) - h
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with tn >-0, f(xn)-s, -f(), x cA, sn S. For each n,s+f(x)<-s+f() since is
optimal for (P(s/)) and so

lim t(s+(f(xn)-s)-s+f($))<--_0.
It follows that s+(h) <- 0 Vh (f(A)-S, f()). Were h to belong to S/{0}, one
would have s/(h)>0 since (3) holds. This is impossible and ’(f(a)-S,f())fq
S=0.

It is clear that if -x were not efficient and X A with/(xl) -->s f(:), that the
definition of s

/ would imply that s /f(xl) > s+f() which contradicts the optimality
of for (e(x/)).

THEOREM 2. Suppose thatf is concave with respect to S and thatA is convex.
Suppose X and S satisfy the hypotheses of Proposition 2 or 3. Then is properly
efficientfor VMP) ifand only if$ is optimalfor (e(s+)) forsome s+ satisfying (3).

Proof. Sufficiency was proved in Theorem 1. Suppose now that : is properly
efficient. Since f is concave and A is convex, f(A) S {z If(x) _-> z, x e A} is
convex. An elementary proposition in [3] shows that in this case,

(4) f(A)- S-f(2) c T(f(A)- S, f(X)) N

and that N is convex. Because : is assumed proper, Nf’)S 0. Since either
+ + N+.Proposition 2 or 3 holds, s satisfying (3) exists with -s In particular, since

(4) holds,
s+(f(x)- s -f()) <- 0 Vx e A, s e S.

Setting s 0 shows that is optimal for (P(s+)) with s"-(s) > 0 Vs S/{0}. El
In finite dimensions with coordinate ordering, this equivalence is exactly the

same as Geffrion’s. Thus for coordinate concave programs, Definitions 2 and 3
coincide. It is worth noting that the use of the set T(f(A) S, f(:)) rather than the
smaller T(f(A), f()) is motivated by the need for (4) to hold. If one desires the
equivalence of Theorem 2 only for problems with f(A) convex (which includes A
convex, f linear) one need only require that

(5) T(f(A ), f(X)) (q S O.

Example. fl(x) (-x 2, x, x) is an example of a coordinate concave function
satisfying (1) or (2) on R" at 0; fa(x) (-x 2, x, 0) does not. This can be seen either
directly from Definition 2 or from the respective presence and absence of positive
multipliers when one applies Theorem 2.

If the hypotheses of Theorem 2 hold and the convex feasible set A is, in fact,
{xlg(x) >--B O, x C} for some function g mappingX into Z, concave with respect
to B, and some convex C, one has the following "Lagrange" multiplier theorem.

THEOREM 3. Suppose B is a convex cone with interior and that g(xo) B.
Suppose is a proper efficient pointfor (VMP) with A {xlg(x) >-_ O, x C}. Then
there is some continuous linear mapping T of Z into Y such that T(B) S and
Tg() 0 with properly efficient ]’or the unconstrained concave problem

maxf(x) + Tg(x) subject to x C (UCP).

Proof. Apply Theorem 2 to produce s
/
satisfying (3) with

s+f(X)=maxs+f(x) subjecttog(x)->0, xC.
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The standard Lagrange multiplier theorem ([9]) guarantees that u+B+

exists with u/g(Y)= 0 and

(6) s+f(Y)>-s+f(x)+ u+g(x) Vx C.

Choose s S with s+(s)= 1. Let To: Z--> Y be defined by To(z)= u+(z)s. Then
To(B) c S, To is continuous, linear and Tog(Y) 0. Equation (6) can be rewritten
as

s+(f(x) + Tog(x))<-_ s+(f(Y)+ T0g(Y)), x 6 C,

from which it follows, using Theorem 2 again, that Y is a proper efficient point for
(UCP) with T= To. U

6. Differential conditions. Consider now the Pareto maximization problem

maxf(x) subject to g(x) B, x C (P),

where f: X--> Y, g: X--> Y are Fr6chet differentiable functions between normed
spaces and Cc X, B c Z are arbitrary sets.

DEFINITION 5. The generalized constraint condition on g is said to hold at Y if
there is some closed convex cone G such that G OK T(A, Y), where K
{h Ig’()(h) P(B, g())}.

(This is necessarily slightly stronger than Zlobec’s condition [9] in which
P(A, Y) replaces T(A, Y).) As before, A denotes g-l(B) f’l C.

DEFINITION 6 [4]. Suppose K and G satisfy the constraint condition. H(G) is
said to hold when

(a) K/ + G/
is closed,

(b) H= {u+. g’()lu+ P+(B, g(Y))} is closed, (in the weak* topology).
H(G) is satisfied in particular when K, G, B are polyhedrally convex in finite
dimensions. The author in his thesis has given fairly general conditions for H(G)
to hold.

THEOREM 4. Suppose Y is a (local) proper efficient point for (P) and that G
satisfies the generalized constraint qualification with H(G) holding. Suppose either

+ S+(S+) Q5 or that S is pointed and has a compact base. There is some s with
+s+(s) > 0 if s S/{0}, and some u P+(B, g(Y)) such that

+.

Proof. By hypothesis, S f-) T(f(A)- $, f(Y)) 0. It is an elementary property
of tangent cones that.

(7) f’(Y)(T(A, Y)) T(f(A), f(Y)).

Combining these two containments with K f’IG T(A,Y), one sees that
el (f’(Y)(K fq G)) f’l S O.

(This last containment is essentially Kuhn and Tucker’s notion of properness
if one takes S R"+). All the hypotheses of Proposition 2 or 3 are met with

+N=cI(f’(Y)(Kf’)G)). There is some s satisfying (3) with s+f’(Y)(h)<-OXth
K f) G. This means

(8) s+f’(Y) -(K f3 G)+ -(K+ + G+)
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(using H(G) and property (iii) of Definition 4). A straightforward separation
argument shows that/- K/. This combined with H(G) and (8) yields

(9) s+f($)+u+g’($)-G+,
where s+(s) > 0 if s S/{0} and u+

In the standard finite-dimensional programming problem, C, B are coordi-
nate cones and the Kuhn-Tucker constraint condition implies that K
T(A, ). This means that Theorem 4 includes the Pareto maximization of any such
program with respect to any pointed cone in R". Thus one sees that Gettrion’s first
order necessary condition is subsumed by Theorem 4.

As in the case of real-valued objective functions, weak sufficiency conditions
can be described for (P) using the theory developed by Guignard [2].

In another direction if one does not require H(G) to hold, one still has

s +[’(x) +
which is much like Zlobec’s asymptotic results in [9].

7. Coladusion. The paper provides a tangent cone definition of proper
efficiency which coincides with Gettrion’s for concave programs and coordinate
orderings and which enables one to develop the theory in a much more general
framework. It seems possible that some requirement of properness could be
fruitfully imposed on various other notions of maximization allowing one to
characterize various classes of extreme points in tangent cone terms. Using
compact derivatives [10] one can extend the results to arbitrary convex spaces.
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working on his D. Phil under Dr. M. A. H. Dempster of Balliol College, Oxford.
Without his continued interest and direction it would not have been written.
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A CONVERGENT SCHEME FOR BOUNDARY CONTROL
OF THE HEAT EQUATION*
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WILLIAM C. CHEWNINGt AND THOMAS I. SEIDMAN,

Abstract. It is desired to steer the solution of the heat equation in R from a given initial
state Uo u(O,. exactly to a given terminal state UT u(T,. by controlling the Dirichlet data
An algorithm is presented which, when such control is possible, provides a sequence converging in
L2 to the optimal control.

1. Introduction. Let c R be a bounded domain with piecewise smooth
boundary . We consider the equation

(1) u,=Au, u=u(t,x) for0<t<T, x,
(2) u (0, x) Uo(X), x ,
(3) u(t,x)=q(t,x), 0<t< T, x,
with Uo L2(@) and ( L2() where 6e= (0, T)x . We may wish to further
restrict p to vanish on 51=(0, T)xl(9lc) so pL2(o)cL2(Se) with
o=\1 relatively open in . The terminal state u(T,. )L2() depends
continuously--indeed, compactly---on the initial state Uo and boundary data p.
If a terminal state ur L2() is specified"

(4) u(T,x)=ur(x), x,
then, to the extent that the data is at our disposal, we may view (1)-(4) as a
control problem with as the control, carrying the initial state Uo to the
specified terminal state ur subject to (1).

In practical applications one would like to approximate numerically a suit-
able control q L2(60), given Uo and ur. There are two complications: (a) there
does not always exist such a control for arbitrary (Uo, ur)e L(fl0)x L2(N) and
(b) when such a control exists it is not unique. These are handled as follows: (a)
we assume that the specified pair (Uo, ur) is such that a suitable q exists, and
(b) we seek the optimal control 0, having minimum norm in L(Seo). It is known
(see [2], [4]) that for ur=0 (or ur in the range of the map: Uo--u(T,. for
o 0) there exists a control o L2(Se) (in this context called a null-control) for
each uo Lz(N) with the optimal control 0, depending continuously on uo. In
general, the set of controls for given (Uo, ur), when nonempty, is a translate of
a closed subspace (the nullspace of the map: ou(T,. for Uo=0) so o, is

* Received by the editors March 12, 1975, and in revised form April 8, 1976.

" Formerly of Department of Mathematics and Computer Science, University of South
Carolina, Columbia, South Carolina.
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well determined. Under the assumption that uT- is reachable from Uo, we con-
struct a sequence {Pk} Of approximate controls converging to p, in L2(6eo).

2. A useful identity. We follow the discussion in [3] in considering, in
conjunction with (1)-(4), the "dual problem"

(5) -vt=Av, v=v(t,x) for0<t<T, x,
(6) v(T, x)= vr(x), x ,
(7) v(t,x)=O, 0<t< T, x,
with v, L(D). We let

(8)
Vo(X)=v(O,x), xs,

OV
(t, x) =--, 0<t< T, Xo.

Integrating (UV)t Ul) -t- Utf) IAAU uAI) over (0, T) x @ gives

[uv- UoVo] [vau uZXv]

on applying Green’s identity and noting (7) and that p 0 for x N\o. Thus,

(9) <u, v>= (Uo, Vo>-<, 6>

with the inner products in L2() and L2(oQ) and with p, Uo, uT related by
(1)-(4) and vT-, Vo, ff related by (5)-(8). For a set 7 in L2() let 0(//) be the set
of triplets (vr, Vo, ) related by (5)-(8) with vT- 7/" and let M(V)c L2(5o) be
the span of {ff (vT-, Vo, ) 0(7)}. Let M be the closure of M(L.()).

THEOREM 1. Let 7 be any total set in L2() (i.e., (u, v) 0 for all v
implies u 0). Then:

(a) given Uo, ur, q9 is a control for (1)-(4) if and only if it satisfies (9) for
every (vT, Vo, ) 0(),

(b) if any such control exists, there is a unique one in M and that is the
optimal control q,.

Proof. The proof, above, of (9) actually gives, from (1)-(3), (5)-(8), that

<u(T, ), v) (Uo, Vo)-(,

so if p satisfies (9) as stated one has, subtracting, (u(T,.)-uT-, vT-) 0 for all
vT- 7/" which implies (4). It follows that controls are entirely characterized by
their action as linear functionals on M. The Riesz representation theorem
asserts that any such functional can be obtained as the inner product with a
unique element of M and this choice clearly minimizes the norm of the control;
the nullspace of the map: p-->u(T,. for Uo=0 is just the orthocomplement in
L2() of A/. [3

3. The algorithm. Assume, here, that Uo, uT- L2() are such that boundary
controls exist in L2(6eo). For any p L2(6eo), define the residual r[] to be

JuT- u(T,. )] where u is given by (1)-(3). Let o//.= {vl,...} be any total sequence
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in L2(r) and let {01, } be the associated (by (5)-(8)) elements of M(W); set
Vk ={vl, v k} and Mk M(Wk)= sp {1, 0k} in M.

THEORZM 2. For each k there exists a unique ok Lz(So) which is the element
of minimum norm such that rico] is orthogonal to sp Wk; this element ok is in Mk.
Finally, ok is the unique solution in Mk of the finite linear system

(10) (r[o], vi) O, ] 1,..., k.

Proof. For r[o] to be orthogonal to Vk is equivalent to (10) which, by (9), is
equivalent to the system

(11) (o, O;)o=C, ]= 1,.- .,k,

where, defining v by (5)-(8) with VT VI, one sets

(12) c; <Uo,

for each ]. Any control 0 giving (1)-(4) has r[0.] 0 so, as it has been assumed that
such controls exist, (11) is consistent; the set of solutions of (10) or (11) is clearly
closed and convex so a unique solution 0k exists having minimum norm. From the
form of (11), whether an element satisfies (10) or (11) depends only on its action as
a linear functional on Mk. Thus, by the same Riesz theorem argument used for
Theorem 1, the minimum norm solution Ok is in Mk and is the unique solution in

Mk of (10) or, equivalently, of (11). [3
COROLLARY. The element qk is uniquely determined by

(13) (k X1,kO "t- + Xk,kk,

where the xj Xj,k are obtained by solving

k

(14) Y gi,]X] Ci, 1," ", k,
1=1

with {Ci} given by (12) and ((gi.i)) the Gramian of (01, ok), i.e.,

(15) gi, (1], oi)St’O i, ] 1,..., k.

Proof. As 0k Mk one has (13); substitute this into (11) to get (14), (15).
Observe that (14) need not have a unique solution unless assumptions are made
guaranteeing the linear independence of (01, 0k) but, as the number of
independent equations is obviously equal to dim Mk, the element 0k given by (13),
(14) is nevertheless uniquely determined.

Computationally, one would obtain the {Oi} and {v0} using (5)-(8) and then
the {cj} and the matrix entries {gi,i} using (12) and (15), after which one would solve
(14) and use (13) to define the approximate control 0k. The computation of
{0}, {Vo} involves numerical solution of the heat equation in (unless the {v i} can
be taken to be eigenfunctions of A in with (7)) which can be done to arbitrarily
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good accuracy. The computation of the {cj}, {gi,j} involves numerical integration
over and 6o, respectively, which can also be done to arbitrary accuracy. Thus,
(13), (14) can be used to obtain qk to arbitrarily good accuracy and the algorithm is
computationally feasible. A preliminary (.approximate) orthonormalization of the
{i} ("reflected back" to corresponding combinations of the {vj} for recomputa-
tion) will guarantee the well-conditioning of (13), (14) although this may make
accurate computation of the {cj} more difficult if the new {vi} are large.

THEOREM 3. The sequence of approximate controls {k} given in Theorem 2
converges in L2(6o) to the optimal control ,.

Proof. Clearly Ilq 111--< IIq.211--<"" --< IIq.ll since these are defined by minimization
with more and more constraints. The weak sequential precompactness of
bounded sets in Hilbert space implies the existence of weakly convergent subse-
quences Of{qk}, i.e., qk(i)’- qg **. For each fixed ], q ** satisfies the ]th equation of
(11) since each (k(i) does once k(i)>-]. Thus, by Theorem 1, ** is a suitable
control (Remark: This shows that II  ll-, il no control giving (1)-(4) exists.)
Further, as I1,11--< I1 ,11 one has II**ll-<-I1,11 whence, by the definition of q,, one
has ** q.. As this is true for the limit of every weakly convergent subsequence,
we must have qk--- q.. Finally, we note that I1 ,11 IIw-lim 11---im IIll implies
(cf. [9]) strong convergence in L2(6e0) k - q,. [q

Instead of considering control of the heat equation (1) by Dirichlet conditions
(3), it would be possible to pose corresponding problems for the equation

(16) u,=Lu, u=u(t,x) for0<t<T, x,
where, e.g., L is a second order elliptic operator in divergence form"

(17) Lu V. pVu -qu

with p, q given (smooth) functions on [0, T] (p > 0) and for boundary condi-
tions

On
(18) au+t7=p, 0<t< T, x,

where ce, are given (smooth) functions on 6 (ce 2 +B2 1).
We replace (5) and (7), respectively, by the equation

(19) --V Lv, v v(t, x)

and the boundary conditions

for 0<t < T, x,

(20) av +flY- =0, 0<t< T, x.
Ov

We replace the second equation of (8) by

0/3(21)
g/(t,x)=a-flv, 0<t< T, Xo,

It is easily seen that the basic identity (9) continues to hold if the inner product
over 6 (or over Se0) is defined with p used as a weight function ((, 6)ee pq).
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Then the algorithm and arguments used for (1)-(4) in Theorems 1, 2, 3 can be used
for the more general problem with no essential changes.

4. Numerical results. Some computational experiments have been per-
formed. While certainly inadequate to provide a real "feel" for the usefulness of
the algorithms for practical computation they nevertheless seem worth pres-
enting.

Consider, first, a problem involving the one-dimensional heat equation"
ut=Uxx, 0<t<0.4, 0<x<l,

(22) u(t, 0)=0, u(t, 1) p(t), 0<t<0.4,

u(0, x) sin rx, 0-<x__< 1.
We take 7/’k (sin jrrx:j 1,..., k) and have Table 1 (in which Pk denotes the
computed control).

TABLE

k 4 6 8 10 12 14 16 18

I11 0.04106 0.05389 0.06227 0.06811 0.07240 0.07568 0.07823 0.07896

Ik--_=ll= 0.01283 0.00838 0.00584 0.00429 0.00328 0.00254 0.00075

As anticipated from the proof of Theorem 3, IIq  l[ increases monotonically with k.
Of greater interest is the bottom row of the table which gives some concrete
indication of the rate of convergence. Observe that the table strikingly confirms
the orthogonality of the increments (Pk- Pk-2); see 5, below.

Since the computed approximations to the optimal control will not, in
general, be (suboptimal) exact controls, an experiment was performed to see how
effective the "steering" of a computed control might be. Since diffusion equations
have a strong smoothing effect even without purposive control, the effectiveness
of the computed null-control was measured by comparing the resulting terminal
state u with the corresponding terminal state u of the uncontrolled solution
(p =0). This experiment was performed for a problem involving a variable
coefficient diffusion equation:

u,=(e-/SUx)x +1/2(1 +x)u,
(23)

Only the
(sin 7rx, sin 2rx, sin 37rx, sin 47rx). See Table 2. We have Ilul/llul= 0.3-3.

0<t<0.3, 0<x<l,

u(t, 0)=0, u(t, 1) p(t), 0<t<0.3,

u(0, x) 100x(1 -x), 0--<x _--< 1.

approximation (4 was computed with 4

TABLE 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UX) 0.0 0.640 1.236 1.730 2.071 2.220 2.153 1.866 1.379 0.736 0.0
UX) 0.0 0.020 0.010 --0.036--0.090--0.075 0.070 0.218 --0.226--1.598--1.605



BOUNDARY CONTROL OF THE HEAT EQUATION 69

It is not surprising that some roughness is introduced near the controlled
boundary as the theory involves L2 rather than pointwise convergence. Indeed,
theory predicts that some (optimal) controls will be quite wild as t--> T, which
would certainly lead us to expect this sort of roughness. If desired, this can be
avoidedmat the cost of increasing the L2 norm of the control---either by seeking a
control which is optimal with respect to a stronger norm (see 6, below) or by
extending the problem to x e (0, a) with a > 1 (extending the initial data) and after
solving the extended problem with control at x a, using the values of that
solution at x 1 as a suboptimal control for the original problem. This last "trick"
also can be used to compute controls for more general (even time-dependent)
boundary conditions.

5. Remarks. The discussion so far has followed the manuscript prepared and
submitted before William Chewning’s death. The resulting substantial delays
mean that this final version is being prepared about a year later and, while it seems
appropriate to have presented the original material in somewhat of its original
form, we proceed now to introduce the perspective of more recent work by the
second author [5], [6], [7].

If one looks carefully at the algorithm and its proof it becomes clear that their
intrinsic logic makes negligible use of properties specific to the control problem to
which it is applied but, rather, can be viewed abstractly as a general computational
approach to a wide variety.of problems. The proof above of Theorem 3 does not
even use the linearity of the problem or the Hilbert space setting and has been
abstracted in [6] to apply to nonlinear problems in the setting of a uniformly
convex Banach space. The computational algorithm of Theorem 2 and its
corollary does use these structures and, in this case, a far less sophisticated
convergence proof (giving additional useful information) has been presented in
[5] and some material on convergence rates has been obtained in [7]. We now
review 3 from the more abstract perspective of [5], [7].

Let A: L2(6e)--> L2(@) be the (continuousmindeed, compact) mapping: q
u(T,. defined by (1)-(3) with Uo=0. Then (9) shows that A*: L2(N)-->L2(6e) is
just the mapping: v(T,. )-->-O defined by (5)-(8). If we also define F: L2(N)-->
L.(@) by Fuo=u(T, given by (1)-(3) with q=0, then the control problem
consists of solving

(24) A =b

for 0 with b= ur-Fuo. For ur 0, solvability of (24) for every Uo implies
continuity of the null-control map C: Lz(N) -* Lz(ow), taking Uo to the correspond-
ing optimal control o,.

Since Yt(A) is (dense but) not closed in L(@), A does not have a pseudoin-
verse (cf. [1]) but each l-IkA does, where l-Ik: Lz(fl0) - R is defined by setting

(Hky)i (Y, Vi) I yvj

and (12)-(15) is easily seen to define qk by letting this pseudoinverse act on Hkb.
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Theorem 1 of [5] asserts that M=A*=((HA)*) and Sk
{x" HkAx Hkb} meet orthogonally with

(25) Sk l/Ik {qgk }, (k projection of q, on lIk,

so that qk-*, since sp {Mk} is dense in V(A)+/-= R(A*)=M by the assumed
totality of 7/={vl, }. The fact that the approximants are obtained by
orthogonal projection shows that each qk is the best possible approximation
(nearest point) to q, in Mk and that (k--qj)+/-qj for k>/" so II  ll==
II  ll= / = (compare the start of the proof in 3 of Theorem 3 and the first
table in 4).

6. Rate of convergence. Since every q M is the optimal control associated
with some specification of uT- (with Uo fixed), the convergence can be arbitrarily
slow no matter how {v l, } is chosen. On the other hand, we see [7] that
restriction by a regularity condition (particularly on restricting consideration to
certain null-control problems) permits establishment of a convergence rate.

It is easy to see that typical regularity conditions can be formulated as
requiring, for problems (24), that the (minimum norm) solution 0, be in the range
of a compact embedding map E: X-> L2(Se) for some Hilbert space X. With x, X
so 0, Ex, one has, for the computed approximant qk, the convergence rate

with

(27)

By Theorem 2 of [7],

sup {[IEx MI1" IIx II- 1}--> 0.

K ] 1/2

(28) ek+l_--<Ok--<inf e,++EIIEe-MI[2

where {(ej, e)} are the eigenpairs of E*E taken so {ej} is an orthogonal basis and
el=>e2=>.. .>0.

In applying this notion to the control problem we observe that if we restrict
our attention to autonomous null-control problems for which it is known that a
null-control existsfor every Uo in L2() and every T> 0msee [2], [4], [8]mthen we
may obtain a rate using X Lz(@) and the control map. For null-control, the
problem has the form: Aq Fuo and controllability means (F)c(A) so the
control map C" Uo->q minimum norm control is linear and continuous. Note
that we may construct a null-control q3 for a given Uo by taking q3 to be 0 for
0 < t < T’ and then controlling u(T’,. )= F’u0 to 0 so, on IT’, T], q3 is C’F’uo
where F’ is the solution operator for (16)-(18) on [0, T’] with 0 control and C’ is
the control map for IT’, 7"]. Now, with a minor abuse of notation, the optimal
null-control q, Cuo is just the projection PC’F’u0 of q3 onM (P the orthoprojec-
tion onto M in L2(0)). Now P, C’ are bounded and F’ is compact so C is compact
and we may let C play the role of the "regularity map" above.
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Letting {e} be the eigenvalues of C*C in decreasing order with multiplicities,
a standard variational characterization of the eigenvalues gives

(29)

e= inf {sup {(u, C*Cu)’ Ilull 1, u u}: dim U k}

inf {llCIv-II: dim U k}
-<_ IIPc’ll inf II{F’ltJ-[I2" dim U k}

IlPc’ll= exp [--2XkT’],

where the {-Ak} are the eigenvalues of L. (Note that with L as in (17) for bounded
c R" one has A cokz/n asymptotically as k .) Using (28), (29) in (26) gives

the convergence rate:

(30) clluoll exp [- T’kz/"]

for any T’< T and c depending on T’, etc., but not on k or u0. This optimal
convergence rate will be attained if one could haveM sp {Cu 1, , Cu} with

u. the/’th eigenfunction of C*C. Unfortunately, at present little is known about
these eigenfunctions {uj} or about {Cuj} so that it is difficult either to choose the
{vi} optimally (it is not known whether Cui e (A,*) so optimal choice of v may
not be possible) or to use the right-hand inequality of (28) to estimate the
convergence rate for a given sequence {vi}. Unfortunately, also, there is no known
nontrivial (Uo 0) null-control problem for which an exact analytic solution is
available as a test case.

We make one final remark. The discussion above has been in the context of
Lz(6e) controls and L2() convergence. One obvious modification is to seek the
optimal control in H([0, T]Lz()) when such controls exist, proceeding to
compute approximately either q, or O",/Ot by a modified version of the
algorithm above. This would provide a control which would be smoother as
t T-, eliminating the "roughness" noted in the second example of 4, although
at the expense of increasing the L2(6) norm. We also note that for the autonom-
ous null-control problems just discussed it can be shown [8] that the algorithm
gives not only pointwise but C" ([0, T’]L2()) convergence (withmat leastm
the same convergence rate) for any T’< T; further, the optimal control can be
shown to depend continuously on L in the setting.
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A NOTE ON AN ALGORITHM BY J. RISSANEN*

B. R. DYEt

Abstract. An adaption is made to a well-known algorithm for calculating the realization of a
sequence of matrices in order to allow more than one calculation of the realization to be made. Amean
realization can then be obtained. A particular class of sequences is defined and then shown to be the
most suitable for the adapted algorithm to use.

1. Introduction. In [ 1] and [2] Rissanen and Kailath present an algorithm for
calculating the realization of a sequence of p q matrices, A0, A 1, A2, , where
the realization is in the form of a triple of matrices F(N), H(N), K(N) such that

(1) A, H(N) Fi(N) K(N) fori=0,1,--.

and the size of the matrices is minimal.
Throughout this paper we shall use the notation of [2] and we shall refer only

to the case where p 1, i.e., the sequence A is a sequence of row matrices.

2. The main theorem.
THEOREM 1. Given that Rissanen’s algorithm produces the triple, F(N),

H(N), K(N) of dimension rn as the realization of the sequence of 1 x q matrices,
Ao, A 1, A2. , then

P*(m) e-l(m) CF, the companion matrix ofF(N).
Before proving this theorem we shall first establish some lemmas.
DEFINITION 1. If F is a square matrix and the characteristic equation Cv(A) of

F is given by

CF(A)=al +a2A + +a,,An-l+A
where n is the dimension of F, then the companion matrix Cv of F is given by

0 1 0 0

0 0 1 0

0 0 0 1

a a2 a3 an

LEMMA 1. Given the same conditions as those in the statement of Theorem I,

* Received by the editors December 11, 1975, and in revised form March 17, 1976.
f School of Information Sciences, Hatfield Polytechnic, Hatfield, Hertfordshire ALl0 9AB,

England.
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we have

CF
Ai+l

Ai+m-1

Ai+l

Ai+2

mi+m

]’or i=0, 1,...

Proof. First we note that, by the Cayley-Hamilton theorem, F(N) satisfies its
own characteristic equation, which we may write in the form

(2) F a1I- a2F amFro-.
To prove the lemma it is sufficient to show that

(3) -alAi-a2Ai+l amAi+m- =Ai+m for =0, 1," ".

Using (1), we see that the left-hand side of (3) may be written as

-alH. F K-a2H" Fi+a K amH" Fi+m-1 K

H" F [- a11- a2F amFm-1] K

H. Fi. Fm" K (by (2))

a+., (by (1))

which proves (3) and hence the lemma.
COROLLARY 1. Ifby Ai(j) we mean thej-th elementin the 1 q matrix Ai, then

an immediate corollary ofLemma 1 is

Ai(j)

Ai+I(J’)

ei+m-l(])

Ai+I(/’)

ai+2(]’)

a/,(i)

for O, 1, and j l, 2, q.

Thus CF acts on the individual rows and columns of A (m, N) and disregards
the block-matrix structure.

LEMMA 2. In [2] the elements ofQ(m, N) are denoted by qij and s(i) is the least
integer such that q,s() # O. The algorithm sets all qk,s()= 0 ]’or k > i. Given the
conditions in Theorem 1 the last row of Q(m, N) is zero. ff we form the matrix
Q*(m 1) from columns s(1), s(2), s(m 1) of Q(m 1, N), then Q*(m 1)
will be nonsingular.

Proof. m will not be greater than N so the columns certainly exist. Q*(m 1)
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is trivially nonsingular since it has the form

Q*(m- 1)

ql,s(1) ql,s(2) ql,s(3) ql,s(m-1)

0 q2,s(2) q2,s(3) q2,s(m-1)

0 0 q3,s(3) q3,s(m-)

0 0 0 qm-,s(m-1)

Proof of Theorem 1. We denote the elements of A (m, N) by aij. From the
factorization A (m, N) P(m). Q(m, N), we obtain directly

(4) P(m) O*(m 1)=

al,so) al,s(2) al,s(m-)

a2,s() a2,s(2) a2,s(m-1)

am-l,s(1) am-l,s(2) am-l,s(m-1)

and also

(5) P*(m) Q*(m 1)=

a2,sO) a2,s(2)

a3,s(1) a3,s(2)

am,s(1) am,s(2)

From Corollary 1, we may deduce the equality

al,s(1)

a2,sO)

’Fo

am--l,s(1)
(61

a2,s(1)

a3,s(1)

_am,s(1)

From (4), (5) and (6) together we get

al,s(2)

a2,s(2)

a-l,s(2)

a2,s(2) a2,s(m-1)

a3,s(2) a3,s(m-1)

am,s(2) a,s(-l)

a l,s(m-1)

a2,s(m-1)

am-l,s(m-1)

a2,s(m-1)

a3,s(m-1)

am,s(m-1)

Cv P(m) O*(m 1)- P*(m) O*(m 1).

Since O*(m- 1) is nonsingular we may "cancel" it, thus proving the theorem.



76 B.R. DYE

3. The application of the theorem.
DEFINITION 2. We adapt the algorithm given in [1] and [2] to produce the

realization F, G, H, where

DEFINITION 3. Given the sequence of 1 q matrices A0, A1, A2," the
realization of the sequence Ai, Ai/l, Ai/2" is denoted by F, Gi, for each

0, 1, 2. so that, in particular, Fo, Go, Ho is just our original F, G, H.
DEFINITION 4. A sequence of 1 q matrices A0, A1, A2"’" is called

homogeneous if the realization of each sequence Ai, Ai+I, AI+2"" for i=
0, 1, 2 is of the same dimension.

THEOREM 2. Given the homogeneous sequence of 1q matrices
Ao, A 1, A2 we calculate the realizations Fi, Gi, Hi in theform ofDefinition 2 for
each O, 1, 2,. . Then F F. for all i, j O, 1,. .

Proof. Certainly each F is a companion matrix of the same size. Suppose
F F. for some <j. Let the characteristic equation of F be

CF,(A): a14ra2A H- +amAm-l-FA m,
And let the characteristic equation of F/be

CF (h) bl " b2h + + bmA 21 1 m.
Following the proof of Lemma 1 we shall get, for k => j,

(7) alAk a2Ak+ amAk+m-1 Ak+m
and

(8) -blAk -b2Ak+l b,,A+m-1 A+,,.

Subtracting (7) from (8) we get"

(al-bl)Al +(a2-b2)A+l + +(am-bm)Ak+m-l=O
for k =j,j+l,j+2,. ..

This contradicts our assumption that the sequence is homogeneous unless every
coefficient is zero. So F/= F for all i, j.

THEOREM 3. Given the realization F, G, Hofthe sequence of 1 q matrices, a
necessary and sufficient condition for the sequence to be homogeneous is thatFhas
no zero eigenvalues.

Proof. F is in companion matrix form (see Definitions 1 and 2). F has zero
eigenvalues if and only if a is zero. The proof of the theorem is in two parts.

Necessity. Suppose F has zero eigenvalues; then a is zero, and suppose F is
of dimension m. Then, by considering (3) in the proof of Lemma 1, we have
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a2Ai+l amAi+m-1 Ai+m for i=0, 1,. ,
and this tells us that the dimension of the realization of A1, A2, A3"-" is m- 1
and so the sequence is not homogeneous.

Sufficiency. Suppose A0, A 1, A.. is nonhomogeneous. Then there exists a
k such that

(9)

and

the realization Fk-1, Gk-1, Hk-1 of the sequence Ak-1, Ak is of

dimension m, say

(10)
the realization Fk, Gk, Hk of the sequence Ak, Ak/1 is of

dimension m 1.

Suppose

and

Then (9) and (10) imply

(11)

and

0 1 0 0

0 0 1 0

0 0 0 1

-al -a2 -a3 am2

0 1 0 0

0 0 1 0

0 0 0 1

-bl -b2 -b3 bm-1

alAk_l+i a2Ak+i amAk+m-2+l Ak+m-l+/

(12) -blAk+i-b2Ak+l+i bm-lAk+m-2+i --Ak+m-l+i
for i=0, 1,. .

Now, subtracting (12) from (11) gives us

(13) -alAk-l+-(a:z-bl)Ak+ (am-bm-1)Ak+m-2+i =0
for i=0, 1, .

Unless every coefficient in (13) is zero, it is saying that the sequence
Ak-1, Ak, Ak/l.’’" has a realization with dimension at most m-1 and this
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contradicts (9). So every coefficient is zero, in particular a 1, and therefore Fk-1 has
zero eigenvalues and so has F0 by Theorem 2. Thus sufficiency is shown.

COROLLARY 2. It follows directly from Theorem 3, that, given any not
necessarily homogeneous sequence of 1 q matrices, then the nonzero elements in
the last row of each F will be identical. This comes directly from the fact that every
coefficient in (13) is zero.

Theorems 1, 2 and 3 show that given any homogeneous sequence of 1 q
matrices, then we may make as many calculations as we like of the F matrix and
each calculation uses a different part of the given sequence. For example, if F
(=F0) is of dimension m-1 say, then we may calculate F for i=
0, 2m, 4m, 6m and each calculation will use a completely disjoint portion of
the given sequence (since 2m terms are used each time). The condition of
homogeneousness serves to exclude sequences which have terms in them com-
pletely independent of all the rest and which therefore have dimensions artificially
large. We have thus shown that a small adaption to a well-known algorithm allows
a more accurate realization to be found. Reference [3] contains a description of
other algorithms superior to the standard algorithms, which is relevant to this
note.
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OPTIMAL IMPULSE CONTROL OF A DIFFUSION
PROCESS WITH BOTH FIXED AND PROPORTIONAL

COSTS OF CONTROL*

SCOTT F. RICHARD"

Abstract. This paper concerns the optimal control of a system where the state is modeled by a
homogeneous diffusion process in R 1. Each time the system is controlled a fixed cost is incurred as well
as a cost which is proportional to the magnitude of the control applied. In addition to the cost of
control, there are holding or carrying costs incurred which are a function of the state of the system.
Sufficient conditions are found to determine the optimal control in both an infinite horizon case with
discounting and a finite horizon case. In both cases the optimal policy is one of "impulse" control
originally introduced by Bensoussan and Lions [2] where the system is controlled only a finite number
of times in any bounded time interval and the control requires an instantaneous finite change in the
state variable. The issue of the existence of such controls is not addressed.

1. Introduction. This paper concerns the optimal control of a system where
the state is modeled by a homogeneous diffusion process in R and where there
are both fixed and proportional costs incurred by controlling the process. In
addition to the costs of controlling the process, there is assumed to be a holding
cost which is a function of the state of the system. Sufficient conditions are found
for a control policy to be optimal. The question of the existence of such a policy is
not considered.

This paper is a modification of Bensoussan and Lions [1], [2] who were the
first to consider the finite horizon problem with fixed costs only. In their case
Bensoussan and Lions find that the optimal control policy is one of "impulse
control," where the control is used at a series of stopping times to instantaneously
move the state of the system by a finite amount. This jump type of control is, of
course, necessitated by the incursion of a fixed cost every time the control is used.
Bensoussan and Lions restrict themselves to the case where all costs are bounded
and, in particular, rule out the case where holding costs rise linearly with the state
of the system and the costs of control rise in proportion to the magnitude of the
control. In this paper these restrictions are removed and a general holding cost
function and proportional control costs are allowed. Furthermore, we consider
here both the infinite horizon discounted cost case and the finite horizon case.
Lastly, Bensoussan and Lions restrict the control to be nonnegative, but that
restriction is removed herein.

2. The infinite horizon with discounted costs model. Let wt be a Wiener
process in R and t be the increasing family of r-algebras generated by w. Let
0 ’/’1 "/’2 " 7"i " "be an increasing sequence of stopping times adapted to
t, such that only a finite number will occur in a bounded interval a.s. Denote by

* Received by the editors May 30, 1975, and in revised form August 14, 1975.

" Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh,
Pennsylvania 15213.

In one sense this paper is not a generalization: Bensoussan and Lions consider the case of a
diffusion in R".
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the minimum o--algebra of events prior to ’i. To each -i assign a random
variable : which is ,/measureable. Without loss of generality assume that - --> o
a.s. as i--> o.

Let Y(t) be defined by the stochastic differential equations

dy(t)=lxdt+rdwt, r <-t<zi+l Vi->0;

(1) y(’i) y(r[) + ji,

y(0)=x,

where

(2) ’o-----0 and zi+l=zi ifzi+x=’.
Let an impulse control be denoted by v"

(3) V --(’/’1, 1;" 7"i, i; ").

Let the holding cost function H(x) be continuous and nonnegative. The total cost
function associated with the policy v is

(4) Jx(v) E e-Z’B(sei) + e-ZH(y(s)) ds

where B() is the cost of control given by

B() ge + kell,

(5) Ke= >0 for<0,
and

(6)

(7)

(8)

and

(9)

k/>0 for
ke= k->0 fors<0.

We, of course, seek a control 3 such that Jx (3)= infv Jx(v).
Suppose there exists a function u (x) such that2

u >= O, u’(x) is absolutely continuous and bounded and

u (x) _-< inf [B (s) + u (x + so)] Ou (x), Vx;

flu(x)-lU’(X)-1/2tru"(x)<-_H(x) a.e. x;

u"(x)L2(R),

(Bu (x tzu’(x 1/2r2u"(x H(x )(u (x Ou (x O.

Then we may define the optimal policy as follows.
Let the continuation region be defined by

(10) C={x’u(x)<Ou(x)},

For a heuristic (and quite intuitive) development of these conditions see Bensoussan and Lions
[2].
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which is an open subset of R since it is easily shown3 that Qu(x) is continuous.
Define the impulse control 3 associated with u (x) as follows. Let

d tt dt + (r dw,,
(11)

f(O) =x,

and let

(12) "1 inf {13 (t) C}
t>__0

and

(13) :1 T/((-)),
where r/(x) is a real-valued measurable function4 chosen so that

(14) BO?(x))+u(x +(x))=Ou(x)

In general then to define "i and consider

d tx dt + (r dwt,(15)
(i) ()+i

and let

(16) "i+1 inf {)3(t) C}
t>=-i

and

(17) :,+ rt (y (r,+)).

THEOREM 1. If there exists a solution to (6)-(9), then

(18) u(x) dx() <-Jx())

and defines the optimal impulse control.
Remark 1. If we have the additional constraint that sc e K, K compact, or

:-> 0, then that constraint is imposed on : in (7) and on r/in (14) and Theorem 1
remains valid.

For e > 0 by the uniform Lipschitz condition

-Me <=u(x ++e)-u(x +)<-Me V
so that

ge / kell/ u(x +)-Me ge/kell/ u(x

ge / kell / u(x + $) +Me.

Taking the infinum yields

so that

[2].

Ou(x)-Me <-Ou(x +e)<=Ou(x)+Me

IOu(x +e)-Ou(x)l<=Me.
4 It is easily shown that for each x, r/(x) is chosen from a compact set. See Bensoussan and Lions
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To prove Theorem 1, we must first prove five preliminary lemmas.
LEMMA 1. LetF(x, t) be a continuous function for which Ft(x, t), Fx (x, t) and

Fx (x, t) are continuous; then

F(y(T-), T)-F(x, O)= Y. [F(y(-), -)-F(y(zT,), -)]
.ri<T

(19) + [F(y(t),t)+xF(y(,t),t)+1/2o’F(y(t),t)]dt

+ F(y(t), t)

ProooLemma 1. If - is such that - < T= ’+1, then we may apply Ito’s
formula on the intervals [-_, -), 1, , k, and on the interval [-, T) to find

F(y(’;), ’)= F(y(’-0, ’-0 + Fx(y(t), t)trdw
i--1

(20)
+ [Ft(y(t), t)+IzFx(y(t), t)+1/2r2Fxx(y(t), t)] dt

’i

and
T

F(y(T-), T)=F(y(’k), rk)+ F(y(t), t)trdw,
k(21)

2+ [Ft(y(t), t)+lxFx(y(t), t)+str F,x(y(t), t)] dt

Summing (20) for 1,..., k and adding (21) yields (19).
LEMMA 2. Let F(x) be an arbitrary bounded twice continuously differentiable

function with IF’(x){Mand

(22) (G(x) -F(x)+F’(x)gF"(x)

bounded. Then for > O,

(23) -F(x)=N [F(y())-F(y([))]e-O’+E e-O[(G(y(t))]dt.
i=1

Proo[oLemma 2. Apply Lemma 1 to F(x, t)= e-OF(x) to obtain

e-rF(y())-F(x) e-[-F+F’+F"](y(t)) dt

(4
+ F’(y (t)) e

i<T

Letting T we find

-f(x) e-’(G(y(t)) dt + [F(y(i))-F(y([))]e-’i
(25)

+ F’(y(t)) e-’ dwt.
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Now

(26) Er2[F’(y(t))]2 e-2’ dt <-M2r2 e

so that

(27) E rF’(y(t)) e

Taking the expectation of (25) yields (23).

-’ dwt O.

(28)

-2or dt < oo,

LEMMA 3. Letck (x be continuous and in L2(R and letE Yi= e-’i < oo; then

]Z(b)[ E e-etck(y(t)) dt <=

Proof ofLemma 3. Consider the expectation

(29) X,.(k) E X[.,..,+l)(t)[$(y(t))l e

where from (1) we find that

(30)

Let

y(t)= y(’)+(t-a’i)+r(wt-w,) for q’i <=t < 7"i_l

(31) D(’, t) I (t z) + r(wt w.)
and let s t-- for >_- - so that

(32) D(-, t) D(-, z + s) =/s +r(w./ w.).
Denote

(33) w’ w.,+s w.,
so that by the strong Markov property (see Gihman and Skorohod [3, p. 30]) w’ is
independent of #r. and is a Wiener process. Now

X,.($) E Xto..,+l-.,)(s)lck(y(r,)+D(’,, ’, +s))l e-(+’ ds

(34)
<- N[e-O’l(y(z)+D(’u ’ +sll e-" ds.

Let p(x, s) be the probability density function for D(-, - + s) so that

exp [-(x s) /(2so’)](35) p(x, s) /2zrs r
Hence

E[e-a’, Ib(y (-) +D(z, - + s)l] IR E[e-’ 15 (Y (’) + r)lp(r, s)] dr

Ig E[e-a*’14"(x)lp(x- yO’,), s)] dx
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since D0"i, ’i + s) is independent of Y(’i) and of
Therefore

IZ(ck)l <- X X($) <= X E e-*’ e- $(x)lp(x y(,), s) dx ds
=0 =0

(36) E e-(/)("+)l(x)l e-(O/)(’+)p(x y(i), s) dx ds
i=0

N E e-"e-(x) & ds
i=0

E e--’p(x-y(),s)dxds

by the Cauchy-Schwarz inequality.
Now for any value of y(r) we have

(37)

Thus

IR PZ(X y(zi) S) dx IR exp[--(x yO’i)--Ixs)2/(s’2)]
2q’l’SO"2

1 f exp[-(x -(ts + yO’i))/(2(strZ/2))]
2o-x/ss /2zr(str2/2)

1

2o’x/s"

Remark 2. Z(b) is a bounded linear functional on b L2(R) and continuous,
hence for arbitrary b LE(R), Z(b) is defined by extension such that IZ(b)[ _-<

LZMMA 4. Let F(x) be bounded and continuous on 1 with (GF)(x) L2(R),
F’(x) absolutely continuous and let ,i= E e-,’ < oo. Then

io(38) F(x)=- Y’. E[f(y(ri))-F(y(r7, ))] e-’ +E e-Ot[(-GF)(y(t))] dt.
i=1

Proof. Let Fn(x) be a sequence of smooth functions bounded with two
continuous bounded derivatives such that

(39)

and

(40)

Fn --> F uniformly on R

GF. GF in L2(R).
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Then from Lemma 2 we have

Io(41) -F,(x)= E[Fn(y(-i))-Fn(y(-7, ))] e -’i +E e-tt[(GFn)(y(t))] dt
i=1

Now by Lemma 3,

(4:) e-’[(aF aF)(y(t))] t CGF-GFI( O.

Lastly, denote I11 sup If(x)l so that

N[F(y())- F(y())-(F(y())-F(y(;)))] e-i=1

2liE- fll e-’ 0.

LEMMA 5. Let u (x) satisfy (6). Assume that e-’<,
(43)

and

(44)

then

(45)

E e-at[(-Gu)(y(t))] dt < oo

(46)

Y’, EI’I e-t" <
i=1

u(x)= Z E[u(Y(’c,))-u(Y(’i))] e-t’i+E e-t3’[(-Gu)(y(t))] dt.
i=1

Q.E.D.

Remark 3. By (43) we mean

E e-tt[u(y(t))-iu.u’(y(t))]dt + 1/2o’Z(u") < oo,

u,,(x) , E[u,(y(’i))- u,,(y(’7))] e -t’i +E e-tt[(-Gu,)(y(t))] dt.
i=1

From Lemma 4 we have

(50)

(48) u,,(x)=e-X2u(x) for lt>0,

so that u,,(x) is continuous and bounded on/ and Gu L2(R).
Furthermore, u’(x) is bounded for 0 < a <-1; thus u(x) satisfies a uniform

Lipschitz condition

(49) lu,, (x)- u (y)l <-- Llx yl.

Define

where Z(. is given by (28), u -> 0 and lu’l =<M.
Proof. Clearly u satisfies a uniform Lipschitz condition.

(47) lu (x)- u (y)l--< Mix y I.
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From Lemma 3 we find that

(51) E e-at[-1/2tr2u"(y(t))] dt <

and as a 0 by Lemma 3,

(52) N e-O[-1/2o’(u"(y(t))- ug(y(t)))] dt O.

Since lu’(x)l NM we have that

(53) e-O’[-u’(y(t))] dtI<m

and

(54) E e-et[-lz(u’(y(t))-u(y(t)))]dt  l lllu’-u’ ll - 0
as ce - 0, where I1 1--sup If(x)l.

Thus (43), (51) and (53) imply that

(55) 0<- e-Ou(y(t)) dt

and by the monotone convergence theorem

(56) e-u(y(t)) dt- e-"u(y(t)) dr.

Lastly,

(57) E , [u(y(-i))-u(y(-c,))]e-t*i <-_L E I:/I e-ti,
i=1 i=1

and by hypothesis (44) the expectation of the right-hand side of (57) is finite.
Hence by the dominated convergence theorem as a 0,

E E[u(y(i))- u(y(r;))] e
i=1

(58) E E[u(y(,))- u(y(,7))] e-a* <.
i=1

From (50), (52), (54), (56) and (58) the result (45) follows. We now complete
the proof of Theorem 1.

Proof of Theorem 1. Suppose v is such that Jx(v) < ,5 then by (7),

(59) u(y(rT))B(i)+u(y()).
Hence

(60) E E[u(y(z;))- u(y(zi))] e -a’ EB() e-’ <
i=1 i=1

This justifies the assumption that only a finite number of stopping times may occur in any
bounded time interval a.s.
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since Jx(v)<, which implies that

(61) Y E e-i <
i=1

and

(62) E
i=1

Furthermore, from (8) we find that

(63) e-OE[(-Gu)(y(t))] dt

since J(v)< m. Thus applying Lemma 5 we have that

(64) u(x)Jx(v).

We must first establish that E e-tiu((.:,))<oo for -> 1. We do so by
induction, the induction hypothesis following from

E e-tlu((.-f)) <= u (x) +E e-tlMly (]-) xl <c

since it may easily be shown that for any stopping time -->_ 0,

(65a)

where

(65b) dy (t) tx dt + o- dwt for 0 -< t _-< " and y(0) 0.

Now assume Ee-iu((.U,))< and note that (7) implies

(66) E e-t3iu((.;)) Ee-t’B(i)+E e-tu((.i)) <

which in turn implies that E e-O’u (3()) <c since both terms on the right-hand
side of (66) are nonnegative. Hence,

E e-t’+u((.U,+l)) <=E e-t+u((.i))+ME e-t3"i+xl(’i-+l)- (i)l
E e-’’u((i)) +ME e-o(i+-i)](i1) (i)l

by (65). Furthermore we have established that E e-’iu((i)) < for 1.
We note that (9) and (10) imply that for x s C, (8) holds as an equality and

thus u"(x) is continuous for x s C Hence we may use Ito’s lemma to find that

OE e-OSH((s)) ds =E e-e[#u-gut-2un]((s)) ds
(67)

E e-O’+u((i_))-E e-O*,u(($7)) <.
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Summing (67) for => 1 we find that

(68)

O<=E e-SH((s)) ds u(x)- Y Ee-i[u((.U, ))-u((.i))]
i=1

from which it follows that

(69)

u(x)- Y E e-OiB(i) <= u(x) <
i=1

Jx (/3) u(x) < oo. Q.E.D.

3. The finite horizon model. We proceed in a manner exactly paralleling 2.
The proofs of several of the lemmas are shortened since they are modifications of
previous lemmas.

Let 0 =< ri -< r2 =<" -< ri -<. T be an increasing sequence of stopping
times adapted to t, such that only a finite number will occur in [0, T] a.s. (or else
the expected cost of the policy would be infinite). Let y(t) and v be defined by
(1)-(3). We modify the holding cost function and the cost of control to allow it to
depend upon time, i.e., let H(x, t) be continuous and nonnegative on S
R x (0, T) and define B(, t) on S by

(70) B(:, t) Ke(t) + k(t)l’l,
where

K+(t)>O for (>_-0,(71) Ke(t)= K-(t)>0 for :<0,.

and

k+(t)>0 for :_-->0,
(72) ke(t) k-(t) > 0 for : < 0,

and K/, K-, k /, k- are continuous.
The total cost associated with the policy v is

Jx(v) =E E e((i, 7"i)+ H(y(s), s) ds +(y(T))
"ri <=T

where W(.) is a nonnegative continuous penalty function.
Suppose there exists a function u (x, t) such that

U t cl(),
(73)

Uxx L2(S),

(74)

(75)

(76)

and

u >= O, Ux is absolutely continuous and bounded,
e-’X2utL2(S) forO<a=<l, and Ue<=O;

u(x, t)_-<inf[B(s, t)+u(x +, t)]-Ou(x, t) Vx, t;

--Ut--ILI,U --1/20"2Uxx --Gu <-H a.e.;

(H+Gu)(u -Ou) 0;

(77) u (x, T) Rt(x).
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Note that (73) and (77) imply that (x) must satisfy

(78) I(x)-*(y)l-< Ilull Ix Yl.
Let the continuation region be defined by

(79) c {(x, t)’u (x, t) < Ou (x, t)},

which is an open subset of S. We define the optimal impulse control in the same
manner as in 2 but with 7 a function of both x and t chosen such that

(80) B(?(x, t), t) + u(x + ?(x, t), t) Qu(x, t) V(x, t).

Thus, for example, SOl r/0(7-), 7"1), etc.
THEORrM 2. If there exists a solution to (73)-(77), then

(81) u(x, o) ]x() <-L(v) vv
and defines the optimal impulse control.

We again proceed with a series of lemmas.
LEMMA 6. Ire(X, t)L2(s) and E ,i<r l <, then

(82) E (y(t), t) dt <-_

ProofofLemma 6. This lemma can easily be proved by modifying the proof
of Lemma 3. However, we may proceed even more easily by using a result of
Bensoussan and Lions [2]. Their Lemma 2.1 can be used to show that for any
7"i <= q-i + <= T,

(83) E X[zi,zi+x)(t)&(y(t), t) dt "/’i < --< GIlll=<s),

Thus

t) dr[
(84) =<E[T 1] clllll2s)

cIlll=, Q,E.D.

LZMMA 7, LetF(x, t) be bounded and continuous on with (GF) (x, t) Lz(S)
and assuming E i<__7.1 < o. Then

(85) F(x, O)=EF(y(T), T)-E E [F(y(-), -)-F(y(-:,), ,’/-i)]
’T

-E [(GF)(y(t), t)] dt.

Proofo[Lemma 7. Let F (x, t) be a sequence of smooth bounded functions,
with FT, F andF continuous and bounded such that

(86) Fn--> F uniformly on S
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and

(87) GF"GF in L2(S).
Using F in (19), adding Fn(y(T), T)-Fn(y(T-), T) to both sides and taking
expectations yields

(88)
F’(x, O)=EFn(y(T), T)-E Z [F(Y(’),"’)-F(Y(’), ’)]

-T
T

-E [(GF)(y(t), t)] dt

sinceF is bounded. Now by the same type of argument used in Lemma 4, we can
show that (88) converges to (85). Q.E.D.

LEMMA 8. Let u(x,t) be a function satisfying
E,<_TI <c,
(89) E E I1

’i --T

and

(90)

then

T

E [(-Gu)(y(t), t)] dt < oo;

(91)

(73). Assume that

u(x, O)=Eu(y(T), T)-E E [F(y(’r), ,r)-F(y(’r-), "r)]
T T

+E [(-Gu)(y(t), t)] at

u’(x, O)=Eu’(y(T), T)-E E [u’(Y(’i), ’i)-u’(Y(’7, ), "r)]
T

T

+ E[(-Gu)(y(t), t)] dt.

The remainder of the proof closely parallels the proof of Lemma 5. We need only
remark that Eu (y T), T) Eu (y T), T) by the monotone convergence theorem
and that Eu(y(T), T)<m because all the other terms in (94) converge to finite
limits by hypothesis. Q.E.D.

(94)

ProofofLemma 8. We proceed as in the proof of Lemma 5. The boundedness of
Ux guarantees that u satisfies a uniform Lipschitz condition

(92) }u(x, t)- u(y, t)] <-Mix yl.

Define

(93) u(x, t)= e-u(x, t)

for 1 -> a > 0 so that u (x, t) is continuous and bounded on S and Gu (x, t)
L2(S). From Lemma 7 we have
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With the use of Lemma 8 instead of Lemma 5 and the observation that
u (y, T) (y), the proof of Theorem 2 proceeds mutatis mutandis from the proof
of Theorem 1.
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OPTIMAL CONTROL OF JUMP PROCESSES*
R. BOEL’ AND P. VARAIYA$

Abstract. The paper proposes an abstract model for the problem of optimal control of systems
subject to random perturbations, for which the principle of optimality takes on an appealing form. This
model is specialized to the case where the state of the controlled system is realized as a jump process.
The additional structure permits operationally useful optimality conditions. Some illustrative exam-
ples are solved.

1. Introduction. This paper addresses the problem of the optimal control of
dynamical systems subject to random perturbations. It does so in the following
way. First, in 3, an abstract mathematical model is proposed in which the choice
of controller is modeled as choosing a probability measure over the measurable
space of state trajectories. This idea was first developed by Bene [1], [2] and
Duncan and Varaiya 11] in order to prove existence of an optimal control when
the perturbations form a Brownian motion. Second, in 4, we derive optimality
conditions for the abstract model using dynamic programming and elements of
martingale theory in the way developed by Davis and Varaiya [9] for the
Brownian motion case. Their approach in turn was motivated by the work of
Rishel [20]; it also has some resemblance to earlier work by Kushner [16], and
Stratonovich [26]. Some of, the extensions of their results as given in 4 are special
cases of recent results of Striebel [25]. While the abstract model does serve to
unify previous results, further comprehension of the scope of the model can be
gained and an evaluation of its practical import can be made only by working
through with more specialized problems with additional structure. Hence, in 5
and 6, the case where the random perturbations constitute a jump process is
discussed in detail. Related results using different methods have been reported by
Rishel [21] and Stone [24] and we shall compare them later. We note that there
are control problems with jump disturbances which must be modeled quite
differently from the model of 5 and 6. As examples of these we mention the
work of Rishel [22] and Sworder [27].

2. Conventions and notations. Let (1), ,) be a measurable space. Let
I [0, T] or [0, ) be a fixed time interval with the corresponding final time
denoted T. A stochastic process is always a triple (zt, t, 5), L where is a
probability measure on (1), -), (t) is an increasing family of sub-tr-fields of 0%
and (zt) is a family of (t)-adapted random variables with values in some
unspecified measurable space. When the context makes it clear we write the
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when this author was visiting the Department of Electrical Engineering, Massachusetts Institute of
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stochastic process z (zt, t, ), t I, as (zt) or (zt, ot) or (zt, 5) or z; z,, without
the parentheses, usually denotes the random variable at time instead of the
process.

All probability spaces are assumed complete, and every increasing family of
tr-fields, (t), is assumed right-continuous i.e., t=fqs>t. An (ot,)-
martingale is a uniformly integrable martingale (mr, t, t), t I, with m0 0 a.s.
The collection of all such martingales is denoted :g(t, ). In a similar way, we
define 2(, 5) ///o(, ), ///o(, ), the classes of (, )-uniformly
square integrable, locally integrable, locally square integrable martingale, and it
will be assumed that a version of these processes is chosen such that it has
right-continuous sample paths with left-hand limits.

M* (t, ) is the class of all processes (at, t, ), t I, which vanish at 0, a0 0
a.s., with right-continuous, nondecreasing sample paths, and which are uniformly
integrable, suptEat < c. M(, )= M+(t, )-M+(t, ) is then the class of

+processes with integrable variation. The classes Mloc, Moc are defined in the usual
way.

A family (zt) of (t)-adapted functions taking values in a metric space is said
to be (t)-predictable if there is a sequence"of such families (z’), n 1, 2,. ,
with left-continuous sample paths such that limn_oo z(o)= zt(o) for all (t, o)
If.

3. Abstract model of the control problem. The model proposed below is
similar to the one presented and investigated in [25]. It consists of three
interconnected parts: a description of the dynamical system, i.e., the way in which
it is affected by the control action, a description of the set of allowable control
laws, and a description of the cost associated with each control law. The
assumptions imposed are given next.

We suppose given measurable spaces (Z, ), the state space, and (f, ), the
trajectory or sample space. Also given is a function xt(o): II2-->Z which is
measurable with respect to 3 . Let ft o-{x Is _<- t} and without losing gener-
ality we assume that T o{xt It I}. We now assume

S. The behavior of the system under the action of any (admissible) control
law u is completely described by the specification of a probability measure on
(, ).

Thus for each control law u, x (xt, ,, 5u), L is a well-defined stochastic
process. We are evidently modeling the system as a controlled probability space
rather than as a controlled set of trajectories which is more customary. Of course
in the deterministic context the latter model is the more natural one. We now
describe the set of control laws.

We suppose given a measurable space (F, u), the control space, where F is a
metric space. Also given is an increasing family ofr-fields, (t) called the family
of observations, such that t c t, t L A collection R of functions ut (o): I
F is a collection of (admissible) control laws if the following holds:

$2. (i) (ut) is (t)-adapted and (ut, t, ), t I is a measurable process.
(ii) R is closed under concatenation, i.e., if u, v q/, then so does (u, v, t)

where (u, v, t)(s) u(s) for s -< t, v(s) for s > t.
(iii) For each u R and A t, u(A) depends only on Us, s <= i.e., if

vR is such that us =-Vs, s<=t, then "(A)= O(A); for each u
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g, E (1A t) does not explicitly depend on us, s _-< t i.e., if v q/such that
s >= t, then E"(1A ]t)= EV(1A [t)"

In the above, (iii) is a version of a causality condition and also expresses the
notion that the past trajectory xs, s -< serves as a state at t whereas (ii) is essential
for dynamic programming. In (i) the requirement that ut is t-measurable
indicates that t is ,the o--field of observations available up to t.

We can now describe the cost of control. Associated with each u 0// is a
unique cost J(u) given by

(3.1) roc(t, u(t)) dAU(t)+r

where E denotes expectation with respect to u, T denotes the final time of/,
and the other terms are described below.

C1. The instantaneous cost c: I x U 12 -R is a nonnegative function which
is jointly measurable with respect to I ?U (I,U are the Borel sets of
I, U), continuous with respect to u for fixed t, to and measurable with respect to t
for fixed t, u.

C2. The time rate AU: I 1- R, defined for each u 6 07/, is (3tt)-predictable
and, for each to, the sample path - AU(t, to) is right-continuous and increasing.
Furthermore, dA"’’(s) dA (s) for s <- t, dA (s) for s > t. (See $2 above for a
definition of (u, v, t)).

Since A" can have discontinuous sample paths, the indefinite (Stieltjes)
integral to roc(s, u(s)) dA (s) can be discontinuous. The most useful examples of
time rates are

(a) AU(t)=-t; whenever the sample paths are absolutely continuous with
respect to Lebesgue measure on I this case obtains.

(b) AU(t, to)= ltt__>,,,) which counts the number of (ft)-stopping times -,
1, 2,. -, which occur before t.
(c) A" is the predictable increasing process associated with the counting

process in (b), and which can replace the latter in (3.1) whenever c(t, u(t)) is a
(t)-predictable process, since the values of the integrals coincide (see [19]).

C3. The discounting rate rs(to)" is a nonnegative function defined for to 6, s, t in I with s -< t. For fixed s, rs(to) is (t)-adapted, jointly i measurable,
and uniformly integrable, and has continuous sample paths for fixed to. Further-
more, for each u

urtl rtlrtz a.s. for tl =< t2 -< t3,

r 1 a.s. u for all t.

C4. The terminal cost JT-: 12 R is a nonnegative -measurable function. JT
is the cost incurred at or after the final time T. When T it will be assumed that
J=0.

C5. For all u 71, J(u) < o.
The problem of optimal control is to find u* q/such that

J(u*) inf J(u).

Such u* is called an optimal control.
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Remark 3.1. (i) The fixed time interval I can be replaced by a random interval
[0, -]c I where - is a (t)-stopping time. This can be achieved by setting
c(t, u, o) 0 for -> -(w) or by making A constant after -. If - does not depend on
u one can set to(W)= O, >= ’(w).

(ii) The discounting rate rs(w) is not allowed to depend explicitly on u. In an
economic context this implies that the controller cannot directly influence the
interest rate. Of course, since the distribution of rts is dependent upon .u there is a
possibility of introducing indirect control.

(iii) Except for the special results with complete information (i.e., t --- t) or
Markovian assumptions, the final cost JT can depend explicitly on the control law
u. Again, except for these special cases, c(t, u, eo) can be made to depend upon the
past us, s =< t of the control. These generalizations are not made here since the
notational burdens become intolerable.

(iv) There are important applications, e.g. optimal stopping time problems,
where the optimal control cannot be chosen to be predictable. The results here do
not apply to this class of applications.

4. Optimality results or the abstract model. Since the proofs of the results
are simple modifications of proofs published in [9] we have been content with
citing the correspondence. The assumptions made in 3 are enforced throughout.

4.1.. Principle of optimality. Let u, v R and L We define

6(u, v, t) E(’v")
t
{ rc(s, v) dA+

Evidently, from the assumptions made above,

(u, v, t) 6 L 1(1, , ).
(The first part of $2 (iii) implies that

justifying the notation L(f, , ").) The random variable O(u, , t) is the
conditional expectation given the observation Jt of the future cost beyond time t,
evaluated at t, when u is adopted on [0, t] and is adopted beyond t. To evaluate
these costs at time 0 it is only necessary to multiply (, , t) by r). Since L is a
complete lattice under the natural partial ordering for real-valued functions the
following -essential infimum exists:

Note that W(u, 0)= J* A,J(u) is the infimum of the achievable costs. The
process (W(u, t), ,/) is called the value function corresponding to u. The fact
that for different control laws u and v, the corresponding and v can be
singular, does not pose any problem since, in the following optimality conditions,
W(u, t) and W(v, t), or related processes, need never be compared (one must

interpret carefully expressions such as min,0 in (5.41)).
The next definition was introduced by Rishel [20]. It was used in [9].
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DEFINITION 4.1. ag is said to be relatively complete with respect to W if for
each u 0//, /, e > 0 there exists v q/such that

O(u, v, t)<= W(u, t)+e a.s. ".

LEMMA 4.1. 0// is relatively complete with respect to W.
Proof. The proof is identical with that of [9, Lemma 3.1].
THEOREM 4.1. For tl <= t2 in I and u all we have

(4.1)

(4.2)

W(u, tl)<-E rt,c(s, us) dA[, +U"[rW(u, t2)lt,

W(u, T) E [JTI r]-
Furthermore, u is optimal if and only if equality holds in (4.1).

Proof. The proof depends on Lemma 4.1 and follows the same lines as that of
[9, Thm. 3.1]. [q

ConOLLAn 4.1. For u all, the process

Ifo7--rtoW(u,t)+E roc(s,u)dA"(s)l,

is a (t, ") sub-martingale, u is optimal ifand only ifthisprocess is a martingale.
Proof. The proof is immediate from Theorem 4.1.
Since the process

E" roc(s, us) dA+roJT-[ 6bl (t,

therefore the process (w(u, t)) is a (t, ")-supermartingale, where

w(u, t) E roc(s, us) dA2+ TroJT ro W(u, t)
(4.2’)

rto[P(u, u, t)- W(u, t)].

COROLLARY 4.2. For u It, the process (w(u, t), t, u) is a potential, u is
optimal if and only if w(u, t)=-O.

Remark 4.1. (i) The model proposed above is a special case of the one
presented by Striebel [25] and the resu|ts obtained above can be obtained from
hers. In particular Corollary 4.1 is a version of [25, Thm. 3]. The additional
structure that we have imposed will be used to obtain the more detailed results
given below. It is possible to replace the "relative completeness" property by the
slightly weaker "e-lattice" property introduced by Striebel.

(ii) Followipg Samuelson [23] we can give a heuristic interpretation of the
submartingale (J’). Its value is the expected cost evaluated at t, using the
observation t, given that u is adopted up to t and an optimal control is adopted
beyond t. This expected value will increase if the nonoptimal control is used for a
longer time, accounting for the sub-martingale property. If u is optimal, however,
then the expected cost remains constant.

(iii) Theorem 4.1 can be rederived from Corollary 4.1. Hence the optional
sampling theorem implies that in (4.1) we may replace the deterministic times tl
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and t2 by any (t)-stopping times 7" - 7"2 with values in L This observation is often
useful.

(iv) Sometimes, as in [2], [9], [11], there exists a probability measure on
(f, ) such that "<< for all u IL One can then introduce L(u)= d:"/d
and

c(u, v, t) ELL(u, v, t) rc(s, vs) dA+ r

V(u, t): oAo ,t,(,*, ,,, t).

The previous results can be restated in terms of the unnormalized value function.
While in an optimal filtering context working with such unnormalized quantities
has certain advantages (see e.g. [6]), we are unable to observe similar advantages
in the optimal control context.

(v) The random variable w(u, t) expresses the loss incurred by using u
beyond as compared with an optimal control. From definition (4.2’) and from C5
we can verify that it is potential of class (D). By [18, VI, T3 and T4] w(u, t+) exists
and is also a potential. Using (4.2’) we then get a right-continuous process
t+W(u, t+) satisfying (4 1) Even though in general w(u, t+) and W(u, t+) needF0

not even be versions of w(u, t) and W(u, t), it is implicitly assumed from now on
that these right-continuous process are meant. In special cases, such as value-
decreasing controls (first step in proof of Lemma 4.2 of [9]) and complete
information, with cost bounded by k (apply [18, VI, T16] to the submartingales
p(u, v, t) + k A(t,T]), W(u, t) actually has a right-continuous modification, justify-
ing the above notation. Hence by Meyer’s decomposition theorem 18, VII, T31],
there is a unique predictable process (A’ow(u))s+(,. ’u) and a martingale
(mW(u, t))l/ll(t, ") such that

w(u, t) J(u)-A toW(U)- mW(u, t)

where 3(u) w(u, O) J(u)-J*. We know, furthermore, that the following weak
limit (in the sense of the o-(L 1, L)_topology) exists (see [18]).

(4.3)

A’o(U) weak lim f’ -EU[w(u, s)- w(u, s + h)l%] ds
hO JO

weak lim {I01 "[I
+h

h-O -E rc(tr, u) dA2l ds

[r;W(u,s)-ro W(u,s+h)l%]ds.

Now it is easy to see that there exists a predictable process ((u))e +(%, ")
such that

(4.4) y(u) weakh-->olimlotl-EU[IsS’+h rc(o-, u) dA-1%] ds.
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From (4.3), (4.4) we may conclude that there exists a predictable process
(A tow(u)) e C(t, ), viz. A ’o W(u) y(u)-A ow(u), such that

I0 1 Eu r)+hAoW(u)=weahk_.loim - [roW(u,s)- W(u,s+h)lqls]ds.

This is sufficient to apply Meyer’s decomposition theorem to the process
(rto W(u, t)) and we may conclude that

rio W(u, t) rW(u, o) a to W(u) + m W(u, t)
(4.5)

W(u)+ mW(u, t)J*-Ao
where (mW(u, t)) d//(,, u). Furthermore, since (W(u, t)) is evidently of class
(D), the decomposition in (4.5) is unique.

In terms of this decomposition we can rewrite (4.1), after multiplying both
sides by ro, as

t2W(u)_AtlW(u)lO2ytl]<EU(4.6) EU[ao o roe(s, us) dA 0"tl] a.s ",

and we have equality if and only if u is optimal. With these results in hand we can
proceed as in the proof of [9, Thm. 4.1] to establish the next proposition.

THEOREM 4.2. There exists a constant J* and for every u 71 there exists a
predictable process (A to(u)) sC(qYt, ) such that

T(4.7) EUA(u) J*-E (roJr),

and such that for (t)-stopping times 7-1 7-2 with values in L

’2 U,(4.8) E -A,(u)+ roc(s, us) dA’[,, ->0 a.s.

A control law u u* is optimal ifand only ifequality holds in (4.8) for deterministic
times <-t2, and then, furthermore,

J(u*) J*,
ZroW(u* t)=EU[A (u*)+roJr[,] a.s. u

Remark 4.2. This result is a considerable improvement over [9, Thm. 4.1]
since there the inequality (4.6) and hence (4.7) is established only for those u
which are "value decreasing", i.e., for which (W(u, t)) is a supermartingale. The
same shortcoming can be noticed in [20]. Of course, if u is value decreasing, then
in (4.5) (AW(u)) is an increasing process.

4.2. Local optimality conditions. One can divide both sides in (4.8) by 7"2 --7"1
and take limits as 7"2-7"1 - 0. The basic idea is to express A’o(U) as an integral with
respect to A. It appears necessary however to restrict attention to value decreas-
ing controls.

So let u q/be such that (W(u, t)) is a supermartingale. Then (A’oW(u)) is a
predictable increasing process and (4.6) can be rewritten as

II t2

O < EU[A , W(u) qg,] <E,1 roe(s, us) dA , a.s .
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For any nonnegative, (t)-predictable process ((R)t) we have, for all 0 -< tl < t2 < T,

(4.8’) 0_-<E"I O dAo W(u) <-_E" l O roc(s, u) dA
t,t] t,2]

where roc(s, u) denotes the predictable projection of NU(roc(s, u) o) (see [31,
VT14]). This follows from [31, VT25], and an application of Fubini theorem to
show that

Ju[I(tl,t2]
Hence, whenever the second integral in (4.8’) vanishes, so does the first, and by the
Radon-Nikodym theorem (applied to measure tz(0) on R+ f with the predicta-
ble r-field associated with (,) [31, IV, D2]) there exists a predictable process
(at(u), t, u) such that O<=a,(u) <- 1 u a.s., and

AtoW(u) as(u) dA.

Using this representation we can restate Theorem 4.2 in a "local" version.
THEOREM 4.3. Them exists a constant J* and for every value-decreasing

u , there exists a (t)-predictable process (at(u)), O<=at(u)<= 1, u a.s., such
that

(4.9) E f Tat(lg) d*A- J*-EU(rJT)
a0

and

)]roc(t, u,)(09) >--- 0(4.10) [1 at(u)(09 /t

]:or dAd almost all (t, 09). A control law u u* is optimal if and only if
equality holds in (4.1 0). Then, furthermore

[I
T )r qYt]as(u* dAs +roJTI i a.s:roW(u* t) Eu* *

Remark. If roc(t, ut) > 0 a.s. dA d one can also find an (at(u)) such that

tW(u)--- a,(u) dAAo

giving a slightly easier version of Theorem 4.3.

4.3. Complete intormation. Suppose oJt-=t so that at each time t the
controller has complete information about the past. Then

T

O(U, ), t) E(U’v’t)[I Ptc(s, vs) dA+rTt JT] -lott]
T

=E[i rtc(s, vs) dA+rTt jTl-JJt]
O(v, v, t)
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by assumption S2(iii). Hence W(u, t) does not depend on u, and the preceding
results are simpler. Nevertheless the process AoW(u) still depends upon past
values of the control law u. Its "derivative" ct(u) however will often be indepen-
dent of values of u before as seen in [9] and in the following sections.

5. Optimality results for jump processes. In this section the abstract model
of 3 is specialized to the case of a dynamical system whose state process is a
(fundamental) jump process as studied in [5], [6]. The additional structure gives
more content to the formal results established earlier. For a review of the
definitions and properties of jump processes see [6, 2].

5.1. The model and its limitations. The state space (Z, ) is now also a
Blackwell space, f consists of all functions to" I Z which are piecewise constant,
right-continuous and have only a finite number of jumps in a finite time interval.
xt(to)" I --> Z is just the evaluation function xt(to)= to(t). t, are defined as
before.

The observations (t) are obtained as follows. We suppose given a Blackwell
space (Y, ) and a measurable map y" Z . Let Yt ’Y(Xt) and , r{ys Is -< t}.

With (xt) and (Yt) we can now associate the following discrete random
measures.

(5.1) PX(B, t)(w)= Z lx._()x,(),

number of jumps of x(w) which occur before and end in
BeY;

(5.2) P(c, t)(,o)
s<_-t

number of jumps of y(w) which occur before t and end in
Ce.

Note that P(B, t) is -measurable and PY (C, t) is -measurable.
We can now define the collection of admissible control laws a// and the

probability measures u, u e 07/. Let (, u) be the control space, where F is a
metric space, a// is the collection of all functions ut(oa)" I f-. 91 which are
(t)-predictable. It is supposed that for each u e 0// there is given a probability
measure " on (, ) such that the stochastic process " (x,, , u), t e I, is a
jump process in the sense of [5.6]. (It is evident that S2(i), S2(ii) are satisfied by
these assumptions.) Now from [5, Thm. 2.1] we know that to say that x, is a jump

~xprocess it is equivalent to say that there exist continuous processes (Pu(B, t))
+’o(t, ") for each B e such that

(5.3) (O,(B,X t)) (px (B, t) P(B,~X t)) lo(,, u).

Thus the action of u e q/is completely described by specifying the correspondence
’’Xu - {(P.(B, t), ,, )]B }.

Compare this with a result of Jacod [15] which states that, under conditions
satisfied in this section, there exists a one-to-one relationship between "kernels"
of predictable (/,(B, t)[B Z) and all probability measures" on (fl, ). To
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guarantee assumption S2(ii! and to simplify some notation later on we suppose
that for u 0//and B ,/Su(B, t)(to) is given by

Pu(B, t)(to) f(z, s, us (to), to)ix (dz, ds, us (to), to)(5.4)

where the integral is an ordinary Stieltjes integral and the prespecified functions f
and ix satisfy these conditions:

(i) f(z, s, u)= f(z, s, u, to): ZxlxxlR/ is jointly measurable, con-
tinuous in u for fixed z, s, to and for fixed z, u, (f(z, t, u, to)) is (t)-predictable.

(ii) ix(B, t, u, to) =IX(B, t, u): xlx //’xflR+ is jointly measurable and
for each fixed B, u, (ix(B, t, u)) is (t)-predictable, continuous and increasing. (In
practice ix is usually a deterministic process.) These assumptions are technical, but

ix and f can with care be interpreted as jump rate and distribution of different
types of jumps.

Finally the cost J(u) incurred by u e a//is supposed given by

(5.5) J(u) E" roc(z, s, us)Pu(dz, ds) + ro

where c satisfies the same conditions as f does, and rts, Jr satisfy the conditions
imposed in 3. It is assumed that J(u) < for all u. This completes the description
of the mathematical model..

Before turning to the analysis of the model we discuss its limits in terms of
which empirical control problems can and which cannot be adequately reflected in
the model. First of all, as far as the behavior of the state trajectories is concerned
the most serious limitation is the requirement that (/(B, t)) have continuous
sample paths. It is known (see e.g. [5]) that this restriction is equivalent to saying
that the stopping times at which the state jumps, i.e. the times of discontinuity of
(xt(to)), are totally inaccessible. In intuitive terms this means that if the controller
observes the first n jumps, then the probability with which it can predict the
(n + 1)st jump exactly is zero, for each n 0, 1, 2... (see [5, Lemma 2.4]). Now
most problems of queuing, inventory control, machine failures etc. indeed have
this property. But there are some problems which do not. For example snpposeo
that in an inventory control problem there is a fixed (deterministic) delay between
the time an order is placed and the time that the corresponding delivery is made;
evidently the total inventory jumps when the delivery is made and this time of
jum.p can be predicted exactly, and so the model proposed here is inadequate for
this example. Now the only reason whywe have insisted on the total inaccessibility
of the jump times is so that we can use the martingale representation theorems
derived in [5]. More recently, such theorems have been obtained without the
restriction on the jump times (see [7], [8], [13], [15]) and therefore the results
announced below should be extendable to arbitrary jump processes.

The second limitation of the model appears to the requirement that controls
have to be predictable processes. One reason for this is based on empirical
considerations. Since the time when the state jumps cannot be anticipated with
positive probability, and since in empirical situations there is an infinitesimal delay
before the controller can observe and react to a change in state, therefore the
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predictability requirement seems appropriate to us. In any event since tz is
continuous in t, therefore/3 defined by (5.4) is always continuous in t even if u is
measurable and not predictable. Hence the results below remain unchanged
whether we permit u to be any measurable process so long as we always take the
predictable projection of ]" (as well as of c in (5.5)), or whether one insists at the
outset that u be predictable. Because many of the following results can also be
obtained for/, discontinuous, and to avoid problems with predictable projections,
the predictability assumption has been made.

Finally, the cost functional (5.5) may appear too limiting since in many
situations one may wish to have the cost increase only when a jump occurs. Thus
one would prefer to have as cost the amount

E roc(z, s, us)Pu(dz, ds) + ro

s6I
Xs- Xs

roc (Xs, s, Us) + ro

But since px ,x is a martingale and since the integrand above is predictable, the
quantity above is equal to J(u) given by (5.3) and so there is no loss in generality.
(This equality does not obtain if u is not predictable.)

5.2. Preliminary analysis. To simplify notation we write lc(z)--l{v(z)C}.
Then, from (5.2),

(5.6) pr (C, t) lc(z)P" (dz, ds).

We calculate the unique processes ((C, t), 026, u) so that

(5.7) Y(Ou(C, t)) (PY (C, t) P(C, t))6 //oc(,, u).
For an arbitrary process (gt) let (t) be the (26) predictable projection ofE (gtl2lt)
(the appropriate u will always be clear from the context.) Then from (5.4) and
(5.6)

Pr(C’ t)-Iz Io’ tz(dz, ds, us)

lc(z)[P(dz, ds)-f(z, s, us)]tz(dz, ds, us)

+ [lc(z)f(z, s, us)- ]tz(dz, ds, us)

which is a member of ///oc(2/t, /u) applying [37, VT25] and Fubini’s theorem to
the second term. Hence

(5.8) ’(C, t)= lc(z)f(z, s, us)tx(dz, ds, us).
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A calculation similar to that of/ above gives us the expected value, given t,
of the increment of the instantaneous cost on the right hand side of (4.6). In terms
of the cost functional (5.5),

| roc(z, s, us)Pu(dz, ds)ltl
"tx

IIZl
t2 ]E roc(z, s, us)f(z, s, us)lz(dz, ds, us) ,

so that, by (4.6),

O<EU= -At2W(u) roc(z,S, Us)f(z,s,u)i(dz, ds, u)l,,

which means that the process

(5.9) at -A to W(u + i (dz, ds, us

is a (t, ")-sub-martingale. It is evidently of class (D) and is right-continuous
since in (4.5) a right-continuous modification of AoW(u) can be chosen and so by
Meyer’s decomposition theorem there is a unique predictable process (bt) E
+(0t u) and (mt)E[/[l(6lJt, u) SO that

at bt + mr.

But from (5.9) we know that (at) is also (t)-predictable. Hence (mr) is a
predictable process with integrable variation. It must therefore vanish so that
at-- bt. Hence at itself is increasing so that (5.9) can be expressed as

’2W(u)+ roc(z, s, us)f(z, s, utx(dz, ds,(5.10) 0-<_-At1 a.s. u

for every admissible control u. Furthermore we have equality if and only if u is
optimal.

5.3. Optimality condition for partial information. Recall the following defin-
ition from [5]. A measurable function/3" Y I f R is said to be in L l(p) if for
fixed y, fl(y,. is a (t)-predictable process, and EU[iz[(y, s)lP(dy, ds)]<.
/3 is said to be in Lloc(/5) if there is a sequence of (t)-stopping times Tk T a.s. u
such that (/3 ltt=<7-kl) Ll(pru) for each k.

We have the following version of Theorem 4.2.
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THEOREM 5.1. There exists a constant J* and for every u there exist a
predictable process (fi,(u)) sg(t, u) and a process 3u Loc(P) so that

(5.11) /or(u) "(y,s)P’(dy, ds)=J*-E"[rJrlr],

(5.1) -A,,(u)+ ((z),s)+roc(z,s,u,)g(z,s,u)(dz, ds, u,)

0

a.s. " or ()-stopping times with values in L A control law u u* is
optimal i and only i equali holds in (5.11) or deterministic times t N t, and
then, urthermore,

J(u*)=J*,

(5.13) r;W(u*,t)=J*-;(u*)+ *(y,s)P’(dy, ds).

Pro@ Necessi. Let u e . We have the representation (4.5),

(5.14) r; W(u, t) J*-A;W(u) + m(u, )

W(u) satisfies (5.10),where A,

’W(u)+ r;c(z, s, u)(z, s, u)(z, s, u)(5.5 0-a,

with equality holding for u*. By the martingale representation theorem [5,
Thm. 3.4] there exists " e L]o() such that

(5.16)

rn W(u, t) fl (y, s) yO(dy, ds)

fyIo fyIoflU(y, s)PY (dy, ds) flU(y, s)pY(dy, ds)

flU(y, s)PY(dy, ds)

"((z), s)(z, s, u)(z, s, u)

by (5.8). Define

(5.17) Ato(u)=A’oW(u) + 3 (/(z),s)f(z,s, us)tz(dz, ds, us).

Substitution for mW(u, t) and AtoW(u) from (5.16), (5.17) into (5.14) and (5.15)
yields (5.11), (5.12) and (5.13).

Sufficiency. Now suppose (5.11), (5.12) holds. If we define rn u, t) and
--tAoW(u)via (5.16) and (5.17), then (5.14) and (5.15) hold and the optimality of u*
follows from Theorem 4.2. !-]
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Remark 5.1. (i) Ifwe define AU(t) ’0 tx(Z, ds, us) then there exists a kernel
n(dz, t, ut) such that tx(dz, dt, ut)= n(dz, t, ut)A (dt). Then A can act as a time
rate and so exactly as in 4.2 we can derive a local version of condition (5.12).

(ii) In many applications it is reasonable to suppose the existence of a
probability measure on (f, ) such that u<< for all u. en u can be
described by specifying and L(u) E[d"/d[]. Suppose further that (xt, )
s a jump process with compensating processes (P (B, t), ), B gven by

fBfoP(B, t)= (z, s)(z, s)

where f(z,. is (t)-predictable for each z and ((B, t)) is a (t)-predictable
increasing process. It can be shown then (see [6]) that for each u there is a process

u: Z x I x R such that

is given by

Lt(u) H [l+bU(xs, s)]exp- cbU(z,s)f(z,s)tx(dz, ds).
Xs Xs
st

As a model (which satisfies the various assumptions of 2) we can propose that the
effect of a control u is determined by the process (Lt(u)) above in which

d"(z, t, o9) (z, t, ut, w)
*xwhere : Z x lx Ux R is a fixed function. The processes (P,(B, t), t, u

are then given by (see [6])

"x fB)P(B, t)= [1 +(z, s, u)](dz, ).

The function can be interpreted as the change in the rate at which jumps occur
for as compared with . In terms of this special model condition (5.12) reads as

-A()+ (y(z),s)+roc(z,S, Us)][+(z,S, Us)(z,s)(dz, ds)O.

5.4. Complete information. We assume that Yt Xt. Then, as observed in
4.3, W(u, t)= W(t) does not depend on u. However, it may appear that in the

representation for W(u, t) obtained in (5.13), (5.16) and (5.17), the processes
fi(u) and flu still depend on u. To see that this is not the case, consider any two
controls u, v. Then

ro W(t) J* fi.to(u) + U(z, s)P (dz, ds)

(5.18)

IZIOJ*- fi,t,(v) + (z, s)pX (dz, ds).
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Now (J*-dto(U)) and (J*-to(v)) are (t)-predictable processes whereas the
integrals in the equations above are piecewise constant with discontinuities at the
jump times of the (xt) process. It follows that

(5.19) U(z,s)eX(dz, ds)= (z,seX(dz, ds),

(5.20)

and so we have a considerably simpler version of Theorem 5.1.
THZORF.M 5.2. Suppose Yt =- xt. Then u* is optimal if and only if there exist a

constant J*, a predictable process (A to) sd(2Ft, ") and a process Lo(Pu.) so

A o 8 (z, s)P (dz, ds J* roJr,r

-’+ [8(z,s)+roc(z,s,u)]f(z,s,u,)tz(dz, ds, u,)>_O(5.22) -A ,,

a.s. ’" for all u all with equality holding for u u*. Then, furthermore,

J*=J(u*),

tfzffot(5.23) ro W(t) J* fi, o + (z, s)P (dz, ds).

X XSuppose henceforth (see Remark 5.1) that Pu(dz, ds) has the form P,(dz, t)
o n(dz, s, u)h ds where n (B, t, ut) is a kernel satisfying the same assumptions as f
in (5.4) (not necessarily n(Z, t, ut)= 1) and (,t) is a nonnegative (/)-predictable
process independent of u. Then as shown in 4.2, we can represent

fOt fOt(5.24) A0 asroc(s, Us)hs ds as" hs ds

for some (Xt)-predictable (at) (take predictable projection of roc(S, us) if neces-
sary). The local version of (5.21) now becomes

(5.25) [-at + yz (Z, t)+roc(z, t, ut)]n(dz, t, u,)] ,>-0

for all (t, w) with respect to dt xd measure, with equality when u u*. This
glves us a version of the dynamic programming equation,

(5.26) At[-at + min lz [3 (z’ t) + rtc (z’ t’ u )] n (dz’ t’ uer

and the minimum is achieved at u*(t, o) for almost all (t, o) with respect to
dt d* measure.

We shall now use (5.23) and (5.24) to directly relate A (or equivalently a and
/3) to the process (roW(t))t The basic idea is to note that A-to on the right hand side
in (5.23) is continuous whereas the integral term is piecewise constant with
discontinuities occurring only at the jump times of the (xt) process. Thus the

that
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discontinuous changes in rW account for/3 and the continuous changes account
for a. To identify these changes we need a more detailed representation of rW. Set
To---0 and let T1 < T2 <" be the jump times of x defined by

Tk+l(w)=inf{t> Tk(C.O)lXt(CO)XTk(CO)} k=0, 1,"

It is shown in [5] that t=cr(xTk^,,Tk;0<--k<), T.+=T.=
Cr(XTk, Tk;O<=k<=n). Since (roW(t)) is adapted to (t), therefore there exist
functions Wk (t, to, Zo, ", tk, Zk), measurable in their arguments, so that

roW(t) Z I{T,t<Tk+x}Wk (t, TO, XTo," ", Tk, XTk)
kO

(5.27)
k

-t=J*-a0+ Z lT=t<T+x Z k(XTk, Tk, XT,A,, T/At)
k_--O 1=1

with the Stieltjes-integral in (5.23) replaced by a sum with appropriate functions

The discontinuities of rW, which occur only at the Tk ’s, can now be identified
as

rW(Tk r-W(Tk -)
(5.28)

wk(Tk, To, XTo,’’’, Tk, XT)-- Wk-a(Tk, To, XTo,’’’, Tk-,, xT_I).

Hence the function/3 can be relIted to rW by

(5.29) fl (z, t) Y IT<,--<_Tk+bk (Z, t)
k__>_0

where, from (5.28),

bk-l(z, t)= Wk(t, To, XTo, Tk-l, XTk_,, t, z)
(5.30)

Wk-(t, To, XTo," ", Tk-a, XT_I).

Using the uniqueness of the Doob-Meyer decomposition [ 18, VII T21] and
~xthe absolute continuity of P,(B, t), ctt can be identified by

(5.31) oL’’[rW] =-a(t)A (t) + Jz (z, t)n(dz, t, Ut)

where [18, VII T29] gives

(5.32) ’[rW] weak lim {E t+h
tro W(t+h)l]-roW(t)}.

hO

(Here weak lim means limit in the cr(L a, L) topology). From (5.27) it is obvious
that the continuous part of rtoW(t), described by Wk(t, To, XTo,’’’, Tk, XT)
between jumps, behaves exactlylike J* --Ao which is absolutely continuous. This
can also be stated as

l{Tk<=t<--_t+h,Tk+,}[Wk (t + h, To, XTo, Tk, XTk) Wk (t, To, XTo, ", Tk, XT)]
(5.33)

--t Xt+h--Ao.,--xo
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and the derivative of Wk is minus the derivative of X0. We can now obtain a
formula for 5f’[rW] as follows. We observe that in the stochastic interval
Tk <=t Tk+,

(5.34)

E"[rto+hW(t + h)[t]- rto W(t)
=[Wk(t+h, To,’’’ ,Xrk)--wk(t, To,’’’, xrk)]
U[x does not jump in It, t + hi , T+I > t]

q- Wk+l(t + S, To, ,.Xr, t + s, Z)

wk(t, To,’’’, Tk, x)]
U[Tk+I-- Tk E dS, XT+I E dZ IT, rk+l > t]q-o(h

Xwhere absolute continuity of P,(B, t) (or Fk(B, t), see (5.36)) implies that the
probability of 2 or more jumps is o(h). Now,

(5.35) lim :U[x does not jump in [t, + h]lgTr, Tk+ > t] 1,
h0

(5,36) "[Tk+- Tk ds, xr+, dz Ir, Tk+, > t]
F,(dz, ds)

1-F,(Z, t-

where, by definition,

(5.37) F(B, t) "[Tk + 1-- Tk <= t, XTk+, -. B [CTk].

Finally, as shown in [7], [8] and [15],

16" (B, t)= n(dz, s, u)& ds

(5.38)

1 [[ Ti+I--T, F;(B, ds) ] f t-Tk Fk(B, ds)
,=o o iZ(Z)J + o 1 Fk (Z, s)

< T+.

for Tk --< t

From (5.33)-(5.38) we obtain

(5.39)
OWk’[rW-] =--zT-. (t, To,""
Ot

XT)-[- L [Wk+l(t r"" "’ XTk’ t, Z)
z

--Wk(t, To,’’’, x,)]n(dz, t, u,)ht

for Tk _--< < Tk+l.

Substituting from (5.31) and (5.39) into (5.26) gives the next result.
THEOREM 5.3. Suppose Yt Xt and suppose that for u all

(5.40) ’xP,(dz, ds) n(dz, s, us))tsds.
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Then u* is optimal if and only if there exist measurable functions Wk
(t, to," ", tk, Zk), which are absolutely continuous in t, so that

OWk(t, To,’’’ xT-k)+minAtI [Wk/l(t, To,’’’ xT-k, t, Z)

(5.41) Wk(t, To,’’ ",

+ roc(z, t, u)]n(dz, t, u)= O,

fOrTk <=t < Tk+a,
(5.42) Wk(T, To,’’’, x-) J, for Tg <= T< Tk+
and the minimum in (5.40) is achieved atu u*(t, to) a.s. u. Then, furthermore
(5.43) rtoW(t) Z l7"k<=,<7"+lWk(t, To,’’ ",

k>=O

Remark. Equation (5.41) will indeed give a predictable u*(t, to), since in the
left-closed stochastic interval Tk(to)----< t < Tk+l(to) (in R/ f), its solution is a
function of xT-,, T/, 0, 1, , k 1 and of Tk.

We are now in a position to compare our results with those of Rishel [21].
First of all his model of the dynamics of the jump processes is a special case of the
one used in Theorem 5.3. Secondly, the observation tr-fields, 3t,, that he permits
are much more general even than those of Theorem 5.1. For he only requires that
(,) be "locally increasing",, i.e., for each t there is r/>0 so that t gts for
s It, + r/]. Thirdly, the structure of the cost functional is the same as the one
used here. For an admissible control u let Jr(u) E{cost incurred in l-t, T] using
u It}. The process (Jr(u), ,/u) can be expressed as

Jt(u) E I{Tk<=t<T+Mk(, To,’" Tk, XT)
k>=O

as in 5.27). Rishel derives differential equations for the jT, similar to our equation
(5.39). Finally he compares Jt (u*), for an optimal control u* with Jr(v) where v is a
control obtained from u* by a local perturbation. The necessary condition
E[J(u*)-J(v)l]<=O is translated into a necessary condition on the iT, (see [21,
Thm. 6]). Since u* is compared with controls obtained by a local perturbation,
therefore these necessary conditions are weaker as compared say with Theorem
5.3 above.

5.5. Markovian case. To simplify the discussion in this section we suppose
T<c and rl. Now suppose Yt =-xt and suppose as in (5.40) that

’’XP,(dz, ds) n(dz, s, u),s ds,

where n and , have the form

(5.44) n(dz, s, u, to)= n(dz, s, u, x_(to)),

(5.45) A (s, to) A (s, x_(to)).

Similarly, suppose that in the cost functional (5.5) we have

(5.46) c(z, s, u, to) c(z, s, u, x_(to)),

(5.47) Jr(to) JT(XT(to)).
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Next, call u e oR a Markovian control if ut is of the form u,(to) u,(x,_(w)). Let
Rt be the set of Markovian controls. Blumenthal and Getoor [33, p. 63ff] have
shown that (x,, X, ") is a Hunt process under these conditions. Essentially, this is
a quasi-left dontinuous, strong Markov process. The martingale representation
results of Kunita-Watanabe then apply, and the integrand can be written as

(z,s,)=(z,s,x,_()).

With these assumptions it is reasonable to expect that a Markovian control is
optimal in the class , i.e.,

(5.48) A J(u)= a J(u),
u u

and it will then follow that the (complete information) value function W(I) has a
representation W(I, ) w(l, x()).

To prove this assertion we begin by defining the Markovian value function.
For u, v in M, as before let

r

6(u, v, t)= E("’’’) c(z, s, vs)P(dz,

{ -x
(5.49)

E c(z, s, v)P(dz, ds)+Jrlx,

W(v, t, x,) say,

V(t, x,) A n(v, t, x,).
ve

To show that V(t, x) W(t) it is enough, as we will see, to prove a version of the
optimality principle, Theorem 4.1, for the function V and u . It is here that
we face a difficulty because the proof of Theorem 4.1 relies on Lemma 4.1 and in
the proof of the latter critical use is made of the fact that u can depend arbitrarily
on t and that these are increasing; whereas here ut can depend arbitrarily only on
(xt-) and these are certainly not increasing.

We shall circumvent this difficulty by assuming that it is possible to approxi-
mate the time-continuous optimal control problem by a time-discrete problem.
Since for the latter an optimality principle is available, we will be able to obtain
such a result for the original problem.

For each t I and integer N let ta < t2 <" < t2 T be equally spaced
instances of time and let be the set of all (u:.), s t of the form

Us()=u(xt(m)) fort <stg+.

We impose the following assumption of approximation.
A. For all e > 0, t I, u 6 there exists K such that for all N K there

exists v with (v, t, x,) N (u, t, x) + e.
THeOReM 5.4. Suppose (5.44)-(5.47). Then for t t2 in I and u we

have

X EN(s.50) V(tl, X,,)e" c(z,s,u,),(,z,s)[x,, + [v(t,x,)lx,,],

(5.5) V(T, x) Y(x).
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If equality holds in (5.50) for u u* then u* is optimal in llt. Finally if A holds,
then this condition is necessary ]:or optimality.

Proof. For u 6 //t we have

V(tl, xt,)<-_l c(z,S, Us)Pu(dz, ds)lxt,

+vAEU[q(v, t2, xt2) Ixt,]

with equality if and only if u is optimum. Since obviously

(5.52) A E"[rl(v, t2, xt2)lxt,]EU[vA 7q(v, t2, xt,)lXtl],
ql

therefore the sufficiency part of the assertion follows. Now suppose assumption A
holds. To prove the final assertion it is enough to show that the reverse inequality
holds in (5.52). Fix e > 0. We must show that there is v e q/t so that

Uu[r/(v, t2, xt.) xt,] <= Eu[vAM rl (v, t2, xt=) xt,] + e.

Using assumption A, we can find N such that

E(5.54)
Eu[ A ’1(1), t2, xt2)[Xtl]jEU[ AM ’1(1), t2, Xt2)lxt2 ---Ol 2"

Next, we apply discrete backwards dynamic programming to obtain v’ q/N
t2 SO

that

(5.55) e
/(/) ’, t2, Xt2) ---v< A, l (/9, t2, xt2) -- -.2

Corresponding to this v’ //tN, there exists a v 6 0//M such that vs v, s -> t, so
that

(5.56) e
"r/(/3, t2, Xt2) < A r u, t2, xt2) + -2

rewriting (5.55). From (5.54)-(5.56) we see that v satisfies (5.53). The assertion is
proved. [3

Now let Vt V(t, xt). Fix u -//4 and consider the process (Vt, t, "). Then,
using the same argument which led to (4.5), we obtain the representation

(5.57) Vt Jt-Ato(u)+ mV(u, t),

where Jt=inf{J(u)lu //t}, mV(u)tl(Tt, u), and for tl--<t2

’t2 1
weak lim / E"[V V+h

h--O .,1 - 1$] as.

By the Hunt property EU[Vs-Vs+hlCs]=EU[Vs-Vs+hlXs] so that A t2. is
measurable with respect to =tr(x; tl<-S<=t2). (This implies also that
m(u, t2)-m(u, tl) is -measurable; i.e., m(u) is an additive functional of the
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Markov process (Xt, t, )u).) We therefore obtain the following version of
Theorem 4.2.

THEOREM 5.5. Suppose (5.44)-(5.47). There exists a constantJM andfor every
u llM there exists a predictable process (Ato(U)) M(t, u) such that

(5.58) EUA(u) J Euj,
t2 t2and such that for tl te, A,(u) is t-measurable and

-x >0 a.s.(5.59) E -A(u)+ c(z, s, u,)P(dz, ds)lx.
Suppose equali@ holds in (5.59) for some u u* in. Then u* is optimal in,
J(u*) J and

(5.60)

Finally if A hoMs, then this condition is necessary for optimali@.
We return to the representation (5.57). Since m V(u) is an additive functional

it can be represented as (applying results of [32, 5])

m(u, tl= "(z, sl[(az,sl-(az,sl]

Xwhere fl Lloc(P) is of the form

U(z,s,)=U(z,s,x_()).

As before (cf. (5.17)) let

"xo(U)+ )P.(dz, ds)Ao(u)= A fl (z, s

--A ;(u)+ "(z,s)n(dz, s, u,)ds

and we may conclude again (see (5.19), (5.20)) that for u, v in

Ao 0 say,

IZIO ZO#(z, s)pX (dz, ds) #O(z, s)pX (dz, ds).

Furthermore there exists a predictable process (t) such that

0A o ds.

But A, is ,-measurable and I()= I (t, x_()) by (5.45). Hence is of the
form ,() (t, x_()). e local version of (5.59) now becomes (cf. (5.26))

(5.61) -(t,x,_())+minz[(z,t)+c(z,t,u)]n(dz, t,u)=O

and the minimum is achieved at u*(t, x_()) for almost all (t, ) with respect to
dA xd"* measure But from (5.61) it is evident that u* is now an optimal control
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in the class q/of all controls and not just Markovian controls. It follows then that
V(t, xt)= W(t). Theorem 5.3 simplifies as follows.

THEOREM 5.6. Suppose (5.44)-(5.47). Suppose there exist u*6 llM and a
measurable function V(t, x) which is absolutely continuous in t, so that

O---V(t, XTk -JI-min X (t, XTk_ IZ V(t, z)- V(t, XTk -1-c(t, z, u)]n(dz, t, u)= O,
(5.62) Ot u

]:or Tk <-- t < Tk+l,

(5.63) V(T, xrk)= Jr(xr(to)), ]’or Tk <-- T< Tk+l,

and the minimum is achieved at u*(t, xt_(to)) a.s. with respect to u* measure. Then
u* is optimal in the class ofall control laws, andfurthermore V(t, x,) W(t). Finally
if A holds, then this condition is also necessary ]:or optimality.

We can compare the result above with the main result of Stone [24,
Thm. 4.5]. Essentially our result is a special case of his result since the latter
applies to semi-Markov processes and not just to Markov processes as we have
insisted. Of course it is possible to obtain his result from ours by imbedding the
semi-Markov process into a Markov process (see [24, Thm. 2.1]). One difference
may be worth noting. Stone only considers controls which give rise to Markov
processes with stationary transition probabilities; he is then able to use the
infinitesimal generator of the process as the main tool of analysis. The martingale
theoretic approach followed here permits us to dispense with the stationarity
restriction.

6. Examples. We use the results derived above to solve some simple optimal
control problems.

6.1. Queues.
(i) The simplest case imaginable is that of controlling the rate of a counting

process over the interval I [0, T], T< oo. Z is then the set of nonnegative
integers. Let U l-a, b] where b > a -> 0. Let px (t)(to) number of jumps of xs (to)
in the interval [0, t]. Suppose Yt Xt, and for u 07/let

Xu-- U

so that the controller can vary the rate of the process (xt) to any desired value in
[a, b]. Suppose r 1 and c(t) c(t, ut, xt-), Jr J(xr-). Then the optimal control
must be Markovian. The optimality criterion becomes

(6.1) 0= man IO-:z-V(t,z)+[V(t,z+l)-V(t,z.)+c(t,z,u)]ul, z=0,1,...,
a<=ub l Ol J

with the boundary condition

(6.2) V(T, z) r(z).

One possible problem of this type, suggested by Professor D. Snyder, related
to minimizing the damage to a sample in electron microscopy, is to seek u to
maximize u(Xr k) where k is a fixed integer. Since

u(XT= k)= E"(llxT=ki),
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and since we are maximizing, the optimality criterion can be rewritten (setting
as

(6.3)
0= max z)+[l(t, z + 1) re(t, z)]u

(6.4) I(T, z)= l{z=k}.

Equation (6.3) gives the optimal Markovian control,

f b if l’(t, z + 1)- l’(t, z) > 0,
u*(t Z)

a if lg(t, z + 1)- ’(t, z) < 0,

which upon substitution in (6.3) yields

OV.
t0 =---( ,z)+b max [Q(t, z + 1)- l’(t, z), 0]

+ a min l(t, z + 1)- Q(t, z), 0]

for 0_-< t-< T, and z 0, 1, 2,. , and which can be solved recursively.
The closed loop optimal control u*(t, xt-) is given by

u*(t, xt) a. ff{Q(t,x,_+l)_Q(t,x,_.)<=o} -- b I{Q(t,x,_+l)_Q(t,x,_)>o

which is a predictable process (lg(t, z) are deterministic functions.)
Remark 6.1. Suppose there were a second, independent Poisson process (Nt)

and suppose the objective was to maximize

"(xr+Nr k).

Suppose (Nt) cannot be observed or controlled, whereas (xt) can, just as before.
This is now a problem with partial information. Nevertheless, it is easy to see the
optimality equation (6.3) is still valid here, with the boundary condition (6.4)
replaced by

Tk -i
-r forz=i,i=O,..., k,V(T, z)=

e
(k-i)!

0 for z > k.

This follows from the fact that

k

)U(X,--N k)-- E U(xt-" i)9(Nt k-i).
i=0

Note that the problem becomes much more complicated as soon as xt and Nt are
dependent. The problem is then one of partial information, V(u, t) depends on
past controls, and Markov controls are not necessarily optimal. Solving the
optimality equations of section then requires an unreasonable amount of calcula-
tions (as can be expected for a "dual optimal control" problem).
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(ii) Consider the simplest problem of controlling a queue length by varying
the service rate (or number of servers). The (xt) process is now the queue length
(Qt) defined as follows. Let (At), (Dr) respectively represent the arrivals and
departures. Then Ot is defined by

IOOt At- 1.o,_>0 dDs,

where the integrand manifests the fact that no departure can occur when the
queue is empty. Now suppose that the arrival rate is a constant A which cannot be
controlled, but that the departure rate can be set to any u U {0, 1,.-., N}.
Then, in the notation of 5.5,

Pu(dz, dt, Or-) l{o,__+laz}A dt + lo,__lazlo,_>outdt

where the first term on the right corresponds to a jump of + 1 in O and the second
term corresponds to a jump of -1.

Suppose the cost function is of the form

ffT +f(o_)](u) ,.,c(s, u, Os-)s
130 _1

Then there is a Markovian optimal control and the value function V(t, O) satisfies

(6.5)
(OV

0=minut i- O)+c(t, u, O)+[V(t, Q+ 1)- V(t, Q)]A

+[V(t, Q-1)-V(t, O)]lto>oU},
with boundary condition

(6.6) V(T, o) =/(o).

Next, suppose that the cost is a linear function of the total waiting time and the
total service time, i.e.,

c(t,u, Q)=au+Q, f=0,

where a > 0 is a constant. Hence from (6.5) the optimal control is "bang-bang". It
can be exactly specified as

for t 6 [0, T-a],
u*(t, Q,_)

0 for 6 IT- a, T].

This follows because in the interval IT-a, T],

V(t, Q) (T- t)Q +-(T- /)2

V(t, Q-1)-V(t, Q)---(T-t)
(6.7)

<a, for t6(T-a, T)

and the fact that V(t, Q- 1)- V(t, Q) must increase with t.

so that
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Remark. Since /Su({+l}, t)--to us" ds--to us-" ds, it is irrelevant in this
example whether controls are chosen predictable Or not. However u*(t, Q,_) of
(6.7) is predictable in accordance with 5.5.

(iii) A somewhat more complicated problem is that in which only one of two
queues can be served at any given time (e.g. traffic light at an intersection). Each of

2the two queues, Qt, Q say, are described as above, and the possible values of the
pair of service rates u =(u , u2) U= {(0, 1), (1, 0)}.

OV
O=minuu {c(t, u 1, u 2, Q, 02) +__0__ (t Q, Q2)

(6.8)
+[V(t, Q’+ 1, 02) V(t, Qa, Q2)]A
+ IV(t, Q, 02+ 1)- V(t, Qa, Q2)]A 2

+[V(t, Qa-1, 02) V(t, Qa, Q2)]l{o>o)ul
+ [V(t, Q, 02- 1]--V(t, Qa, Q2)]l{Q2>o}U 2}

with the boundary condition

V(T, O, O)=-O.
We are unable to derive an explicit form for the optimal control.

6.2. Investment. An example of a jump process with an infinite number of
sizes of jump is the following. Assume that there are N stocks with zri(t) as the
price of the ith stock. The ith price changes at random times with a rate Ai and at
these times the price changes from r(t-) to 7ri(t)=ri(t-)+ai(t)r(t-) where
a(t)=>-i is a random variable with distribution function ni(dai, t). Then an
investor with wealth K(t), who has invested a fraction ki(t) in the stock i, faces the
accounting equation

iv dri(t) N

(6.9) dKt Z k(t)Kt- Y. k(t)= 1.
i=1 7ri(t-)’ i=1

(Kt) is therefore a jump process which has jumps of size kiKa occurring at
rates A. Here, as before, the probability measure of the "state" process (Kt)
depends on the "control" (k(t)), 1,..., N. In a simpler setting it has been
shown [30] that the problem of choosing k ={(k(t))} to maximize Ek(J(KT)),
where J is the utility of wealth, can be reduced to a static optimization problem.
We solve here a more general problem. Suppose the investor also has a wage
income Yt dt in It, + dt], beyond his control, and can consume an amount ct dt of
his wealth in the interval It, t + dt], where ct >=0 can be chosen freely and is
therefore additional control. Then (6.9) is replaced by

dTri(t)(6.10)
dKt (Yt- ct) dt + X k,(t)Kt_.

i= "tri t-)

The investor’s objective is to maximize
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where u {(kl(t)), , (ks(t)), (c(t))} is the control, J denotes utility from con-
sumption and JT denotes utility from terminal wealth. In this formulation (Kt) is
no longer a jump process, because of the first term in the right-hand side of (6.10).
A referee has pointed out that it is possible to regard (Kt) as a jump process by
taking Z to be a space of continuous functions. The value between two successive
jump times would then be the trajectory of (Kt) between these two instants of
time. However, if we assume that the rate process (Ai(t)) and the distributions (ni)
depend only upon Kt_, then (K, ,) is a still a Markov process for a Markov
control u, and it is easier to apply well-known results of Markov process theory.
The infinitesimal generator "(V) of the value function

(t, K,) sup E" J(t, c,) +

is, from (6.10),

w. lim {EU[ Q(t + h, gt+h) gt]- (t, gt)}
hO n

V(K,, t) + t)(yt6.e a "

i=1

(We could have permitted a Brownian motion component in (6.10) as studied in
[17]).

The optimality criterion is

a
0 max.u J(t, ct) + (t, K) + (y c)(t, K)

(6.3)
+ (, [P(,

i=1

with the boundary condition

(6.14) Q(T, K) JT(K).

We can solve (6.13), (6.14) for the following special case. Assume yt-O,
J(t,c)=c/y, JT.(K)=a(KV/y), where a>0 and 0<3,=<1 are constants, and
A, n independent of K and t. Then (6.13), (6.14) have the following solution

where

K
V(t, K)=f(t), O<=t<= T, K->O,

T- 1-’

f(t)=[(lT-+al/(x-’)) exp (-A" 1--) +T;’1]
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The constant A and the optimal control are given by

c,*=
f(t)

(k*(t)) are optimal solutions of the static problem

max I [(1 + kc)’- 1]n(d) A.
kO,Zk [
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CAUSAL REALIZATION FROM INPUT-OUTPUT PAIRS*
WILLIAM A. PORTER-

Abstract. Consider the finite subset {(xi, Yi)} of input-output pairs. A common design objective is
to specify a system, S, such that Yi Sxi holds on the set in question. Moreover, S should also be well
behaved on a larger input space.

This rudimentary problem is typical of code block detectors, data transmission networks,
computer controllers and with some refinement, can be viewed as a prototype problem for control
compensator design. We note also that it is related to system identification. Indeed, having observed
the input-output pairs any construction of S is a viable form of system identification.

In a recent study, the author solved a synthesis problem of the above type. In that study the input
and output spaces are taken to be arbitrary Hilbert resolution spaces. A causal synthesis procedure was
developed within this framework.

In the present study the linear solution is considered in more detail. We focus attention also on the
Hilbert space L2(u). It is shown that the operator theoretic solution can be realized by a differential
equation-set of the form

,(.t) A (t)z(t) + b(t)x(t),
(1)

y(t)=c(t)z(t), t,,

where {A, b, c} are explicitly specified from the input-output data.

1. Introduction. Let X, Y be respective input and output spaces. Consider
also the finite subsets {xi}c X and {yi}c Y. A common design objective is to
specify a system, S, such that Yi Sxi holds on the sets in question. Moreover, S
should also be well behaved on the larger input space X.

This rudimentary problem is typical of code block detectors, data transmis-
sion networks, computer controllers, and with some refinement can be viewed as a
prototype problem for control compensator design. We note also that it is related
to system identification: Indeed, having observed the input-output pairs {(xi, y)}
any construction of S is a viable form of system identification.

The rudimentary problem takes on a more interesting form as constraints and
detail are added. Typical constraints take the form of causality, linearity, mul-
tilinearity, stationarity and continuity requirements. Typical detail would include
specifications of the input and output spaces and explicit choices for the input-
output pairs. Of course, the choice of input-output pairs partially determines
whether solutions exist satisfying the desired constraints.

In a recent study [1], the author solved, in rather general form, a synthesis
problem of the above type. In that study the input and output spaces were taken to
be arbitrary Hilbert resolution spaces. A causal synthesis procedure was
developed within this framework. It was also determined when a linear causal
solution exists and one such solution was provided. The entire development
generalizes to Banach spaces without great difficulty.

* Received by the editors September 24, 1975.
t Computer, Information, and Control Program, University of Michigan, Ann Arbor, Michigan

48104. This research was sponsored in part by the United States Air Force Office of Scientific
Research under Grant 73-2427.
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In the present study the linear solution is considered in more detail. We focus
attention also on the Hilbert space L2(t,). It is shown that the operator theoretic
solution of [1] can be realized by a differential equation set of the form

2(t) A (t)z(t) + b(t)x(t),
(1)

.y(t)=c(t)z(t), tEu,

where {A, b, c} are explicitly specified from the input-output data. During the
development, an interesting connection with optimal control is exposed.

2. Some preliminaries. To facilitate the present development we shall
restrict attention to H L2(t,), the usual Hilbert space of real square integrable
functions. The inner product on L2(u) is denoted by (-, ) and {pt} is the family of
projection operators defined by

(P’x)(fl) {x(fl), /3 <-- t,

O, >t,
t,eu.

Concerning the data set {(xi, yi)}c H2, we shall assume first that the set {xi} is
linearly independent. No loss of generality is incurred for if Xk i#k aX, then
either Yk i#k aiyi, in which case a linear solution is not possible, or Yk
i#k (iY, in which case we delete (xk, yk) from the set and meet its constraint
through linear extension.

It is convenient to make a stronger assumption, which can be removed later.
We shall say that the set {xi} is well-posed provided {ptxi} is linearly independent
for all .t > 0, where u [0, d] (or [0, oo]). We note, for instance, that the power
functions {x/t)= fl-} and the sinusoids {x(t)= sin it} have this property.

In summarizing the synthesis procedure of [ 1], some definitions are helpful.
For this we assume {xi 1,. , n} is well-posed and let

(2) Tli[t ]-- IlPxill-l(pxi)(), i= 1,..., n.

We note that [In, It, ][I 1 and that {r/,[t, ]} are linearly independent for all t > 0.
The n x n Grammian matrix, N, whose ijth element is computed by

(3) Nq(t) <rl,[t," ], r/y[t,. ]>=
(Pxi,

[Ie’x, ll- lIP%
is nonsingular for t>0 and we let M(t)=N-l(t). The row vector )3(t)=
()31(t), , j3, (t)) is computed by

(4) )3j (t) --[[e%ll-lyj(t), ] 1, , n.

Finally we define the column vector

r/It,/3] col (.-., ,lilt, [3],... ),

and construct the function

(5) w(t, 13)= (t)M(t)n[t, fl], t, 13 t,.
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THEOREM 1 (see [ 1]). ff {xi} is well-posed, then

(su( w(t, u(l.
In the following section we convert this result to differential equation form.

3. 12lg/r. The first matter of practical interest is the computation of
M(t) N-(t). This fortunately has an elegant solution which is indirectly iden-
tified in the theorem.

THEOREM 2. The matrix N(t) of (3) is the self-adjoint solution of the
differential equation
(6) /Q(t) II(t)-1/2{X(t)S(t)+ N(t)X(t)}, t,- {0}.

In this theorem X(t) is the diagonal matrix

(7) X(t) diag [..., x(t)/llP%[le, ],

while II(t) is the symmetric matrix whose i/’th element is given by

(8) rl,(t)- x,(t)x(t)/lle’xll. Iletx/I.
We note also that the initial condition on (6) can be taken from (3) at any
t ,-{0}. In fact N is known to be continuous [1] and hence N(0)= limt_0 N(t)
can also be used.

Proof. Equation (6) can be established by differentiation of (3). We shall not
belabor these details but do list the following helpful intermediate identities
(d/dt)(Ptx, y)= x(t)y(t):

--lipid(IIP’x" IIP’ylI} --IIP’ylIx(t) / IIPtxlleY (t)
dt 211Ptxll- IIP’yll
d (ptx, y) x2(t) y2(/)

IIe s IIT’yll IIP’xll2 IIP’yll=
x(t)y(t)

+

The last identity is recognized as

1Qij(t) -1/2Nij (t){Xii(t) +X(t)} + IIi (t).

Using the diagonal form of X(t) the theorem follows.
COROLLARY. The matrix M is the self-ad]oint solution of the equation

M(t)=1/2{X(t)M(t)+M(t)X(t)}-M(t)II(t)M(t), t,,
(9)

M(t’)=N(t’)-1.
This corollary is an immediate consequence of (6) and the identity

-M(t)lQ(t)M(t). When , [0, d], the choice t’= d can be made with (9) solved in
reverse time.

The computation of M through (9) provides an easy implementation of the
operator S of Theorem 1. It suggests also that S might be realized in differential
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form, and because (9) is of the Riccati type, an optimization problem may be
related to our development.

4. The state variable realization. Byway of notation we shall let A(t) denote a
diagonal matrix whose typical element is computed by

Aii(t) Ilexi[I-, t ,-{0},

and let x(t) denote the column vector formed by using the {xi} as entries. Our main
result in this section is the following theorem.

THEOREM 3. The equality z(t)= (Su)(t) holds if and only if
z(t) (t)M(t)p(t),

p(t) -1/2X(t)p(t) + A(t)x(t)u(t),

p(0)=0.

Proof. Let us first demonstrate that the asserted equation is a realization of S.
For this, note that the diagonal form of X means that

However

and hence

(t, fl) exp X(s) ds

ds In [IP%ll- In liP%l[,
(I)(t,/3) A(t)A-l(fl), t,/3 v.

The integral form of the asserted differential system then is

z(t) (t)M(t)dP(t, fl)A(fl)x(fl)u(fl) dfl

Io (t)M(t)A(t)x(fl)u(fl) dfl, t e u.

For fl < t it is obvious that

nit,/] A(t)x(),

which completes the argument.
To establish the converse we let be unknown and equate

c(t)dP(t, fl)b(fl)= (t)M(t)A(t)x(fl), t >-ft.
We choose

c(t)=(t)M(t),
with no loss of generality and then differentiate

A(t)x(/) (t,
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resulting in

h(t)xq3) A (t)dP(t, fl)b(fl) A (t)A(t)x(fl).

It is easily shown that when {xi} is well-posed, a/3 can be found to arbitrarily orient
x(fl) and hence :(t)= A (t)A(t). However, differentiating A shows that, in fact,

(1 O) A(t) -1/2X(t)A(t),

which completes the proof.
The realization of Theorem 3 is, of course, unique only to within a similarity

change of variables. One such change of variable, namely q(t)=M(t)p(t), is
suggested by the form of the first realization. Noting that II(t) A(t)x(t)x*(t)A(t),
it is easily verified that the following corollary holds.

COROLLARY. The equality z(t)= (Su)(t) holds if and only if

z(t) y(t)q(t), t u,

dl(t) 1/2X(t)q(t) + M(t)A(t)x(t)v(t),

v(t) u(t)-x*(t)A(t)q(t), t u,

q(0)=0.

tE u,

This latter realization has an obvious feedback interpretation.

5. Relationship to optimal control. Equation (9) is recognized as the well-
known Riccati equation which is an integral part of certain optimal control and
filtering problems. In particular, if u [0, d], F, O, R symmetric and R (s) > 0 on u
and if

dl(t) A (t)q(t) + B(t)u(t), u,
d

J(u) [q(d), Fq(d)]+ | {[q(s), Q(s)q(s)]+[u(s), R(s)u(s)]} ds,
Jo

then the optimal control, u0, minimizing J is given by

Uo(t) -R-a(t)B*(t)K(t)q(t), v,

.where K(t)= K*(t) and

Ii(t) -K(t)A (t) A *(t)K(t) + K(t)B(t)R-a(t)

(11) B*(t)K(t)- Q(t),

K(d)=F.

Comparing (9) and (11) we see that

A (t) J *(t)= -1/2X(t), t u,

Q(t) O, R (t) I, B(t)B*(t) II(t),

tE u,
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Noting that II(t)= A(t)x(t)x*(t)A(t), we have

i(t) -1/2X(t)r(t) + A(t)x(t)u(t),

(12) Uo(t) -x*(t)A(t)M(t)r(t), t u,

J(u) Jr(d), M(d)r(d)]+[lu[[2.
The relationship between systems of (12) and Theorem 3 is quite easily

summarized. As we have depicted in Fig. 1, an open loop plant characterized by
{-1/2X(t); A(t)x(t); M(t)} is involved in both cases. With u arbitrary, zero initial
state and output constraint 33(t), the open loop plant is the system of Theorem 3.
With the input driven by the indicated feedback law and arbitrary initial state the
system is that of (12).

U0
Mr

FIG. 1.

6. A numerical example. It is helpful to consider an example where a
complete numerical solution is possible. For this we select Xl(t)= 1, x(t)= t,
x3(t) te. It has been noted in [1] that N, and hence M are constant for this
selection of inputs. Moreover [1] studies in some detail the characterizing
properties of function classes which give rise to constant N.

Example 1. With Xl(t) 1, x2(t) t, x3(t) t2, the matrix N is constant with
inverse (see [1]) given by

9 124’- 6"/ 1
12,,/ 64 124i
6,v/ -124 36 ]

We note also that IlP’x,ll=-- t, IlP%ll= t3/3, IlPx3ll=-- t5/5. It is easily verified then
that

1I; 3 0 t>O,

t[0 0 5

1
1

A(t)x(/) t t > 0,

and hence the system of eorem 3 is completely specified once the output
functions ya, Yz, Y3 are chosen.
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It is of interest to compute also the integral form of our system. For this it is
only necessary to compute

w(t, fl)= (t)MA(t)x(fl), t, fl ,.
Recalling that i(t)= y,(t)/llP’x, ll, it is easily verified that

w(t, fl)
3yl(t)

[3 12fit-1 + 10flt-2]
t

12y2(t)
(13) +

t
. [-3 + 16fit-l+-15flt-]

30y3(t) 2t_2]"/
t3 [1 6fit-1 + 6fl

7. An alternative realization. The form of w(t, fl) above suggests a second
differential realization that we now explore.

We note that in (13) the functions Yl, Y2, Y3 can be taken as arbitrary elements
of L2(p). There are some practical limits, however, that we should note before
continuing. First we note that with a simple integrator the input Xl(t)- I produces
an output yl(t)= t, and hence the ratio yl(t)/t in (13) resembles a comparative
output/input measure. If our system is to be lowpass, then the ratios yi(t)/t
should be bounded as - 0. If this does not hold, then the system will have direct
transmission and an adjustment in the model is called for.

For convenience we introduce the notation

(t) y,(t)/{, i= 1, 2, 3,

and assume that 37 are bounded at t0. Since fl =< t, the kernel w(t, ) is otherwise
well-behaved and has the same continuity as the )7, whatever this may be.

Recall now the identity

(14) fl" =[t-(t-fl)]" (-1) (t-fl n=0,....

Using this identity on the terms in (13), we may express w as a function of
w(t, t-fl), for instance,

3-12flt-a + lOflZt-= 1-8t-a(t-fl)+ lOt-2(t-fl)2,

Upon rearrangement, equation (13) takes the alternative form

w(t,/3)= [371(t)+ 276yE(t)/ 30373(t)]

(15) + [-24ya(t)- 432]2(t)- 1803(t)]t-l(t-fl)
+ [30371(t) + 120372(t) + 180Ya(t)]t-2(t-fl)2,

For convenience we introduce the functions c, defining them in the obvious way
through the equation

w(t, fl) a l(t) + a2(t)(t- fl) + t3(t)t(t- fl)2/2.
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Recall now that if

t )nu (fl dp(t)=
n!

then p, u satisfy the (n + 1)st order differential equation

p"+a)(t)=u(t), t>=O,

p")(O)=p’(O)=p(O)=O.
Thus our operator can be synthesized as shown in Fig. 2.

u(t)

y(t)

FIG. 2. The differential realization

$. Other extensions. In our development we have restricted attention to the
single variate case which is typified byH L2(,). It is convenient now to point out
that extension to more general settings is easily accomplished. Consider first
L’(u) and let [.,. ] denote the usual inner product on R m. We then have

<P’x, y>= [x(fl), y(fl)] dfl, x, y L’(u).

The computation of IIP%II undergoes the usual adjustment.
Reviewing the development of 2 and 3, we see that N, )3 and w of

equations (3), (4) and (5) are well-defined in the new context. Concerning X, II the
new expressions become

(16) X(t) diag [-.., [xi(t), x (t)]/llP%ll2, ],

and

(17) IIq(t) [x,(t), x(t)]/llPtx, [Iptx]l,

with (6) and (9) still holding forN andMrespectively. Theorem 3 is still valid with
the proviso that the components of and x are themselves m-tuples and that

x(t)u(t) ([Xl(t), u(t)],..., [xn(t), u(t)]), tE’.

We note that the order of the differential system of Theorem 3 is dependent only
on the cardinality of {(x, y)} and not on whether x or Yi is scalar or vectoi,-valued.

In the same spirit as the above extension, consider the case where the
input-output pairs are derived from a distributive system. Let the spatial domain
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be [0, 1] and v denote the temporal domain. As a formalism we now define [.,
as follows:

[x(t), y(t)] Ix, y](t)= I0 x(t, s)y(t, s) ds.

Using this formalism, equations (16) and (17) are well-defined and Theorem 3
once more is yalid. The point to this particular extension is that a finite element
simulator results for a distributive system.

In another direction we note that extensive use is made of the "well-posed"
condition. However, the dimension of the linear span of {Ptxi} is a monotone step
function of "t", and, as such, nonwell-posed problems decompose into a finite
collection of well-posed problems.

Other adjustments, which require more detailed explanation than space
permits here, can be made which remove the well-posed assumption entirely.

9. Closure. It is interesting to note that the present study, together with [1],
demonstrates a complete solution in operator form to the synthesis problem.
Once the solution is in hand the concept of state is implicitly introduced as a
realization mechanism. This then is a graphic example of the subsidiary nature of
the state concept in system theory.

We note in closing that [1] also provides a polynomic solution to the
nonlinear case. The polynomic operators in question also have a state variable
realization. Our attention here has been centered on the linear case primarily
because the associated state variable realization is less direct and hence a more
richer and interesting topic.
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OPTIMAL CONTROL OF NONSYMMETRIC HYPERBOLIC SYSTEMS
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Abstract. We study a quadratic control problem on the finite time interval with respect to the
system of hyperbolic partial differential equations

Oy

O-=i AiOY +f,

My u,

y(0) yo,

on the spatial domain I {x R"]Xl > 0}. For a special case it is shown that the control u may be
synthesized in feedback form. The nonlinear operator equations involved in this synthesis are shown to
have unique solutions within an appropriate class of functions.

1. Introduction. We consider quadratic cost boundary control of hyperbolic
systems of partial differential equations. The development is built on recent
results of Rauch [7] concerning well-posedness of mixed initial boundary value
problems in L2 for hyperbolic systems on the half-space which allow for varying
coefficients, apply for an arbitrary number of space dimensions and do not require
the systems to be symmetrizable.

This study is motivated by certain problems in distributed control where
nonsymmetric hyperbolic systems of partial differential equations in more than
one spatial variable arise [3]. Although quadratic cost control problems for
hyperbolic equations are studied in [5] and [9], Lions supplies only a heuristic
treatment for the boundary control problem and Russell limits attention to one
spatial variable.

The optimal control for a fairly general class of quadratic control problems is
first characterized through the solution of a two-point boundary value problem.
Thus far, the development is a routine application of methods in [5]. Interest
resides rather in the next step; that of realizing the control in feedback form in a
special, but nontrivial, case when only the terminal cost is present. Corresponding
to this special case we proceed to establish existence and uniqueness of the
solution to an operator Riccati differential equation through which the feedback
operators may be expressed. The general form of these results has previously been
indicated in [3].

We wish to emphasize that the results reported here are only the first step
towards a realistic study of engineering control problems. Problems of the type
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considered herein may result from linearization of fundamental equations of
continuum mechanics electrodynamics, and thermodynamics about equilibrium
points or other fixed trajectories. In particular, we cannot generally expect the
assumption of strict hyperbolicity imposed below to be met. Also, relevance of a
study involving spatial domains which are half-spaces rests largely on the insights
it may give into situations where the domains are more complicated yet the wave
propagation velocity and the time interval of interest are small compared with the
domain dimensions.

For one spatial variable (see [9]), existence and uniqueness in the large to
solutions of the Riccati partial differential equation characterizing the optimal
control may be directly studied through the classical construction of integrating
along characteristic chains and Picard iteration using optimality considerations to
establish an a priori inequality. This is possible because the Riccati partial
differential equation turns out to be a semilinear system which is diagonalizable
(even though it is in two spatial variables). The structure of the optimal control
may therefore be examined by verifying that conditions on the solution of the
Riccati partial differential equation under which the Riccati partial differential
equation may be set up are indeed valid.

For more than one spacial variable the classical construction fails, since each
step of the Picard iteration no longer in general reduces to solution of a system of
ordinary differential equations on the characteristic surfaces. In the present study
it becomes necessary, therefore, to undertake an indirect study of the operator
Riccati equation through consideration of the two-point boundary value problem
characterizing the optimal control. This is an approach associated with the name
of Lions.

The problem is considerably more difficult when we pass to more than one
spatial’variable and the analysis is pushed through under conditions which are
more stringent than those required in Russell’s treatment. The reason is basically
this: The boundary control is expressed through the boundary value of the
"adjoint variable" p(t). The method of characteristics is well-suited to handling
problems for which the data on the adjoint equation are not compatible. For, even
in this situation, the method establishes that p is piecewise continuous and this is
sufficient to assure that the boundary value of p(t) is well-defined outside a null set
of the time interval. Abstract methods, such as are used here, are not so well suited
since they cannot readily exploit the property that p(t) is piecewise continuous and
not merely a bounded measurable function. Therefore for the boundary value to
be defined, we need to make several additional assumptions assuring compatibil-
ity of the data on the adjoint equation.

2. Preliminary notations and definitions. Let V be an open, connected
subset of R with smooth boundary 0 V. Co(V; k) is taken to be the space of
infinitely differentiable maps V--> k with compact support. Co(V; Rk) is the
restriction of Co(n; k) to the closure of V. L2(V; k) has its usual meaning of
the space of Lebesgue square integrable functions (modulo null functions) with
natural inner product. For economy of notation, (., )L2<V;ak> is often abbreviated
to(’," )v.
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We shall have occasion to use certain Sobolev spaces. For integral s _-> 1,
Hs(V; k) is the completion of Co)(V; k) with respect to the norm

(2.1) Ilyllg" E IlDy(x)ll2 dx

(for cr-l{Oi}, 1,"" ", n, nonnegative integers, D is the differential operator
olox o.lox "and ]al _- a). The closed subset H0 of/-/s is taken to be
the completion of C0(V, R) with respect to (2.1).

We shall for the most part be concerned with H, writing x for the canonical
injection H -La.

On those occasions when we wish to emphasize merely the domains of
functions in L2, H, etc., we write L2(V), , for La(V; ). .

We remind readers of the trace theorem (see [6] for a much more refined
statement): for n _-> 2, s _-> 1 integers, take ll R, an open half-space. Then the
restriction of C)(l’l; ) to 01-1 defines a bounded linear map from a dense subset
of/-/(12; ) into H-(Ofl; ) which may in consequence be lifted to all of
HS(f;

For X a real, separable Hilbert space, [to, tl] an interval in , L2([to, tl]; Xa)
and C([to, tl]; W) have their usual meanings of square integrable, strongly con-
tinuous, respectively, maps [to, tl]--> Xa. We also introduce Hl([to, tl]; Xa), the
space of W-valued distributions on [to, tl], such that h, Dh define L2 functions.

3. Mixed boundary initial value problems for hyperbolic systems. Here we
present the results on mixed problems for hyperbolic systems which will be
required below. These results have been built up in a series of papers [2], [4], [7].
Rauch has provided the final step in establishing that the present class of problems
is well-posed in the L2 sense for nonzero initial data and inhomogeneous
boundary conditions.

We consider the mixed problem

(3.1)
Ot -x Y +f’
boundary condition

Oxj
(.)+K,

Myx g,

initial condition y (0) Yo, y, real n-vector.

The following sets are identified"

T= [0,
n={x al(x>O}, on={xa"lXl=O},
Q ]0, tl[ x ’, X ]0, tl[ X

m>l.

Equivalently, Hl([to, tl]; fit’) comprises ’-valued functions h on [to, tl] (modulo null functions)
such that h is a.e. strongly differentiable and

h(t)=h(to)+ Dh(r) dz allt[to, tl]

with h, Dh square integrable.
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K, M, Ai, 1,..., m, are C- matrix-valued functions with domain xl or
R x 0f (as appropriate) each of which may be expressed as the sum of a constant
function and a function of compact support.

We introduce:
Assumption 3.1 (Strict hyperbolicity). The determinant equation

O(s) det -sI + A(t, x) 0
]=-1

has n distinct real roots for all A eN’, A S0, all (t, x)e RxfL
Assumption 3.2 (Noncharacteristic boundary).

det (A l(t, x)) 0

for all (t,
Assumption 3.3 (Determinate boundary values). For each (t, x)e Nxf, A

has the normal form

A1 + A- diag (al," ", a,), A+ diag (a,+, ., a),

where ai<O, i=l,...,r; ai>O, i=r+l,...,n, and for each (t,x)sIxOD.,
M(t, x) is r x n and rank M(t, x) r.

We need also to restrict the null space of the boundary operator M. For each
(, ) Rx fl, define the C""-valued function A (., by

A(s, k)=A-( sI-i
]=

s C, k (k2," ", k,,) "-, A-. =Aj(L ) etc.

Take :g (s, k) to be the generalized eigenmanifold

/l (s, k) {x C fi (s, k) rl)"x 0 some integer n, some r C, Re {tr} < 0}.
Write M for M([, ).

Assumption 3.4 (Condition on boundary space). For each ([,)
there exists some e > 0 such that, for all r n-matrices M’ with3 [[/-M’[ltr
and for all k ,-1, s C,

ker {M’}y///(s, k)={0} (null element).

Partitioning the r x n matrix M([, ) as [M-(/, :) M/([, )], where M- is
r r, a necessary condition that Assumption 3.4 hold is that M-([, :) be nonsingu-
lar for each ([,) Of [2]. We may assume therefore, without loss of general-
ity, that M- is the identity

M([, ) [IiM+(/, )].

We shall be concerned with strong solutions to the mixed problem, defined as
follows.

Without loss of generality in view of the strict hyperbolicity assumption.
IIMIIt2 -trace MMr.
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DElZINITION 3.1. For given f, g, Yo6 L2, we define y s L2(Q; [n) to be astrong
(L2) solution to the mixed problem (3.1) iff there exists a sequence {y"},
o(o)((; n), and some y L2(E; ") (termed the strong (L 2) boundary value
on E) such that

IIMy- gll, IlY (0) yoll--’ 0 as n oo.

For t T, y(t) L2(-; n) is called astrong (L2) solution at time t if additionally,

(3.2) Ily (t) y (t)ll-, 0.

We have the following fundamental result (see [7]).
THEOREM 3.1 (Well-posedness of the mixed problem). Under Assumptions

3.1-3.4, for given f, g, Yo L2, the mixedproblem (3.1) has a unique strong solution
with unique strong boundary valuey L2 and the strong solution at time t, y (t), for
each t T is uniquely defined by (3.2). Further we have the estimate

(3.3) Ily (t)ll+ Ilyllo + Ilyll. const. (llfllo+ Ilglk + Ilyoll)

uniformly in f, g, Yo L2, t T.
Assumptions 3.2-3.4 are in effect the weakest possible if the above mixed

problem for strictly hyperbolic systems is to be well-posed in L2 (see [4]).
We make two important observations.
Remark 1. The mixed problem (3.1) has a smooth solution for smooth data.

More precisely, if

(a)

and

(b)

Yo C0(f), fe C(o)(O), ge C0(E)

f(t, x), g(t, o") vanish for t -< 0,

then y C(o)(Q) and y, y(t) are the restrictions of y to E, {t} x II respectively (see
[7]).

Remark 2. It is easily deduced that t--> y(t) T--> L2(fD is strongly continuous
for y(t) as in Theorem 3.1: to see this we use estimate (3.3) (uniformly in t) and
Remark 1 to construct an equicontinuous family of smooth functions T--> L2(O)
converging pointwise to y(t) (see [11]). Notice also that the strong solution y
defines an element in L2(T; L2(f; )) which coincides with t--> y(t) within a null
set.

Rauch has also supplied the following regularity result (see [7]).
THEOREM 3.2. Suppose in addition to the hypotheses of Theorem 3.1 that, ]’or

some positive integer s, yo Ho(l)), f n (O), g U (,) with Dflt=o 0, D{gl,=o,
O<-f <-_s- 1. Then y, y(t), y are H functions and (3.3) holds with respect to H
norms uniformly in f, g, Yo, t.

Under the added hypotheses of Theorem 3.2, we also have that t-y (t) T
Hl(f) is strongly continuous.
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Study of the control problem will require introduction of the adjoint
problem:

Ot
p+h,. _,l a 0__ aa

/x+ - E
=1

(3.4) p e,

p(t) =p.

Here the matrix-valued function with domain is defined by

[-(A +)-(M+)(A-):
and h, p, e are arbitrary elements in L(Q; "), L(’; ") and L(E;
respectively. Notice that the adjoint system "runs backwards in time" with data
given at time tl. We recognize * as th formal adjoint of , i.e., for any C(
functions a, a with Ma 0, 0 on 0 we have (a, a) (a, *).

Strong (L) solutions, strong solutions at time t, and strong boundary values
for the adjoint problem (3.4) are defined analogously to strong solutions, etc., for
the mixed problem.

Now it may be shown [7] that the adjoint problem satisfies Assumptions
3.1-3.4 backwards in time. It follows that analogues of Theorems (3.1), (3.2)
regarding existence and regularity of strong solutions to the adjoint problem
apply.

The appropriate version of the divergence theorem will be an essential tool in
characterization of the solution to the control problem.

Poosiwio 3.1 (divergence theorem). Suppose that Assumptions 3.1-3.4
hoM. Let y, p be strong solutions to the mixeg and adfointprob&ms respectively for
arbitrary L data. Then

(3.5) (Lp)o=(y,h)o+(y,Ap)-(yo, p(O)),+(y(tl),pl),.

For smooth solutions this follows immediately by parts integration. We
obtain the result, in general, by consideration of sequences of smooth functions
converging to y, p in L, exploiting the property that y, p are strong solutions to
the mixed, adjoint, problems respectively (see [11] for details).

4. e control problem. We introduce the state equation

Ot

(4.1) My u,

y(0) y0.

4 Given a strong solution y to the mixed problem, here and in the sequel, y., y(t) always denote
the strong boundary value and the strong solution at time t. Similar meaning attaches to p., p(t) in
relation to the adjoint problem.
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Here M and M are as in 3. f, u, Yo are L2 functions. We view Yo and f as fixed.
We are free to choose u which is termed the control. We know from the previous
section that for each choice of u, (4.1) has a unique strong solution Q, a strong
boundary value and a strong solution at time t, t T. We write these y u, y:, yU (t) to
emphasize the dependence on u.

The cost function u -J(u) is taken as

J(u) Ir ((yU -z)(t), O(t)(y -z)(t))n dt

+ ((y z)(tl), R (yU z)(tl)}l- + IT (u(t), U(t)}ofl dt.

Here, z 6LZ(Q; R"), z(tl)LZ(f; ") are given. R t’(LZ(f; R")), t--
Q(t): T(L2(O; ")) is measurable (with respect to the strong operator topol-
ogy) and essentially bounded. We assume that R, Q(t) (for each t T) are
self-adjoint and nonnegative.

Control problem. Minimize J(u) over u L2(,,; [r).
It is a routine matter to modify the development below to accommodate a

"distributed control" term in the state equation and in the cost function, also to
introduce a fixed inhomogeneous term in the boundary condition of the state
equation and to penalize y, (see [11]).

5. Characterization of the optimal control through a two-point boundary
value problem. In view of the above assumptions,

J(u) 7r(u, u)-2L(u)+const.,

where, as may be shown, 7r(., L2 L2_ is a continuous, coercive, symmet-
ric, bilinear form and u L(u) is a bounded linear functional on L2.

Standard results concerning minimization of quadratic forms (see, e.g., [5])
give us existence and uniqueness of the optimal control Uo and its characteriza-
tion:

u0 is optimal

I7 ((yU- z)(t), O(t)(y y U)(t))n dt +((y- z)(tO, R (y y Uo)(tO)n(5.1) dt

+ (Uo, u- u0) 0 for all u L2(; r).

We now pattern arguments in [5] to refine this characterization through
introduction of the adjoint equation:

PROPOSITION 5.1. For given Uo L2, let p be the strong solution to the adfoint
problem

-Op M*p +{t -- Q(t)(y UO- z )(t)},
Ot

(5.2) Mp 0,

p(t)=R(yUo-z)(tl).
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Then

Uo is optimal ev Uo A p.

Details of the proof are given in [11]. The essential step is application of the
divergence theorem (Proposition 3.1) to yU_y u0 and p (for arbitrary u L2).

6. Feedback synthesis o| the control for a special case. We should like
additionally to achieve a feedback synthesis of the optimal control, that is, show
that Uo may be determined pointwise in time through a function dependence on
y(t) independent of the initial condition Y0.

This we do for the following subclass of problems:
Terminal cost control problem. Minimize J-(u) over u L2(E; Rr). Here,

J-(u)=((yU-z)(tl),R(yU-z)(tl))a+(u, u) with z(tl)sL2(f; Rn), R
oT(L2(f; ")) satisfying both

(a) R =R*,R >O,=
(b) R carries L2(lq; n) functions into H(O; n) functions and K-1R s

(L2; Ho) (recall K, the canonical injection H0-L2).
Example. Take S s H(f ; n"). Suppose that S(x, x’) ST(x ’, x) a.e.

(x, x’)
_
lx lq and ,a y 7(x)S(x, x’)y(x’) dx dx’>=O all y s L2. Then the map

/ 2y(x K(x, x )y(x dx with domainL () takes values inH and satisfies the
conditions (a), (b) above (see [11]).

Henceforth we limit attention to the terminal cost control problem. Here
treatment is greatly simplified by the property that the adjoint equation admits a
strong H solution. This follows immediately from Theorem 3.2 and the assumed
properties of R (see Proposition 5.1)

PROPOSITION 6.1. Forgiven u L2(E; r), letp be the strong (H) solution to

(6.1) M*p 0,

p(t)=R(y -z)(tO.

Then u is optimal u {tA-p-,(t)}.
In Proposition 6.1, we have only to justify replacingp by {t--pon(t)}, where

pon(t) is the trace on 0f of the strong H solution at time t of (6.1). But p.,
{t--pon(t)} define the same L2(T; L2(0f; R")) functions, in view of the definition
of strong solutions and the trace theorem, being in effect the mean square and
pointwise limit of the same sequence of smooth functions (see [11] for details).

We now introduce the natural spaces r, r. in which to seek solutions to the
two-point boundary value problem associated with the terminal cost control
problem.

Here, and below, we partition the n vector p as [p,- , P, iP,+a," ",P] [P- P+]"
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Bearing in mind that the mixed problem is well-posed on [-; tl] regardless of
the time -[0, tl[ at which initial data is supplied, we may define r c

L(]", tl[ fl; Rn): y <=> y is the strong solution of

oy=y +f,
Ot

My g,

y(z) yo,

for some f, g, Yoe L. C L(]", tl[ fl; Rn) is defined analogously in relation to
the adjoint problem.

LEMMA 6.1. Forfixed [0, t[ andfixeda L(fl; ’), the optimality system

0_y y +f,
Ot

(6.2) My (A-)p:,

and

y(-) a,

(6.3) M*p. 0,

p(tl)=R(y-z)(tl)

has a unique strong solution in x.
Existence of a solution to the optimality system is immediate from Proposi-

tion 5.1; uniqueness may be deduced from the uniqueness of the characterization
(5.1) (see [11] for details).

It follows from Lemma 6.1 that we may define a family of maps

(,r) L(f; n) ._) LU(f; n),

’(z)
a p(z),

s [0, tl[,

where for each - s [0, tl[, (y, p) is the strong solution (in -*) to the optimality
system (6.2), (6.3). We define (tl) by

(t1)
a R(a-Z(tl)), aL2(f).

Evidently (-) is affine, and

(-)a P(’)a + r(’).

P(’r)
P(z) is computed as a p(-), where now we delete the terms f, z(q) from the
optimality system; r(z) is simply (’)0 (0, null-element).
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Again let Uo be the optimal control for the terminal cost control problem. We
have from Proposition 6.1,

0(6.4) Uo(t) (A-)((z)y (’))0r, t T.

This achieves the feedback synthesis of the control. The remainder of the paper is
given over to developing properties of the map (. ).

7. Properties of the feedback operators. Here the main results are pre-
sented. We consider the terminal cost control problem throughout. The functions
P(t), r(t) are as in 6.

TI-IEOREM 7.1 (Properties of P(t)). Suppose thatAi, 1, , n, MandKare
independent of time, further that by ad]ustment on a null setf defines an element in
C(T; L2(f; Rn)). Then P(. is the unique map T-(L2(f; Rn)) satisfying

(a) range {P(t)}c xHl(f; ffn) with tg-IP(t)c(LZ; H) each t 6 Tand

with

(7.1)

sup Iltg-lp(t)ll(Lz,Hb < o,
tT

(b) e(tl) R, P(t) P*(t), M*(P(t)a)-a= 0 all t T, a L2(O; "),
(c) t--x-lp(t) T(L2;H) is strongly continuous from the right, and
(d) for each a, d Lz(I; "), t--(a, P(t))r" T ff is absolutely continuous

----(P(t)a, d),= -(M*P(t)a, d),-(M*P(t)d, a)a
dt

+(A-(P(t)a),, A-(P(t)d)-,)o, a.e. t T.

THEOREM 7.2 (Properties of r(t)). Suppose again thatAi, 1, , n, Mand
K are independent of time and thatfdefines an element in C(T; LZ(f; )). Then
r(. is the unique map TLZ(f; ") such that

(a) r(t) takes values in H(1; Rn) and

sup I}x-Xr(t)]ll < o,
tT

(b) r(tl)=-RZ(tl), M*ro,(t)= 0 each t T,
(c) t--x-lr(t) T-H is strongly continuous from the right, and
(d) for each a LZ(f; R"), t-.(a, r(t))r" To is absolutely continuous and

satisfies

(7.2)

d
-(r(t), a)n -(si*r(t), a)n+ (A-r-n(t), A-(P(t)a)-n)on

-(f(t), P(t)a)n a.e. T,

with P(t) as in Theorem 7.1.
The proofs of Theorems 7.1, 7.2 are sketched in the next section. In outline,

we interpret ((0)yo, Yo) as min J(u). This yields an identity which may be
"differentiated" to give (7.1) and (7.2). Thus, in general approach, we use the
methods of [5]. The novelty lies in the manner in which we use the regularity of the
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solution to the adjoint equation (assured by Theorem 3.2) to justify the differenti-
ation. We shall see also that proving uniqueness within the specified class presents
special difficulties.

The assumption of time invariance in Theorems 7.1, 7.2 is a technical
condition introduced to ensure that the constant in estimate (3.3) can be chosen
independently of the time to [0, tl[ at which initial data is supplied and can almost
certainly be dropped.

We remark that (7.1) may be interpreted as a partial differential equation in
distributions on II (cf. [5, p. 157]): let be the space of test functions on fl(C0(fl)
functions equipped with the inductive limit topology) and let ’ be the space of
Rn-valued distributions on fl (space of continuous linear maps --> Rn, equipped
with its strong topology).6 For each t T, P(t)(L2) in particular defines a
continuous map n--> ’; by the kernel theorem [10] therefore, P(t) has the
representation

(t, P(t)a)n IInn 7"(x)P(x, x’, t)a(x’) dx dx’,

a {ai}, t {i} all ai, ti ,
where P(.,., t) ’(ll x ll; R") is uniquely determined by P(t).

We have then from Theorem 7.1,

d
-P(x, x’, t) -M*P(x, x’, t)- P(x, x’, t)x,

+ Ion P(x, or, t)-(A)(AS)P(r, x’, t) dr a.e.tT,

(7.3) M*(x)P(x, x’, t) 0 for x 0fl, x’ fl,

P(x, x’, tl) R (x, x’) (R (x, x’), kernel of R),

P(x, x’, t) PT"(x’, x, t) each t s T.

P(x, x’, t)a(x’) dx’ defines an H element for each a .
Of course, (7.3) is meaningful only in a distribution sense. In particular,

(d/dt)P(x, x’, t) ’(fl x 12; In) such that for all a, ,
t(x)-P(x, x’, t)a(x dx dx’=- tT"(x)P(x, x’, t)a(x’) dx dx’.

xn

d*P(x, x’, t) is defined following the usual definition of differentiation on ’;
likewise e(x, x’, t)Mx, is merely -,i(O/Ox[)P(x, x’, t)Ai(x’).
[.aP(x, r, t)-(AS)2P(r, x’, t)-dr is the unique kernel corresponding to the
continuous bilinear form n --> R,

a’d->Ion {In dr(x)P(x’ r’ t)-n(AS)2(In P(r,x’, t)a(x’) dx’)-} dr,

6 See, e.g., [1].
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the traces being well-defined in view of the regularity assumptions on P(t, x, x’).
The regularity assumptions also assure that the boundary condition
M*(x)P(x, x’, t) 0 is meaningful.

The foregoing establishes existence of solutions to the partial differential
equation (7.3) within the class of functions whose values define kernels of
continuous linear maps " ’; the solution is unique in the sense of Theorem
7.1.

We may lend a similar interpretation to (7.2).

8. Prool o Theorems 7.1, 7.2. We compress routine steps in the material of
this section. For a much more expansive treatment, the reader is referred to [11].

We first take note of an identity which interprets ((0)yo, Yo)a as min J(u):
LEMMA 8.1. Fix t [0, ta[. For a, L2(; In) /et (y, p)(37,/) be the unique

solution in to the optimality system (6.1), (6.2) with y(t)= a (7(t)= ).
Then

(8.1) (a, (t)5), (y (tl), g)7(tl))Sa + It tl
(A-p-a(’r), A-/-(z))oa d’.

Proof. The identity (8.1) follows by application of the divergence theorem
(Proposition 3.1) to y,/5 and the regularity of p,/ which permits us to replace p,
/by {t--po(t)}, {t -/0(t)} respectively (cf. remarks following Proposition 6.1).

LZMMA 8.2 (A basic estimate). For t [0, tl[, take (y, p) to be the unique
solution in 5t to (6.2), (6.3). Then

(8.2)
-<_ const. {IIY (t)l[=(.)/ Ilfll=(at,.,l)/

uniformly in t, " e It, tl], y(t), f, z.
Proof. That y(-) is estimated as stated follows from the coercivity of J(u) and

Theorem 3.1; the estimate for p(-) is then an immediate consequence of the
regularity theorem (Theorem 3.2). Finally the trace theorem justifies inclusion of
IIp0.()ll=(0.) in the left-hand side of (8.2).

Theorem 3.2 tells us nothing about the regularity of t--y(t). We do have
though that y(t) is weakly differentiable with respect to a certain class of bounded
linear functionals:

LEMMA 8.3 (Weak differentiability of y(t)). Take t [0, tl[. Let y, p be the
unique solutions in t8 to (6.2), (6.3). Suppose that/5Hl(f; n) and
M*o O. Then for 0 < 6 <= tl t,

(8.3)

+
(y(t + 6)- y(t), /)n (y (’),

t+8

+ (f(), t), d

(A -p2 - A-p- o d-
and

(8.4) I(y (t +) y (t), fi)l <= const. {IlY (t)ll + Ilfllc + IIz (tl)ll=}" IIll-" .



OPTIMAL CONTROL OF NONSYMMETRIC HYPERBOLIC SYSTEMS 141

Proof. If y, p were smooth functions, (8.3) would be given by parts integra-
tion. We demonstrate (8.3) in general by considering sequences of smooth
functions approximating y, p in L2, H respectively. The estimate (8.4) now
follows from the previous lemma, the property that M* is a first order operator
(whence IIM*/IIL2 _--< const. I11,0 and the trace theorem.

We may now deduce the following preliminary properties of P(t), r(t).
LEMMA 8.4.
(a) For each t T, r(t) HI(f; n) and P(t) takes values in H(f; n) with

sup IIP(t)ll(; < oo, sup IIr(t)ll. < o.
tT tT

(b) M*(P(t)a)-a= O, M*(r(t))n 0, t e T, a e L2(12).
(c) The maps t-P(t) T-->(L2; H) and t-,r(t) T-, H(12; R) are con-

tinuous from the right with respect to the strong operator topology and the strong
topology respectively.

(d) P(t) (L2) is nonnegative and self-ad]oint.
Proof. (a), (b) are consequences of Lemma 8.2 and the definition of P(t), r(t).

To prove (c), we make use of the properties that t--> y(t) T--> L2; t-p(t): T-H
are strongly continuous (recall remarks following Theorems 3.1, 3.2) and the
boundedness of II(t)ll=;H (see [11] for details). (d) follows from Lemma 8.1.

PROPOSITION 8.1. For each a, eL2(12), t-(P(t)a, ): T--> and t-
(r(t), a)a: T--> are absolutely continuous with

(a) )a -(g*P(t)a, )a-(f*P(t), a)a

+((P(t)a)-a, (A-)2(p(t)d)-n)on a.e. t e T,

and

(b)
d
-7:(r(t), a)=-(f*r(t), a)a +(A-r-a(t), A-(P(t)a)-)oa
at

-(f(t), P(t)a), a.e. t e T.

Proof. Consider (a). We first show that t->P(t):T-->(L2) is Lipshitz con-
tinuous with respect to I1" This is an exercise in breaking up (with the help of
identity (8.1)) (a, (P(t +6)-P(t))d)a into a sum of terms to which the estimate
(8.2) is applicable. Thus t-,(a, P(t)d)a is, in particular, absolutely continuous for
each a, d e L2(l)). We conclude by using the identity (8.3) to prove that t-->
(a, P(t)d)a is differentiable from the right at every t e [0, tl[ to the value stated. It
follows that (a, P(t)d)a is a.e. differentiable to the value stated for every a, d e L2.

(b) is similarly shown.
Referring back to Theorems (7.1), (7.2), we see that it remains to establish

that P, r are unique within the specified class.
Conclusion ofproofs of Theorems 7.1, 7.2 (Uniqueness of P,. r). Let P, r be

functions satisfying conditions (a)-(d) of Theorems 7.1, 7.2. Write (t) for the
(t)

affine map a P(t)a + r(t), each e T.
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Step 1. We show by Picard iteration that for a L2(f), there is a unique map
t-y(t): TL2(f) such that (t,x)(y(t))(x) defines a strong solution to the
mixed problem

0_y=
ot

My (A -){t -- ((t)y (t))-n},

y(0) a.

Step 2. Take y(t) as in Step 1. For each tT, define p(t)L(l]) by
p(t) (t)y(t). We verify that

(i) t,--x-lp(t) defines an element in L(T; HI(I; Rn)),
(ii) t-p(t) defines an element in H(T; L(F; Rn)) with

Dtp(t) -d*p(t),

(iii) M*po,(t)= 0, all t T.
Part (i) follows simply from the strong continuity of t-- y(t) and the assumed

strong continuity from the right and boundedness of t x-P(t): T o(L2; H1).
It is less straightforward to prove (ii); in outline we show that t--p(t): TL is
weakly ditterentiable to -d*p(t) everywhere on [0, tl[ from the right. This
involves developing an identity7 similar to (8.3) for p(t) as defined here. Since
-/* is a first order operator and p(t) L(T; H1), we have that {t--A*p(t)}
L(T; Le). But by a refinement of a result in [8] (see [12]), a square summable
function t--q(t) which is everywhere 8 weakly differentiable from the right to a
square summable function lies in Hi(T; L(f)) with Dl(t)= Oq(t) (0 weak
right derivative). This establishes (ii). Part (iii) is immediate from the assumptions
on.

Step 3. Define u* L2(E; ) as u*(t)=A-((t)y(t))- a.e. T. We next
show that

(8.5) ((y-z)(t),R(yU-y)(tl))a+(u-u *, u*)=0, u L(E; ).
Thus y is identified as the strong solution to the state equation corresponding

to the control u*. Equation (8.5) will be recognized as the variational equality
characterizing the optimal control.

We deduce (8.5) from the properties of p(t) established in Step 2; the crucial
step (see [11] for details) is in justifying the use of the divergence theorem as in the
proof of Proposition 5.1 even though we do not know a priori that p(t) is a strong
solution to the adjoint problem, or indeed even defines an element in r..

Step 4. It is immediate from (8.5) that u* is the optimal control. We must still
do some work, however, to establish that (t) (not merely t-A-((t)y(t))-,) is
uniquely defined. This is accomplished by a Holmgren-type argument (see [ 11] for
details). The proof is completed by noting that (t) has the unique representation

(t)a P(t)a + r(t), a L(f).

It is here that we require P(t)= P*(t).
It is precisely because we cannot relax this condition to a.e. differentiability that we need to

hypothesize that t-- K-1p(t) is strongly continuous from the right.
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9. Concluding remarks. The Introduction indicates some respects in which
the present study is incomplete. Most notably we should like to synthesize the
boundary control in feedback form for such cost functions as

I (YU(t), Q(t)yU(t))n dt + (y’(tl), Ry(tl))Sa+(u, u)x.J(u)
JT

In this situation, results in [9] would indicate that we should replace (7.3) by

d
-P(x, x’, t) -S*xP(x, x’, t)-P(x, x’, t)Sx,- Q(x, x’, t)

+ Ioa P(x, tr, t)-(A-)2p(r, x’, t)- dtr,

where Q(x, x’, t) is the kernel of Q(t). However, (7.3’) is not meaningful as it
stands9 because with no assurance that P(t) mapsn intoH1, neither the last term
in (7.3’) nor the boundary condition M*P(t) 0 is well-defined.
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Professor S. K. Mitter.
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ORDERABLE SET FUNCTIONS AND CONTINUITY. II:
SET FUNCTIONS WITH INFINITELY MANY NULL POINTS*

URIEL G. ROTHBLUM]"

Abstract. A set function (which is not necessarily additive) on a measurable space I is called
orderable if for each measurable order there is a measure q v on I such that for all initial segments
J, (qnv)(J)= v(J). Properties of orderable set functions v which have infinitely many null points are
investigated in this paper. We show that such set functions are continuous and that a set A is v-null if
and only if ]qvl(A)= 0 for all measurable orders . A characterization of orderable nonatomic
set functions as well as a characterization of weakly continuous set functions which have a mixing value
are given. It is also shown that if a set function is weakly continuous with respect to a measure, then it is
weakly equivalent to some measure.

1. Introduction. Let be an order on a measurable space L An initial
segment of 9 is a set of the form {t e llsgt}. The order 9 is measurable if the
r-field generated by the initial segments of is the o--field of all measurable sets.
A (not necessarily additive) set function v on I is orderable if for each measurable
order Y there is a measure qv such that for all subsets J of ! that are initial
segments in the order , we have (ov)(J)= v(J).

To understand orderability intuitively, think of I as consisting of an
(inhomogeneous) liquid, ,and of v(S) as representing some (not necessarily
additive) measure of the "worth" of a particular part S of L Think of this liquid as
flowing from one place to another, the drops arriving in the order . As it arrives,
each drop of the liquid contributes to (or detracts from) the worth of that portion
of the liquid already at the destination. Intuitively, (qv)(S) is the total increment
contributed in this way by all the drops in a set S. Since v is in,general not additive,
q v will depend strongly on ; and in fact, it may not even exist for all
Orderable v’s are those for which it does. The reader is referred to [2, Chap. III]
for an explanation of how these notions are motivated by game-theoretic
considerations

This is one of a series of studies (cf. [1], [2], [6]) in which orderability and
various continuity notions of set functions are investigated and related to each
other.

A subset A of ! is called v-null if v(S\A)= v(S) for all subsets S of L A
point in I is v-null if {t} is v-null. The set of set functions which have infinitely
.many null points is denoted INP. Properties of orderable set functions in INP are
investigated in this paper.2 It is shown (Theorem 1) that such set functions are
continuous "3, i.e., for an increasing (or decreasing) sequence {Bi} of measurable
sets whose union (or intersection) is B, limi_,o v(Bi)= v(B). It is also shown

* Received by the editors August 14, 1975.
? School of Organization and Management, Yale University, New Haven, Connecticut 06520.

This work was supported by the National Science Foundation under Grant GS-3269 at the Institute for
Mathematical Studies in the Social Sciences, Stanford University, Stanford, California, and under
Grant GP-37069 at the Courant Institute of Mathematical Sciences, New York, New York.

In the game theoretical motivation INP means infinitely many null players.
We remark that the assumption that v e INP appeared in a footnote in [2, 2] as a condition

under which any value of a set function gives zero to null sets.
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(Theorem 2) that for orderable set functions in INP, A
___
I is v-null if and only if A

is p v-null for all measurable orders 9. These, and some other properties which
we shall prove for orderable set functions in INP, seem to be essential for any
solution concept in the game theoretical motivation.

A set function v is nonatomic if there exists no S which is not v-null, such that
for every T

_
S either T or S\T is v-null. It is shown (Theorem 3 of this paper

due to Aumann) that an orderable set function is nonatomic if and only if every
t I is v-null. Using this result we shall prove that an orderable set function is
nonatomic if and only if r v is nonatomic for every measurable order .

Another result ( 6) is as follows: we say that v is weakly continuous with
respect to a measure/z (see [6]) if

(1.1) /z (A) 0=A is v-null,

and that v is weakly equivalent to/x if

(1.2) /z (A) 0:>A is v-null.

The result (Theorem 4) then says that an orderable set function is weakly
continuous with respect to some measure if and only if it is weakly equivalent to
some measure (not necessarily the same one). A Lebesgue decomposition of
orderable set functions which are weakly continuous with respect to some
measure follows as an immediate corollary.

Finally (Theorem 5), we characterize set functions in MIX (see [2, Chap. 2])
which are weakly continuous with respect to some nonatomic measure.

2. Notations and definitions. Composition will usually be denoted by o; thus
if f is defined on the range of/x, then the function whose value on S is f(/x (S)) will
be denoted f o/z. Set theoretic subtraction will be denoted by \. A measure is a
o--additive real-valued set function defined on a field, which vanishes on . The
total variation of a measure/x on a measurable set S is denoted [/z I(S). Absolute
continuity between measures will be denoted by << (see [3]).

We next summarize some definitions, conventions and results from [2].
Let (/, c4) be the measurable space consisting of the unit interval and the

Borel subsets.4 A setfunction is a real valued function v on ’ such that v() 0.
A set S is null (or v-null) if v(T\S)= v(T) for all Te . An atom of a set
function v is a nonnull measurable set S, such that for every measurable set T_c S,
effher T or S\T is v-null. If v has no atoms it is called nonatomic. Restricted to
measures, this definition coincides with the usual concept on nonatomicity of
measures.5 A set function is monotonic if T_ S implies v(T)<= v(S). The differ-
ence between two monotonic set functions is said to be ofbounded variation. The
set of all set functions of bounded variation forms a linear space, which is called

Cf. [2, Ex. 33.11].
4 This is assumed for simplicity only. All the results remain true if (/, c) is only assumed to be a

countably generated and separated Borel space.
The definition of nonatomicity in this paper is different from the one used in [5]. It coincides with

that of [2]. Theorem 3 of this paper shows that the two definitions coincide for orderable set functions.
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BV. The linear subspace of BV consisting of all totally finite measures on (/, ) is
denoted M. The linear subspace of M consisting of nonatomic measures is
denoted NA. The set of monotonic elements inM (resp., NA) will be denotedM+

(resp., NA+).
An order on the underlying space I is a relation t on R that is transitive,

irreflexive, and complete.6 Let "s - t" denote "st or s t". If for A, B _.I it
holds that xy whenever x A, y B we will write AB. If A contains a single
element z, we write Bz (resp., zB) rather than B{z} (resp., {z}B). An
initial segment is a set of the form I(s, ) {tlst} where s I. An initial set is a set
J which fulfills the condition s J, sYs’ implies s’ J. The entire space and the
empty set will also be considered as initial segments, and as such will be denoted
I(oo, ), I(- oo, ) respectively; it will be understood ooYs-oo for each s I
and we will denote {-oo}UIU{oo} by I. (Formally we extend to I. This
however is a notational device; we are not adding anything to the underlying
space, and all set functions and measures continue to be defined on subsets of
only.) For s, x el let E(s, )= {t[ts} be called a final set and let [s,x]={t[x

s} be called a closed order interval.
Denote byF() the o--field generated by all the initial segments. An order

is measurable if F(Y) 4. A subset Q of I will be called Y-dense if for all s, t I
such that sYt there is a member q Q such that s-q- t. By Lemma 12.5 of [2],
for any measurable order Y there exists a denumerable Y-dense set. A set
function v is called orderable if for each measureable order Y there is a measure
ov such that for all initial segments I(s, ), we have

(2.1) (pv)(I(s, Y))= v(I(s, Y)).

Since (2.1) determines av on all the initial segments, and by the measurability
of Y the initial segments generate Y, it follows that there can be at most one
measurev satisfying (2.1). Thus for orderable set functions there is exactly one
measurev satisfying (2.1). The set of all orderable set functions in BV will be
denoted ORD.

Let v, w BV; then v is said to be weakly continuous with respect to w (written

v <w w) [6, 3 and 4] if for any S

(2.2) S is w-null =)> S is v-null.

Note that if v <w u and u <w w, where v, u, w BV then v <w. Of course if
v f o/x BV where/x M+ and f maps the range of
A set function in BV is said to be weakly continuous if there is a measure/x NA+

such that v </x. The set of all weakly continuous set functions is a linear subspace
of BV [6, Prop. 4.2] which is denoted WC.

3. Continuity of set functioning in INP ORD.
LEMMA 1. Let {B,,}, n ->_ 1, be an increasing sequence of measurable sets, with

B U=B,. Then there exists a measurable order such that B and all the B,’s
are -initial sets.

6 A relation is complete if for all s, I one and only one of the three statements st, ts, s

holds. We shall interpret "stt" as "s is greater than t."
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Proof. Let 1 be a measurable order such that (I\B)Yt(B\B1)B1. The
existence of Ytl follows from [-6, Cor. 5.2.]. Define, inductively, a sequence of
measureable orders by

xYtn+ y

x, y Bn and xny, or

x, y B,+ \B, and xYtny, or

x, y I\B,+ and x,y, or

y Bn and x I\B,, or

y Bn+\B andx I\Bn+.

This means that B+IB is put just beyond Bn, I\Bn+ beyond Bn+\Bn, and
the order Yt is preserved on B,,, B,/\Bn and IBn+I. By [6, Lem. 5.1] all the
orders Yr, are measurable; moreover, for all n >_- 1, and 1 -< _-< n, Bi and B are
-initial sets. Of course, for m _-> n all Yt, coincide on I\(B\B,). Let us define
an order as follows: Let s, t be in I; then there clearly exists an n such that
s, tB\Bn; let sYtt .if and only if sYt,,t for all m _-> n. Clearly Yt is well defined and
all the Bi’s are Yt-initial sets. We shall now show that Yt is a measurable order, i.e.,
F(Yt) . The direction F()

_
is trivial. To verify that c_ F(Yt) note first that

Yt has a denumerable dense set, e.g., the union of the denumerable n-dense sets.
This implies that all Yt-initial sets are in F(Yt) (compare with the proof of Lemma
5.1 of [6]). Now, for x L the decomposition

I(x, ?1)={I(x, I)CIB1}U{I(x, ?I)B}U I,.J {I(x, ?l)(Un+lUn)}
n-=l

shows that I(x, Yt 1) )" Since F(Yt 1) this completes the proof of Lemma 1.
COROLLARY 1. Let {Bn }, n >-_ 1, be an increasing sequence ofmeasurable sets,

such thatB U,= Bn. Then there exists a measurable order such thatB and all
the Bn’s are -initial segments.

Proof. Without loss of generality assume that Bn’s are strictly increasing. For
n _-> 1 let xn Bn+IBn. Define C2n -B .J{Xn} C2n_ -B ApplyinKLemma 1
after reordering I\B so that it will have an l-initial element completes the
proof.

COROLLARY 2. Let v ORD, and let {B, }, n >-_ 1, be an increasing sequence of
measurable sets with B U=IBn. Then v(B)-v(B) as n

Proof. By Corollary 1 we know the existence of a measurable order such
that B and all the B,’s are -initial segments. Hence (qv)(B)= v(B), and for
n>-l, (ov)(B,)=v(Bn). Since qv is a tr-additive measure (ov)(Bn)-->
(qv)(B) as n -> 0o, completing the proof.

COROLLARY 3. Let v ORD. Then a countable union ofv-nullsets is v-null.
Proof. Let An, n _-> 1, be v-null and let B c. For every _-> 1,

v B\ U A,)=v B\ U A,, U (AB
n=l n=l k=l
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Letting oo and using Corollary 2 implies that

v B\ U An =limv B\ An U (AkfqB)
n=l i->oo k=l

=v B U A U (AB =v(B).
n=l k=l

Remark. If {B}, n 1, is a decreasing sequence of measurable sets we may
build an order such that all the B,’s are -initial segments. This would be done by
steps analogous to those leading to the conclusion of Lemma 1 and Corollary 1.
One can easily verify that B = B, is not an -initial segment unless there is
some n such that for > n all the Bg’s coincide; hence the proof used in Corollary 2
would not be sufficient to show that v (B,) v (B) as n m. Indeed, in general we
cannot assure that v(B,) v(B) as n m. Let v be defined by

1 if0eSandS{0},
(3.1) v(S)=

0 otherwise.

Note that v is monotonic; hence v e BV. Moreover, v e ORD; indeed, for a
measurable order in which 0 is not an -smallest element,v is the measure
which is concentrated on {0}; the same is true if 0 is an -smallest element and
there is no -smallest element in E(0, ). In the case when b is an -smallest
element in E(0, ), then v exists and is equal to the measure which is
concentrated on {b}. Let now B, =[0, l/n); then (B,} is clearly decreasing and=1Bn {0}. For all n N 1, v(B) 1, but v(B) 0; hence lim,v(B,) # v(B).

LEMMA 2. Let v ORD, a measurable order, and Jan -initial set. enJ
is measurable. Moreover, ifJ is infinite or if v INP, then

(3.) (%)(J) v(J).

Remark. The infiniteness requirement of J is a surprising condition. To verify
its necessity look at the example given in (3.1) of the previous remark. Let be
the usual order on [0, 1] which is clearly measurable; then (ov)({0})= 1 but
v({0})=0.

Note also that (3.2) need not hold for infinite ]’s if we do not assume
v e ORD, even if we do assume that for the in question, there is a it-additive
totally finite measure qv satisfying (2.1)! For example, let

w

where A is the Lebesgue measure and

f(x) { 0’ x=<1/2,
1, x>1/2,

and let be the usual order; it is clear that ov exists and equals the measure
concentrated on {1/2}. Hence (qv)([0, 1/2])= 1 but v([0, 1/2])=0. It might
easily be shown that vORD. Let’ be the order that throws {1/2} beyond [0, 1]
and coincides with the usual order on [0, 1]\{1/2}. By Lemma 5.1 of [6] this
order is measurable. If q’v existed, then for n=>3, (o’v)([1/2-1/n,
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1/2 + 1/n],) 1, in spite of the fact that [1/2-1/n, 1/2 + 1/n], is a decreasing
sequence with a void intersection.

Proofofthe lemma. The measurability of J follows from Lemma 12.14 of [2].
If J is an -initial segment, then the conclusion of Lemma 2 is trivial. If J is not an
-initial segment, let O be a countable Y2-dense set and denote O
O U{-}U{oo} and J=JU{-c}. Clearly J= (q{I(q, Y)lq O\J}. Since the
l(q, )’s are linearly ordered under inclusion, each finite intersection of those sets
is equal to one of the I(q, Y)’s. Hence we can write J fqj 11(qj, ), where {qi} is
an -decreasing sequence of points in O\J, i.e., {I(qi, Y)} is a decreasing
sequence of sets. Note that {I(qi, )} is not a finite sequence since J is not an
Y-initial segment.

Assuming J is not finite let us choose a sequence {xgli >-- 1} of elements in J.
Let * be a measurable order for which

(I\J)*... Y*{x,}Y* *{xa}*(J\{x[i >= 1})

andY coincides with on J\{xili >= 1} and on I\J. Similar arguments to those
used in the proof of Lemma 1 imply that * is measurable. Now

(ov)(J) lim (ov)(I(qi, Y))= lim (o’v)(l(qj, Y))

(q’v)(J)= lim ((v)(I(xi, ))

lim V(I(xi, ?))"--

We have used Corollary 2 and the fact that I(Xi, r) is an increasing sequence
whose union is J.

Assume now that J is finite and that v s INP. Let {xi}, -> 1, be a sequence of
v-null elements which are all in I\J. Let 9* be the measurable order for which

I(J[,.J{xili >= 1})2*J* Y’ x,,’ 9’ X2?’g
X

and which coincides with on J and on I\(J U {xli >- 1}). Note that by Corollary
3 {xli >= 1} is v-null (as a countable union of v-null sets). Now,

(ov)(J) lim (ov)(I(qi, 9))= lim v(I(qi, 9))

lim v(I(qi, 9)U{xili >= 1})
]--->

lim (q’v)(I(qi, )U{xili >: 1})

(p"v)(JU{xili 1})

v(JU{xi[i >: 1})-- v(J).

We used the facts that {xi[i>= 1} is v-null, and the fact that since (for ]=>
1)I(qi,)U{xiJi>=l} and JU{xili>=l} are infinite -initial sets, v and q v
coincide on them. Thus the proof of Lemma 2 is completed.
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LEMMA 3. Let v e ORD (’11NP, and let {B,}, n >- 1, be a decreasing sequence
of measurable sets whose intersections is B. Then lim,_. v(B,)= v(B).

Remark. Look at the remark following the proof of Corollary 3 to verify the
necessity of the requirement that v e INP.

Proof. By similar arguments to those used in the proof of Lemma 1 there
exists a measurable order Y such that B and all the B,’s are initial sets (not
necessarily initial segments). Using Lemma 2 and the tr-additivity of 0v we get
that

lim v(B,)= lim (qv)(B,)= (ov)(B) v(B),

which completes the proof of Lemma 3.
THEOREM 1. ff V ORD fq INP, then v is continuous.
Proof. The proof of Theorem I follows directly by Corollary 2 and Lemma 3.

4. Nullness oi sets with respect to v and the qv’s.
LEMMA 4. Let v ORD (q INP, and letA be a v-null set. If and’ are two

measurable orders such that for s, t I\A

(4.1) sYt :r> sY t,

then

(4.2) ov q’v.
Remark. If v INP, then (4.1) becomes a very restrictive condition, since

the v-null sets are only subsets of some finite set; hence Y and Y’ are "almost" the
same. However, we cannot assure (4.2) for those simple cases. Indeed, let v be
defined by (3.1), and let w be defined by w(S)= v(S\{1}). One can easily verify
that w is orderable and that {1} is a v-null set. Let Y be the regular order and let’be defined by

stt>t

and s, t 1, or

sY’t :> 1 and s 0, or

0 and s 1;

i.e., {1} is put between {0} and (0, 1) and the usual order is preserved on (0, 1).
Clearly q’w is the measure concentrated on {1} and qw is the measure
concentrated on {0}, though (4.1) holds whenever s, t[0, 1]\{1}, and {1} is
w-null.

Proof. It is clearly sufficient to prove our lemma for the case when ’"throws" A beyondI\A and preserves Y onA and onI\A. We shall first show
that ow and q’w coincide on Y-initial segments; i.e.,

(4.3) (ow)(I(x, )) (q’w)(I(x, 9))

for all x L
Let x I\A then I(x, ’)= I(x, Y \A and

(%)(r(x, ))= v((x, ))

(4.4) v(I(x, )\A)= v(I(x, ’))

(q’v)(I(x, )) (qg’v)(I(x, ) 71A ).
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Now, note that I(x, ) f3 A is the set subtraction of two Yt’-initial sets on which v
coincides; hence, by Lemma 2 we get that

(4.5) (q’v)(I(x, fq A O.

The above and (4.4) complete the proof of (4.3) for all x I\A.
Let now x e A. By applying Lemma 2 on Yt’ we get that

(qv)(I(x, ))= v(I(x, ))

(4.6) v(I(x, )\A)= (q’v)(I(x, )\A)
(q’v)(I(x, ))-(q’v)(I(x, )(qA).

Again, I(x, Yt)fqA is the set subtraction of two ’-initial sets on which v
coincides. By Lemma 2 it follows again that (4.5) holds, hence (4.3) follows easily
from (4.6). This completes the proof of (4.3) for all x e L

The I(x,)’s generate all the measurable sets, and qv, q’v are two
measures which coincide on all the I(x, )’s; hence (qv)(S)= (q’v)(S) for all
S as was to be proved.

THEOREM 2. Let v ORD (3 INP, and let A q. Then

(4.7) A is v-null ifand only irA is ov-nullfor all measurable orders.

Remark. If v e INP, then v-null sets are only subsets of some finite set.
However (4.7) need not hold for these simple sets. Indeed, look at the first
example preceding the proof of Lemma 4 and verify that (0’w)({1})= 1 though
{1} is v-null.

If v e INP but v e ORD, then the conclusion of Theorem 2 need not hold,
even if we do assume that for the Yt in question there is a tr-additive totally finite
measure qv satisfying (2.1). See the second example preceding the proof of
Lemma 2 and verify that (qv)({1/2})= 1 though {1/2} is v-null.

Proof. Note thatA is 0v-null if and only if Iwvl(A) 0. First assume thatA
is qv-null for all measurable orders . Assume there exists a B s such that
v(B) # v(B\A). By Corollary 1 there exists a measurable order Yt for which

(I\B)t(B f’IA)(B\A).

Hence, by Lemma 2,

(qv)(B f"l A) (qv)(B\(B\A)) v(B) v(B\A O.

The above contradicts the fact that Ivl(A) O.
Assume now that A is v-null. Let B

_
A and let be a measurable order.

Let’ be the measurable order that "throws" B beyondI\B and preserves on
B and on I\B. Since I\B is an ’-initial set it follows by Lemma 2 that

(q’v)(B (q’v)(I) (q’v)(I\B

=v(I)-v(I\B)=O.

By Lemma 4,v ’v, hence (v)(B)=0. Since (qv)(B)=0 for all B _A
it follows that Iqvl(A)= 0 which means A is qv-null.
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Remark. We point out that the requirement in Theorems 1 and 2 that the set
functions in question be in INP could be removed if one changed the definition of
orderability by requiring that (qv)(J) v(J) for initial segments and in addition
for sets of the form J {t[s t}.

5. Nonatomicity oi orderable set functions.
THEOREM 3 (Aumann). Let v be an orderable set[unction. Then v is nonatornic

i[ and only i[ every s I is v-null.
Proof. If v is nonatomic then clearly {s} is v-null for every s I (else {s} would

be an atom).
Assume now that s is v-null for every s I. We shah prove, by contradiction,

that v has no atoms. Let E e be an atom of v; i.e., E is not v-null and for every
F__c E eitherForE\Fis v-null. Since every point is v-null it follows by Corollary
5.4 that every denumerable set is v-null; hence E is nondenumerable.

Assume first that I\E is nondenumerable. It is known (cf. [5, Thms. 2.8
and 2.12]) that any uncountable Borel subset of any Euclidean space, and indeed
of any complete separable metric space when considered as a measurable space, is
isomorphic7 to ([0, 1],/3) where/3 is the Borel field on [0, 1]. It follows directly
from this theorem that there exists an isomorphism O of (L c) such that 0(17,)=
[0, 1/2). For every n _-> 1, 1 -< _-< 2" define

Note that

In, [(i- 1). 2-", i. 2-"].

2

U //]-l(/n,i) .E.
i=1

The fact that E is an atom now implies that for every n _-> 1 there exists a unique
i(n), 1 <-i(n)_-< 2", such that 0-1(I.,i) is v-null for all # i(n), and 0-1(I.,i(.)) is
not v-null. It immediately follows that {t.,i(.)} is a decreasing sequence of
intervals. Since the length of these intervals converges to 0, _- In,i(.) contains at
most one point.

Let Bn I[t-l(In,i(n)) then {B} is a decreasing sequence of sets, 07=1B
contains at most one point and for every n -> 1, E\Bn is v-null. By Corollary 3,
U (E\Bn) E\n=l n=l B, is v-null. This is a contradiction to the assump-
tions that E is not v-null and every single point in I is v-null.

If I\E is denumerable, one can easily conclude that ! is an atom. Repeating
the previous arguments after replacing [0, 1/2) by [0, 1] one may similarly
contradict the assumption that every s I is v-null.

Remark. The characterization of nonatomic set functions by the requirement
that every s ! is v-null holds whenever the countable union of null sets is null.
The proof follows exactly like the proof of Theorem 3.

COROLLARY 4. Let v ORD. Then v is nonatomic if and only if ov is
nonatomic ]’or all measurable orders .

Two measurable spaces are called isomorphic if there is a one-to-one function from one onto the
other which is measurable in both directions, i.e., both it and its inverse are measurable; the mapping is
called an isomorphism.
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Proof. It was proved [6, Thm. 3.1] that if v ORD, then every s e I is v-null if
and only if for every measurable order every s el is qv-null. This and
Theorem 3 immediately imply the conclusion of Corollary 4.

6. Weak equivalence and the Lebesgue decomposition. We are going to
extend weak continuity of set functions in BV (see 2) to sets of set functions. If
and Y{" are two sets of set functions in BV and if for every A g,

A is w-null for every w 6 W::>A is v-null for every v ff(,

then we say that Y{ is weakly continuous with respect to and write ’{< Yt’. If
yc < and < 3’/’, then the sets and /" are called weakly equivalent and we shall
write-Y{’. If contains exactly one set function v, i.e., {v}, the abbreviated
notation ’{"< v, v < Y, and’w v, will be employed for Y{" < ,w< Y{’, and". Y.

THEOREM 4. Let v ORD, tx M/, and v <w Ix" Then there exists an q M/

such that v - q.

Proof. By [6, Thm. 3.3] we know that {0v[ is a measurable order}.v.
Hence

(6.1) {l0vl Yt is a measurable order}--- v </x.

By Lemma 7 of [4], a set

_
M+ which is weakly continuous with respect to some

measure Ix eM+ has a weakly equivalent countable subset. Hence, by (6.1), there
exists a sequence of measurable orders Yr, such that

(6.2)

Let r/= Y.,=I I. Since [l0 is uniformly bounded in (see [2, Prop.
12.8]), it follows that rt is totally finite, i.e., r/s M. Obviously,

and the desired result follows directly from (6.2).
Remark. The meaning of Theorem 4 is that if v s ORD and v is weakly

continuous with respect to some Ix sM/, then in the appropriate sense, there exist
"minimal" measures with respect to which v is weakly continuous.

Remark. One can easily see that if Ix in Theorem 4 is nonatomic then r/is also
nonatomic.

COOLLAIY 5 (Lebesgue decomposition). Let v ORD, Ix M" where
v Ix. Then, for every Mthere exist measures, Mand a setA such
that +, ( < v, A is v-null and ((I\A O.

7. A characterization of the mixing value. We start this section by defining
the subspace MIX of BV and the mixing value which is defined on this subspace.
These definitions were first introduced in 14, 15 of [2].

Let NA be the subset of NA+ consisting of measures Ix for which Ix (I) 1. If
Ix s NA1, define a Ix-mixing sequence to be a sequence {0, 02, "} of Ix-measure
preserving automorphism8 of (/, c) such that for all $, Ts we have

lim Ix(S f3 0.T) Ix(S). Ix(T).

An automorphism of a measurable space (L) is an isomorphism of that space onto itself.
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Let be a given order and O be an automorphism of (L ). Then O is the
order defined by (4,x)4, (OY) if and only if xy. Obviously 4’ is measurable if
and only if is. For orderable set functions v and measurable orders we shall
be interested in measures of the form o*v; since this notation will occasionally be
cumbersome, we will sometimes write q(v, ) rather than qv. No confusion
should occur.

Let v e ORD. A set function ov is the mixing value of v if there is a measure
It in NA such that for It ’NA with It << It,

(7.1)
for all it-mixing sequences {01, 02,"" }, for all measurable
orders , and for all coalitions S, we have

q(v, On)(S)-->(ov)(S) as n -->oo.

The mixing value, if it exists, is clearly unique. The set of all members of ORD that
have a mixing value is denoted MIX. The following is an immediate corollary of
Theorem 2. It also follows from footnote 4 in [2, 2, p. 18].

PROPOSITION 1. Let v MIX fq INP and let pv be its mixing value. If A is
v-null then Iqwl(A O.

In [2, Prop. C.1] we find a characterization of set functions in MIX which are
absolutely continuous (see 5 of [2] for the definition of absolute continuity). We
next give a similar characterization of weakly continuous set functions in MIX.
Namely:

THEOREM 5. Let v ORD f3 WC. A necessary and sufficient condition that the
set]unction qv be the mixing value ofv is that[or all tx in NA with v <w Ix, condition
(7.1) holds.

In order to prove Theorem 5 we need the following lemma"
LEMMA 5. Let v ORD, It s NA1, 0n, n 1, 2, , be a It-mixing sequence,

be a measurable order, and let r NAx. 1]: v Ix, then there exist a measure
sC6NA and a (-mixing sequence {bl, b2," "}, such that tx +" is absolutely
continuous with respect to and

(v,)=(v, o).

Proof. The proof follows exactly as the proof of Lemma C. 18 in [2], with the
only exception that at the end of the proof one should refer to Lemma 4 rather
than to Lemma C.14 of [2].

Prool o] Theorem 5. The proof follows from Lemma 5 exactly as Proposition
C. 1 in [2] follows from Lemma C. 18.

Remark. By Proposition 4.2 in [ 1] it follows that for absolutely continuous set
functions, weak continuity and absolute continuity with respect to elements in
NA coincide. This implies that Theorem 5 generalizes Proposition C.1 of [2].
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ORDERABLE SET FUNCTIONS AND CONTINUITY. III:
ORDERABILITY AND ABSOLUTE CONTINUITY*

ROBERT J. AUMANN? AND URIEL G. ROTHBLUM:I:

Abstract. The concepts of orderability and absolute continuity of set functions were introduced
by Aumann and Shapley (1974). They showed that every absolutely continuous set function is
orderable. The main result of this paper is to show that the converse is false.

1. Introduction. This paper is one of a series of studies (cf. [1], [5], [6]) in
which orderability and various continuity notions for set functions are investi-
gated and related to each other. Throughout we assume familiarity with the
concepts summarized in 2 of [6]. Our main result ( 5) concerns the absolute
continuity of set functions (see [1, 5] or 2 of this paper). In [1, Prop. 12.8] itwas
shown that every absolutely continuous set function is orderable; here ( 5) we
construct an example to show that the converse is false. The example is a function
of two nonatomic measures, and is in a sense "simplest possible"" In 4 we show
that for functions of a single nonatomic measure, orderability and absolute
continuity are equivalent.

2. Notations and definitions. We refer the reader to 2 of [6] for a summary
of some notations and definitions from [1] and [5] that will be used in this paper.
Familiarity with the above section will be assumed throughout our discussions.

For x in the Euclidean space En, Ilxll will always mean the summing norm, i.e.,
Ilxll Xi=i Ixil. If x, y E, write x _-< y if xi <= Yi for all i. If/z is a vector measure
(/zi,’"",/xn), then /z will denote

We next summarize some definitions and conventions from [1] which were
not used in [6] and will be needed in this paper. The norm on BV is the variation
norm, defined by

Iio11--inf {u(I) + w(I)lu w v, where u and w are monotonic}.

A chain is a nondecreasing sequence of sets of the form So c S1 c c Sn
L A link of this chain is a pair of successive elements. A subchain is a set of links. A
chain will be identified with the subchain consisting of all links. If v is a set function
and A is a subchain of a chain, then the variation of v over A is defined by
Ilvll -Zlo(s,)-v(s,-1)l, where the sum ranges over {il{S_l, S}e A}. For a fixed
A, I1" I1 is a pseudonorm on BV, i.e., it enjoys all the properties of a norm except
IIOlIA--0 V- 0. It is known (see [1, Prop. 4.1]) that for every v
sup I1 11 , where the supremum is taken over all subchains A. It is also known that
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" Institute of Mathematics, Hebrew University, Jerusalem, Israel, and Institute for Mathematical
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School of Organization and Management, Yale University, New Haven, Connecticut 06520.

156



ORDERABLE SET FUNCTIONS AND CONTINUITY. III 157

the linear subspaces M, NA, WC and ORD are closed subspaces of BV [5, Prop.
4.2 and 4.3].

A set function v is said to be absolutely continuous with respect to a set
function w (written v << w) [ 1, p. 35] if for every e > 0 there is a > 0 such that for
every chain and every subchain A of f, Ilwll -< implies IIoll--< Note that this
relation is transitive, and that if v and w are measures, it coincides with the usual
notion of absolute continuity. A set function is absolutely continuous if there is a
measure /x NA+ such that v<</z. The set of all absolutely continuous set
functions forms a closed linear subspace of BV [1, Prop. 5.2], denoted AC.
Finally, pNA denotes the closed subspace of BV spanned by all powers of
nonatomic measures.

3. Weak continuity and absolute continuity. A real-valued function on a
subset of E is said to be monotonically absolutely continuous if for every e > 0
there is a > 0 such that if Xl --< y --< x2 --< -< xn --< yn, then

Ily,- x, If(y,)- e(x,)[ e.
i=1 i=1

If the domain of f is one-dimensional, then monotonic absolute continuity
coincides with the usual absolute continuity.

PROPOSITION 1. Let tz be an n-dimensional tr-additive measure whose
components are in NA/ and are mutually singular. Letf be a real-valued]unction
on the range of pt with f(O) O. Let v f opt. Then v << pt ef is monotonically
absolutely continuous.

Proof. The direction is obvious. To prove the direction :if, recall
Lyapunov’s theorem [4], according to which the range of a nonatomic o,-additive

vector measure is convex and compact. From this and the mutual singularity it
follows that if x <_- Yl -x2 Xn -- y., then there exist $1, T1, , S., T,, in
such that/z (S) x,/z (T) y; and S

_
T _. _

S.
_

T., completing the proof
of Proposition 1.

PlOr,OSITIOrq 2. Let v BV andtz, M+. If v << , then v <w tz if and only if
v <</..

Proof. Sufficiency of the condition is obvious. To see the necessity, let
sc sac+ :+/- be the Lebesgue decomposition of sc with respect to/z, i.e., s+/- and ac
are nonnegative measures such that scat_-</z and +/-_1_/z [3, Thm. C, p. 134]. Let
A g be such that :-(A) 0 and/z(I\A) 0.

We shall show that v << :, and since :ac<</x it will follow that v << g. Let g > 0
correspond to a given e in accordance with the absolute continuity v << so; i.e.,

(3.1) for any subchain A, I/ll IIll .
We shall prove that v << ac by showing that

(3.2) for any subchain A,

If we intersect each set in each link of A with A then we get a subchain A* such that
and therefore by (3.1), But because v</x and

tz(I\A) =.0, it follows that I/ ll -11 11 . -< This proves (3.2).
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COROLLARY 1. Let tz "-(/J,1,/J,2,"" ", [l,n) be an n-dimensional vector of
measures in NA+. Let f be a real-valued function on the range of tz, such that
v f o/z 6 BV. Then v AC if and only if v <<

Proof. Sufficiency of the condition is obvious. To verify the necessity note that
fo/z Y’./z and use Proposition 2.

COROLLARY 2.1 Let v =f tz, where
vAC.

Proof. The fact that pNA_ AC has been proved in [1, Cor. 5.3]. Now let
f o/z AC. Then by Corollary 1, f o/z <</z, and hence by Proposition 1 and
Theorem C in [1], f o/z pNA.

COnOLLAnY 3. The inclusions BV_WC AC are strict.
Proof. The unanimity game v defined by

1, S=L
v(S)=

0, otherwise,

shows that BV WC. Next, let h be Lebesgue measure, and let g be the Cantor
function, which is not absolutely continuous; then g A WC, and by Propositions
1 and 2, g A AC.

4. Ordered absolute continuity. Let be a measurable order. A chain
So_ $1- -Sm I is called an -chain if all the Si are -initial seg-

ments. Note that an -chain is defined by a finite sequence of elements in/,
oo =Sm S SO --OO, such that I(s, )= Si.

If v and w are in BV, then v is said to be ordered absolutely continuous with
respect to w (written v w), if for every measurable order and e > 0 there exists
a 8 > 0 such that for every -chain f and every subchain A of, Ilwll --< implies
IIvlIA--<--. Note that the relation is transitive.

PROPOSITION 3. Let v BV, tt M+.2 Then v is ordered absolutely continuous
with respect to Ix if and only if v ORD and v

Proo]’. First assume that v is ordered absolutely continuous. It is easily verified
that this implies v </z. Using the argument of the proof of Proposition 12.8 of [1]
we obtain that3 v ORD. This completes the proof of one direction.

To prove the second direction, let us assume v/z and v ORD. By [5, Thm.
3.2], we know that v <w/z implies that pv</z for all measurable orders . Recall
that weak continuity and absolute continuity between members ofM coincide [2,

III. 4.3, p. 131]; hence pv <</z for all measurable orders . But then it follows
that v <<

A set is said to be ordered absolutely continuous if there is a measure/z NA+

such that v is ordered absolutely continuous with respect to/z. The set of all
ordered absolutely continuous functions in BV is denoted OAC.

Cf..[ 1, Thm. C].
2 One may extend this theorem and require only/z M, and not/z sM+. This would slightly

complicate the proof.
3In Proposition 12.8 of [1] one assumes v<< It and obtains in addition to v ORD, also that

p v <</x uniformly in. Here we assume only v <o</x, and can also obtain pv <</z,but not uniformly.
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COROLLARY 4. ORD 0WC OAC
COROLLARY 5. OAC is a closed linear subspace of BV.
Remark. One may conjecture that if v e ORD and every point in I is v-null

then there exists a measure/z e NA+ such that v </z. If this is true then clearly it
should yield that OAC equals the set of all set functions in ORD for which every
point is null.

PROPOSITION 4. Let v f tz, where tz NA+’, then v <</z ifandonly ifV<o<
Proof. If v <</z, then trivially v <o</z. Assume now that v <o</z. By Proposition 3,

v ORD and v<w/z. Let be an arbitrary fixed measurable order, then by [5,
Thm. 3.2], q9 V w</z. Snce weak continuity and absolute continuity between
totally finite measures coincide, it follows that 0v <</z. For a given e, let be
given in accordance with the absolute continuity (pv <</z i.e., for every subchain
A,

(4.1) --< I1 %11 --<
We shall show that v <</z by showing that for every subchain A,

(4.2) I1 11 IIo11 
Let A be a subchain satisfying II ll =< whose links are {S, T.I1 _-<j _-< m}, where
$1T1$2 SmTmL Let

S f’) {I(s, 9)ls e I, I (I(s, )) > Ix (S)},
Ti= f’){I(s, 9)ls I, tx(I(s, )) >/x (T-)}.

By [1, Lem. 12.15] it follows that for 1 =<] =<m, , . are measurable and that

(4.3) /z(Si) =/z(Si) and tz(T-)=/z(T.).
Note also that Si and T are -initial sets; hence, by [6, Lem. 2], it follows that for
l<-j<--m,

(4.4) (0v)(-) v(-) and (tpv)(.) v(.).
Let 12 be the chain _Sl_Tl__S2__...__SmTmIandlet A be a

subchain of 12 whose links are {Sj, Tj}, 1 _-<j_-<m. Note that (4.3) implies that
H nce, by (4.1), and therefore (4.4) and (4.3)imply

that

]=1

]=1

We have established (4.2), thus completing the proof of Proposition 4.
CooA 6. Let v here e NA+’, then

v AC v << . v OAC v << v ORD v pNA.

Proofi The above follows from Proposition 2, Corollary 2, Proposition 3 and
Proposition 4.



160 ROBERT J. AUMANN AND URIEL G. ROTHBLUM

Remark. It clearly follows from Corollary 6 that if we wish to construct an
example of the form v =f o/z that is in ORD\AC, then/z has to be at. least
two-dimensional.

5. ORD indudes AC strictly. It was proved in [1, Prop. 12.8] that ORD
AC. We are now going to construct an example of a set function in ORD that is not
in AC.4 The example that we are going to describe appears, in a different context,
at the beginning of 9 in [ 1 ]. For each k -> 2 let Ak c [0, 112 be the parallelogram
whose vertices are: (2-k, 0), (2-k + 4-k, 0), (2-k/ -I" 4-k, 1) and (2-k+1, 1) (see Fig.
1). Define a nondecreasing continuous function f on the square such that for
X Ak,

f(x)= f(xl, x2) 2kxl +2-k+l- 1;

for x between Ak and Ak-1,

(X 2" 4-k)
f(x) 2-k + + x2 + (1 2-k + x2)’

for x to the right of A2 let f be defined by the same formula that defines f on A2,
i.e., f(x)=4xl-1/2; and finally for Xl=0 let f(x)=x2. Let /x be any 2-
dimensional vector measure on (Lcg), whose range if [0, 112. We shall show that
v =f o/z ORD\AC.

(0, 1)

A4 A A2

(1,0)

To show that v AC, let
k (2-k+l 1)0) Xl _-<...

be a "staircase" sequence of points in An, i.e., each point differs from the
preceding one in one coordinate only (see Fig. 1). On the vertical segments of this
sequence, f does not change; all the change is concentrated on the horizontal
segments. But the total length of the horizontal segments goes to 0, whereas the
total change in f is 1. Therefore [ is not monotonically absolutely continuous,

4 One can easily see that by "smoothing" our example one can get a set function in MIX 1, 13]
that is not in AC.
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therefore f o/z is not absolutely continuous with respect to E/Z (Proposition 1),
and therefore f o/z AC (Corollary 1).

Let us now prove that v ORD. Set/z =/Zl +/z2. We shall show that v is
ordered absolutely continuous with respect to/z, and then use Proposition 3. Let

be a fixed measurable order. For a given e > 0 we may choose a 1 > 81 > 0 such
that

(5.1) IIx-yll t ::> If(x)-f(y)l -< /2.

This is possible because of the uniform continuity of f in [0, 1]2.
Let J1 denote the intersection of all -initial segments of/z 1-measure > 0.

By [ 1, Lem. 12.15] it follows that J1 is measurable and/z 1(J1) 0. Let J denote the
intersection of all -initial segments of/z-measure >/z(J1)+ 81. By the same
lemma5 we mentioned before, it follows that J is measurable and
/z (J1) + 81, therefore J_ J1- Finally, observe that II (J)- (1)11- 81; hence by
(5.1) it follows that [v(J)-v(J)[ <-_el2.

Now let p be an integer _->2 such that 2p-* -> 1//zl(J). Note that p depends
only on and e. One can easily verify that f fulfills a Lipschitz condition on
{X [0, 1121Xl -->/Z l(J)} with constant 2p, i.e., Ilf(y)-f(x)ll-<- 2llx yll; this implies
that if S, T and JS

_
T, then IIv(Tb-v(S)ll<-_2o{(-(s)), Define 6

min {81, (2p + 1)-1e/2} and note that 6 depends only on and e.
Let A be a subchain of an -chain , with links {Si, T} (1 <_-i<_-n), where_
$1
_

T1
_
$2_

_
Sn
_

T,,
_
L By definition of -chain, Si and T are

-initial segments (1 -<_i -<_ n). We shall show that I111 <-- implies Ilvll <- , which
implies that v is ordered absolutely continuous with respect to/z, and hence by
Proposition 4 that v ORD.

Let IIll--<a, .i.e., IIll- i=1 {/Z (T/)-/Z(Si)} 8. Without loss of generality
we may assume that if T _J, then Si J; otherwise split {Si, T} into two links
{Si, J} and {J, Ti}. Similarly we may assume that if Si

_
J1, then T

_
J. Note that

since/z and v are monotonic, I111 and I111 remain unchanged. Let

I1-- {l <:i <=n]Ti cc_J1},

I {l <- <- n lJ
_

Si},

13={1 <- _<-_ n lJ1
_

Si
_

Ti
_

J}.

11, I2 and 13 are disjoint, and by our previous assumption 11UIg. UI3
{1,2,-- , n}. Now

3

IIII . Io(T,.)-(S,)I= .
i=1 1=1 iIt

_-< y. {g(T)-g(S)}+ Y. {2(g(T)-g(S)}+v()-v(,)
il i12

E E E_<+.++=.
The lemma must be modified to apply to measures/z in NA for which u(I)# 1. Note that

/x(J1) + al </x(I).
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This completes the proof that v ORD\AC. Hence we have shown

(5.2) ORD includes AC strictly.
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ON THE STABILITY OF NONAUTONOMOUS
DWFERENTIAL EQUATIONS = [A +B(t)]x,
WITH SKEW SYMMETRIC MATRIX B(t)*

A. P. MORGAN," AND K. S. NARENDRA

Abstract. In this paper we characterize (in Theorem 1) the uniform asymptotic stability of
equations of the form

(where A (t) +A (t)r is negative definite) in terms of the "richness" of B(t). The equation is uniformly
asymptotically stable if and only if B(t) is sufficiently rich. We actually obtain stability results for a
much broader class of systems (Theorems 2 and 3) whose behavior is similar to the one above. Such
systems have come up recently in some adaptive control problems.

1. Introduction. The purpose of this paper is to characterize the uniform
asymptotic stability of certain nonautonomous linear systems of the form

where A A (t) is a time varying stable n n matrix and B B(t), C C(t) are
time varying tn n matrices. Such equations arise in connection with questions of
adaptive identification and control as described in Narendra and Kudva [5].

Theorem 1 below is illustrative of the type of result we have obtained. It is a
corollary to the more general Theorems 2 and 3. We state and discuss these results
in 2 giving examples and some indication of proofs, including the presentation of
a key lemma.

A result concerning (nonuniform) asymptotic stability has also been
obtained, and this is stated in 3. In 4 we discuss in more detail the control
applications of this work, which are summarized as Theorems 4 and 5. Section 5
contains the longer proofs.

Previous work on the stability properties of this type of system has been done
by Yuan and Wonham [7]. They found sufficient conditions for asymptotic
stability in the case that the system can be put in the form

O=Ee+x +u,

= -Fex
= -Feu r.

(See 4, Theorem 4 for more details.) Anderson in [1] considered some almost
periodic cases, obtaining sufficient conditions for uniform asymptotic stability.

* Received by the editors October 3, 1975, and in revised form April 17, 1976. The research
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Office of Naval Research under Contract N00014-67-A-009"-0020.
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College of Georgia, Augusta, Georgia 30902.

Department of Engineering and Applied Science, Yale University, New Haven, Connecticut
06520. 163



164 A.P. MORGAN AND K. S. NARENDRA

2. Statement of main theorems. The following Theorem 1 gives a complete
characterization of uniform asymptotic stability when A +A 7- is negative definite
and C B. It is a corollary to Theorems 2 and 3, which, we will state after a
discussion of Theorem 1.

First, however, we establish some notation and state several definitions. The
n x n time varying matrix A A (t) is called "stable" if the system A (t)x is
uniformly asymptotically stable. The length of x R is denoted "Ix 1". If A is an
n n matrix, "[A I" denotes the uniform norm of A derived from Ix l-

"P(t) is positive definite" means that there exist positive constants a and/3
such that axTx<=xTp(t)x<--flxTx for all xR and all t. "O(t) is negative
definite" means Q(t) is positive definite. IfA is constant, then A Ax is stable if
and only if A is negative definite.

The equilibrium x 0 of the differential equation. =f(x, t) is uniformly
asymptotically stable (u.a.s.) if it is uniformly stable and for some el > 0 and all
e2 > 0 there is a T T(e 1, e2) > 0 such that if x(t) is a solution and Ix(t0)l--< then
[x(t)[<-e2 for all t>-to+T. If T depends on to, then x-=0 is (nonuniformly)
asymptotically stable (a.s.).

THEOREM 1. LetA A (t) be an n n matrix ofboundedpiecewise continuous
functions such that A +A T is negative definite. Let B(t) be an n rn matrix of
bounded piecewise continuous functions. Then the system

(1) [l=I A --BT

is u.a.s, i]and only ithere are positive numbers To, eo, ando such that given tl - 0
and a unit vector w R", there is a t_ [h, t + To] such that

B(r)rw d" >--

Co oc, A g 1. is smooh, is uniformly bounded, and there are
real numbers a > 0 and b such that

[B(7.)Twl d- >_a(t2- tl)+ b

for all unit w g and all t2 >= tl >- 0, then (1)/s u.a.s.
COROLLARY 2. /f (1) is u.a.s., then there are real numbers a > 0 and b such

that

Ii ]B()Twl d" >= a(t2- t) + b

]:or all unit vectors w R and all t2 >- t >- O.
The proof of Corollary 2 follows at once from the theorem, because the

integral condition of the theorem clearly implies the integral condition of the
corollary. The proof of Corollary 1 follows from the theorem, because, under the
additional hypotheses on B(t), it is easy to show that the integral condition of the
theorem is equivalent to the integral condition of the corollary. The example
below shows that, without additional hypotheses on B(t), the integral condition of
Corollary 1 can hold without the condition of the theorem being true.
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The condition given in Theorem 1 is a "richness" condition for B(t). It says
that for any unit direction w, B(t)Tw is "periodically" large. The condition
requires that there be a fixed length of time, To, such that B(t) "points in all
directions" as t takes on values in any interval of length To. Also it requires that
B(t) maintain sufficient length. However, it requires even more than this, since the
condition of Corollary 2,

’ IB(r)rw >- a(t2- tl)q- b,d-

is not sufficient. It is therefore apparent that, for fixed w, the sign changes that the
components of B(t)rw go through are also significant. (See the example below.)

It is immediate that the condition there be positive numbers To and eo such
that

tt+TB(’I’)Tw

dr >-- eo

for all unit w R and t => 0 is sufficient but not necessary for (1) to be u.a.s. (In
this case 8o can be chosen arbitrarily and does not depend on w.)

The following example illustrates some of the above comments. Let a
= (l/n) and define a square wave function with increasing frequency

u(t): [0,]R by

lift a,a42(n+l)
u(t)

1
1 if re a+2.n a+

See Fig. 1. Then it follows from the theorem that the two-dimensional system

[l=[u--(ta) -Uo(t)l[Xy1
(where a is a positive number) is not u.a.s. Note, however, that

(t=-tl).dr

Thus the necessary condition of Corollary 2 is not sufficient. Also, compare this
with the following comments on the category PS*.

FIG. 1

ak+
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We should point out that Corollary 1 can be generalized as follows. Instead of
requiring that B(t) be smooth and IB(t)l be bounded, we make the somewhat less
restrictive assumption that the components of B(t) be contained in the set
PS*, defined as a convenient category of input functions by Yuan and Wonham in
[7].

PS* is the set of all piecewise smooth functions g:[0,)R that are
uniformly bounded, whose derivatives are uniformly bounded (where defined),
and for which the intervals over which g is smooth do not shrink to 0.

For example, an input function g defined to be constant on intervals (a,, a,/a)
where a,+a- a, is bounded below as n is in PS*.

Theorem 1 is an immediate corollary to Theorems 2 and 3 below, which are
our main results. First, we recall the following.

By a theorem of Krasovskii, the uniform asymptotic stability of A (t)x
implies that given any continuous symmetric positive definite O(t), there exists a
continuous symmetric positive definite P(t) such that/6 +PA +A Tp Q. (See
Narendra and Taylor [6, p. 62], or Halanay [2, p. 44].)

THEOREM 2. LetA (t) be a stable n x n matrix o/boundedpiecewise continuous
/unctions. Let P(t) be a symmetric positive definite matrix o] bounded continuous
/unctions such that +PA +A 7-p is negative definite. (Many such P exist, by our
comment above.) Let B(t) be an n m matrix o/bounded piecewise continuous
/unctions.

Assume that there exist positive numbers To, eo, and 6o such that given ta >- 0
and a unit vector w e R m, there is a t2 e [ta, tl + To] such that

t2+O
B(z)Tw dr >-eo.

t2

Then the system

A

is u.a.s.
Corollary 1 and the comments about Yuan and Wonham’s PS* in the

discussion following it hold exactly as written in this case.
THEOREM 3. LetA (t) be a stable n n matrix ofboundedpiecewise continu-

ousfunctions. LetB(t) and C(t) be n m matrices ofboundedpiecewise continuous
functions. Suppose that the system

is u.a.s. Then there arepositive real numbers To, 80, and eo such thatgiven ta >= 0 and
a unit vector w, there is a t2: It1, tl + To] such that

t2+’O
B(’)rw d" _-> eo.

Corollary 2 holds exactly as written in this case also.
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The comments made after the statement of Theorem 1 apply to Theorems 2
and 3. The condition which is necessary and sufficient for u.a.s, is a "richness"
condition for B(t), which however involves a subtlety concerning the sign changes
of the components of B(t)7"w as t o.

The following is a key observation, used in the proof of Theorem 2. Consider
equation (2), and assume that the hypothesis of Theorem 2 holds. We shall use the
notation z(t)= [x(t), y(t)]7" from now on.

LEMMA 1. Let el and i3 be given positive numbers. Then there is a T= T(el, 6)
such that if z(t) is a solution of (2) and IZ(tl)[<=ea, then there exists some

t2 [tl, t + T] such that ly(t2)l--<,%
The lemma says that if B(t) is sufficiently rich, then, for any solution

z(t) Ix(t), y(t)]r, y(t) gets "periodically" small.
We shall now outline how the proof of Theorem 2 follows from the lemma.

This is written out in detail in 5. Define the Lyapunov function V(z, t)=
V([x, y]7-, t) xrP(t)x + yry. Then Q(z, t) <=-klxl2 where k is some positive
number. Thus if lyl is small (asit must be periodically, by the lemma) and Izl is not,
then Ixl is not. In this case, I ’1 is large and V(z, t) is decreasing. Since f’_<-0 we
have uniform stability, and the observations of the previous two sentences show
that Izl is periodically getting smaller and smaller. Uniform asymptotic stability
follows.

The proof of the lemma can be easily derived from the following two
sublemmas.

SUBLEMMA 1. Let el>e2>0. Then there is an n=n(el, e2) such that if
z(t)=[x(t), y(t)]7" is a solution of (2) with and S
{t 6[ta, c) Ix(t)l > e2}, then tz(S) <- n where I denotes Lebesgue measure.

This sublemma holds without any restriction on B(t). It states that there is a
uniform limit on the amount of time a solution starting inside the e ball can
remain outside the e2 ball. It therefore implies that if z(t) is any solution of (2),
then x(t)-O. It also implies the following. Given el > e2 >0, there is a T>0 such
that if z(t) is a solution of (2) with [Z(tl)l <- el, then there is a t2 It1, tl + T] such
that Ix(/2)l--< =.

It is not the case that x(t)-O uniformly in initial times to without any
restriction on B(t). In other words, it is not the case that given el > e2 >0, there is
a T>0 such that if (x(t), y(t))is a solution with [X(to)l--< e, then Ix(/)l--< e2 for all
t _-> to + T. For example, let a, be a sequence with ao 0, an+a > a,, and an+l an
o as n . Define

1 if t[an, l+an],
b(t)=

0 otherwise.

Then, it is easy to see that solutions to

o JlyJ

with initial position x 0, y 1, and initial times to 1 + an have the property that
it takes longer and longer for x(t) to go to 0 as n -.
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Assume that the hypothesis of Theorem 2 holds. Then we have
SUBLEMMA 2. Let 6 > 0 and e > 0 be given. Then there existpositive numbers

e and Tsuch that ifz(t) is a solution of (2) with IZ(tl)l_-< and if ly(t)[>=tfor
t 6 It1, tl + T], then there is a t2 [tl, tl + T] such that Ix(t2)[--> e.

Thus, if B(t)is "rich" and [y(t)[ is large, then Ix(t)l must be periodically large.
The lemma is established from the two sublemmas as follows. If y(t) is not
periodically small, then the sublemmas imply that x(t) is periodically both large
and small. But Sublemma 1 puts an upper bound on this type of behavior. The
details of the proof of the lemma are in 5.

3. Nonuniform asymptotic stability. The following proposition is a
nonuniform version of Theorem 2. Its proof appears in 5.

PROPOSITION. LetA (t) be a stable n n matrix o]’boundedpiecewise continu-
ousjunctions. LetP(t) be a symmetricpositive definite matrix o]:boundedcontinuous
functions such that +AP+A rp is negative definite. LetB(t) be an n m matrix
o]’ bounded piecewise continuous functions.

Assume there exist positive numbers eo and go such that given a unit vector
w Rm, there is a sequence tn - oo such that

Then the system

tn+0
BT(’r)W dr >-_ eo

tn
]’or all n.

is asymptotically stable.
Remark. We can easily see that if there is a nonzero w R such that

BT(’)W dr <

then the system is not asymptotically stable. It is not unreasonable to conjecture
that the sufficient condition of the proposition is also necessary for asymptotic
stability.

4. Applications to control theory. The type of equations discussed in earlier
sections have come up recently in connection with control problems dealing with
the adaptive observer. It also appears reasonable to assume that questions
regarding the uniform asymptotic stability of similar nonautonomous equations
will increasingly occur in adaptive control problems where parameters of the
systems can be adjusted at the discretion of the designer, i.e., parts of the vector
differential equation can be chosen. In this section we characterize the uniform
asymptotic stability of two types of equations which arose in the context of
identification. (See Narendra and Kudva [5], for details. Also compare Yuan and
Wonham [7].)
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THEOREM 4. Consider the system

Ee + rbx +u,
(5) += -rex,
where E is a stable n n constant matrix, e R n, dp is n n, is n m, F is a
symmetric positive definite matrix such that FE +EF is stable, and x [to,]
R", u: [to, )R are piecewise continuous, uniformly bounded vector valued
funcaons.

en (5) is u.a.s, if and only if there are positive constants To, So, o such that
given h 0 and a unit vector

w= RxR=R+,
W2

there is a t2 Its, ta + To] such that

[1() u()r]w dr eo.
and I (t)l are defined and bounded, then the above condition can be

replaced by:
there exist a > 0 and b such that

,’ I[x()L u()]w dra(ta-tl)+b

for all unit w R x R and all ta h iscompletes the statementofeorem 4.
In the context of identification, 2 Ax +Bu where A is a constant stable

matrix and b is a constant matrix. Thus 2 is always bounded.
is theorem follows at once from Theorems 2 and 3 and their corollaries.

Note also the comments in 2 which allow us to assume "u(t)e PS*" in place of
"ia(t)i bounded".
e next theorem concerns a type of equation which also arises in identifica-

tion schemes. (See Narendra and Kudva [5, p. 553]. Also see Anderson [1,
p. e.e0].)

THEOREM 5. Let A be a stable n x m constant matrix, and let P be a positive
definite symmetric matrix such that PA +A rp is stable. Assume that there exist
nonzero vectors d and h such that Pd h. Let v(t) be a piecewise continuous
bounded vector valued function. en the system

-v(t). d 0

is u.a.s, ifand only ifthere are positive constants To, So, ando such that ifh 0 and
is a unit recto5 then there is a ta e [h, h + T0] such that

t2+
v(r)r" w d _-> So.

ot2



170 A.P. MORGAN AND K. S. NARENDRA

If [((t)[ is bounded or v(t) PS*, then the above condition can be replaced by"
there exist a > 0 and b such that

t2[v(z)T. wldr>=a(t2-tl)+b ior unit w.all

This theorem is immediate from Theorems 2, 3, and corollaries. (Of course,
we could also easily derive a version of Theorem 5 with A, h, d, and P time
varying. However, these are .constant in the application cited.)

Note that, by the Kalman-Yakubovich lemma, the conditions
(a) PA +A 7-p stable for some positive definite symmetric P, and
(b) Pd h for some d, h,

are equivalent to the condition that the transfer matrix H(s)=-h 7"(sI-A)-ld be
positive real. (Narendra and Taylor [6, p. 49].)

5. Proofs of theorems. We shall present proofs to Theorem 2, Lemma 1 and
the sublemmas, Theorem 3, and the proposition. We also state and prove a
Lemma 2, used in the proof of Theorem 3. The proofs of the corollaries and the
comment in 2 about PS* are routine and therefore omitted.

It will be convenient to use the notation

Also, for convenience, we assume la(t l d IB( i = 1 for all t.

Proofo Theorem 2. 1. By hypothesis we may choose positive constants a, ,
a, b such that

x x Nx t)xNx
and

Tax x N xrO(t)x N bx for all x,

where O(t) P(t) + P(t)A (t) +A (t) rP(t). Without loss of generality, assume
1, N1, and aN1.

Define g(z, t) x rP(t)x + y. en
(z, t)= 2xr((t)+P(t)A(t)+A(t)rP(t))x -2xrO(t)x N -2axe.

If z(t) is a solution of (2), then all of the above implies that Iz(t)l 
for any t h.

2. We shall now show that given e > e> 0 there is a with 0 < < 1 and an
M>0 such that if z(t) is a solution of (2) with

e2 N g(z(t), t) N el for t e [tl, tl + M],
then there is a t2 [tl, t + such that V(z(t2), t2) y" V(Z(tl), tl).

Since V(z(t), t) is nonincreasing, this implies uniform asymptoti3 stability.
e above fact follows routinely from the lemma and the relation V(z(t), t)
-2ax(t)(t). However, for completeness, we shall write out the details.

Choose positive numbers c and c2 so that 1 C 0,
(1-c1)/-2c2/a >0 and O<2acE((1-Cl)/-2CE/a)2< 1.. (Say
Cl 3/4 and c2 a/8fl.) Use the lemma to obtain Twhen e el and 8 e2" Cl.
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Define y= 1-[2ac2(x/(1-Cl)/X/-2c2x/-/a)2] and M= T+c2. We shall
show that for this y and M our result holds.

We want 0< y < 1. But this is clear from the choice of ca and c2. Let
t [tl, tl + T] be such that ly(t)l-<- 6 ,/e. c. If V(z(t), t) <_- e2, we are done.
Assume V(z(t), t) -> e2. Then

V(z(t), t) x(t)rP(t.)x(t) + [y(t)l2

implies

tlx(t)12-> V(z(t), t)-3 >-_ V(z(t), t)(1- Cl).

Now Ax By gives, for any _->

Ix(t)l-lx(t)l<-Ix(t)-x(t)l<= Im()x()-n()y(,)l d

=< (1 + 1)(,/-/,d-)lz(t)l(t- t)
since we have assumed IA (r)l--< and IB(r)l--< for all r.

If we let t2 t + c2, then we see that

Ix(t)[ Ix(tg[- 2(t2- t)(4-/)[z(t)[

(/(1 Cl)/V)4V(z(t), t)- 2c2(/V)lz(t)
_-> (,/(1 cO/Vc-),/V(z(t), t)- 2c(///4a)(/V(z(t), t)/x/)

>- ,/ V(z(t’2), t)(/(1-c,)lV-2c2VC-la)
for all t 6 [t, t2]. Then

V(z(t;), t;)- V(z(t2), t2)= Q(z(r), r) dr

2a Ix(r)l2 dr

>- 2a "c2" V(z(t), t) ([’(--l//r --2C24/0)2.

Thus V(z(t2), t2) -< V(z(t), t)" y, and we are done.
Proof of the lemma. Let 6 >0. By the comments after the statement of

Sublemma 1 and by Sublemma 2, the assumption for some solution z(t) that
ly(t)l--> implies that there is an e > 0 such that Ix(t)l is repeatedly both less than
e/2 and greater than e. Now this eventually leads to a contradiction with
Sublemma 1, when we let ea=lz(ta)l and e2--e/2. Since all these results are
uniform, we conclude that ly(t)l<_-6 repeatedly (uniformly). This yields the
lemma.

Proof ofSublemma 1. This is immediate from the relation (Z(z, t)<= -2axx.
We can choose n(el, 2)-- e/2ae.
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ProofofSublemma 2. 1. By hypothesis, we have To, Co, and 6o given, obeying
the condition in the statement of Theorem 2. Let z(t) be a solution with initial
condition [Z(tl)[<=el. Suppose that [y(t)=>6 for all t[tl, tl+T] where T
T0+6o.

2. Now 2 Ax By implies, for any t => tl, that
t+6

x(t+6o)=X(t)+ a(r)x(r)-B(r)y(r) dr,

which gives

Ix(t/ o)l B(r)Ty d.l
t+$

.x(t) + A (r)x (r) dr.

We shall see below that we can make the second term arbitrarily small and the first
term relatively large by appropriate choices of t and e. This will prove the result.

3. We have (r)= B(r)P(r)x(r). Thus, "when x is small, y is flat." More
precisely, given T’ and M’ positive constants, there is a 0>0 such that if
z(r) [x(r), y(r)]T is a solution to (2) with Ix(r)[-< 0 for all r e [q, ta + T’], then
lY0")- y(tl)l -< e’ for all - Its, t + TJ.

Let e’ eo6/(28o), M’ e 1, and T’ T To + 80, and fix 0 for these choices.
4. Define e min {8eo/8, 8eo/88o, 0}. We shall now show that the sublemma

holds for this choice of T and e. If [x(t)l _-> e for some t: It1, tl + T], we are done.
Assume Ix(t)l =< e for all t 6 [tl, tl + T]. Then Ix(t)+$+ A(r)x(r) dr =<
e + e 8o -< eo8/4 for any t Its, tl + To]. (We have assumed IA (r)[--< 1 and

1 for all r.)
By hypothesis there is a t’ [ta, ta + To] such that [/t’,/ B(r)Tw dr >= eo where

w =- But

B(r) wly(tl)I- y(r)) dr <= ly(t)-y()l dz
"t’ "t’

Co6 Co8
<--6o

280 2

because Ix( )l e 0 for r e It1, tl + r]. (See part 3 above.) Therefore

implying

Thus

[y(tl)l B(r)rw ds B(r)Ty(r dr
2

I,"+o B(r)TY(r) dz So8 So6
__Eo

2 2

[x(t’+80)l >s8 So8 SoS>
=2 4=4 e.

This completes the proof of Sublemma 2.
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Proof of Theorem 3. 1. For convenience, we define

E=[ A --BT 1 I 0
C 0

and F=
0

Thus (3) is 2 E(t)z.
2. Since 2 E(t)z is u.a.s., we may use Kraskovskii’s theorem (mentioned

before the statement of Theorem 2) to conclude that there is a continuously
ditterentiable bounded positive definite symmetric matrix P(t) such that

+PE+ETp -I.

Thus we have IP(t)l =< ko for some constant ko. By positive definiteness, we have
constants a and fl with

T Tp( zaz z <-__ z t)z <zT

for all z Rn+m and all t _-> 0. We lose no generality assuming IP(t)l--< 1.
3. We now consider the perturbed system

(3’) z" E(t)z + F(t)z.

If w is a unit vector in R m, the Zo(t) [0, w]r is a (constant) solution to (3’). Letting
V(z, t)= z rP(t)z, we have

Q3’ 93 + z T[pF+FTp]z,

implying
T [PF+FTp]zo,z P(t)Zo Z oZo + Z

implying

z oPO’)Zo dr + zzod" 2 z [PO’)F(r)]Zo dr.

This gives

2 wTpo(r)B(r)Twd’=(t-to)+zTP(t)Zo zoP(to)Zo,

where Po is a submatrix of P. Thus

(6) i WTpo(r)B(r)Tw dr >=1/2(t-to)-

for all >_-- to >_- 0.
4. We now apply Lemma 2 to (6) above. (Lemma 2 is stated and proved

following this proof.) We conclude that there are positive constants 61, e 1, and T1
such that if tl O, then there is t2 E It1, tl + T1] such that

wrPo(r)B(z)rw d’r

for all 6 with O< 6 =< (1.
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5. Now ko implies that

IP(r)- P(t)I--< kolz
for any r -> t2 -> 0. Thus

[WTpo(z)B T(z)W wrPo(t2)B T(r)w] dz
t2

Therefore
t2+8

wPo(r)B(r)w dr

t2+t k0 2<= IPo(r) Po(t) dr <-_ 6

Now, choosing t It1, tl d- T1] as in part 4 above, we have

t2+ ko 2B(r)w dr >-e16-- 6 for all 6 with 0<6 <1.

Thus it is clear that there is a 6o with 6a _-> o > 0 such that

Clearly o does not depend on the choice of w. Letting To T, oo, and
eo eo-ko/2 we are done.

LEMMA 2. Let: [0, ) R be piecewise continuous and bounded. Assume
there are constants a > 0 and b > 0 such that

() d e a(t- to)- b

or all t to 0.
en there are positive constants , e, and T such that iq O, then there is

t [q, t + T] such that

f(r) dr e 16
q2

for all a with 0 a al.
Proof. Define a 2b/a, el a/8, and T1 2b/a. We have
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for any tl -> 0. Suppose that
t2+

f(r) dr -<_8" el
"t2

for each /2E [/1, tl + TI]. Then we may choose tl <t2 <’" tn+l--tl + T1 sub-
dividing [tl, tl + T1] with tk--tk-1 =8 except that 0< t,+l-tn -<6. Note then that
we have T1/6 -< n + 1 _-< (T1 + 6)/6 and 6 _-< T. Thus

tl+T1
f(r) dr <-

lrn+l

f(r) dr <= E 6"el

(T1 +6) b
--n .6. EI.6.E16 ---This being a contradiction, we are done.

Proofofthe proposition. 1. As in the proof of Theorem 2, we have a Lyapunov
function V(x, y, t) with (Z(x, y, t) <- -alxl for some a >0. It follows that if
(x(t), y(t)) is a solution, then

f0 Ix(m)l dr

This immediately implies that if (x(t), y(t)) is a solution, then there is a constant
vector w E R" such that (x(t), y(t)) - (0, w) as t - oo. (Compare LaSalle [3, Thm.
D].)

2. Now Ax Bry implies that

X(t+6o)--X(t)=t+
t+8

A (r)x(r) d- Br(r)y(r) dr

for any t. It follows that

Br(r)y(r) dr -0
"t

Since y(r)-+ w as r-+ oo, this yields

t+Br(r)wdr

as

-0 as t-oo.

If w # 0, this would contradict our hypothesis. This completes the proof of the
proposition.
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REFERENCES

[1] B. ANDERSON, Multivariable adaptive identification, preprint, Dept. of Electrical Engineering,
Univ. of Newcastle, New South Wales, 2368, Australia, 1974.

[2] A. HALANAY, Differential Equations, Academic Press, New York 1966.
[3] J. P. LASALLE, Stability theory for ordinary differential equations, J. Differential Equations, 4

(1968), pp. 57-65.



176 A. P. MORGAN AND K. S. NARENDRA

[4] A. P. MORGAN AND K. S. NARENDRA, On the uniform asymptotic stability o] certain
nonautonomous linear differential equations, this Journal, 15 (1977), pp. 5-24.

[5] K. S. NARENDRA AND P. KUDVA, Stable adaptive schemesfor system identification and control,
Parts I and II, IEEE Trans. Systems, Man, and Cybernetics, SMC-4 (1974), pp. 542-560.

[6] K. S. NARENDRA AND J. TAYLOR, Frequency Domain Criteria for Absolute Stability, Academic
Press, New York, 1973.

[7] J. S. C. YUAN AND W. M. WONHAM, Asymptotic identification using stability criteria. Part I:
Probing signal description, Control Systems Rep. 7422, Univ. of Toronto, Toronto, Canada,
1974.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 15, No. 1, January 1977

A "SIMPLEST POSSIBLE" PROPERTY OF THE
GENERALIZED ROUTH-HURWITZ CONDITIONS*

B. D. O. ANDERSON’[" AND E. I. JURY$

Abstract. To decide whether a prescribed complex polynomial has all its zeros with negative real
parts, there are available many tests involving the checking of rational or polynomial inequalities in the
coefficients. It is shown that the generalized Routh-Hurwitz conditions are from a certain point of view
not replaceable by simpler conditions.

1. Introduction. The problem of deciding when a prescribed polynomial with
real or complex coefficients is such that all its zeros have negative real parts has
been studied in the early work of Hermite 1], if not earlier by Cauchy, who was
interested in stating procedures for counting the number of roots of a polynomial
in a half plane. Of course, much has been done since that time, and the majority of
known results are collected in [2], [3] and [4].

Let x be a real vector whose entries are the coefficients of a real polynomial,
or the real and imaginary parts of a complex polynomial. Most results are of the
following form" a prescribed polynomial has all zeros with negative real parts (in
brief, is Hurwitz) if and only if pj(x) > 0, j 1, 2,. , J, where the pj(. are either
polynomial or rational in the components of x. For example, the Hermite test 1],
generalized Routh-Hurwitz ,test [2] and Schwarz test [5] associated with a
complex polynomial are all of this type.

Two comments on these stability conditions are relevant. First, it is possible
to conceive a minor extension of this type of condition, which we illustrate by
example. In lieu of the quantities p(x), consider the quantities (Xl-X2)2pl(x),
p2(x),"’,pj(x). These have the property that they are nonnegative for all
Hurwitz polynomials, and positive for almost all; with a suitable topology in the
space of vectors x, a polynomial has the property that almost all polynomials in a
small neighborhood of it satisfy the strict inequalities, and conversely if for almost
all polynomials in a small neighborhood of a prescribed polynomial the
inequalities hold strictly, the prescribed polynomial must be Hurwitz.

Stability conditions allowing this restricted nonnegativity replacement of
pure positivity will be called "restricted nonnegativity" conditions, in contrast to
the "pure positivity" condition of the second paragraph of the section. Of course,
a "pure positivity" condition is a special "restricted nonnegativity" condition.

The second comment on the type of conditions considered is that one can
replace rational conditions by polynomial ones: if pl(x)= ql(x)/rl(x), with ql, rl
relatively prime polynomials in the components of x, then pl > 0 if and only if
qlrl > 0. Any results applicable to the class of stability conditions involving only
polynomials then, in fact, apply to stability conditions involving rational functions.

* Received by the editors February 26, 1976. This research was sponsored by the Joint" Services
Electronics Program Contract F44620-71-C-0087 to the University of California, Berkeley, and the
Australian Research Grants Committee.

? Department of Electrical Engineering, University of .Newcastle, New South Wales 2308,
Australia.

: Department of Electrical Engineering and the Electronics Research Laboratory, University of
California, Berkeley, California 94720.
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In this paper, we examine the class of stability conditions involving polyno-
mials, including conditions of the "restricted nonnegativity" type. Our main result
is that the generalized Routh-Hurwitz conditions are the simplest set of condi-
tions for a complex polynomial to be Hurwitz, in two respects: no other set has
fewer inequalities, and no other set is such that the sum of the degrees of the
inequalities is lower than the sum of the degrees of the Routh-Hurwitz ine-
qualities.

In 2 we review the statement of the generalized Routh-Hurwitz condition,
and in 3 we establish that one at least of the Routh-Hurwitz inequalities is, in a
certain sense, contained in an arbitrary set of polynomials defining a stability
condition. Section 4 is devoted to proving the main result, and 5 contains
concluding remarks.

2. Generalized Routh-Hurwitz conditions. Let f(z) be an nth degree
polynomial with complex coefficients and with

(1) f(jZ)--- boZn - biZn-1 - -- b +j(aoz" + alZn-1 + + an).

The ai, bj are real.
Define the 2n x 2n matrix

ao al a2n-1-

bo bl b:zn-1
0 ao al a2n-2

0 bo bl

where am, bm 0 for m > n. Let A1, A2,"" ", An denote the leading principal
minors of H of dimension 2, 4,. , 2n. Then it is known [2], [3], [4] that f(z) has
all its zeros inside Re[z] < 0 if and only if A1 > 0, A2 > 0,. , An > 0.

We remark that An is readily recognized as the resultant [6], [7] of the two
polynomials A(z) aoz" q- alZn-l-t- q- an and B(z)--- boZn d- blZn-ld-

+bn. In the sequel, we shall use two important properties of the resultant.
First, viewed as a multivariable polynomial in ao, a1,-’-, an, bo,’", bn, it is
prime; see [6, p. 87]. Second, when the coefficients of A (z), B(z) take particular
numerical values with ao, bo not both zero, the value taken by An is zero if and only
if A(z) and B(z) have a nontrivial common factor. If An_ #0, the greatest
common divisor of the two polynomials is of degree 1; if An-1 0, An-2 # 0, it is of
degree 2, and so on [7, p. 150].

If the two polynomials have a greatest common divisor of degree 1, it is of the
form z +o30 for a3o real. It follows then that f(fz) is zero when z =-a30, i.e.
-jaS0 is a zero of f(z). Conversely, if -jth0 is a zero of f(z), z + aSo is a common
factor of A (z) and B(z) and An 0.
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3. A preliminary result. Notational convention to be used in this and the next
section is as follows. The symbol x will be shorthand for the (2n + 2)-vector
(a0, al,. , an, bo," , bn). An overbar on a coefficient or vector of coefficients
will denote a particular value of that coefficient or vector; the symbol f, sometimes
with superscripts or subscripts, will denote a polynomial in z with indeterminate
coefficients, and when an overbar is used, a polynomial in z with coefficients
taking particular values. Unfortunately at times we have to be slightly flexible in
the use of this latter convention.

Let qk (X) for k 1, 2, , K be a set of real multivariable polynomials with
the following properties. If qk () > 0 for all k, then Aj (aT) > 0 for j 1, 2, , n; if
Aj() > 0 for all j, then qk () -> 0 for all k, and for almost all x in-a suitably small
neighborhood of , qk(X)>0. Evidently the qk provide a set of polynomials
constituting a tool for checking the Hurwitz character of a prescribed polynomial.

The main result of this section is as follows.
PROPOSITION 1. With qk(" as described above, A,(x) divides HkL1 qk(X) in

g[x].
The proof will proceed with the aid of several lemmas. The overall strategy is

to show first that if : is such that A($)>0 for i_--<n-1 and An(S)=0, then
1-I q(:)= 0. Then we show that for any $ such that An(S)= 0, we must have
I-I qk ($) 0. The proposition is then a consequence of the fact that An (x) is prime.

LEMMA 1. Letf(z =(z)(z +jto0) where too is a real indeterminate, andS(z) is
an (n 1)-st degree polynomial with indeterminate (complex) coefficients. Let, 7
refer to the coefficients and generalized Hurwitz determinants associated with
Then

i<=n-1,

Proof. That An (x) 0 was pointed out at the end of the previous section. To
establish that Ai(x)=Zi(1) observe that with ]’^(]z) boz ,,-1+. + b,,-l^ +
](ozn-l+’’" + n-,), one has

f(Jz) --[0zn -’" (1 q’- 0W0)zn-l’]" q" (n-1 "]" n--20)0)Z +’n-l-O0]
+][90zn + (/1 + b%OOo)Z n-1 +’’" + (6%-1 + b2-2eOo)Z +/n-I(-D0]

Then

n--lO)O 0

-d.-xOo 0
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The result follows by subtracting tOo times the first column from the second, tOo
times the second column from the third, and so on, and then interchanging the first
and second rows, third and fourth rows, and so on. [-]

The prime use of Lemma 1 is simply to establish Lemma 2, which brings us to
the first major step in proving Proposition 1.

LEMMA 2. Let be such that An()= 0 and A()>0 for i<-n- 1. Then
l-Iq () 0.

Proof. By the_ remarks at the end of 2, A,() 0 and_A_() # 0 imply that
the polynomial f(z) with coefficients can be written as f(z)=f(z)(z +jdo) for
some real o and some (n-1)st degree polynomial f(z). Since A()>0_ for
i<=n-1, by Lemma 1 it follows that f(z) is Hurwitz. Set f,,(z)=
f(z)(z + m- +jdo) for m 1, 2,. .. Then, as m and so qk(Ym) qk()
as m o. Becausef is Hurwitz, 0 =< qk (,), SO that 0 =< qg (). If 17[ qk () O, then
qk () > 0, contradicting the non-Hurwitz nature of f. Therefore H qk () O. ]

Our next goal is to show that A() 0 implies [Iqk () 0, irrespective of the
signs of A() for i<--n-1. To do this we shall make use of some algebraic
geometry ideas; we also make crucial appeal to the primeness of A(x).

LEMMA 3. Let9be the set ofmultivariable polynomials s in x such thatany
for which An ()= O and Ai( > 0 for <--n- 1 causes s()= O. Then 9 is an

ideal in R Ix].
The proof is a trivial application of the definition of an ideal [6]. Note that

[-[qk (") by Lemma 2 and An (’) by definition lie in 9.
Recall also that any polynomial ideal has a finite basis [7, p. 142]. Let this

basis be gl(" )," , gr(" ). Associated with the ideal 9 is a variety S, which is the
set of x for which gi (x) 0, 1, , r. Any variety may be decomposed as the
union of a finite number of irreducible varieties [8, p. 9]; thus S $1 (.J [A St.
Each Si is of a certain dimension d; the tangent space at any x on S has
dimension --<di, and for almost all xi has dimension di [8, pp. 84-88].

We may define a second variety V as simply the zero set of An (.). Because
An is prime, V is irreducible and of dimension 2n + 1, since x is a (2n + 2)-vector
[8, p. 25].

LEMMA 4. With varieties S and Vas defined above, S V.
Proof. Choose an for which An () 0 and Ag() > 0 for =< n 1. It is clear

that a neighborhood around will intersect An (x)- 0 in a (2n + 1)-dimensional
submanifold; the continuity of the Ai(x) with x ensures that if the neighborhood is
sufficiently small, Ag > 0 on the submanifold. By Lemma 3, any s St is zero on this
submanifold, and so, by the definition of S, the points of the submanifold lie on S.
Hence there exist points on S with a tangent space of dimension 2n + 1. There-
fore, in the decomposition of S into irreducible varieties, at least one variety, say
$1, has dimension 2n + 1.

Now because An S, we have An(x) ai(x)g(x) for all x and accordingly,
x S implies x V, i.e., S c V. Hence $1 c V. Since $1 and V have the same
dimension and are both irreducible as noted above, it follows (see [8, p. 23]), that
S V. Hence S V.

The results in [8] which we appeal to, though generally stated for projective varieties, all extend
to affine varieties by standard devices as outlined particularly well in [9].
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The proof of the proposition is now almost immediate. As noted following
Lemma 3, 1-[ qk lies in S, i.e., I-[ qk vanishes on S. Since S V, this means that
I-I qk () 0 whenever An () 0. Because An is prime, An divides I-[ qk.

4. Minimality of the generalized Routh-Hurwitz conditions. Associated
with an n th degree complex polynomial there are n generalized Routh-Hurwitz
conditions of degree 2, 4, , 2n in the coefficients of the polynomial. The sum of
these degrees is n (n + 1). Our aim in this section is to show that it is not possible to
reduce these numbers of n and n (n + 1) by working with some alternative set of
polynomial inequalities. In case n 1, the claim is immediate. To establish the
result for arbitrary n, we shall proceed by induction.

Before stating and proving the main results, we make some preliminary
remarks and definitions. With notation as in the previous section, define polyno-
mials Pk (x) by qk (x) JAn (x)]kp (x) where the integer ck is maximal. By Proposi-
tion 1 and the primeness of An (x), at least one of the qk (x) is divisible by An (-),
and so at least one c is positive.

Now suppose thatf(z is of the form/(z)(z /Oo) where(z) is of degree n 1
with indeterminate coefficients collected in a real 2n-vector ;, and Oo is a real
indeterminate. Then x is defined by g and Oo, and An(;, Oo) 0. However,
p (;, Oo) cannot be the zero polynomiall for otherwise arguments along the lines
of the last section would imply thatp (-) is divisible by An (-). Select 030 such that
P (g, 030) is not identically zero, and define/ (:) p (, 030). The definitions of 030,
p and/Sk will be used in the proofs of Theorem 1 and 2 below.

THEOREM 1. Let f(]z) be the n-th degree polynomial given in (1), and let
x (ao, al," , an, bo," , bn). Suppose that q(. ), k 1, r2, ", K, are real
polynomials such that qk(g) > 0 for all k implies f is Hurwitz, and such that f
Hurwitz implies q() >- 0 and q (x) > 0 for all k and almost all x in a suciently
small neighborhood ofg. Then [qk] => n(n + 1). Here, [qk] denotes the degree of
q(" ).

To prove the result, we shall proceed via a sequence of intermediate lemmas,
beginning with the following extension of Lemma 1.

LEMMA 5. Letf,,(z)=(z)(z :l:m
-1 +j030) where m 1, 2,..-, andf(z) is

an (n 1)-st degree complex polynomial with indeterminate coefficients. Letf(z
lim.,+oo f+m (Z ), and letx, X+m, 2, A, etc., be obviously defined. Suppose thatforsome
specialization of 2, () O, <- n 1. Then for suitably large m, An (2+m) and
An (g-m) have oppflsite signs.

Proof. Since A,_(]) 0, ](z) has no pure imaginary zeros. Therefore
has no pure imaginary zeros and the number of right half plane zeros is given by
the variations in sign in the. sequence 1, Al(3+m) n(+m)’ see [2, p. 249]. By
Lemma 1 and continuity, for m sufficiently l_arge and -< n 1, A(2:m) approxi-
mates and therefore has the same sign as h(2) h(2). Accordingly, since f_,, (z)
has one more zero in Re[z]>0 than f+m(Z), h,(;+,n) and h,(2_m) must have
different signs. I-1

We remark that, strictly, the above proof does not use the fact that &(2) 0
for <n-1, since procedures are available for modifying the variations in
sign formula to cope with the vanishing of intermediate Hurwitz determinants
[2].
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LEMMA 6. Letf(z (z)(z +fio) and let the polynomial_k() be definedfrom
qk (X) as described earlier. Then iff is Hurwitz, k() >---- 0 for k 1, 2,. , K with
strict inequality ]:or almost all sufficiently close to . Conversely, ifk( > O, ]’ is
Hurwitz.

Proo[. Suppose ]’ is Hurwitz. Then fm(Z)=(Z)(Z +m-l+flb0) is Hurwitz,
implying qk (2m) > 0 for k 1, 2,. , K and A, (2m) > 0. Therefore Pk (2m) > 0 for
k 1, 2," , K. Letting rn - oo yields/k () Pk (, th0) _--> 0 for k 1, 2,. , K.
Since no/k (") is identically zero, we must have strict inequality for almost all
sufficiently close to .

Conversely, suppose/k () > 0 for k 1, 2,- , K. Then for sufficiently large
m, Pk (-fro) > 0. If An(,) > 0, then qk (m) > 0 for k 1, 2,. , K, imply-
ing f,, and therefore f are Hurwitz. It remains therefore to rule out the pos-
sibilities that An (2m) < 0 or An (2,,) 0. Assuming the former, we see from Lemma
5 that An (2_,,) > 0 while also Pk (2-m) > 0 for m sufficiently large. Then qk.J2-m >
0 for k 1, 2,---, K, which contradicts the non-Hurwitz character of f_,, (z)=

-’-m +]o).If A(2m)=O, thenAn_()=O. However, foralmostall2ina
neighborhood of 2, we still have/ (2) >0 while An_(2) 0 and thus An(Xm) O.
Then f is Hurwitz, and it follows easily that f must be Hurwitz. [-1

Lemma 6 and the earlier definitions show how to pass from a set of stability
conditions for n th degree complex polynomials to a set for (n- 1)st degree
complex polynomials. This is the key to establishing Theorem 1.

Proof of Theorem 1. By the induction hypothesis, ,,kS[fik(.)](n--1)rl.
NOW it is easily established that Y’,k 6[pk(X)]=, 6k()] from the definitions,
while also Y’,k ,5[qk(X)]= Y’,k ak 6[A,(X)]+Yk 8[pk(X)]. Since ak >--0 with at least
one ak positive and 6[An(x)]=2n, this gives k6[qk(x)]>=2n+(n-1)n
(n + 1)n. This completes the induction.

The second main result relates to the number of inequalities.
THEOREM 2. With the same hypothesis as Theorem 1, K >-_ n.
The proof will again proceed via a number of lemmas.
LEMMA 7. With the integer ak as defined earlier, at least one ak is odd for

some k.
Proof. Let f-_m(Z)=T(z)(z-m -1 +ja30), with f(z) Hurwitz and such that

/k (-) > 0 for all k. Then since lim,,_o Pk (-,) k (-), for sufficiently large m,

Pk (2-m) > 0 for all k, while also An (2-,,) 0. If the ak are all even, this implies that
qk (-m)> 0 for all k, a contradiction of the fact that f-m (Z) is not Hurwitz.

LEMMA 8. With the qk reordered so that a 1, , cts are odd and as/l, , ak
are even and possibly zero,

{qk(X)>O for k 1, 2,. .,K}- {Anpl >0, pip2 >0, , PiPs >0, Ps+ >0," PK

Proof. Both inequality sets are clearly equivalent to Anpl>0," .., Anps >
0, Ps+ >0,. , PK >0.

Now suppose that the /k() are as defined earlier. Also define 1()
,()(), ", 4-,()= Pl()t(), 4s()= p’s+,(), ", 4,,-1() ,,().

LEMMA 9. Letf(z) (z)(z +]ffo), with the k (2) defined as above. Then if]-is
Hurwitz, (-)>= 0 for k 1, 2,..., K-1 with strict inequality/:oralmost all
sufficiently close to. Conversely, if ( > O,/’or k 1, 2,. , K 1,fis Hurwitz.
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Proof. Suppose f is Hurwitz. Then fm(Z) f(Z)(Z + m- +]a30) is Hurwitz.
Using Lemma 8, we see this implies that Pl(,m)P2(m) >0," , Pl(m)Ps(m) >0,
Ps/l(m) > 0," ", Pr(,) > 0. Letting rn --> oo and using the definition of the 4k ()
establishes that k()=> 0. Since no /k() is identically zero, no 4k() can be;
therefore strict inequality holds for almost all sufficiently close to .

Conversely, let k()>0. For suitably large m, pl(+m)P2(+m)>
0," ", Pl(,+m)Ps(.+/-m) >0, ps+(,+/-m) >0," ", pK(,+/-m) >0. Assume temporar-
ily that/1(]),,,-1(:) is not zero. fir s > 1,/1(]) is guaranteed to be nonzero, since
04()=/()p().] Then PI(::,,,) have the same sign and, by Lemma 5,
A($:m) have opposite signs. Therefore A,(:+/-,)p($+/-,) have opposite signs. If
A,, ($-m )P ($-,,, > 0, this, in conjunction with the inequalities Pl(+m)PE($+/-m) O,
etc., implies by Lemma 8 that f_, is Hurwitz, which is impossible. Therefore
A,, ($,,)P1($,)> 0 and using Lemma 8, f+,,, is seen to be Hurwitz. Therefore f is
Hurwitz.

It remains to consider the case where one or both of/1() and A,,_x() are
zero. For almost all : in a sufficiently small.neighborhood of x,/l(X)A,_() must
be nonzero while 4k()>0._ Therefore f is Hurwitz by the argument of the
preceding paragraph. Then f must be Hurwitz.

It is now easy to complete the proof of Theorem 2. Applying the induction
hypothesis to the inequality set k() > 0 associated with/ yields K- 1 _-> n 1.
Therefore K _-> n, as required.

We remark that there seems no direct way of combining the proofs of
Theorems 1 and 2. Both theorems are proved by deriving from an inequality set
associated with an nth degree polynomial a second set associated with an (n 1)st
degree polynomial. The second set differs between the two theorems, as that set
appropriate for proving the degree property is inappropriate for proving the
number-of-inequalities property, and vice versa.

5. Condusions and remarks. We have shown that the generalized
Routh-Hurwitz conditions are the simplest set of polynomial inequalities defining
the Hurwitz property of a complex polynomial, in the sense that no other set can
contain fewer inequalities nor have a "total" degree smaller than that of the
generalized Routh-Hurwitz conditions.

The question of what are the simplest set of polynomial inequalities defining
the Hurwitz property of a real polynomial has not been tackled. Though the set of
all real polynomials is obtainable by specializing certain coefficients in (1) to be
zero, it does not of course follow that by making corresponding specializations in
thee generalized Routh-Hurwitz conditions, one obtains a set of "simplest possi-
ble" inequalities for real Hurwitz polynomials. Indeed this is demonstrably not
the case, because this procedure recovers the standard Hurwitz test, and the
Li6nard-Chipart test is certainly simpler in terms of degree [2]. Work by the
authors has come close to establishing that the Li6nard-Chipart criteria are the
simplest set of conditions for real polynomials to be Hurwitz, as might be
expected; a full proof however is still lacking.

The same sort of results as those obtained in this paper appear to follow for
"unit-circle" stability. More precisely, the Schur-Cohn inequalities as set out in
[4; see pp. 28, 29] would appear to be the simplest possible in the two senses dealt
with above.
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A GENERAL THEORY OF OBSERVATION AND CONTROL*

SZYMON DOLECKVf AND DAVID L. RUSSELLt

Abstract. This report explores the duality relationships between observation and control in an
abstract Banach space setting. Preservation of observability and controllability in the presence of
certain perturbations is studied in the context of differential equations in Banach space. Some
attention is also given to the problem of optimal reconstruction of system states from observations.

1. Introduction. The duality relationship between observation and control
has been recognized in the literature for at least two decades and, in one form or
another, probably goes back much further, In the optimal control literature, which
is much too extensive to reference here, the maximum principle characterizes the
optimal control, by its relationship to a functional of, or observation on, solutions
of an adjoint system. This duality relationship is, of course, closely related to the
duality results familiar to students of linear and nonlinear programming. It is not
this theory which we treat in this paper but rather those duality relationships
which relate controllability of a system to the observability of an adjoint system.
This theory is just an adaptation of the theorems of functional analysis which
relate the range of an operator to the null space of the adjoint operator. It is
inevitable therefore that much of this material should already be available in the
general mathematical literature if one has the patience to seek it out. It appears to
the authors, however, that the precise outlines of this theory as it applies to various
types of control processes are not generally appreciated. For example, the
controllability theory of parabolic partial differential equations has been
developed [11], [14], [15], [25], [26] simultaneously with the completely equival-
ent theory of state observation of such processes [7], [8], [27], [28], [30], [31],
[38], [39]. It is very likely that this duplication has occurred in many other
situations and will occur again, for example, .in connection with control and
observation theories for delay-differential systems [2], [3], which are only now
being vigorously developed. For this reason and others, we present here a duality
theory of wide applicability which summarizes known results of functional
analysis in the context of control and observation theories and extends those
results in directions indicated by applications of those theories.

The outlines of this duality theory have already been given by the first author
in [9], a preliminary version of this paper.

In the present article X, Y and Z stand for Banach spaces of general type. If
A is an operator defined on a subspace of one of these spaces its domain will be
denoted by (A). Its range, also in such a space, is denoted by(A) and its kernel
is signified by ker (A).
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under Contract NR 041-404 and in part by the United States Army under Contracts DA-31-124-
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We are primarily concerned with an abstract linear system

(1.1)

C
X(C) Y

where C: X--> Y is linear with dense domain (C) and F: X-->Z is linear and
bounded. We shall also give particular consideration to the system

c
(1.2) X @(C) -Y,

a specialization of (1.1) obtained by taking F to be the identity operator on X.
Structures of this sort have been studied in [30] and [31].

Along with (1.1) and (1.2) we consider two types of dual systems. The first
type is

(1.3)

C*
X* (C*) Y*

Z*,

or, when F is the identity on X,

C*
(1.4) X* (C*) c y*,

obtained by letting X*, Y*, Z* denote the conjugate spaces of X, Y and Z,
respectively, and by taking C*, F* to be the adjoint operators for C and F. (These
are, of course, defined in the Hilbert space sense if X, Y, Z are Hilbert spaces.)
The second type is obtained by letting II" IIv be the pseudo-norm on X (norm on
XF X/ker (F)) defined by

(We remark that this is the weakest topology on X for which F remains
continuous.) We then introduceXF, the space of linear functionals onXwhich are
continuous with respect to I1" and consider the F-dual system

C
(1.5) XF.: (CF) C Y*.

Here the superscript F denotes conjugate spaces and adjoint operators with
respect to the pseudo-norm I1" I1 . Thus F) consists of precisely those g Y*
for which the linear functional f defined on @(C) by

f(x) g(Cx), x

is continuous with respect to I1" (and hence defines, without ambiguity, a
continuous linear functional f on XF), and for such g we have

:f.
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It is important that we should relate these abstract systems to observation and
control systems in the usually understood sense. Consider, therefore, the follow-
ing example.

Let S(t) be a strongly continuous semigroup of bounded operators defined on
a reflexive Banach space W for t -> 0 and let S(t)* denote the adjoint semigroup,
also strongly continuous. For w0 6 W we define w(. ) [0, T; W] by

(1.6) w(t)=S(t)Wo

and call it the trajectory of Wo. For such a trajectory w(. we construct an
observation

(1.7) w(.)=Hw(.)=HS(.)Wo[0, T;V]LP[0, T;V], 1

Here V is reflexive and H: W V is the observing operator. The operator H may
be continuous or, as in the case of boundary observation on solutions of partial
differential equations, may be defined only on a dense subspace D

_
W which is

invariant under the action of the semigroup S(t). In either event the observation
operator C: D LP[O, T; V] is defined by

(1.8) Cwo=HS( )Wo, Wo D.

It may occur that C extends continuously to all of Weven though HS(. does not.
As already implied, it is convenient to regard c[0, T; V] as being embedded

in the Banach spaces LP[O, T; V], 1 <p < oo, with norm

(1.9) Ilv(" )llt0,;-- IIv (t)ll d

The dual space for LP[0, T; V] is just Lq[0, T; V*] where 1/p + 1/q 1, and the
adjoint of C is the operator

defined by

C*: Lq[0, T; V*] W*

t)(C*h)wo S(t)*H*h(t) d Wo

( S(T- t)*H*f(t) d Wo (h(t) =f(T- t))

with (C*) consisting of those h L2[0, T, V*] such that (fS(t)*H*h(t)dt)wo
defines a continuous linear functional on W.

In this setting C* may be regarded as a control operator yielding the final
state Yt(T) for the trajectory Yt(" obtained by the action of the control function f
in the system

(1.10) yt(t) S(t-s)*H*](s) ds, >=0.
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In many such instances the operator F: X- Z, appearing in (1.1), will be the
"final state" operator

(1.11) F: W- W, Fwo =$(T)wo, Wo W.

The (final state) observation problem consists of the question as to whether or not
IlFwoll -llS(T)woll is bounded relative to Ilfw011-, where Y=LP[O, T; V].
When this is true there arises the possibility of the existence of a reconstruction
operator G: Y- W such that

(1.12) F=GC,

i.e.,

(1.13) S(T)w0 G(HS(. )Wo),

which amounts to continuous constructibility of the final state from the observa-
tions HS(. )Wo LP[O, T; V]. The adjoint (control) problem relates to the possi-
ble solution of the equation

(1.14) F’y0 + C*h 0

for each Yo W* (i.e. 9 (F*) (C*)), or

(1.15) S(T)*y0 / s(r-t)*H*f(t) dt=O,

which amounts to finding f Lq[0, T; V*] steering the initial state

y(O) yo

to the final state

y (T)=0
with y(t), 0 _-< t =< T, being given by (1.10).

For

F S(O)= L FWo Wo

one has the problem of initial state observation: the question as to whether or not

Ilwoll is bounded relative to Ilfwoll. This very special case is distinguished from
the general case (F a bounded operator) in Definition 1.1 below. The case F I
(initial state observation) relates to what we shall call observability while the more
general case is called F-observability.

We shall frequently return to examples of this sort in the sequel. For the
moment we trust that this example has served to motivate the following definitions
applying to the general systems (1.1)-(1.5).

DEFINITION 1.1. The system (1.1) is (continuously) F-observable if there is a
constant K >- 0 such that

Ilxll -IIFxllz <- KIICxllY, x

The system (1.2) (or, alternatively, (1.1) with Fequal to the identity) is observable if
(1.16) Ilxllx <- KIIfxll , x
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The system (1.1) is F-constructible ifthere is a bounded operator G" Y Zsuch that

F= GC.

DEIINITION 1.2. Let F be a subspace ofX*. The system (1.3) is F controllable

F___ (C*).

We shall say that (1.3) is F*-controllable if
(F*)

_
(c*)

and (1.4) (or (1.3) with F* equal to the identity) is (exactly) controllable if
X* c_ (C*).

The system (1.5) is (exactly) controllable if
x

_
(c).

Without giving a formal definition, we would remark that the system (1.3)
could be thought of as possessing an F*-(open loop) synthesis when there is an
operator K: Z* Y* such that

F* + C*K O.

In the context of the system (1.10), the operator K applied to an element Y0 W*
would produce a function h H’y0 such that the control f(t) h(T- t) steers Y0
to zero at time T. In practice H* would often reduce to a (time varying) linear
feedback relationship. This concept of (open loop) synthesis will be seen to be the
natural dual of F-constructibility.

Controllability as defined in Definition 1.2 has been referred to in the
literature 11], [ 12], [ 17], [35], [36] as exact controllability. The term approximate
controllability, a much weaker concept which means

(C*) X*,

has been studied in [11], [12], [23], [33], [34]. The term distinguishability is used
for the relationship

ker (C) 0.

All of these notions correspond to varying degrees of solvability of equations or
well-posedness of certain linear operations, reformulated in the language approp-
riate to observation and control [20], [29], [32], [33], [34].

We have used the spaces X*, Y*, Z* in Definition 1.2 to facilitate exposition
of the duality relationships between observation and control. It is clear, however,
that this definition can also be used in connection with spaces 2, I7, 2 which are
not necessarily conjugate spaces of any other Banach spaces X, Y, Z. Definition
1.1 would then be of interest in connection with J*, I7* and ,,*.

It may possibly be questioned whether there is any real need for the notion of
F-observability, since (with F bounded) it is always implied if the process is
observable (cf. 1.16)). The following theorem shows that observability must be
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considered a relatively rare property (and, as a consequence, that the weaker
notion of F-observability plays a useful role).

THEORZM 1.3. We consider the observed system (1.6), (1.7) with S(t) a
strongly continuous semigroup ofbounded operatorsfor t > 0 and Hbounded. If we
have initial state observability for some time T> O, i.e.,

(1.17) KIIHS(" )woll"tO,T;V>--Ilwoll, Wo w,
for some p, 1 <-p < c, and if]or each <-_0 the range o]S(t) is dense in W, then S(t)
can be extended to a strongly continuous group ofbounded operators on -c< < c.

Remark. Clearly the condition (S(t)) w can be replaced by the condition

S*(t)ffo 0ff fro 0 in W*,

which is sometimes easier to verify.
Proofof Theorem 1.3. The strong continuity of S(t) for t _-> 0 together with the

uniform boundedness principle shows that for any finite interval [0, r] there is a
positive number M(r) such that

(1.18) Ils(t)ll<-M(r), /el0, -3.
We clearly have M(r) nondecreasing with increasing r.

Suppose the observability result (1.17) is true and suppose also that for every
real y and every ’o> 0 there is an element Wo Wo(y, Zo)e W, Wo O, such that

(1.19) IIs(o)woll < e-llwoll.
We shall see t.hat these two assumptions are inconsistent.

If (1.19) is true, then for ’o --< -< T,

Ilns(t)woll -Ilns(t- o)S(o)woll,
(1.20)

-< IIHII IIS(t- o)11 e-’llwoll --< IIHIIM(T) e-’llwoll,
where M(T) is defined by (1.18), and for 0 _-< t _-< ro

(1.21) Ilns(t) Woll,,--< IIHIIM(o)llwollw.
Let /-c and ro 0 in a sequence of values Yk, ro,k such that

lim Yk’o,k =--m-
k-

Then it is easy to see from (1.20) and (1.21) that

lim
IlnS(’)Wo,llto,;a_

lim

and initial state observability, (1.17), is contradicted.
Hence, if we have initial state observability, there must be a real number y

and a positive number ’o such that

IIS(o)Woll, ->- e-"llwoll,, Wo W.

Every t-> 0 can be represented as

t k’o + r
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where k is a nonnegative integer and 0 _-< r < r0. Therefore

IIs(t)wollw IIS(o)S()woll

_-> e-olls oll -> e-kvllS(r0)w0llw
(1.22) M(ro)

--,yr

M(r0)

wherein the second inequality follows from

IIS(o)w011 -IIS(o-)s()w011v _-< M(o)llS()Woll.
Thus (1.22) shows

(1.23) IIs (t) Wollw >- e-’llwollw
for some AT/> 0.

From (1.23) it follows that for every >- O, S(t) is boundedly invertible on its
range. Since we have assumed that this range is dense in W, the bounded operator
S(t)-1 has a unique extension to the whole space W and the range of S(t) must be
all of W.

Denoting S-(t) by S(-t) we have defined S(t) for all t, -0o<t < 0o. It is easy
to verify that S(t) is a group..The strong continuity for -_< 0 follows from the fact
that 9(S(-T))= @(S(T))=- W and the identity

S(t+6)y-S(t)y S(t+ T+6)S(-T)y-S(t+ T)S(-T)y

with T taken >ltl and 6 taken sufficiently small. Thus the proof of our theorem is
complete.

Anticipating Theorem 2.1 of the next section we have
COROLLARY 1.4. Let the hypotheses of Theorem 1.2 hold except that (1.17) is

replaced by the controllability condition

{y,(T)lyt(T)= S(T-t)*H*f(t) dt, f eLq[O, T, V*], -+-=1 =W*.
P q

Then the result that S(t) can be extended to a group remains true.
Remark. Here S(t)* is the strongly continuous adjoint semigroup. The result

clearly implies that S(t)* can be extended to a group also.
The condition (S(t))= W in Theorem 1.3 cannot be dispensed with. The

one dimensional hyperbolic system

(1.24) 0--w+ 0---w 0, 0<x <0o, t>-0,
Ot Ox

(1.25) w (0, t) 0, t _-> 0,

with w(x, 0) Lz(0, 0o)(= W) is easily seen to be initial state observable in any
time T> 0 via the observing operator

H=I,
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leading to the observation operator

Cw(x, O) w( ,. L 1(0, T; L2[0, )).
The semigroup corresponding to (1.24), (1.25) is just right translation with zero
values "fed in" at the left-hand endpoint x =0. The range is not dense in Wfor any
> 0 and the semigroup cannot be extended to a group.

2. Duality theorems. We begin this section by stating two theorems relating
observability and controllability (cf. Definitions 1.1, 1.2 with F =/, the identity
operator). These are actually familiar results in functional analysis, relating the
annihilation properties of C to the range of the adjoint operator C*. The relevant
theorems may be found in, e.g., [18] or [20].

THEOREM 2.1. The system i1.1) is observable ifand only if the system (1.3) is
(exactly) controllable.

Proof. A restatement in terms of the operators C and C* appearing in (1.1),
(1.3) is: C: (C)_X- Y has a bounded inverse on (C)_ Y if and only if
(C*) X*. This is precisely Theorem 11.3.11 in [18].

The second theorem is of the same character but it applies in the case where
the observation process takes place in spaces X*; Y* which are dual spaces while
the control process takes place in the original spaces X, Y. For example, a control
system

Ax +Bu

with x L 110, 1] is not covered by Theorem 2.1 because L 110, 1] is not the dual
space of any Banach space. It would be covered by

THEOREM 2.2. Let C1 be closed with

(2.1) C l(C1) .-- ]’ (Cl) dense in

(2.2) C1"" (C1")
_

I7"* --> "*.

Then, applying Definition 1.1 to (2.2) and Definition 1.2 to (2.1) (see remark near
the end of 1) we see that the system (2.1) is (exactly) controllable i]’ and only if
(2.2) is observable.

Proof. The restatement is: I[ C1 is closed then C*I (C)_ r, f(, has a
bounded inverse on (C*I) if and only if (C1)= I7". The proof of the "if" part is
Theorem II.3.13 in [18] (and actually does not require the assumption that C1 is

closed). The proof of the "only if" part is Theorem II.4.3 in [ 18]. (See also [20].)
The principal theoretical result of this section is a generalization of Theorem

2.1 to encompass systems (1.1) and (1.5) and the notions of F-observability and
F*-controllability where F is not necessarily the identity operator. For conveni-
ence we enumerate three propositions"

(a) System (1.1) is F-observable (cf. Definition 1.1).
(b) System (1.5) is (exactly)controllable (c[. Definition 1.2).
(c) System (1.3) is F*-controllable (cf. Definition 1.2).
THEOREM 2.3. The above propositions are equivalent.
Before proving this theorem it will be convenient to establish a certain

lemma. In this lemma/7- refers to the mapping which carries the equivalence class,
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, of x in XF X/ker (F) into the element F(x) Z. (Refer to 1 for definitions of
x, II-I1, etc.)

LEMMA 2.4. We have (cfi (1.5))

(X)* xF=(F*),
where

=F(-),
is an isometry of (XF)* onto XF.

Proof. Since IIllx -II()llz -Ilxll it is clear that -1.9(F)
_
Z-XF and

-IF: X XF have norm 1 with respect to I1" I1 and I1" IIx-Hence is bounded
with norm 1. Now if X (x) has the same value for all x in an equivalence
class and

() (-F(x))= (x)

defines a linear functional on XF. US, (-)* and is onto. Since

I(-1F(x))l I(X)l IIllxllx I1 IIllxllllx
we conclude that - also has norm 1 and is, therefore, an isometry.

Each element of XF is continuous with respect to the F-topology of X and
therefore also with respect to the original topology of X since F is bounded.
Hence XF (F*). But if (F*) we have

F*, e Z*
and

Ix)1 IFx)l IIllz*llxll
and we conclude X Hence X (F*) and the proof is complete.

Proof of eorem 2.3. From the definition of in 1 we see that

(2.3)

To show (b) (c) we assume (cf. Definition 1.2) that ()=X. en Lemma
2.4 with (2.3) gives

so that (C*) (F*) and (c) is established.
To sho (c) (b) we assume () (C*). Lemma 2.4 then gives

x(c*).
Then (2.3) implies

x’ (c*)ox’= (c*)=(c)
and we have (b).

The proof of (c)=), (a) is much the same as the proof of necessity in Theorem
2.1 as it appears in [20]. We suppose that (c) is true, i.e.,

(F*)
_

(C*).
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Then for each s xF(=(F*) from Lemma 2.4) we have, for some rt Y*,

I(x)l I(c*,)(x)l I,(cx)l_-< IIll*llCxll
and thus

(x)’x () llC(x)ll
defines, for C(x) 0, a family of continuous linear functionals on XF satisfying

I,I,()l_-< I1,11., xV(, depending on

The x correspond, as in Lemma 2.4, to continuous linear functionals on XF, and
hence on the Banach space XF and, applying the principle of uniform bounded-
ness, we have, for some K> 0,

[,()[_-< gllll,,
or

(2.4) I(x)l--< KIlll,,llCxll.

Since XF and (XF)* are (from Lemma 2.4) isomorphic, and XF
_
(XF)** and

Ilxll-Ilxll,,-ilxll,,. we conclude from (2.4) that

Ilxll--< KIICxll., C(x) O,

and then, clearly, we have (c)"

Ilxll--< KllCxll., x (c).

The proof that (a) :: (c) proceeds as follows. Given a linear functional : e XF

we proceed to construct a linear functional r/on (C). If y (C) we have

y Cx, x e (C).

Assuming (a), i.e.,

(2.5) IlXllr----<
we see that if y Cx and also y Cx2, then

0 [ICXl Cx2lly >- Ilx x211,,
and hence,

[(X1)- (X2)l IIl[,llXl x21l 0.

We may therefore define r/unambiguously for y (C) by

rt(y) rt(Cx)= (x)

and we have the estimate, using (2.5),

In (y)l--< IIllxllx II --< gllllxllfxll KIIII,,IlY ,
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and r/is continuous on (C)
_

Y. Applying the Hahn-Banach theorem, there is a
linear functional Y* which extends r/and satisfies

Thus it remains only to show that (CF) and cF(cI) :. But this is clear, for if
x (C), then Cx (C) and

 (Cx) n(Cx)=

defines an F-continuous linear functional on @(C); that linear functional is the
restriction of s to (C). Since (C) is dense in XF, cF is determined by its values
on (C). Thus cF : and : 6 (CV). Since : is arbitrary in XF we have
(CF) Xv and the proof is complete.

We pass now to a discussion of the situation obtained when the control
process takes place in spaces X, Y, Z which are not necessarily dual spaces while
the observation process takes place in X*, Y*, Z*.

THEOREM 2.5. Consider .the system

(2.6)

c

and suppose the system to be F-controllable, i.e., that

C) F).(2.7)

Then the system

(2.8)

=_ Y*

Z*

is F*-observable, i.e., for some K> 0,

(2.9) IlF* wllz. <- KllC*nllx., n

Moreover, if we assume
(i) C is closed;
(ii) (C*) is dense in ker (C)-= (X/ker (C))*;

and
(iii) F-I(/(C)) is dense in Z;
(iv) (F) is dense in (C), or, C-I((F)) is dense in X;

then F*-observability, (2.9), implies F controllability, (2.7).
Remarks. Requirement (iii) above amounts, in practice, to the assumption

that a dense set of initial states can be controlled to zero, i.e. approximate null
controllability. When X is reflexive, (ii) is always true for closed C. Theorem 2.3
shows, of course, that (2.9) implies (2.7) in the case of reflexive X, Y without any
need for (ii), (iii), and (iv) as special assumptions.
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Proof. Since F: Z--> Y is bounded, ker(F) is closed and Z/ker (F) is a Banach
space with the norm (see, e.g. [1])

II11Z/r) inf Ilzllz,z

being the equivalence class containing z. Let 6 be the one-to-one map from
Z/ker (F) onto (F)___ Y induced by F. Then it is clear that (F) becomes a
Banach space isomorphically equivalent to Z/ker (F) if we put

(2.10) Ilyll(,) Ilff’-Yllz/ker(F)
The new topology in (F) is stronger than the one induced by the topology in Yso
we conclude that each r/ Y* is an extension of some (F)*, indeed

(2.11)

sup Iy[= sup InFl
(F) Z/ker(F)

Ilyl](F) IIllZ/k(F)

I1*II(Z/er())* IIF*II*.
The last equality is established in [18] as Lemma 11.4.7.

Suppose we have F-controllability, i.e.

(c)_(F).

Let C1 be the restriction of C to the normed linear space XI C-((F)). Then
C1 maps X onto the Banach space (F) (with the topology (2.10)) and [18,
Thm. II.3.13] we have

(2.12) I1, I1(,)* =< KIIC*,llxx, , (F)*,

for some fixed K>0. Restricting to those linear functionals in (F)* CI (C1")
which arise from r/ Y*, as discussed above, we have, combining (2.11) and
(2.12),

(2.13)

But

(2.14)

IIF*llz. KII *C1 llx.

IIc*llx= sup Ic,xl= sup IwCxl
x-X1 xu.X1

[IX [[X [Ix [Ix

_--< sup Infxl--IIf*ilx..
x(C)
I1,, I1

Combining (2.13) and (2.14) we have (2.9) and the first part of Theorem 2.5 is
established.

Now we assume F*-observability, (2.9), together with hypotheses (i)-(iv) of
our theorem and we demonstrate F-controllability, (2.7). First we show that,
without loss of generality, we may assume that C and F are injective, i.e.,
one-to-one.

Since C is assumed closed, X/ker C is a Banach space with the nom

I1I1 inf Ilx IIx.x.
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The operator ’, defined on (C)/ker (C) by

d: Cx, x

is closed with dense domain ()_" and, clearly,

(c) (d:).
Now

ii.nll,.=sup_l,()l_sup Incxl
,0 I111 0 infxe

(2.15)
sup sup

Ir/(Cx)l
o x Ilxll---- =lIe*nIle*

from which it is clear that (dT*)= (C*) in Y*. In the same way, since F
bounded implies ker (C) is closed, we may define

F. Fz, z g Z/ker (F).

We see readily that F is bounded and

The spaces X and Z may therefore be replaced by , and C, F by the
one-to-one maps ,/6. Thus, we may assume C and F to be injective.

Let a new topology be defined on (F) by

(2.16) Ilyll -IlF-lyllz
With this norm, which yields an F-topology stronger than that induced on (F) by
the original topology of Y, (F) becomes a Banach space which we shall denote
by YF- Clearly (F)*___ Y*, where (F)* denotes the dual space of (F) with
respect to the induced topology.

In the same way we may invest (C) with a C-topology and norm I1" I1 so
that it becomes a Banach space Yc. (We remark that the norms I1" I1 and I1" I1 may
well be incommensurate.)

Let us define a subspace

X1-- C- ((F)) .._. X
an.d an operator C1, the restriction of C to X1. Evidently (2.7) is equivalent to

(2.17) ’(C1) YF.
Now C" X- Y is densely defined and closed, the latter since the F topology of

(F) is stronger than the original induced topology. Let C denote the adjoint
operator C: Y*FX. Using [18, Thm. I1.4.3] or [20, Thm. 5.3], we see that
(2.17) follows if we can establish that

< Clr/llxt

for all / YF*. It becomes, therefore, a question of showing that (2.9) implies
(2.18).
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(2.19)

For r/ (F)* (which is the restriction to (F) of some Y*)

Ilf*nllz.=sup [n(fz)l= sup
[wyl

and also

(2.20)

In general I[C*rtl]x <-IIC*lllx. because

I1C*llx* sup

Cfln Cl*n.

IICl*llx= sup [’OClXI= sup IrlCxl
x(C1) Ilxlll xf-l((f)) Ilxll
x0 x0

and C-I((F)) (C). But our hypothesis (iv), that C-((F)) is dense in X,
shows that in our case the two must be equal, i.e. (cf. (2.20))

(2.21) IIcn IIx IIcn Ilxx IIc* IIx*
if is the restriction to (F) of 6 .us (2.9), (2.18), (2.20) give, for such ,

It remains, therefore, only to show that (2.20) may be extended to all Y
(i.e., that it is not just valid for those 6 (F)*, which are restrictions of ).
Let 6 Y be such that Ca% is defined. From (ii) it follows that (C) is dense in

X. Hence there is a sequence {} (F)* such that

lim [[C*r/(2.23) -, C1 nllx,= O.

From (2.18) the sequence {’/’]k } is Cauchy in YF* and there is some r/o 6 YF* such that

lim I1 noll= 0.
kooo

Now C1F, being an adjoint operator, is closed so we have
F Flim C’rlk lim Ca r/k C1

and (cf. (2.23))

(2 24) F vC1’o C1’/

From (iii) we now conclude that (C1) is dense in Yv, or equivalently, that
ker (C)= {0} and (2.24) gives

/o /.

Substituting the / for t in (2.18) and passing to the limit we conclude that (2.18)
remains valid for /6(C). Then (2.17) and (2.7) follow and our proof is
complete.
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3. Some applications. We shall begin this part of our paper by applying the
results of 2 in the case of semigroups which correspond to linear hyperbolic
partial differential equations. These are rather simple from the point of view of
observation since their time reversibility gives the equivalence of terminal state
observation (corresponding to F eaT in 1) and initial state observation (cor-
responding to F 1 in 1). It is also didactically convenient to consider hyperbolic
processes first because some of the results in that case have implications for
parabolic processes.

Consider, then, the wave equation

02w 02w
(3.1)

Ot2 k=l [,Ok)):X\2=0’ X en, t_>-0,

with f an open, bounded, connected region in R" with (at least piecewise) smooth
boundary F. The almost everywhere uniquely defined unit outward normal vector
to F at x e F will be denoted by v(= v(x), x s F) and the corresponding directional
derivative by O/Ou. We assume

F=FoCIF1
where F1 is nonempty, the pair (12, F1) is "star-complemented" (see [35]) and
F0 F-F1. The initial-boundary value problem consisting of (3.1) and

(3.2)

(3.3)

w (x, 0) Uo(X),
Ow
-:: (x, o) Vo(X),
Of

Uo HX(f), v0 L2(I)),
Uo(X) =- O, x Fo,

w(x, t) =-- O, XFo, t->0,

OW
(x, t) =- O, x e Fx, t >- O,

Ov

is known to have a unique solution w(x, t) such that w C[0, T; HI(I)], Ow/Ot
C[O, T; L2()]. Indeed we have

Ow
w( t),-d-( t) S(t)(Uo, Vo),

where S(t) is a strongly continuous group of bounded operators on
L2(12). (Ho(12)= {w e Hl(a)l w 0 on Fo}.)

We define the observing operator H: Ho(12) L2(12) H-/2(Fx) by

H w(., t),---(’, t) =---(’, t)

where denotes the restriction of w to x e F. The trace theorem [24] shows that
H, as thus defined, is a bounded linear operator. The corresponding observation
operator is

C: (C) _Ho(f)@L(f)-H1/(F [0, T])
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given by

Ow Ov
(3.4) C(uo, Vo) H w(" ), -(" =-(" ).

The trace theorem and regularity results for solutions of (3.1), (3.3) show that
(C) includes Ho(12) 03Ho(f) at least.

It isnot easy to study the observation of (3.1), (3.2), (3.3) via (3.4) by direct
means. But with the introduction of an auxiliary control system and use of the
results in 2 an indirect study becomes feasible.

Consider then the dual boundary control system consisting of the equation

02z 02z
(3.5)

Ot2 k=l (Oxk)2=0’

the terminal conditions

(3.6)

and the boundary conditions

(3.7)

OZ
z(x, :r)--(x, 73-=0,

z (x, t) =-- O, X6Fo, t->0,

00-z (x, t)=/(x, t), x F1,

Using the divergence theorem as in [33] one obtains the relationship

IF O(X, tff(X, t)ds dt =-In lOw(x, O)Oz(x, O)
x[o,T] Ot Ot Ot

+ OW(X, O)OZ(X, 0)]
k=l ’ - dx.

As written, this relationship holds when (w(x, 0), (Ow/Ot)(x, 0))= (Uo, Vo)
Ho(f)0)Ho(f), so that O/Ot H1/2(F1 x[0, )cL2(l X[0, r]), and for con-
trol functions fL2(FlX[0, T]) which steer states (z(., 0), (Oz/Ot)(., 0))
Ho(fl) xL() to zero at time T. But the relationship extends by continuity to
similar f H-/(F1 x [0, T]), the dual of HI/2(F1 x [0, r]) relative to L(F1 x
[0, ), and can be written then as

(3.8) n [ u(x)Oz(x’O)+Ot
k= 10Do(X)oxk O(zO)]dx=--(f’O>Oxk

where the last symbol denotes the value of the linear functional f
H-1/Z(F x [0, ) at the point O/Ot in H1/2(F1 x [0, T]).

We now introduce the Hilbert space X consisting of the pairs (u, v)
Ho(O L2() but with inner product

((u, v), (a, )) v(x)(x)+ Z ou() oa(x)]
=1 0x

and associated norm [. [Ix. It is known [24] that this norm is equivalent to the norm
in Ho(O) xL2(). e equation (3.8) shows that

c: (c) xH1/(Vl x [0, ) V
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has as adjoint the operator C*" (C*)
_
H-1/2(l1 X [0, r]) r’ --> X* X

defined by

c’f=- z(. o),

where the right-hand member is the initial state steered to zero at time Twhen the
controlf is used in (3.5), (3.6), (3.7). The domain of C* consists of preciselythosef
for which (z(., 0), (Oz/Ot)(., x.

An easy modification of the results in [35] and [34] shows that the following
controllability result obtains for the system (3.5), (3.6), (3.7): if T is sufficiently
large, each state

z(’, 0) Zo Ho(12),
Oz
aS (’’’ 0) Z L2(,-),

i.e., each state in X, can be steered to zero at time T by use of a control
f H-X/2(1-’l [0, r]), i.e. C* maps onto X. Applying Theorem 2.1 with X and Y
as indicated above, we conclude that

(3.9) II(uo, v0)llx--< KllC(uo,

for each (u0, v0) (C), T sufficiently large.
One could also use Theorem 2.2 to establish the cited, controllability result

from (3.9) but (3.9) is not an easy inequality to establish a priori.
The control results in [16], [17] show, in the special case wherein is the unit

ball in R and F1 0f is the n 1 dimensional sphere, that the spaces H1/(F1 x
[0, T]) and H-1/2(F1X [0, T]) used above can both be replaced by L2(I [0, T])
and that "T sufficiently large" in that case can be replaced by T> 2. Whether this
special result is achievable in the more general situation described above remains
an intriguing question.

The spaces H1/E(F1 [0, T]) and H-l/2(1-’l X [0, T]) are rather unpleasant to
use in applications. Using Theorem 2.3 we are able to derive a more usable result.
It is shown in [35], [34] that each initial state

z(’, 0) z0 e Ho(l),
Oz
0--( O)----" Z e Ho(gD

can be brought to zero in time T (T as described above) using a control

f e L(F [0, T]). (In fact, f e Hn(rl x [0, T]), but that is not the emphasis here.)
With the aid of some theorems from [24] (see [16] for more detail) one can show
that the mapping

(’, 0)--(--A)-I/2z(", 0),
(3.10) (92 )-/2 Oz

o-7(., o)= o),
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where Aw -k 02W/(Oxk)2 is the (negative definite) Laplace operator in f with
Dirichlet boundary conditions on F0 and Neumann boundary conditions on
carries X onto Ho(O)Ho(O). Denoting the map (3.10) by F*"XX, F* is
und, in fact compact, and its range is Ho(O)Ho(O), a dense subspace of
X. Using the same notation as in our earlier example, the operator C*, now with
domain consisting of functions [LZ(F x[0, ) which steer states in Ho(O)
Ho(O) to zero at time T, is such that

(C*) (F*).

eorem 2.3 then shows that

(3.11) [F(uo, Vo)lx gllC(uo, Vo)]ILrtO,TI)

for those (Uo, Vo) in X mapped by C into L2(F1 x [0, ), a domain which includes
Ho()Ho(O). Since we have the identity

((ao, (uo, vo))x

we have
--1/2((ao, o),F(uo, Vo))x ((-A)/2ao, (--)l/2(--)--l/2Uo)L2()+(VO, (--a) V0)L2()

(Fao, o), (Uo, Vo))x,

since (-A) 1/2, (-A)-1/2 are self-adjoint and commute with each other. us

and (3.11) gives

Iluoll   . +ll(-a)
or

(3.12)

This result gives a useful lower bound for observations on solutions w(x, t)
whose initial states are given in terms of eigenfunctions of the Laplace operator A.
Essentially this type of estimate was carried out in a less abstract setting in [35].
Such lower bounds are used together with a Fourier transform technique outlined
in [14], [35] to obtain certain results for control and observation of the heat
equation which we outline below.

We let f, F, F0, F1 be defined as above and consider the parabolic process
(heat equation)

(3 13)
Ow 02w
Ot k=l (tgxk)2-- 0 X E’, t0,

(3.14)
w(x,t)=O, XEFo, t-->0,

Ow
-y-(x, t)=O, x r’l, t->O,

(3.15) w(x, 0)= Wo(x)L2().
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We introduce the observing operator

Hw( t)= v( t),

where ff denotes the restriction of w to x F1. The observation operator is then

(3.16) C: w0L2() L2(F1 x[0, z])

for some fixed z > 0.
In conjunction with (3.13), (3.14), (3.15) we consider the controlled

parabolic process

Oz
iox"k)’:O, X, t>--O,(3.17)

Ot k=l

z(x,t)=O, xFo, t->0,

(3.18) Oz- (x, t) f(x, t), x rl, t >-- O,

(3.19) z(x, O) O.

Again use of the divergence theorem yields the result

Ia w(x’ O)z(x’ z) dX Ir (x, t)f(x, z- t) ds dt
1x[O,z

or

(Wo, z(’, z))(a)= (, h)-(r[o,]),
where h (., t) f(., ,r- t).

Thus if we let X= L2(), Y- L(FI x[0, T]) and define C by (3.16) on the
domain consisting of those w0 for which ff L(F1 x [0, z]) (a domain .which is
easily seen to be dense in X), the dual of C is

(3.20) C*: h L(F1 x[0, z]) z(-, r),

i.e., C* takes f(x, z- t) into the final state z (., z) realized when the control [(x, t)
is used in (3.17), (3.18), (3.19).

Let the eigenvalues of the Laplace operator

02W
Aw kS’.l.

with Dirichlet boundary conditions on F0 and Neumann boundary conditions on
F1 be --Ak, k 1, 2, 3," ", and let the orthonormalized eigenfunctions be
k 1, 2, 3,..., 1, 2,..., mk, where mk is the multiplicity of the eigenvalue
--Ak. Then

Cgk, e--Akti’k b

where q3k, denotes the restriction of qk, to 1-’l. In [35] a rather involved process is
described whereby the estimate (3.12) obtained for the hyperbolic system leads to
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the inequality

(3.21)

valid for k 1, 2, 3,-.., 1, 2,..-, ink, with K and M certain positive con-
stants, K depending on - > 0. This means that if we define F: X X by

F exp [-M(-A)1/2]
then we have F-observability, i.e.,

(3.22) KIICw01l .--> IIFwollx, w0 x.

Now final state observability for the system (3.13), (3.14), (3.15) holds when we
have (3.22) with F replaced by

F ea.
But this is implied, with K replaced by some K>0, by (3.22) because
exp [-M(-A)1/2] and exp (rA) are positive self-adjoint commuting operators with
respective eigenvalues exp (-MAff2) and exp (--ZAk) and limk-.oo Ak +o0. This
final state observability result agrees with those obtained in [14], [15], [28], [29].

Application of Theorem 2.3 now shows that the range of the operator C*
includes that of F* (or of if’*). The inclusion

(3.23) (C*) (F*) (exp [-M(-A)I/2])

means (cf. (3.20)) that the set of final states z(., z) which may be reached from
z(., 0)=0 by means of controls L2(F1 x[0, z]) includes states

such that

2 exp[2Maff2]
k,j

An interpretation of this condition and an indication that, in a certain sense, it is
necessary as well as sufficient, appears in [ 14]. Theorem 2.3 also shows, of course,
that ifwe have (3.23) then (3.21) holds also, the converse of the result described in
our discussion above.

4. Observability ot perturbed systems. A well-known result (see, e.g., [22])
states that the property of observability for the system

(4.1) dt
Ax, xR

to Hx, to R r;
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is stable with respect to small perturbations of the matrices A and H. Thus if (4.1)
is observable, i.e.

then the perturbed system

H

rank n,

HA"-

d-- (A +A )x,

oo (H+H)x
remains observable, if I111 and I111 are sufficiently small.

The purpose of the present section is to extend this result to certain infinite
dimensional systems. In so doing we depart from the level of generality main-
tained in 1 and 2 and consider an observed system

(4.2)
dx
d-- Ax, x

(4.3) o Hx, oo Y.

Here X and Y are reflexive Banach spaces. We assume that A generates a
strongly continuous semigroup of bounded operators $(t) on X, yielding "solu-
tions"

x(t) s(t)Xo

of (4.2) corresponding to initial data x (0) x0. We assume H: X- Yis bounded.
Consider now the system wherein we have a strongly continuous and

uniformly bounded perturbation (t): X-X,

(4.4)
d2
d- (A + (t))2, e X,

(4.5) 03 H2, 03 e Y,

with solutions obeying the integral equation

(4.6) :(t) S(t)Xo + S(t- s)fi, (s)2(s) ds.

THEOREM 4.1. Let the system (4.1), (4.2) be (initial state) observable in time T
in the sense that ]’or some p, 1 <p <

(4.7) Klo(" )110,; gllnx(" )110,;--> Ilxoll (x(0) Xo),

for solutions x(t) S(t)Xo oI (4.6). Then"
(i) If

I1 tll--<, o _-< t _-< 7",
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andMis sufficiently small, then (4.7) remains valjdfor tS, of (4.4), (4.5)
with K replaced by a (possibly larger) constant K;

(ii) ff we have the inequality o] (i) for anyM> 0 andA (t) is compact]or each
[0, T] and strongly differentiable with

’  (t)ll o<t<T,art
then (4.7) continues to hold whenever (4.4), (4.5) is distinguishable, i.e.
whenever the identity tS(t)=-0, [0, T] implies Y(t)---0, t [0, T].

Proof. The proof of part (i) goes very quickly. From the general theory of
semigroups of linear operators in Banach space we know that there is a constant

> 0 and a real number A such that

(4.8) IIS(t)ll <--- MI eat, t >- O.

Using this together with (4.6), hypothesis (i), and a variation of the Gronwall
inequality, one has the estimate

for solutions 7(t) of (4.6) with x(0)= Xo. Then

Ila3(t)ll.-- n S(t-s)(s)(s)ds
Y

(4.9) <=M(M)IIHII e*"-) e(*+M’M)s ds[Ixollx

MMteXt{e 1)llxo[l MIIIH[[ ext (e’’- 1)[[xo[lx

so that

110311’t0,T;a < T1/pM,IIHI[ e I-IT eMIMT- 1)llxoll.

Combined with (4.7) we have, for 03 to + tb,

IIll"tO,T; IlnS( )Xo +(. )ll.tO,T;
(4.10) >--[- TI/’MIlI"II e I-IT eM1MT- 1)]llxoll--tllxoll.
T.akingM sufficiently small, we have that L is positive and (i) has been proved for

= /.
Passing now to the proof of (ii) we note that the observation Xo 03(. )=

H(. on solutions of (4.6) can be written

Cxo Cxo + Cxo,

where (cf. (4.6), (4.9))

(4.11) (dXo)(t)=t(t)=H S(t-s)(s)x(s) ds.
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Since C has a bounded inverse on its range, an extension of the Fredholm
alternative theorem [10] shows that C+ C is boundedly invertible on its range
provided ker (C+) {0} and t is compact. The condition that ker (C+ t) {0}
is precisely the condition of distinguishability which we have imposed on the
system (4.4), (4.5) so it remains only to show that ’ is a compact operator.

We establish the compactness of ’ by showing the equicontinuity, for
bounded IIx011x, of the functions (cf. (4.6))

IO(4.12) Yxo(t) (t)(t) (t) eAtxo +A (t) eA(t-s)t (S)(S) ds.

For the second term here there is little to do, for

(4.13)

(t2) eA(tz-s)., (S)(S) ds (MM1)2

X
t2eX(tz-s) e (’ +MM1)s ds

and, using the differentiability of (t) (hypothesis (ii)) we have

(4.14)
II[(t)-(t)] I0" s(t-s)d (s)(s) dsllx

<-Molt- tllM1 e IxlT (eM1MT-

The calculations in (4.13) and (4.14) are similar to the one carried out in (4.9).
Combining (4.13) and (4.14) we have the equicontinuity of the second term in
(4.12) for bounded IIx011x.

We work only a little harder with the first term in (4.12). Because A generates
a strongly continuous semigroup it is known (see [10], [19]) that

M1[[(A -/zI)-l[[_-<
/z-A’

where M1, A are as introduced earlier. Hence for every positive integer j > A,

(4.1-5) IIE, II--- I- n --< M1 ’j- --< M2
1-A

so that the Ej are uniformly bounded in norm by a constant M2> 0.
For x (A)

_
X we have

x-I- A x=x-Nx= I- A Ax-O,

Since (A) is dense in X and the Ej are uniformly bounded, we are able to
conclude that

(4.16) lim E.x x, x X.
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Since X is reflexive it is known [1] that A* also generates a strongly
continuous semigroup on X* and that semigroup is precisely S(t)*. The above
calculations may now be applied to A* instead of A to yield (4.15) and (4.16), but
with Ej now r.eplaced by E. We proceed now to show that EA(t)* converges
uniformly to A (t)* for each fixed value of t. Indeed, suppose this were not the case.
Then for some e > 0 we should have a sequence {sj}

_
X* with I111,*- 1, and

II(A (t)*-E?A (t)*),-II* > e, y 1, 2, 3, .
Since the compactness ofA (t) implies that of/ (t)* there is a subsequence, we still
call it {:}, and a point r/X* such that

lim lit/-A (t)*llx* O.
jooo

Now

so we conclude that

lim [l(. (t)*-E? (t)*)llx* O,
j-eo

contradicting our earlier supposition. We conclude that

lim IIA (t)* EA, (t)*ll- 0.

It now follows from a well-known theorem that

lim I1 (t)- (t)ll o.

Let e > 0 be given and let ], be chosen large enough so that

(4.17) II (t)S(t)Xo -. (t)E/S(t)Xollx <= IIx011

uniformly for 0 _--< t _-< T. Since E/ commutes with S(t) and has range in (A), and
since E.A is bounded, we may differentiate:

(4.18) Iitt/ (t)ES(t)Xollx <-_,l. ’(t)ES(t)Xol,x + ,lfi, (t)AES(t)Xol,x.

For the second term on the .right-hand side of (4.18) we have

I[ (t)aEj.S(t)Xollx I (t)A (I-A)-1S(t)XolIx
(4.19)

--II,(t)(-Y/YE)S(t)xoll, (cf. (4.8), (4.15), (4.16))

_<- My, (M2 + 1)M1 el I[Ixollx M3llx0ll,
uniformly for 0 -< t -< T, x0 X. For the first term on the right-hand side of (4.18)
we have (cf. (4.8), (4.15) and hypothesis (ii))

(4.20) II’(t)Fs(t)xollx <=MoM2M1 eI Illx0lix [Ix0llx
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uniformly for 0 _-< t _--< T, Xo X. Combining (4.19) with (4.20) we have

(4.21) [[-t (t)ES(t)Xol[ <=M4IIXoI[x, O<-t <- T, XoS X,
x

where M4 M3 d- M3.
Hence for /1, t2E[0, T] with Itl-t2l<e/(3M4) we have, using (4.17) and

(4.21),

--< +M4 3
+ ]lxolb,---<  llxolb,

and the equicontinuity of fi (t)S(t)Xo for bounded Ilxollx has been established.
The compactness of (t) implies that for tel0, T], B>0, the set

(t)s(t)xolllxoll, <-B} is compact in X. Thus the familiar diagonal process of the
Arzela-Ascoli argument may be applied to show that if IIx llx .-<B, k 1, 2, 3,...,
then { (t)S(t)Xk,} will be Cauchy in [0, T; X], and hence in LP[O, T; X], for
some subsequence {Xk,} c_ {Xk}.

Returning now to (4.11), the above Cauchy property for A (t)S(t)Xk, together
with the uniform boundedness of IIs(t- s)ll and the boundedness of H shows that
{Xk,} is Cauchy in [LPO, T; Y]. We conclude therefore that is a compact
operator and, as we have shown in the paragraph following (4.11), that is enough
to establish the theorem.

Remark. It is easy to see that all of the above results continue to hold for
certain unbounded observing operators H, provided that

fo’ llHS t s )l[ ds <=, O <-- t <- T,

where/(/is an appropriate positive constant. Such a situation arises, for example,
when the operator A of (4.2) is an unbounded negative definite operator on a
Hilbert space X and H (-A)r, r _-< 1.

-COROLLARY 4.2. Consider the control system

(4.22) dY=A*y+H*u, yX*, u Y*,
dt

and the perturbed system

d H*(4.23) d- (a* + (t)*))7 + u,

where A, . (t) and H refer to the operators in Theorem 4.1. I[ (4.22) is exactly
controllable and (4.23) is approximately controllable then (4.23) is also exactly
controllable.
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Proof. Apply Theorem 2.1. Refer to 1 for discussion of the duality theory as
it relates control of (4.22) and (4.23) to observation in (4.2), (4.3) and (4.4), (4.5),
respectively.

We remark that the result of Corollary 4.2 could also be proved directly in a
manner rather similar to that of Theorem 4.1.

The above-exhibited stability of initial state observability and exact con-
trollability fails completely to carry over into a corresponding result for F-
observability and/or F*-controllability. Results in [7] and [8] have already shown,
in the context of the heat equation, that arbitrarily small changes in the observing
operator H can destroy F-observability. The fo.llowing example shows that
arbitrarily small compact constant perturbations A in (4.4) can also destroy this
property.

Let -A be a positive definite self-adjoint operator on the Hilbert space X
with eigenvalues

and let corresponding orthonormal eigenvectors be 01, 02,’’", (t)k, (Con-
sider for example A O2/O:2 in L2[0, 1] with Dirichlet boundary conditions at
x 0 and x 1). We consider the system

(4.24) d-7 Ax, x (0) Xo X,

and the scalar observation

(4.25) w(t)=(h,x(t)),

where (.,.) is the inner product in X. We suppose that

(4.26) h- hkk
k=l

with

(4.27) Ih/llhl, Ihl>0, k=1,2,3,..’, Y, IAhl<oo,
k=l

and assume that

(4.28) To -lim (log Ih l) _> 0
k \ ’k’

exists. (This is true for A 02/02, for example, when the hk decay like 1/(Ak) for
some positive integer r. Then To-0.) It is shown in [7] that, under these
circumstances we have

(4.29) K(T)IIw( => IleAxollx
for any T> To with appropriate K(T) > 0 and that no such inequality is possible
for T< To. As noted in 1, this is F-observability with F eAT for T> To. We
will demonstrate the existence of a compact operator A and a T1 > To such that
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for the perturbed system

(4.30) d--- (A +)

no inequality like (4.29) can hold for T< T1, showing that F-observability, via the
observation (4.25), is actually destroyed by the perturbation in passing from
(4.24) to (4.30) when To < T< T1.

Let

(4.31) /= Y’. hkqgk
k=l

where (cf. (4.26))

(4.32)

k hk+lXk,

ftk+l --hkXk,

hk+l(1-- e -xk+l

all for odd values of k. From (4.27) it is clear that the/k defined by (4.31) satisfy

(4.33) 2 <
k=l

We define the finite rank (and hence compact) operator K by

(4.34) Kx (h, x)ft + (h’, x)h, x Xo

We assume without loss of generality that (I + K)-I exists. (This can be ensured by
modifying a finite number of the hk to make Ilgll sufficiently small, if necessary.
Such a change does not affect (4.33).) Then

(I+K)-I=I-K(I+K)-1

together with (4.33), (4.34) shows that

A +. (I+K)A (I+ K)-1

a +KA AK(I+K)- KAK(I+K)-1

is well defined and

A KA AK(I+K)-1 KAK(I+K)-1,
being of finite rank, is compact.

Now the eigenvalues of A +A are still Ak, k 1, 2, 3, , and the eigenvec-
tors are (I + K)qk, k 1, 2, 3,- . Using the formula of [8] for the system (4.30)

The symmetry ofK with respect to h and/ is needed to ensure that A + is still "regular", as is
required for the application of the critical time formula in [8].



212 SZYMON DOLECKI AND DAVID L. RUSSELL

with A as constructed above, we see that the system (4.30), (4.25) is not
/-observable (/6 now being e(A+A)T) for T< Ta, where

-lim inf (!g [(h, (I+ K)c)].]T1

We have

(h, (I+K)) h +(h, K)=h + h(h, )+   llh[l .
But (4.32) shows that (h, h)= 0 and

hk I1)(h, (I+g)) h(1 +llh
and therefore (cf. (4.28))

(loe Ih l)_lia f (loe
To show that T > T0 (thereby completing our example) it is only necessary to

show,hat the second term in (4.35) is positive. For odd k we have (cf. (4.32))

-log I1 +(+/h

-log II-(h/h+011hl- (h+/(hhl))(1 e-"*)l -log e

Hence T1 _-> To + 1 and for To < T< To + 1 the perturbation / destroys the
property of final state observa.bility, i.e. for such T (4.24), (4.25) is eaT observable

(A+A)Tbut (4.30), (4.25) is not e observable.
The extreme fragility of F-observability and the associated null controllabil-

ity in the presence of very weak perturbations provides some explanation as tO
why the extension of linear control and observation theories for parabolic
equations [14], [15], [25], [26], [28], [29], [35], [34] to cover comparable
nonlinear equations appears to be proceeding at a much slower rate than in the
case of hyperbolic equations 12], [35], [34], [4], [5], [13] where observability and
F-observability, reachability and null controllability are, due to the time reversi-
bility of the process, equivalent, and the results of Theorem 4.1 apply equally well
to initial and terminal state observability (and the results of Corollary 4.2 apply
equally well to null controllability and reachability.)

5. Remarks on optimal reconstruction. In Definition 1.1, 1, we have
defined what we mean b.y F-constructibility. Given a system

C
X(C) .Y

which we assume to be F-observable, the property of F-constructibility obtains if
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there is a bounded operator

G: Y-->Z

such that F GC, i.e., the following diagram is commutative"
c

X (C) __.Y

Z
One does not restrict the domain of definition of G to (C) because one

wishes to allow for the possibility that an observation y Cx may be corrupted"
by a noise or error term 1) e Y with not necessarily in (C). The possibility of
defining G on 9(C) is implied by F-observability, as one sees quite readily. The
possibility of extension of G to all of Y, thereby ettecting a reconstruction of F, is
in general a difficult question and is not fully explored here. It is clear that such an
extension exists whenever there is a bounded projection P" Y (C). For wider
discussion, see [31], [30].

Given a corrupted" observation, y + , y Cx (C), Y, and given the
existence of a reconstruction G, the reconstruction error can be defined as

G"Ilfx G(Cx + :)llz -II yllz

The minimization of such reconstruction errors is consequently related to the
norm of the reconstruction operator G. This prompts

DEFINITION 5.1. The operator G provides an optimal reconstruction if

I111 min IIGII,
G

where q is the class of all bounded operators G" Y-Z]=or which

(F- GC)x =- O, x (C).

,The existence of ( can be demonstrated by a trivial variation of the argument
given in [31], provided that Z is the dual of some Banach space (certainly true if Z
is reflexive for example). In the present work we address ourselves to the question
of uniqueness of (. If ( is unique, then in some sense it can be considered the
natural reconstruction and one can, in applications, look for algorithms yielding
its approximate realization. While this attractive situation sometimes does obtain,
we shall see in the sequel that uniqueness is not to be expected in general.

Assuming F-observability, an operator G c is already determined on
(C)" there is an operator Go defined on t(C) with

sup IIa0yll_-<g
y(c)

(where K is the constant in Definition 1.1) such that

Gy=Goy, Gf, y(C).

We shall see that the question of unique optimal extension of Go, which is what
optimal reconstruction amounts to, is closely related to whether or not G0, as
defined on t(C), is a scalar multiple of an isometry.
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LEMMA 5.2. Assume that

Go: (C)- Z,

is a scalar multiple of an isometry, i.e.

(Go) =Z,

(5.) IIGoyllz-- 3,11Yll-, y (C)
for some / > O. If there is an optimal reconstruction operator 0 extending Go to Y
with II011 K(>-r), then 0 is unique if[or eveo(C)* with

there is only one extension of o, , with

IIll.g.

Remark. ere is, of course, at least one such extension , as guaranteed by
the Hahn-Banach theorem.

Proof. Clearly no generality is lost if we assume y 1. Suppose there were two
extensions, G and , of Go with I111 I111 g. When Go is an isometry onto Z
we have, for 6 Z*

IIa8ll.= sup I(GY)I= sup [(Gy)l=sup
y (C) y (C) Z

and Go* is also an isometry. Hence for g" Z* with Isrl]z 1, no Go*" is a linear
functional on* with I1,o11* . * and G’g" are then extensions of r/o

(i.e.,

(G ’)y (O*’)y (Go*st)r, y (C)*)

with I1*11* and I1*11* each _-<K. The hypothesis of the lemma then yields

0" O*, z*, I111 1.

Since this is true for all such " we conclude (* (* and hence ( (o.
TI-IZORM 5.3. Let Go: (C) -Z be a multiple of an isometry (cf. (5.1)) onto

Z. If Yis reflexive and there is aprojection Pfrom Yonto the closed subspace (C)
with

IIPII- 1,

then

GoP
provides the unique optimal reconstruction operator for the observation operator C
with

I111 Ilaoll .
Remark. When Yis a Hilbert space the existence of P is, of course, assured.
Proofof Theorem 5.3. Again we assume without loss of generality that , 1.
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Let floeS(C)*, Ilnoll.- 1 and suppose that r/1 and r/2 are extensions to Y*
with

IInll*-IInll*-Ilnolk-x-.- 1.

Since Y is reflexive there is an element Y0 e Y with rtoYo 1. Let 3 be an arbitrary
nonzero element of Y and let denote the two dimensional closed subspace of Y
generated by Yo and with the topology induced by Y. Then ’is also reflexive and
has a differentiable norm ([6]). Letting 1, 2 be the restrictions of r/l, r/2 to ’*,
we see that 1 and 2 both have norm 1 and are solutions of

min I111*, yo 1.

Thus both 1 and ’2 must be positive multiples of the differential of the norm
function in Y (see [36]) and are therefore equal. Since this is true for each Ywe
conclude rtl r/2 and rio has but one extension r/with I1,11-*-II,ollc>*.

If P is a projection onto Y(C) with liP, 1, then

GoP
is an extension of Go from Y(C) to Y with I111-Ilaoll and hence is an optimal
reconstruction operator with norm

I111- K 1.

Applying the above result on uniqueness of extensions of linear functionals
together with Lemma 5.2 we conclude that G is the unique extension of Go with
norm 1 and hence the unique optimal reconstruction operator.

As an example of application, let us consider the system whose evolution is
described by the wave equation in R 1.

0202141 2 W
a =0, w(0, t)=0,

Ot2 OX 2

(5.2) O-_<x=<l, t_>O,

ax (1, t)= O,

and let the observing operator be

w(’,t),-(’,t =--(1, t).

The space X is the Hilbert space of initial displacements w0 Hi[0, 1], w0(0) 0,
and initial velocities v0 L2[0, 1] with the inner product

and norm

LI( )2 0Wo 0120 + 1)00 dx((wo, Vo), (,o,,o)>x ’ o--- o-

II(wo, Vo)llx i<(wo, Vo), (Wo, VO)>X]1/2.
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The space Z coincides withX and F is the identity operator. For fixed Tequal to a
positive integer multiple of 2/a, i.e. T 2ffa, ] a positive integer, the observation
operator is

(5.3) C" (Wo, v0)-->-(1," eL2[0, T]= Y,

where w w(x, t) is the unique generalized solution of (5.2) with initial data
w0, v0. The initial states

Wo,(x)
/ sin ((k + 1/2)Trx)

a(k + 1/2)’a"
Vo,(x)=O,

o,(x) O,

t30,k (X)= sin ((k + 1/2)Trx)
form an orthonormal basis for X and correspond to solutions

Wk(X, t)=COS (a(k +1/2)7rt)Wo,k(X)
a(k +1/2)r

sin (a(k +1/2)Trt)8o,k(X)
(x, t)

a(k +
for which the observations are

Wk (t) --/- sin (a(k + 1/2)rt),

k (t) / cos (a (k + 1/2)Trt).
These form an orthogonal basis for L2[0, 2i/ol ] with

The observation operator (5.3), which would at the outset be defined for initial
states Wo, v0 leading to continuously ditterentiable solutions, extends as a
-bounded operator C: X--> L[0, 2]/] with C a multiple of an isometry, viz."

According to Theorem 5.3, then, there is only one optimal reconstruction
operator, namely

G=C-lp

where P is the orthogonal projection from L2[0, 2]/a] onto 9(C) (C) the
span of the functions sin(a(k+1/2)zrt), cos(a(k+1/2)zrt), k =0,1, 2, ., in
L2[O, 2j/a ].
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Despite this rather nice example, the typical situation is that optimal recon-
struction operators are not unique. Even when we have a multiple of an isometry,
as in Theorem 5.3, something like strict convexity is necessary. If we let X R
with the absolute value as norm and let Y be R2 with

II(xl, x)ll,--Ixl + Ix.l
(so that the unit ball in Y is not strictly convex) and let C: R _.> R 2 be given by

Cx (x, 0),

then Go, the inverse of C on its range, is defined by

Go(x, 0)= x,

and clearly has norm 1. But there are many extensions of Go to transformations
G" R 2---> R1 with Ilall- 1. The transformations

G(x, x) x +axe,

are easy examples.
When Go is not an isometry, which clearly must be considered the typical

situation, all uniqueness vanishes, as we see from the following theorem applying
to the Hilbert space case.

THEOREM 5.4. Let us consider the system (1.1) with Yand Z assumed to be
Hilbert spaces and suppose that C) Yand

Go: (C) c Y-->Z

is not a multiple of an isometry. Then there are infinitely many extensions of Go:

G:Y-.Z, Gy=Goy, ye(C),

for which IIGII-IIGoll.
Remark. In view of Theorem 5.3 and the following remark, the interesting

case in Theorem 5.4 is the case wherein (Go)=Z. This case is, of course,
included since there is no assumption to the contrary.

Proofof Theorem 5.4. We may assume without loss of generality that Ilaoll- 1
and that there is some element yoe (C) such that Goyo Zo and

Ilyoll: 1, Ilzollz /"< 1.

We will demonstrate that there are infinitely many extensions G of Go,

G: Y-.Z, Gy=Goy, ye(C),

such that I111-1.
Since (C) Y there is an element Yl (C)- with Ilylll-= 1. We let I:1 be

the closed subspace of Y spanned by (C) and Yl and let P be the orthogonal
projection onto Y1.

Let Go*" Z--> (C) be defined by

(GSz, y)y (z, Goy)z, ye().
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Then Go*Go: (C) (C) is a bounded self-adjoint operator and has the spectral
representation

IOG*o Go Iz dEtz,

where Etz is a spectral measure on [0, 1]. For each y (C) we then have

Ilaoyl[ (aoy, aoy)z (y, a’aoy)v tz d(y, Ela,y).

Since IIGoyollz .0 < 1, the orthogonal projection E/zo cannot be zero. We may
then decompose (C)"

(C) Ela,o(C)O)(I-Etzo)(C) RoRo, Ro= Ela,o(C).

We note that

(5.4) [[Goy[[ d(y, Ey) goJlyl[, y e Ro.

Each y e Y1 has the unique representation

(5.5) y r + Yl, r (C).

Let G1 be defined on Y1 by

Gly Ol(r +y) Gor + aeGoo,
where o is an element of unit norm in Ro, and let Go then be extended to Y by
setting

G =GP,

where P is the orthogonal projection onto Y1. Our theorem is consequently
proved if we can show that

Ilalll 1

for infinitely many values of e.
For each y Yx

2Ilolyll Ilaor +aoyoll
(r + aeo, GGo(r + aeo))v
(ro + rl + aeo, GGo(ro + rl + aeo))v
(r, GGorl)v + (ro + aeo, GGo(ro+ aeo))v,

where ro Eor Ro, r (I-Eo)r Ro. e cross products of rl with
GSGo(ro + aeo) vanish since Ro is invariant under G8Go. We now have

Ilaly I1 Ilaorll+ o(llroll+ =lloll)
+ 2e (ro, GGo(ao))v

(5.6)
llrll+o(llroll+=lloll)
+ o(llroll+ IIoll),
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repeatedly using the spectral representation for Go*Go and the fact that ro, )0 lie in
E/zo.

Let e > 0 be small enough so that

(5.7) /Xo(1 + e) -< 1, /.0(e 2 + e) _-< 1.

Then (5.5) yields

(5.8) IlGlyll<--llrlll/llroll/ll&oll Ilrll-/ [lylll---
the first equality following from the fact that y and 0 each have unit norm. Since
(5.7) is true for all y Y1, Ila ll--< 1 for all e satisfying (5.6) and, from our previous
remarks, the theorem is proved.

In the case of boundary observation of the heat equation, as discussed in 3,
we see quite readily that as k --> oo the ratio of the norm in LZ(F1 [0, T]) of the
observation

(5.9) k,(X) exp (--Akt), X

on an eigenfunction solution 0,(x) exp (-At) to the norm in Lz(II) of the final
state

(5.10) p.(x) exp (-AT)

tends to infinity. Thus in this case for every/z0 > 0 there is an element y, in (C)
(namely (5.9) for k sufficiently large) such that [[Goy[[z (i.e., the norm of (5.10))is
</Zo and Go is not an isometry. Thus, while GoP, P being the orthogonal
projection on (C) (which is the closed span of the functions (5.8)) is an optimal
reconstruction operator, it is not unique.
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NORMALIZED MARKOV DECISION CHAINS. II:
OPTIMALITY OF NONSTATIONARY POLICIES*

URIEL G. ROTHBLUM"

Abstract. In this paper we consider finite state and action, discrete time parameters normalized
Markov decision chains, i.e., Markov decision processes with transition matrices that are nonnega-
tive with spectral radius not exceeding one (but not necessarily substochastic). We show that the
periodical reward gained in period N is bounded by a polynom, uniformly over the set of all policies.
The degree of this polynom can be obtained by considering only the set of stationary policies.
Extending and improving results of Sladky (1974) for the stochastic case, we obtain necessary and
sufficient conditions for n discount optimality of arbitrary (not necessarily stationary) policies.

1. Introduction. Normalized Markov decision chains were introduced in
Rothblum (1975a). In this paper we give further results concerning these decision
processes. In particular, we study optimality properties of policies that are not
necessarily stationary. Known results for the stochastic case (e.g. Lippman (1968),
Sladky (1974)) are improved and extended to the normalized case.

In 2 we summarize a few notational conventions, and then our model and
the n discount optimality criteria are introduced in 3. In 4 we show that the
periodical reward gained in period N when a policy zr is used, is bounded by a
polynom in N, uniformly in 7r. In 5 we develop necessary and sufficient
conditions for n discount optimality of arbitrary (not necessarily stationary)
policies. These conditions, which are stronger than those obtained by Sladky
(1974) have a simple form when applied to stationary policies. We then show that
the concepts of discount optimality coincide for all sufficiently large n.

2. Notational conventions. Let P be an S S real matrix. We say that P is
nonnegative, written P _-> 0, if all its entries are nonnegative. We say P is semiposi-
tire, written P> 0, if P_-> 0 and P # 0. We write P_-> (resp., >) O if P- _->

(resp., >) 0. Similar definitions apply to vectors. Let A be a complex number and
0 =-P-AI. The index of A for P, denoted ,x (P), is the smallest integer n _-> 0 such
that the null spaces of and O+ coincide. The algebraic eigenspace of P at A,
Nx (P), is the null space of where ---, (P). The next letnrna is well known
(e.g., Rothblum-Veinott (1976)). It is stated for completeness.
LMM 2.1. Let be an S S complex matrix, , be the index of zero for

O,N=-No(() and R be the range of 0. Then:
(a) CS=R@N.
(b) There is a unique projection E on Nalong R and so (E E( O.
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(c) E and O commute.
(d) E-O is nonsingular.
Proof. The proof of (a) is given in Halmos (1958, p. 113) and the proofs of (b)

and (c) appear in Kato (1966, pp. 20, 21, 23). It remains only to prove (d). If u 0,
then E =0 and 17.-0 is nonsingular. Suppose u >0 and (E-O)t =0. Thus,
0 Y’-k=o OkE(E O)/z E/x O/x. Thus/z e N, so/x E/ 0. Hence E- O is
nonsingular, completing the proof of Lemma 2.1.

For a given square matrix P and complex number ,t, the projection con-
structed in Lemma 2.1 for O -- P-,tl is called the eigenprojection of P at , and is
denoted Ex(P). The deviation matrix of P at ,t is defined by Dx(P)=-
(E O)-I(I-E), where E Ex (P). Also let Ilell maxl=<,<_s is=_ and let tr(P)
be the spectral radius of P.

Finally, for a finite set J, let IJI be the number of elements in J and for a vector
x R s let Ilxll maxlzi__<s Ixl.

3. Deseril)fiOla of the model. Consider a system that is observed at each of a
sequence of points in time labeled 1, 2, . At each of those points the system is
found in one of Sstates, labeled 1, , S. Each time the system is observed in state
s, an action a is chosen from a finite set As of possible actions and a reward r(s, a) is
received. The transition rate of the system into state at time N+ 1, given that it is
found in state s at time N and that action a is taken at that time, and given the
observed states and actions taken at times 1,..., N-1, is assumed to be a
nonnegative function p(tls, a), depending only on t, s and a. These transition rates
are not necessarily probabilities; i.e., we do not necessarily assume that
S=lp(tls, a)= 1. There are many interpretations of this generalized model,
which for brevity we do not mention here.

Let A I-[s= As be the set of all decision rules, i.e., of all functions mapping
each state s into an action s As. A policy is a sequence 7r (61, 2,’" ") of
decision rules, often written for brevity 7r (SN). Sometimes, to avoid double
subscripts, we shall use (N) interchangeably with 8zv without mentioning that
fact. The set of all policies will be denoted A. We write oo for the stationarypolicy
(& 8,. .). If r is a policy, let rN denote the first N components of r.

For each decision rule , let r8 be the $ element column vector of one period
rewards earned by . Thus, the sth component of the r8 is r(s, 8s). Similarly, let P
be the $ x S matrix of one step transition when 8 is used. The stth component ofP
is p(tls, ). If zr (6r) is a policy, let -P--P(1) P(s) be the N step transition
matrix resulting from the use of zr. In particular, pO_=/, and if r oo, p=U=
(ps)N =_ply.

Let V be the S vector whose sth coordinate V.)s is the N period reward
when using the policy 7r (6v) and starting from state s. Evidently, for r (6),

N

P. r(), N= 1, 2,. .
i=1

Suppose there is an interest rate 0 < p < oo. We suppress the dependence of
the discount factor/3=(1 +g)-i on p in the sequel for simplicity. We say that a
policy r is normalized if for every 0 </3 < 1, Y’-N--O 3v NP converges. We say that a



NORMALIZED MARKOV DECISION CHAINS. II 223

decision rule is normalized if that is so of 8oo. If zr (SN) is normalized, then the S
vector Vo, of expected total discounted returns starting from each state using
policy 7r (gN), which is given by

N=I

converges absolutely for 0 </3 < 1. Policy 7r is transient if the above sequences
converge for/3 1. For each policy 7r, let V 0. If zr oo, we suppress the o and
work Vv= V=N and Vo Vow.

Using a characterization of Veinott (1969), the normalization condition was
characterized in Rothblum (1975a) as follows:

LEMMA 3.1. The following four statements are equivalent:
(1) Every (resp., some) stationary policy is normalized.
(2) Every (resp., some) policy is normalized.
(3) o-(P)-< 1 for every (resp., some) decision rule .
(4) For every N >= 1, tr(PU=) <= 1 for every (resp., some) policy r.
An example in which every policy is normalized, but is not necessarily

substochastic was illustrated in Rothblum (1975a).
In the remainder of this paper, we assume without further mention that we

are in the normalized case, i.e., o, =- r(P) =< 1 for all 6 A. For each integer n, a
policy r is called n discount optimal if

(3.1) liminfp-"(Vo.- Vo,)>-_O forall
p$o

The limit inferior is, of course, componentwise. Similarly, we say that - is o
discount optimal, or sensitive discount optimal if, for some p* > 0,

(3.2) Vow.- Vo=>O for all 7r and 0<p <p*.

For -o<n =< eo let An be the set of all 8 in A for which 8 is n discount optimal.
Below we shall characterize these sets.

Following results from Miller-Veinott (1969) and Veinott (1969) (for the
stochastic case), the Laurent expansion of the vector of expected return corres-
ponding to a stationary policy (in the normalized case) was obtained in Rothblum
(1975a, Thm. 3.1) as follows: For p >0 sufficiently small

(3.3) Vow= Z P"V

where

n-lEr if n =-1, -2,. .,v=
(_l)nD+lr if n 0, 1,. .,

Q P -/, E andD are the eigenprojection and deviation matrix of P at one
and v is the index of one for P. Observe that V 0 for integers n <-u.
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’lne above expansion enables one to get a characterization of the An’s. Before
doing this we need a few additional definitions. Let C be a real matrix. We say that
C is lexicographically nonnegative, written C 0, if the first nonvanishing ele-
ment of each row of C is positive. We say that C is lexicographically semipositive,
written C> 0, if C = 0 and C 0. Write C ->- (resp., >) B or B <= (resp., <) C if
C-B = (resp., > 0. These definitions apply to infinite matrices as long as they
are not vacuous. Let ---max {’818 A}. For 8 A and n =-t,,-t, + 1,. , let
V=(vV, .,v) and V=(vV,v+l, .). Similar to results in Miller-
Veinott (1969), Veinott (1969) and Rothblum (1975a), it follows from (3.3) that
for all integers n =>
(3.4)

and for integers n <-t,, An A.
For 3’, 6 e A and n t,, u + 1, let C (c-, c-+, c)" where

c +Qv v- for ] -1, 0, 1,..., r 0 for ] 0 and r r. Also
--v+lput C=(c,c .). Obviouslyc= 0for allintegers/<-. Usingapolicy

improvement algorithm, it was shown in Rothblum (1975a, 4) that there exists a
stationary discount optimal policy B for which 0 for every A. It
follows from (3.4) that V. coincides for all decision rules in A, and therefore for
every A and - n , <.) coincides on A. Thus

(3.5) A., { AIC 0 for every y e A}.

4. Uniform polynomial bound on the periodical reward. The purpose of this
section is to give a uniform polynomial bound on the reward gained in the Nth
period. We show that if N-’P is bounded for every a A, then N-"P is
uniformly bounded in 7r A. We then characterize the least integer m ->- 1 for
which the above holds to be z,- 1.

For the purpose of this section we introduce a few additional notations. For
an S S real matrix P and I, J___ {1,..., S}, denote by Pzj the submatrix of P
whose rows and columns correspond to ! and J, and let Pz Pz. For x Rs and
J_ {1, , S}, let xj be the corresponding subvector of x.

We next summarize a few definitions from the theory of nonnegative
matrices. Let P be an S S nonnegative matrix. We say that states and j
communicate if there exist nonnegative integers n and rn such that (Pn)ii > 0 and
(P’)i > 0. This communication relation is an equivalence relation; hence one can
partition the totality of states into equivalence classes. A class J of P is called basic
if r(Pj)= r(P). Spectral properties of nonnegative matrices that will be used in
this section are discussed in Rothblum (1975b).

TEor]M 4.1. Let m be a nonnegative integer. Then the following five
conditions are equivalent:

(1) m -->z,----maxsA t,.

(2) N-"+IP is uniformly bounded in (N, B), (N 0).
(3) N-m+l NP, is uniformly bounded in (N, r), (N 0).
(4) N-"PO as N-ca for every BA.
(5) N-"P0 as N ca for every rA.
PrOof. The implications (3) => (2) :=> (4) and (3) => (5) => (4) are obvious. We

next prove that (4) (1). Let P be a square matrix where limN_, N-raP-zv= O.
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We shall show that ul(P) <= m. Assume that (P-I)m+tx 0 for some vector x. By
the binomial formula,

e’x= E (P-)’x
i=0

for N 0, 1,

By premultiplying this equation by N-’, letting Noo and observing that

limtv_,ooN-" ()=0 for/=0,..., m-l, one can verify that

0 -,lim N-’pIx -,oolim N-"(mN) (P-I)mX (m !)-l(p_ i)mx.

We see that (P-I)x 0 whenever (P-I)m+lx 0, proving that u(P) <- m and
therefore showing that (4): (1). It remains to show that (1) => (3).

Assume first that rn 0. It follows from (1) that un 0 for all 6 A, i.e., one is
not an eigenvalue of Pn for any 6 A. The Perron-Frobenius theorem (e.g., Varga
(1962, p. 46)) implies that tr is an eigenvalue of Pn and so tr < 1 for all 6 A. It
follows from Veinott (1969, p. 1638) that there exists a diagonal matrix B having
positive diagonal elements, and IIBPaB-111 < 1 for all 6 A. By the finiteness of
A, a maxsa IIBPeJ/-II < 1. Hence for every policy r, IINPI < NIIB-11] IlBlla,
which implies (3) when rn 0.

Assume now that rn >0. Every 8 A has a characteristic number which
equals the maximum number of positive coordinates in vectors which belong to
N8 N(P). Let y be a decision rule which maximizes this number among all
decision rules in A. By Theorem 3.1 of Rothblum (1975b) there exists a vector x in
N having the largest set of positive coordinates among all vectors in N and
Qx_->0 for all/’=0, 1,....

For the remainder of this proof let K(v) denote the set of indices of the
positive coordinates of the vector v. It follows from the definitions of y and x that
with K K(x),

(4.1) Ig[ >=lK(z)l for all z e U N.

By possibly reindexing the states, we may assume that K {1,. .,
Now set r x for every 8 A. It follows from Rothblum (1975a, Thm. 4.1)

that there exists a stationary oo discount optimal policy/x and Vg V and
C8- -<_ 0 for all A. By the finiteness of A, there exists a positive integerM such
that for all A and k 0, 1, ,
(4.2)

and

tk Y v. v-
(4.3) Y ck=< 0.

Observe that tk 0 for k _-> u. Since x e N, it follows that for n =-1,-2,...,

(4.4) ) "vn O-n E.vx O-n x -_> O.
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For n =-1,-2,..., v,= Q, 1E,x. The commutativity of E, and P, implies
that v N,. Hence, tk N, for k -> 0 and by (4.2) and (4.4),

0 v

Setting k 0 in the above inequality and recalling the nonnegativity of the v ’s, we
find that K(t) K(v1) K(x) K. Moreover, since t N,, it follows from (4.1)
that K(t) K. In particular by (4.1) and the fact that t N,,
(4.5) K(t) K(t) K(x) for k 0, 1,. .

It follows from (4.3) and the definition of the c., that for every A and
k=0,1,...,

(4.6) 0 1 (c=Oet__t+"
We shall now show that for every positive integer

(4.7) Pt N t for every policy .
k=0

The proof is by induction on N. Obviously (4.6) implies (4.7) for the case N 1.
Suppose now (4.7) holds for the positive integerN- 1 and consider N. Let ()
be a given policy. By the induction hypothesis, the nonnegativity of P(, (4.6) and
the fact that t 0 for all k , it follows that

Pt P(r P(t
kO

(4.al
N E (t + t.

k =0 k =0

Now, from (4.7),

(4.9) N-+ o N-+ t )-t-Pt N ((-1) asNm.
k0

Also, (t)>>0 and (t)=0 where L={1,...,S}K. us by (4.9),
(N-+P)N(N-+P) is uniformly bounded.

It follows from (4.5), the nonnegativity of the t’s and (4.7) that for every
policy and N=0, 1,...,

k=0

Since (t):>>0, (P)L/=0 and so (Ps)L/ =0 for all SeA. Thus the model is
decomposable in the sense that if L and/" K, then there is no policy or and
integer N such that (P)0 > 0. This implies that for every 5 e A, L is a union of
classes of Ps.

We shall next show that r((Ps)c) < 1 for every 5 e A. The normality condition
implies that o-((Ps)c) -< 1. Assume now that for some 5 e A, r((Pa)c) 1; then L
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contains a basic class J of Pd. Consider the decision rule O, defined by

0= lz, sK,, s L.

Since o N,, Qot Qt 0, so to No. Next, observe that J is a basic class of Po.
Hence there exists a semipositive vector z in No satisfying z >>0 by Rothblum
(1975b, Thm. 3.1). Obviously z +to sNo and K(z +t) K(t)UJ, so by (4.5),
(4.1) cannot hold, which is a contradiction. Thus ((P)) < 1 for all s A.

Since (P)r 0 for every A, it follows that for every policy (8i),
(P) (P<)) (P<s)). Restricting attention to the states in L, and recalling
that ((P))<I for every 8A, we see that it follows from Veinott (1969,
p. 1639) that we are simply in the transient case on L, i.e., s=o (P) converges
for every policy , and for some N, I[(P)II< 1 for every . Hence, (P) is
uniformly bounded in N and in . Recalling that m 1, we see that the latter
obviously implies the uniform boundedness of N-+(P).

We shall finally show that N-m+l(P)r is uniformly bounded. Let (i).
For the purpose of this proof define s_P P<i+) P<N). Since (P) 0 for
every 8 s A, it follows that

N

(4 10) i--1(P,)K E (ip)L.(P,
i=1

Since q((P))< 1 for all 6 e S, there is a diagonal matrix B having positive
diagonal elements such that q maxima llB(P)LB-lll < 1 (see Veinott (1969,
p. 1638)). For every policy and N=0, 1,..., ll(P)LllIB-illIBll Let
]IB-]I ]]Sllmaxa ]]P]]. Then by (4.10),

N

]IN-m+lroN N-m+l ]aN-i.
i=1

Since we have already shown N-+(P)K is uniformly bounded in and N, it
follows that the question of the uniform boundedness of N-+(P)KL for m
is reduced to the boundedness of the sequence ai ((i-1)/-a-i.
Recalling that m 1, we see that

i=1

which shows the boundedness of a. This completes the proof of Theorem 4.1.
COROLLARY 4.2. For any p* > O, pVo is uniformly bounded in 0 <p <p*

and .
Proof. Let B be a uniform bound of (N+ 1)-+P, (the existence of such a

bound follows from Theorem 4.1) and let rmax {Ir(s, a)ll 1 sS and a J}.
For any policy (Ti),

i--1Ilo o r,<i)
i=1
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The uniform boundedness of pVo now follows directly from the boundedness of
p i=o [3ii-1

COROLLARY 4.3. Every policy is n discount optimal ]’or integers n <-v.

5. Characterization of n discount optimal policies. The purpose of this
section is to develop necessary and sufficient conditions for n discount optimality.
These refine previous results obtained for the stochastic case by Sladky (1974).
Our conditions coordinate Sladky’s approach with ideas used by Lippman (1968).

We have shown (Corollary 4.3) that every policy is n discount optimal for
integers n <-v. Thus, n discount optimality is uninteresting in this case. To this
end we consider n discount optimality only for integers n >_--v.

We start by stating a necessary condition and a (different) sufficient condition
for n discount optimality of stationary policies. These follow from results obtained
in Rothblum (1975a) by using the methods of Miller-Veinott (1969) and Veinott
(1969), (1975).

THEOREM 5.1. Let n -v, -v + 1, and be a stationary n discount
optimal policy. Then

{3" A rn+- 0} cAn,--, _c {3" AIC 0}.

Proof. Let 3’ A,. It follows from (3.4) that V.) coincides for all decision rules
in An and therefore so does C(.). Observing the fact (see Rothblum (1975a, 4))
that C-= 0, we find that C,= C= 0, completing the proof of the second
inclusion. The first inclusion follows directly from the proof of Theorem 5.1 of
Rothblum (1975a).

We next introduce a few additional definitions. Let n =-v,-v + 1,... and
let 6 An. Define

al 0}.

Observe that by (3.4) these definitions are independent of 6 An. Theorem 5.1.says that for n -v, -v + 1, A* An
_
A,+.

It is clear that if the N period transition into a given state is zero, then the
action taken in this state at period N is irrelevant. We next formulate this idea
rigorously. For N 0, 1, , n -v, -v + 1, and r A, let

s
(P), > 0

s=l

A,*(N, 7r) ={y AI n}(c vn)t 0 for 6 An, t 5e(N, zr), and ] -v,. .,
and

for 6 Aoo, t 5e(N, zr), and j -u, -u + 1,. .}.

We remark that the definition of the A*(N, r)’s do not depend on 8 and that these
sets are product spaces, i.e., it is of the form I-IS__l A*, where A*___As for
s=l,...,S.
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We are now ready to give the first necessary and sufficient conditions for n
discount optimality.

THEOREM 5.2. Let n =-u, -u + 1, and let 6 be a stationary n discount
optimal policy. A policy r (y) is n discount optimal if and only if

(5.1) y+ e A,*(N, r) for N= 0, 1,...

and

NrN nlim p Vow-p fl rv]=O ifn=-t,,...,-1,
p$o =o

(5.2/
limp E flPv 0 ifn O, 1,
p,l,0 N=0

Proofi We first show that (5.1) is equivalent to

(5.3) P,c(+,- 0 for ] -,,. , n and N 0, 1,. .
Obviously (5.1): (5.3); thus it suffices to show the reverse. Let r =(Yi) satisfy
(5.3). Since teA, it follows from (3.5) that for every fixed N=0, 1,...,
C(N+I), < 0. This implies that for some integer L,

(5.4)
M

<0
i=-v n-]

C’y(N+I)’8-- forM L, L + 1,

Premultiplying this inequality byP and substituting (5.3) shows that

C,g(N+I), Z P,rC(N+I),,s O.

The nonnegativity of pN and (5.4) imply that (’..=_ (M-j)C(N+),)t =0 for all
t e 6e(N, 7r). Since M can be chosen arbitrarily large it immediately follows that
(cN+),), =0 for ] =-t,,..., n and e 6e(N, zr), completing the proof of the
equivalence of (5.1) and (5.3).

Next observe that since 8 is n discount optimal, it follows that a policy r is n
discount optimal if and only if

lim p-" V, V,s) O.
a$o

For 0, 1, let -(i) (ri, 8). Then for p > 0 sufficiently small

Vp.rr- Vp8-- (Vp,.r(i+l)- Vp,.r(i))
i=o

(5.6) [3 e([3r(i+a) + e,y(i+l) Vo Yo,)
i=o

p C ’),(i +1),6.
=0 j=--v
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We shall next approximate the above expression. Observing that there exists a
positive constant K such that ]lc8[[_-<Kj+ for all ]=0, 1,. ., and all 3’ A, we
deduce from Corollary 4.2 that for p <K-I,

P C.r(i+l),a
i=o

(5.7)
<_ p (oK)"++IK(1-oK)-1 <on+lB,

where B is a constant. Premultiplying (5.6) by p-" and using the approximation
given in (5.7) implies that (5.5) is equivalent to

(5.8) lim Z i Z pl-npc]3,(i+l),8--O.
p,[,o i=o

We are now ready to show the necessity of (5.3). Let 7r be n discount optimal,
or equivalently, satisfy (5.8). It follows from (3.5) that for all 3" A, C -<_ 0. Thus,

Y"+ < 0 for all A. By combining this fact, thefor p sufficiently small i=-pc, 3"
nonnegativity of the transition matrices and (5.8), we conclude that for
N=0,1,....

n+v

lim ..--oN
P l’n’t" /(N+I),6 0)

050 j=--v

It is easily seen that (5.3) is a necessary condition for the above.
In order to show the conclusion of our theorem it suffices to show that a policy

r which satisfies (5.3) is n discount optimal (or equivalently satisfies (5.8)) if and
only if it satisfies (5.2). Thus it suffices to show that a given policy r (3"i) satisfies

(5.9) lim X pi-n X [3iP i..
cy(i+l),6 0

050 ]=n+l i=0

if and only if it satisfies (5.2). If u 0, then by Corollary 4.2, Ro Ei=o i+lp is
bounded, and both (5.9) and (5.2) are always satisfied. If v > 0, let V,-- 0 if ] 0
and V=-- Vow, i.e., V== Ei=O i+l igi "]

,-,,/1. Recalling the definitions of the c’s,
one gets that

n+v

X Oi-n X i+leci-y(i+1),8
]=n+l =0

n+v

i--n+1

n+v

/’=n+l

i-"(V+ (1 +p)(Ro C]I)vis- Rovi-Rovi-1)

i-" V.+pRov-Rov-l v)

n+v
v+l n+v

P Vax{,,+l,o> +P xovs pRov X p’-"v.
]=n+l
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The equivalence of (5.2) and (5.9) now follows immediately from the fact that
pRp is bounded in p, thus completing the proof of Theorem 5.2.

An immediate corollary of Theorem 5.2 gives a necessary and sufficient
condition for co discount optimality.

COROLLARY 5.3. Let oo be a stationary oo discount optimal policy. A policy
r ()’i) is oo discount optimal if and only if

y+ e A*(N, rr) forN= 0, 1,. ..
Proof. The necessity follows immediately from Theorem 5.2 and the fact that

an o discount optimal policy is n discount optimal for all integers n
-v, -v + 1, . To prove the sufficiency observe that (5.1) implies (5.3). Thus by
(5.6), one gets that Vp V; completing the proof of Corollary 5.3.

We shall next compare our results with those obtained by Sladky (1974,
Thm. 2.2). Sladky considered only the stochastic case, in which it is known that
v 1. His necessary and sufficient conditions for n discount optimality are (5.3)
and (5.9). Observe that (5.3) (in the stochastic case) means that for every
N=O, 1,..., the expected value of the comparison functions C 3(N+I),6 ]
-v,. n, is zero, whereas (5.1) says that cN/1).8-0 with probability one,
] =-v,..., n. Also observe that (5.9) involves v for integers ] > n, which are
irrelevant for n discount optimality (see (3.4)). We remark that Lippman (1968)
gave a necessary and sufficient condition for 0 discount optimality in the transient
case (i.e., v 0) which is precisely (5.1) (Lippman considered the case where all
matrices are stochastic and there is a fixed interest rate; however, his methods
apply to the general transient case.)

Applying Theorem 5.2 to stationary policies gives a simpler form of the
necessary and sufficient conditions for n discount optimality. Namely

THEOREM 5.4. Let n =-v, -, + 1, and let 6 be a stationary n discount
optimal policy. A stationary policy /oo is n discount optimal if and only if C8 0
and in addition

OJ-"+lr "=0 forj=O,.., v-1...... E,/Qv
/f n =-1,-2,. .;

(5.10)
EOv’ 0 .for ] 0,..., v- 1

/f n=0,1,....

Proof. First observe that (0, yo) (1, , S}; thus, (5.1) is equivalent to the
requirement C 0. Next observe that by (3.3),

p Y - -fl P p Y. p EvO , pi+l(-D.r)i+l.
N=0 1=1 1=0

The equivalence of (5.2) and (5.10) now follows immediately.
In the proof of Theorem 5.2 we showed that (5.1) together with (5.9) form

necessary and sufficient conditions for n discount optimality. This enables one to
obtain a simple sufficient condition for n discount optimality. Applying this
condition to stationary policies we get a slight extension of Rothblum (1975a,
Thm. 5.1).
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COROLLARY 5.5. Letn -u, -u + 1, and let 6 be a stationary n discount
optimal policy. A policy r=(yi) is n discount optimal if for every N=
0, 1 yr+l A,,+(N, zr). A stationary policy y is n discount optimal ""+-

If t..8
O.

We shall next show that one has to consider n discount optimality only for a
finite number of integers n.

THEOREM 5.6. Let 6 be a stationary oo discount optimal policy and letMbe
the rank of Es. A policy r (),i) is oo discount optimal if and only if it is S-M
discount optimal.

Proof. By Corollary 5.6 and the equivalence of (5.1) and (5.3) it suffices to
show that if for a given N 0, 1,. ,
(5.11) nVc/(N+I),6 0

for ] u, , S M, then this holds for/" S M+ 1, S M+2, . By the
explicit expression of the c’s and the v’s, (5.11), for ]>0, is equivalent to
P(I+ O(v+)D,)(-D,)ir, 0, i.e.,

(5.12) (-D)ir8 e Null P(I+ O(V+l)D).
By recalling.thatD (E Q)-’(I-Es) it follows that rankD S-M. It now
follows (e.g., Veinott (1975, Lem. 3, p. 32) that if (5.12) holds for ] 1,. , S-
M, then it holds for/" S-M+ 1, S-M+ 2, . Thus, the proof of Theorem 5.6
is completed.
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DIFFERENTIAL GAMES WITH NO INFORMATION*

D. J. WILSONt

Abstract. This paper considers a broad class of differential games of prescribed duration in which
the players obtain no information about the state variables. It is shown that such games always have a
value when the players can choose their controls by means of a mixed strategy.

It is further shown that a player can always implement a mixed strategy by drawing a random
number from the uniform distribution on the unit interval and then using a control which is determined
by the number so chosen.

1. Introduction. The problem of finding mixed strategy solutions of differen-
tial games with partial information has received scant attention in the literature. It
is only recently that a few authors have addressed themselves to this problem 1],
[17], [25]-[26]. Although the term "mixed strategy" has been used by Russian
authors [16], [22] to denote a form of relaxed control, introduced to differential
games by Smol’yakov [22], the type of control to which they refer is not a mixed
strategy in the usual sense of game theory. Such relaxed controls cannot be
expected to provide a saddle point for a differential game with partial information,
except in special cases (e.g., see [7]).

In this paper, we shall consider two person differential games of prescribed
duration in which the players receive no information about the state variables
during the game, except for their initial values, which are known to both players
from the start. In such games, the pure strategies of the players will be the
so-called open-loop controls. Although special cases of such games have been
shown to possess pure strategy saddle points [9]-[ 10], [ 19]-[21], [25], solutions of
the general case must be sought among the mixed strategies [26].

In the present work, a mixed strategy is defined to be a Borel probability
measure on the space of pure strategies, and the concept of a mixed relaxed control
(a probability measure on the space of relaxed controls) is introduced. Warga [24]
has shown that the games under consideration always have a saddle point among
the mixed relaxed controls. Here, it is shown that any mixed relaxed control can be
approximated, in a quite strong sense, by a mixed strategy. Together with Warga’s
theorem, this implies that the mixed extension (that is, the game in which the
players may choose an arbitrary mixed strategy) of the original game always has a
value.

The description of a mixed strategy as a probability measure on a function
space is inconvenient, both for implementation during the play and for obtaining
necessary or sufficient conditions satisfied by optimal mixed strategies. However,
in 6 it is shown that any mixed strategy can be implemented by using a pure
strategy which is completely determined by the value of a number chosen at
random from the unit interval. When this method is used to implement a mixed
strategy, the expressions for the (random) trajectory and expected payoff are

* Received by the editors June 26, 1975, and in revised form April 29, 1976.
f Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia.
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greatly simplified. Necessary conditions satisfied by optimal mixed strategies can
then be easily obtained from these simplified expressions.

2. Pure and mixed strategies. Consider a two player, zero sum, differential
game, the state of which lies in Euclidean n-space . The state moves along a
trajectory x determined by the differential equation

(2.1) x’(t) f(x (t), u(t), v(t)), x(O) Xo.

At each instant t, one player P chooses the control u(t) from a compact
subset U of and a second player E chooses the control v(t) from a compact
subset V of . When choosing their controls, the players have no information
about the present or past values of the state, except for its initial value Xo, which is
known to both of them from the start. At some fixed, positive time T the game
finishes and E receives a payoff J given by

T

(2.2) J(u, v)= h(x(T))+ J0 g(x(t), u(t), v(t)) dr,

which he strives to make as large as possible and which P tries to keep as small as
[npossible. The functions f: U V-, g: Ux V--> [ and h" -->[ are

assumed to be continuous and f is also assumed to satisfy the following:
Conditions 2.1. (i) For each compact subset K of [ there is a constant k such

that I(x, u, v)-f(y, u, V)II< kllx-yll for all x and y in K, u in U and v in V.
(ii) There is a constant c such that Ix" f(x, u, v)] <= cllxll for all x in a", u in U

and v in V.
These conditions guarantee that the trajectory and payoff of the game are

well-defined by equations (2.1) and (2.2) whenever the control functions u and v
are measurable [13, p. 7].

Since the players of the game are completely blind, their strategies will simply
be open-loop control functionsthat is, functions of time only, with values in the
control sets U or V. A Borel measurable function u:[0, T]-, U or v:[0, T]-* V
will therefore be called a pure strategy for P, or a pure strategy for E, respectively.
Let and T" be the sets of pure strategies of P and E respectively. The sets and
T" will be regarded as subsets of the spaces L[0, T] and L[0, T] of square
integrable - and -valued functions respectively. A two person, zero sum
game of the form described above will be called a differential game ofprescribed
duration with no information. For the remainder of this paper, we shall regard the
functions f, g and h, the terminal time T and the initial condition x0 as fixed. The
differential game thus determined by equations (2.1) and (2.2) will be referred to
simply as "the game".

As in the case of finite games, the players’ lack of information makes it
unlikely that the payoff J will have a saddle point among the pure strategies.
Therefore, in analogy with the finite case, we define mixed strategies to be
probability measures on the spaces of pure strategies.

Notation 2.2. For any topological space X, let (X) be the set of Borel
probability measures on X, and -(X) the set of those members of (X) which
have finite support. Further, let (X) be equipped with the topology of weak
convergence [4].
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An element of (q/) or (F) will be called a mixed strategy for P, or a mixed
strategy for E, respectively. In 3 it will be shown that the payoff is a bounded,
Borel measurable function on the Cartesian product of the pure strategy sets. It
follows that for any pair of mixed strategies,/z for P and u for E, the expected
payoff ou ,.J(u, v)u(dv)lz(du), which we set equal to J(/z, u), exists and is
independent of the order of integration.

The game with strategy sets (0?/) and (F) and payoff J to the second
player will be called the mixed extension of the original game. If

(2.3) sup inf J(/x, v)= inf sup J(/x, v)
v(r) t() tz() v(’)

then (the mixed extension of) the game will be said to have the value W.
Example 2.3. In the one-dimensional differential game with state equation

x’(t)=8v(t)2-4(u(t)-v(t))2-6v(t), x(0)=0, control constraints u(t)6[0, 1],
v(t) [0, 1], and payoff

J(u, v)= | x(t) dt,
Jo

neither player has an optimal pure strategy. (This is true even if the players are
given complete information; cf. the example of Berkovitz [3].) If the players
obtain no information while playing the game, an optimal (mixed) strategy for E is
to choose each of the controls v ---0 and v 1 with probability 1/2, and an optimal
strategy for P is to choose the controls u ---0 and u - 1 with probabilities and 1/4
respectively. The value (of the mixed extension) of the game is -.

3. Relaxed and mixed relaxed controls. In order to use currently available
minimax theorems to prove that a game has a value, it is necessary to provide the
strategy spaces with topologies in which they are at least precompact and the
payoff function semicontinuous. The author has previously tried to do this for
differential games with no information [25] by adapting a device due to Wald [23];
namely, by using the payoff function and trajectory of the game to define a metric
on the pure strategy spaces so that they become precompact. However, the
original proof of precompactness given in [25] contains an error, and now a much
more tidy approach has become available through the introduction of (open-loop)
relaxed controls to differential games by Warga [24, Chap. IX], and Elliott,
Kalton and Markus [7]. A relaxed control for P (or E resp.) is a function
p: [0, T](U) (or tr: [0, T] (V) resp.) which is Borel measurable. For each
pair of relaxed controls, p for P and tr for E, a relaxed trajectory is defined by the
differential equation

(3.1) ’(t) f((t), u, v)rt(dv)pt(du), (0) x0,

and a relaxed payoffJ as the integral
T
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Note that the conditions satisfied by the functions f, g and h are sufficient to
guarantee that the relaxed trajectory and payoff are well-defined. Also, for each
pure strategy u of P (or v of E), an associated relaxed control pu (or crv) can be
defined by p’(A) 1 if u(t)A and p’(A)= 0 if u(t)C:A (or cr’(B) 1 if v(t)B
and o-(B) 0 if v(t)ZB).

The relaxed trajectory and payoff generated by the associated relaxed
controls of a pair of pure strategies, u for P and v for E, are then identical to the
trajectory and payoff determined by equations (2.1) and (2.2). Thus, we can
identify a pure strategy with its associated relaxed control and regard the spaces of
pure strategies as subsets of the spaces of relaxed controls. The payoff J can then
be regarded as the restriction of the relaxed payoff to t/x F. Let 0 and be the
sets of relaxed controls for P and E respectively. The game with strategy sets 0
and , and payoff to the second player, will be called the relaxation of the
original game. As f, g, h, T and Xo are being kept fixed throughout, the differential
game determined by (3.1) and (3.2) will be referred to simply as "the relaxed
game".

There is a superficial resemblance between relaxed controls and mixed
strategies which is a little misleading. This, apparently, has led to the use of the
term "mixed strategy" to denote a type of relaxed control [ 16-1, [22], and also to
the claim [7] that the introduction of relaxed controls to differential games is
analogous to Borel and von Neumann’s introduction of mixed strategies to matrix
games.

The relaxation of the game in Example 2.3, for instance, has a saddle point
with the same value, -, as the mixed strategy solution given above. The optimal
relaxed control forE is the constant probability measure on [0, 1] which assigns an
equal weight of 1/2 to each of the points 0 and 1; P’s optimal, relaxed control is the
constant measure which assigns weight .1/4 to the point 0 and 1/4 to the point 1.
However, the optimal relaxed trajectory, given by (t)---t, is a deterministic
function, whereas the optimal mixed strategies, as described above, give rise to a
random trajectory, which may have any one of the functions x(t)= O, x(t)=--4t,
x(t)=--2t or x(t)--2t as its realization (the probabilities of these realizations
being , , and respectively).

Also, there is a straightforward method for implementing a mixed strategy
during the play of a gamemnamely, that of choosing at random from among the
pure strategies with probabilities determined by the given mixed strategy (at least,
this may be done if the mixed strategy is atomic); but a corresponding physical
interpretation of relaxed controls is lacking. In optimal control problems a relaxed
control can, to all intents and purposes, be implemented by using an approximat-
ing ordinary control (that is, a pure strategy, in our context). However, in a
differential game this will not always work, because the approximation cannot
always be made to hold uniformly over all the opponent’s strategies.

In some differential game models of military and economic conflicts [5], [ 15],
events which are really of finite duration occur instantaneously in the model. In
such game models a relaxed control may be interpreted as an instantaneously
mixed strategy (somewhat similar to a behavior strategy in a discrete-time game)
which approximates some mixed strategy that could be used over intervals of real
time (see also a related discussion by Warga [24, pp. 457-459]). Here, I do not
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wish to assume that the resolution of sequences of events is quite so coarse. It is
therefore stressed that, in this paper, no such interpretation of relaxed controls is
contemplated. A relaxed control, as used herein, is simply a mathematical device
for completing (in the topological sense) the pure strategy spaces, and is in no way
thought of as capable of being used by a player. Thus, a solution of the game in
terms of relaxed controls will not be of much help to a player unless he can find a
strategy (either pure or mixed) which will give him nearly the same payoff,
whatever the pure strategy of his opponent. In 4 it will be shown that such an
approximation is always possible.

In order to attain the desired ends, it is necessary to topologize the spaces of
relaxed controls so that they are compact, so that the spaces of pure strategies are
dense, and so that the payoff function is at least continuous in each relaxed control
separately. The topology used by Warga [24, p. 272], and Elliott, Kalton and
Markus [7] admirably fulfills all these requirements. A neighborhood of a member
p of 0 is taken to be any set containing a finite intersection of sets of the form
{p’ 6 ;][tb(u, t)p;(du)-jub(u, t)pt(du)]dtl<e}, where e >0 and the func-
tion b: Ux [0, T] R satisfies the following:

Conditions 3.1.
(i) for each u in U, $(u,. is measurable;

(ii) for each t in [0, T], $(., t) is continuous, and
o sup,v IrP(u, t) dt < oo.(iii)
T

Let 0 be equipped with the topology generated by these neihborhoods and
let be equipped with a similarly defined topology. The spaces q/and o//. and the
payoff J have the following useful properties.

LEMMA 3.2. (i) q/and F are compact and metrizable, [24, p. 272].
(ii) q/and are dense in and rrespectively, [24, p. 287].
(iii) The function . is bounded on ll x F. Also, for any p in and cr in ,

.(p, is continuous on and J(. tr) is continuous on , [24, pp. 349, 477].
The boundedness of ? follows from the continuity of f, g and h and from the

fact that, over any finite time interval, all the trajectories of (3.1) lie within a
common compact set [24, p. 349]. The continuity properties of . are asserted by
Warga [24, p. 477] to hold under the condition that f, g and h have bounded,
continuous partial derivatives. However, they are retained under much more
general conditions. The argument at the bottom of p. 325 in [24] shows that the
relaxed trajectory defined by (3.1) is continuous in each relaxed control. The last
conclusion of Lemma 3.2 then follows from IV.2.9 of [24, p. 278].

DEFINITION 3.3. An element of 9() (or of (’) resp.) will be called a
mixed relaxed control for P (or for E resp.)

Remarks 3.4. The sets o?/and have now been provided with two apparently
different topologies. Besides the L2 topologies which they acquire as subsets
of L[0, T] and L[0, T] res?ectively, they are also equipped with the
relativized topologies of q/and which they acquire through being imbedded in
these sets. It is tempting to identify mixed strategies with those mixed relaxed
controls which have supports contained in q/ or ’. However, to do this it is
necessary to show that the Borel subsets of q/ and " generated by the L2
topologies are the same as those generated by the relativized topologies of 0//and. Indeed this can be done.
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A referee has pointed out to me that the topology of 0, when restricted to
is identical with the LP[0, T] topology of q/, for any s in [1, oo). As 0?/is also a Borel
subset of 0, it follows that the members of (q/) are precisely the restrictions, to
the Borel subsets of 0//, of those mixed relaxed controls which have supports
contained in q/. Since the only mixed strategies which explicitly appear in the main
results of 4 all have finite support, these observations are not used. However I
have included their proofs in an Appendix, for the sake of completeness.

The following lemma justifies the subsequent definition of expected relaxed
payoff. It is a slightly stronger version of a result of Michael and Rennie’s [28].

LEMMA 3.5. J is Borel measurable on .
Proof. Let be equipped with a metric (see Lemma 3.2). Since 0 is copact,

then for every positive integer r there is a partition {S, S,..-, Sj,} of q/into

Borel subsets of diameter less than 1/r. Whenever and r are positive integers
such that l<=i<-jr, choose any member a- of S and put br(p, tr)=

,S’(JO)J(O i, O’) for every (t9, r) in 0 . Then {b} is a sequence of functions,
each bounded and Borel measurable on 0 , which converges (pointwise) to
Since the limit of such a sequence must be Borel measurable, the lemma is proved.

In view of the above remarks, Lemma 3.5 also justifies the assertion made in
2 that J is Borel measurable on 0?/

For each pair of mixed relaxed controls,/2 for P and # for E, an expected
relaxed payoff J(tx, #)is defined by J(tx, #)= (p, r)#(dr)(dp). The exist-
ence of this integral, along with that of the integral defining expected payoff,
follows from Lemma 3.5.

The game with strategy sets (0) and (), and payoff to the second
player, will be referred to throughout as "the mixed extension of the relaxed
game" or, more briefly, as "the mixed relaxed game". If

sup inf J(/z, #) inf sup (/2, #)
,(o) (0) (o)()

then W will be referred to as the "relaxed value" of the game.

4. The existence of a value. In this section it is shown that a differential game
of prescribed duration with no information always has an arbitrarily approximate
solution among the mixed strategies; more precisely its mixed extension is shown
to always have a value. The proof of this relies on the fact, noted previously by
Warga [24, p. 477], that the corresponding mixed relaxed game always has a
saddle point.

In order that the results of this section may be stated in their most general
form, let 0 and now denote arbitrary compact metric spaces and q/ and U
dense Borel subsets of them. Let J be a bounded, real-valued function on 0
such that (p,-) is continuous on and (-, tr) is continuous on 0 for any p in 0
and tr in . Note that the proof of Lemma 3.5 does not depend on any special
properties of as defined in 3, but is also valid when . has just the properties

As his source of the observation, he cited an oral communication of Artstein [27] who has kindly
permitted me to include the proof which appears in the Appendix.
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stated above. We are thus able to extend J to 9(g) 9(7) by letting J(/z, )
denote the expected value of J with respect to the product of the measures/x of
(0) and 9 of ().

Suppose the players P and E now play the game with strategy sets q/for P
and F for E, and payoff function a to E. Their mixed strategies will again be the
elements of 09 (07/) and 99 (F). Lemma 3.2 shows that this game is a generalization
of the differential game defined by (2.1) and (2.2), for which all the following
results thus hold. The first of these is a variation on von Neumann’s minimax
theorem. A proof of it has already been given by Warga [24, p. 273], but the
following one is much shorter.

THEOREM 4.1. Thefu nction has a saddlepoint in 5(0) (); that is, there
exist measures * in 3(ll) and * in 3() such that

(4.1) (/2", )<_-3(/2, *)

]’or every 12 in 3 and in ).
Pof. In the sense of Fan [8], the function a is convex on 3() and concave

on (F). Also, since 0 and are compact, so are() and 5() [4, pp. 35-37].
Let p and belong to 0 and () respectively, and suppose that {p,} is a
sequence of members of 0, which converges to p. It follows, from the Lebesgue
dominated convergence theorem, that

irn f (p, tr)(dtr)= f (p,o’)(do’).
Thus, since is metrizable, then the function :- defined by ff(p)--,J(p, tr)(dtr)is continuous on . Therefore [4, . 7], ,k(p)12(dp), regarded as
a function of/2, is continuous on (0); that is, J(., ) is continuous on 3().
Similarly, for each/2 in 5(), it can be shown that J(/z, is continuous on 5().
The result now follows from Fan’s minimax theorem [8].

Theorem 4.1 implies there exists a value of the game with strategy sets 3()
and 3(), and payoff J to the second player. As this game is a generalization of
the relaxed game of 3, I shall denote its value also by W.

When applied to the differential game of 2 and 3, Theorem 4.1 shows that
it always has a relaxed value. As noted earlier, however, there is no known way of
implementing a relaxed control in the play of a differential game. Even a mixed
strategy might not be practicable unless it were atomic, since otherwise it would
req.uire randomization from an uncountable set of pure strategies. Thus arises the
important question of whether or not a player can guarantee himself a payoff
arbitrarily close to the relaxed value by making use only of atomic mixed
strategies. The following results show that the answer is yes. In fact they show that
he can do it even if he is restricted to the use of mixed strategies with finite support.
Such strategies can be implemented by randomization from a finite set of pure
strategies.

Note that a game has a value if and only if it has an e-saddle point for every
positive number e. An e-saddle point is a pair of mixed strategies,/z for P and u
for E, such that

(4.2) .(tx, u)- el2 <-J(tz, ,)+e/2
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for every u in (F) and/z in 3(q/).
The main results of this section are the following:
THEOREM 4.2. For every positive number e, 12 in 3() and in 3 ([/’), there

exists tz, in ,(ll) and u in (F) such that

(4.3) Iz (u’ tr)tz (du I4z ,(p, tr)12 (dp

,for every tr in F, and

for every p in .
THZOREM 4.3. For every positive number e, there exists tz in (ll) and u in

(F) such that inequality (4.2) is satisfied. Consequently the game always has a
value.

Theorem 4.3 is an almost immediate consequence of Theorems 4.1 and 4.2.
The proof of Theorem 4.2 proceeds via a couple of auxiliary lemmas.

Let C(@) be the Banach space of continuous, real-valued functions on @
equipped with the supremum norm (defined by [[b]l=sup 4(tr)). For each
subset X of C() let co(X), cl X and wcl X be the convex hull, closure and weak
closure of X, respectively.

LEMMA 4.4. Let Y be a dense subset of a compact metric space Z, and
I: Z-* C(r) a boundedfunction such that {I(. )} (o’) is continuous onZforeach tr in
r. Then I(Z) wcl I(Y).

Proof. Let b belong to I(Z) and put b I(z), where z Z. Then there exists a
sequence {y}, of members of Y, which converges to z. It follows that
lim,, {I(y)}(o-)= {I(z)}(o-)= b(tr). Therefore [6, pp. 265-266], 4 is the weak
limit of the sequence {I(y)} and so belongs to wcl I(Y). This completes the proof
of the lemma.

Now consider the conclusion of Lemma 4.4 for the function I: 0 t_J ()
C() defined by I(p) J(p,. when p 0, ^and 1(/2) 0 .,. )/2 (dp) when
/2 (q/). Lemma 3.2 implies that I(p) C(//’) whenever p 0//; in conjunction
with the Lebesgue dominated convergence theorem it also implies that 1(/2)
C() whenever/2 (). Clearly,
(4.5) i((0))=co (i(0)) and I((//))=co if(q/)).

Also, from Lemma 3.2 it follows that the conditions of Lemma 4.4 are satisfied
when Z q/and Y o//. Therefore,

(4.6) I() wcl I(q/).

Since (0) is dense in (0) [4, p. 237], and () is compact and metrizable [4,
pp. 35-37, 236-238], then the conditions of Lemma 4.4 are satisfied when
Z (0) and Y (0). (This follows from Lemma 3.2 and the definition of the
topology of (0) [4, p. 7]). Thus, Lemma 4.4 also gives

(4.7) I((0)) wcl I(()).
LEMMA 4.5. I(()) c cl 1(o%(//)).
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Proof. Since the space C() is locallyAconvex, then [6, p. 422] cl co (I(q/)=
wcl co (I(q/)). Thus I((q/))cwclI((q/)) (from (4.7))=wcl co (I()) (from
4.5) c wcl co (wcl I(q/)) (from (4.6)) wcl co (I(q/)) cl co (I(?/)) (from above)
cl I((q/)) (from (4.5)), which proves the lemma.

Proof of Theorem 4.2. Only the proof of (4.3) is given; the proof of (4.4) is
essentially the same, but it requires the recasting of Lemma 4.5 into a suitable
form (viz. q/has to be relaced by 7/’).

Let belong to (0-//) and e be a positive number. Since I(/2) I((0)), it
follows from Lemma 4.5 that there is a function b in i(-(a//)) such that

If/x is now chosen from -(q/) so that I(/z) b, then/z satisfies (4.3). This
completes the proof.

Proof of Theorem 4.3. Let /2* and 9" be members of (0) and (),
respectively, which satisfy inequality (4.1) for all/2 and 3. Let e be any positive
number. Choose/z in (q/) and u in (of) so that (4.3). and (4.4) are satisfied
when/2 is replaced by t2*, 9 by 9" and e by, e/2. From (4.3) and (4.1) we get

.(u, v)tz (du) <- .(p, v)i*(dp) + (e/2) _<- Id/+ (e/2) for every v in 7/’. Similarly
(4.4) and (4.1) give W-(e/2)<-vJ(u, v)u(dv) for every u in 0//. Combining
these last inequalities, we have

(4.8) Y(u, Y(u,

for all u in q/and v in 7/. If now,/z and u are any mixed strategies for P and E
respectively, then (4.2) is obtained by integrating the right-hand inequality of
(4.8) with respect to /z, and the left-hand inequality with respect to ,. This
completes the proof of 4.3.

Remark 4.6. The above results can be applied to more general forms of
payoff function than those considered here. This paper has followed Isaacs [14] in
considering payoff functions with an integral and a terminal component. A
common generalization is to replace the terminal component with a functional on
the space of trajectories. Provided this functional is continuous with respect to the
supremum norm, all our results will still apply.

5. Representation of mixed strategies. According to our definition, a mixed
strategy is a measure on a function space (the space of pure strategies). This is
inconvenient both for implementation during the play of a game and for deriving
the necessary or sufficient conditions satisfied by optimal strategies. In 1954,
Fleming [12] showed that certain games over a function space have mixed strategy
solutions of a simple kind. In the games which he considered, the pure strategies
were functions mapping a compact metric space into a compact subset of an
Euclidean space and satisfying constraints imposed by functional equations and
inequalities. He showed that these games have a mixed strategy solution which
can be implemented by the players’ independently drawing numbers a and/ at
random from the unit interval and then playing pure strategies us and vz
determined by the numbers so chosen. Fichefet [11] has applied these results to
differential games with payoff functions that can be cast into the same form as
those considered by Fleming. Unfortunately, most differential games do not have
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payoff functions of this type, so the results are not applicable to the vast majority
of them.

The following theorem implies that if the strategy spaces of a game are Borel
subsets of complete, separable metric spaces, then all mixed strategies (that is,
Borel probability measures) can be implemented in the simple way described
above. Since the strategy spaces of differential games are usually Borel subsets of
separable Banach spaces, this result is immediately applicable. A proof of this
theorem was first given in [25] for compact metric spaces; the following proof is
much shorter.

THEOREM 5.1. If Z is a complete separable metric space and iI a Borel
probability measure on Z, then there exists a Borel measurablefunction c (0, 1) -Zwhich has II as its distribution with respect to Lebesgue measure on (0, 1). That is,
m({a (0, 1); b(c) 6 A}) II(A) for any Borel subsetA of Z.

Proof. We first prove the theorem in the case when Z is countable. Let {z,}
be an enumeration of Z, and p II({z}) for each r. Then define b by setting
b(a)= z whenever Y.;__-a pi _-< a < Y’-;= Pi- Clearly b has distribution H. Next the
theorem is proved for the caseZ . Let F be the distribution function of II and
define b by setting b(a)=sup{z ;F(z)<-a} for ce in (0, 1). Since F is
monotonically increasing, so is b; therefore, b is Borel measurable. Now suppose
that a 6 b-((-c, z]), where z 6 . It follows that b(a)-< z, and therefore that
F(qb(a)) <-_ F(z), since F is increasing. But from the definition of b and the right
continuity of F, we may conclude that F(ck (a )) >- a. Thus we have 0<a-<
F(ck(a))<-_F(z) and so o6 (0, F(z)]. We have now shown that b-l((-oo, z])c
(0, F(z)] for any z in . Conversely, suppose that a 6 (0, F(z)), where z 6 . Then
for any real number y such that F(y) _-< a, we must have F(y) < F(z), and therefore
y < z (since F is increasing). It thus follows, from the definition of b, that b (a) _-< z.
That is, a b-((-o, z]). We have now shown that (0, F(z)) b-l((-, z]) c (0,
F(z)]. Consequently m(b-l((-c, z])) F(z) II((-, z]) for any real number z.
Since the measures mb-1 and II agree on half-lines, then they must agree on all
Borel sets. That is, II is the distribution of b. To prove the theorem in the general
case, we now make use of the following isomorphism theorem [18, pp. 7, 12, 14]:

ffZ is uncountable then there exists a one-to-one Borel measurable function
mapping onto Z such that- is Borel measurable.

Put III(A) H(sr(A)) for all Borel subsets A of . It follows that II1 is a Borel
probability measure. Therefore, by the last part of the proof, there exists a Borel
measurable function bl: (0, 1)- with distribution II. Thus, sr 41: (0, 1)-* Z is
a Borel measurable function with distribution II. This completes the proof.

From Theorem 5.1 it follows that a mixed strategy/x, for P say, can be
represented by a function u: (0, 1) - 0//which has distribution/z. Alternatively, we
may regard u as a function from (0, 1) [0, T] into U. Now, if P draws a random
number a from the uniform distribution On (0, 1), then the pure strategy u(a,.
will be distributed over 0// according to the distribution /x. He can therefore
implement the mixed strategy/x by playing a pure strategy u (a,.) chosen in this
way. Similarly, if u is a mixed strategy for E, there is a function v: (0, 1) [0, T] -Vwhich he can use to implement u. To play u, he first chooses a random number/3
from the uniform distribution on (0, 1) and then plays the pure strategy v(fl,. ).
The (random) trajectory generated by strategies chosen in this way will satisfy the
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differential equation

2(a, fl t) f(x(a, fl t), u(a, t), v(fl, t)), x(a, fl O) xo,

for every a and/3 in (0, 1). The expected payoff will be given by
T

J(t., ’)= J0 J0 {h(x(a, fl; T))+ J0 g(x(a, fl; t), u(tl, t), v(fl, t)) dt} da dfl.

With the trajectory and payoff cast in this form, it is now a simple matter to
write down a set of necessary conditions satisfied by any functions u*: (0, 1)x
[0, T]- U and v*: (0, 1) [0, T]- V which represent an optimal pair/z*, u* of
mixed strategies. Let x*(a, fl; .) be the trajectory generated from Xo by the
controls u*(a, .) and v*(fl,.). Suppose that f, g and h have continuous partial
derivatives with respect to the state variables and let A (0, 1) x (0, 1) x [0, T] R"
be the costate trajectory defined by the system of differential equations,,, t3;t)= 2,, t3; t)x*, t3; t), u*, t, *t3,

= ox
g

(x*(, t), u*(, t), v*(fl, t)),

O(x*(a, fl T)).a(a, fl T) x
ff we define the Hamiltonian :(0,1)(0,)xUxVx[0, by
(a, , u, v, t) (a, fl; t). f(x*(a, ; t), u, v) + g(x*(a, ; t), u, v), then it is
necessary that o o (a, fl, u*(a, t), v*(, t), t) da dO be essentially constant on
[0, and that u*, v* satisfy the following. nimax principle:

0) ] x,, *, ), *, ), ) d inf / X,, , *, t), t) dflo uU o
for a.e. (a, t) (0, 1) [0, T],

(ii) IO Yg(a’ ’ u*(a’ t)’ v*(’ t)’ t) da sUP ’(, , u*(, t), v, t) d

for a.e. (/3, t) (0, 1) [0, T].

The proof of these assertions is tedious [25] and will appear elsewhere.
It is possible to show that the functions representing mixed strategies, in the

way described above, are Lebesgue measurable on (0, 1)[0, T]. For the
purposes of this paper, no regularity of these functions was required, and so the
proof of measurability has been omitted. It also is tedious, though straight-
forward, and may be found in [25].

Theorem 5.1 may also be used to .justify a similar representation of relaxed
controls. If p a//, then by Theorem 5 1, for each t in [0, T], the measure tot of
(U) must be the distribution of some Borel measurable function ut: (0, 1) U.
Similarly, if tr and t [0, T], there exists v," (0, 1) V with distribution trt.
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Again, it is possible to show that the functions t" (0, 1)x f0, T]--> U and
3" (0, 1) x[0, T]--> V defined by/ (to, t) ut(to) and 3 (g’, t) v,(() are measurable.
The relaxed trajectory : corresponding to p and tr now satisfies the differential
equation

5,’(t) | | f((t), a(to, t), (, t)) dto d, (0) XO
Jo o

and the relaxed payoff is given by
T

"(P’’)=h(:(T))+Io Io Io g((t),(to, t),(,t))dtoddt.

Finally it is clear that a further application of Theorem 5.1 will show that
functions t" (0, 1) x (0, 1) x [0, T] --> U and 3" (0, 1) x (0, 1) x [0, T] --> V can be
used to represent mixed relaxed controls/2 of (0) and of (), respectively.
The (random) relaxed trajectory satisfies the differential equation

d (a,/3; t)
dt

(a, 3; 0)= Xo,

and the expected relaxed payoff is given by

T+Io Io Io g((t,fl;t),d(a, to, t),(fl;,t))dtod}dad.

Appendix A. The following theorem justifies the remarks made in Remark
3.4.

THEOREM A.1. (i) (Artstein [27]). The topologies induced on all and F by
and of/., respectively, are identical with their Ls topologies whenever s [1, oo).

(ii) 0//and F are Borel subsets of and F respectively.
Proof. Proofs will be given for 07/only. Those for o//. are identical.
(i) Since all the topologies are metric, it is sufficient to show that con-

vergence in 0 is the same as convergence in Ls. First suppose that a sequence {ur}
of q/has limit t7 in 07/with respect to the topology of q/. Then

(A.1)
T T

li’m ok(t, ur(t)) at Io ok(t, (t)) dt

whenever b satisfies Conditions 3.1. Putting b(t, u)= Ilu- 7(t)ll in (A.1), we see
that {u} converges to t7 in L.

Conversely, suppose that {u} converges to t in L;. It follows that {u,}
converges to/ in measure. Let 4 satisfy 3.1 and define functions br: [0, T]--> R by,(t) sup {14 (t, u)-ck(t, u’)l; u,u’ U and Ilu-u’ll<-_/r}. Because b(t, .) is
continuous for each t, the sequence {} converges to zero in measure. If e is any
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positive number, then
r r

(A.2)

-< l sup irk(t, u) dr+2 / sup Irk(t, u) dr+ I1 0. dt,
ueU dBt uU

where A;={t;llu,(t)-a(t)ll> 1/l}, B, ={t; d/t(t)>=e/3T} and C=
{t; Ib(t, Ur(t))--$(t, t(t))l<----e/3T}. Since {kr} converges to zero in measure, we
can find an integer such that the second term on the right side of (A.2) is less than
e/3. The first term will then be less than e/3 whenever r is sufficiently large,
because {ur} converges to t7 in measure. Thus the left side of (A.2) is less than e
whenever r is sufficiently large and therefore (A. 1) holds. As b was arbitrary this
shows that {ur} converges to t2 in the tojpology of 0.

(ii) Since we identify functions of q/which are equal a.e., an element p of 0
will belong to 0// if and only if, for almost all t in [0, T], the measure pt is
concentrated at a single atom (which may depend on t, however). This will be true
if and only if the variance of the random vector u with respect to the measure
&(du) is zero for almost all t in [0, T]. Thus, p6O// if and only if
igu[iu,_Uupt(du)l]2pt(du)dt=O.That, is, p if and only if p satisfies the
equation

T T

(m.3) O=Io IU "ull2[t(du) dt-i=l IO (IU uiPt(du) dt.

The functions gi" 0 $ defined by bi(p, o-) fft uipt(du) t uitrt(du) dt for
1, 2, , p, are separately continuous with respect to each of the variables p, tr

and are therefore Borel measurable by Lemma 3.5. It follows that the function
ffi(p, p) is a Borel measurable function of the variable p on q/ for each
1, 2,. , p. Therefore, the expression on the right-hand side of (A.3) is a Borel
measurable function of the variable p on 0 (the first term is in fact continuous).
Thus 0//is the zero set of a Borel measurable function and is consequently Borel
measurable.
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A RING OF DELAY OPERATORS WITH APPLICATIONS
TO DELAY-DIFFERENTIAL SYSTEMS*

N. S. WILLIAMS" AND V. ZAKIAN

Abstract. A ring of delay operators is used to obtain a representation of the solution of systems of
linear delay-differential equations. With the aid of this representation an algebraic rank-test is
obtained for the Rn-controllability of the systems.

1. Introduction. Let C([a, b], R n) and L([a, b], R n) respectively denote the
space of all continuous functions and the space of Lebesgue integrable functions
which map [a, b] into R n.

Consider the delay-differential system

(1 la)
dx

Aix(t-ci)+ Biv(t-fli)dt i=o =o

(1.1b) x(t) b(t) for all t [-aq, 0]

where b C([-aq, 0], Rn), v L([-flr, t], R l) and the A, Bi are real matrices of
appropriate dimensions. The delays ce, fig are nonnegative real numbers ordered
so that 0-<aO<al <a and 00(1 <fir.

Following Zakian and Williams [ 1], a ring of delay operators is developed in
2. Use is made of this ring in 3 to obtain a representation of the solution x(t) of

(1.1). With the aid of this representation an algebraic rank test is derived in 4
and 5 for the R -controllability of the system (1.1). This test includes the results of
Sebakhy and Bayourni [2] for the case q 0 and the results of Kirrillova and
(urakova [3] for the case q 1 and r 0.

2. A ring of delay operators. Let fn denote a linear space of functions x with
domain R and range in R n, and let T be a linear mapping from f" into 1"’. The
image of x is denoted by Tx, and this is clearly a function with domainR and range
in R"L For any t in the domain of Tx the corresponding image is denoted by
T(x, t); for example, if ! is the identity transformation in 1 then l(x, t) x(t) for
all x fl and all t R.

Consider the linear transformation c, called a delayor, defined by

(2:1) (x,t)=x(t-a), xl, a>-O, tR

where a is called the delay. A delay operator is any expression of the form

(2.2) d Y a6, a R
i=0
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1AR, England.
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where the ti are delayors. Clearly

(2.3) d(x, t)= aix(t-ai), x .
i=0

A nonzero delay operator t=0 atct is said to be in reduced form if and only if

(2.4) 0--<ao<al <am and argO.

The reduced form of the zero operator is the zero operator.
It is easy to verify that any delay operator has a unique reduced form.
Two delay operators a and/ are equal if and only if dx x for all x e II. Let

R denote the set of all delay operators.
Addition and multiplication of two elements ,/e/ are defined respectively

by

(2.5) ( +/;)x x +/x, x sa,
(2.6) (/)x (/x), x e 1.

It follows that if 8 Y.t=o atat and/ i"--o bt/3t, then

(2.7) +/= Y aiki + bi/i,
=0 =0

(2.8) /=
i=o .i=o

For example, let d 1 + and /= 1-. Multiplication gives d/=-+0+ 1,
which in reduced form is 1- ..

THeOreM 2.1 (Zakian and Williams [1]). The set R, together with the
operations ofaddition and multiplication ofelements ofR, form an integraldomain.

Proof. R contains R and takes as its unity and zero elements the real numbers
1 and 0. An integral domain is a commutative ringwithout divisors of zero (see, for
example, Archbold [4]). It is easy^to verify that R satisfies all the properties of a

commutativering. To prove that R contains no divisors of zero let , b be nonzero
elements of R expressed in reduced form with respective coefficients at, bj. Write
the product/ in reduced form with coefficients ck. Clearly Co aobo. Since a0 # 0,
bo 0 it follows that Co # 0 and // # O.

3. A representation of solution of system. Let and/ denote matrices over
/, expressed in reduced form by --o Aii and i=o Bii where Ai and Bi are the
matrices of (1.1). The system (1.1) can now be written in the form

(3.1a) dx=j(x, t)+(v, t),
dt

(3.1b) x(t) b(t) for all t [-aq, 0].

Let (t)= v(t) for all t[--[3r, 0] and let u(t)= v(t) for t>0. When conve-
nient write x(t)= x(t; c, ,, u) in order to show explicitly the dependence of x(t)
on b, and u.
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For t >0 the solution x(t) of (3.1) is unique (see, for example, Hale [5, pp.
81-85]) and takes the form

(3.2) x(t)=x(t; , O, 0)+ N(t-)(v,) dl

where the n x n matrix N(t) is uniquely defined by the system

(3.3a)
dN fi (N, t) for t > 0,
dt

(3.3b) N(t) I for t 0,

(3.3c) N(t) 0 for t < O.

It can be verified from (3.1) and (3.2) that for >0

(3.4) x(t)=x(t; , O, 0)+ M(t-)u(1) dl

where

(3.5) M(t)= N(t-i)Bi,
i=0

that is,

(3.6) M- . "iNBi.
i=0

Now define the system
do) (o), t) for t > O,(3.7a) d---

(3.7b) o)(t) col (1, 0,..., O) for t O,

(3.7c) o)(t) 0

where is an n x n matrix over/ defined by

(3,8) "
and the satisfy

for t<O

-an--1

(3.9) det(sI-fi.)=sn+s an-l+’" +stY1+ to.
The main result of this section is the following.
THEOREM 3.1. Let o) col (o)0, o)1, ",o)-1); then

(3.10) N= ’. A"o)
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where Nand A are as defined in (3.3) and to is defined in (3.7).
Proof. Let p denote the differential operator. Equation (3.7a) implies that

(3.11) ptoj tOj_l-1On_l for/" 1, 2,. ., n- 1.

The derivative pro is defined by (3.7) at all points in R but not at t 0. Allow that
at t 0 the derivative be given the value 0. ThereforepA is defined everywhere
in R and moreover

(3.12) P Pi.
On combining (3.11) and (3.12) we find that

1 n--1

(3.13) p ’W= i(w_-dWn_).
/=1 /=1

By virtue of (3.9), the Cayley-Hamilton theorem (see, for example, Jacobson [6])
gives:

(3.14) aA, 0=i
=0

and hence (3.13) becomes:

n--1

(3.15) p

(3.16) K+doW._I
where K =o w. Therefore

(3.17) pK AK+o+aoW,_)I
and because of (3.7) one gets

(3.18a) dK=A (K, t), t > O,
dt

(3.18b) K(t) =L t=0,

(3.18c) K(t) O, t < O.

But this is the system (3.3) which has a unique solution, and hence K N and the
theorem is proved.

Note that (3.6) and (3.10) give

n--1 n--1

(3.19) M=
i=o i=o =o

4. R*-controllability. The framework developed in the previous sections is
used here to derive a test of R"-controllability of the system (1.1). The question
that such a test must answer is whether there is a function, called the control and
defined as the restriction of v to some interval of the form (0, 0], such that for a
given x R the condition x (0) x holds. It should be noted that the test says
nothing about x(t) for t > O. More precise definitions now follow.
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For a given initial pair (b, O) and a given point xXR" the notation
(b, )(x, 0) means that there is a control u L((0, 0], R) such that

x(O; , O, u)=x .
The system (1.1) is said to be R"-controllable if and only if for every pair (b, if)
and every x there is a 0 >0 such that the condition (b, O)(x a, 0) is satisfied.

The following notation will be required. For any n m matrixX Y-k=0 XkYk
over/ let denote the n m(u + 1) matrix

[XolX 
where the X are the coefficients of the reduced form of . Let C(,/) denote
the n nl matrix over/

where and/ are as defined in (3.1) and let

(4.1) W(0)= M(O-a)Mr(O-a) da

where M is defined in (3.6) and T indicates transposition.
The following two theorems are the main results of this section.
TOR 4.1. (a) (4, 4’) - (x , O) i.f and only i

x-x(O; 4, 4’, 0)e Range W(O).

(b) For 0 >{(n-1)q +}, (4, 4’)-(x , O) iand only i
xl-x(O; ok, t#, 0) e Range [C(A,/)].

THEOREM 4.2. The system (1.1) is R"-controllable if and only if one of the
following equivalent conditions is satisfied:

(a)
(4.2) (b)

rank W(O) n for some 0 > 0,
rank [C(,/)] n.

The proofs of these results are in 5. Part (a) of Theorem 4.2 was given
by Chyung [7]. Notice, however, that a distinctive feature of condition (b) of
Theorem 4.2 is that it can be readily evaluated from the matrices and B using
the operations defined in 2. A number of interesting sufficient conditions for
R"-controllability are derived from Theorem 4.2(b) in.astraightforward manner.
For example, since the reduced form of the matrix AIB contains the terms

AoBo(]ao +/3o) and ABr(faq + fir)

it follows that condition (b) of Theorem 4.2 is satisfied if any of the real matrices
C(Ao, Bo), C(Aq, Br) or [C(A0, Bo) C(Aq, Br)] have rank n.

Consider the following special case of (3.1)"

(4.3)
dx

Aox(t) +(v, t)
dt
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where the reduced form of/ is Y’,=oBii. The reduced form of C(Ao,) is
Y’,=o C(Ao, Bi)i and consequently condition (4.2) becomes

(4.4) rank [C(Ao, Bo) C(Ao, Bx) C(Ao, B,)] n.

This result was recently obtained by Sebakhy and Bayoumi [2].
Another special case of (3.1) is

(4.5) dx= aox(t) +aax(t- a) + Boy(t).
dt

Let O be the real n x matrices defined by

O=Bo,, O=0 fori=Oandi>]

and

=AoO{ +A1 1.

It is easy to show by induction that the reduced form of (Ao +AII)]B0 is given by

i=0

Consequently for the system (4.5) condition (4.2) becomes

(4.6) rank(QQ... QI 2 3 ,,
O202"" Q2]’"" Q)=n.

This was given in Kirrillova and urakova [3], see also Weiss [8].

5. Proofs of Theorems 4.1 and 4.2. Before proving Theorems 4.1 and 4.2,
some relations between the range spaces of the matrices W(O) and [C(,/)] are
established.

LEMMA 5.1. For any 0 > O,

Range W(0)
_
Range [C(fi,,/)].

Proof. Let X Range [C({,/)]. If A 6X, there are two orthogonal vectors
A , A2 R" such that A A + a2, A 2 # 0, a eXand A 2 is orthogonal to X. Hence

Now by (3.19)

A2i/=0 for/=0,1,2,...,n-1.

n-1

and hence A2rW(0)=0 for any 0>0. Consequently A2 is orthogonal to Range
W(0) and A 6 Range W(0).

LEMMA 5.2. LetfCand1 be n x n and n x 1 matrices over1 with the respective
reducedforms

=o =o
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If, forA Rn,

(5.1) A T f((N, t-fl,)B, 0
i=0

for t
_
[0, 0] and 0 > (8, + y), then

o.
Proof. Note that../ i=o Yj=o X.Bi(fli + yj). Let the reduced formof./ be

/=0

that is, Y #0 and 0<-8o<8<...<8,. Consider the set of couples c(l)=
{(i, ])[(Yi +/3,)= }. Then Yt is given by

(5.3) Y Y XB,.
c(l)

Consequently (5.1) can be written

A Y’. X.N(t-O,-Ti)B, =A r Y’. X.N(t-6,)B, =0.
i----O]ffiO /----0 c(l)

Hence as t +
k

(5.4)

and as t--> 6

k{ }ArX
/=0 c(1)

/----0 c(l)

Since N(0-)= 0, N(0+) In and N(t) is continuous for t > 0, on subtracting
(5.5) from (5.4) we find that

At{ Y. (XN(O+)B,-X.N(O-)B,)}=O,
c(k)

which with (5.3) implies that A rYk =-0.. This result holds for k 0, 1,. .,/z and
hence from (5.2) it follows that A T.I/ 0.

LEMMA 5.3. For any 0 > (n 1)aq + fir

Range [C(,/ ]
_
Range W(0).

Proof. Let A R n, A # 0 and AgRange W(O). Then since W(O) is a real
symmetric matrix, A A +A2 where A’x e Range W(0) and A Null W(0). Now

(5.6) ll Tm(o - )ll= Tw(o)x== o

where I1" denotes the Euclidean norm.
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Since the integrand in (5.6) is nonnegative and M is a piecewise continuous
function, it follows that

(5.7) A2M(t) 0

for t [0, 0]. Hence by (3.5)

o
i=0

fQr t [0, 0]. Differentiating (5.8) / times gives

A A(N, t-B,)B, =0
i=0

for t [0, 0] and hence, provided O > ((n- 1)aa +B), Lemma 5.2 gives

for ]=0;1,,...,n-1. It follows that XC(,)=0 and that
A Range C(A,

Proo/o/eorem 4.1. (a) To prove suciency, let R be given by

then the control
T

(5.9) u(tr) ( N(O-tr-Bi)Bi) rt,
i=0

which is in L((0, O],R), will transfer (b, O) to (x 1, 0), as can be seen by
substituting (5.9) into (3.4).

To prove necessity let A xl-x(O; , 4’, 0). The hypothesis is ($, tk) -4 (x a, 0)
and implies that (0, 0)-> (A, 0). Since W(O) is a real symmetric matrix there is a
A Range W(O) and a 2 Null W(O) such that A A + A2. Hence following the
proof of Lemma 5.3, A M(t) 0 for t [0, 0]. Since A Range W(O) then, by the
sufficiency part of the theorem, (0, 0) --> (A 1, 0). By virtue of linearity, (0, 0) -> (A, 0)
and (0, 0)-> (A1, 0) imply (0, 0)+(A2, 0). Therefore there is a u L([0, O],R )
such that

(5.10) A2 M(O-A)u(A)dA.

Since a M(t) 0 for t [0, 0] it follows that a ’,2 0. This implies that , 2 0 and
hence A Range W(O).

(b) From Lemmas 5.1 and 5.3 it is clear that for 0 > ((n 1)aq +/3)

(5.11) Range W(O) =- Range [C({,/)1.

Proof o/Theorem 4.2. (a) To prove sufficiency let rank W(O)= n for some
0>0. Then Range W(O)=R" and from Theorem 4.1(a), (qS, O) (x 1, 0) for all
choices of qS, 4’ and x 1. Consequently the system (1.1) is R"-controllable.
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To prove necessity, suppose to the contrary that rank W(O) < n for all 0 > 0.
Since by (5.11) W(O) has the same range space for all O>((n-1)aq+13r), it
follows that there is A Rn, such that A Null W(O) for all sufficiently large 0.
Hence A 7"M(t)= 0 for all and A Null W(O) for all 0 > 0. Consequently (0, 0)
cannot be transferred to (A, 0) for any 0 >0 and the system (1.1) is not R n-
controllable.

(b) The proof of this part of the theorem follows from part (a) and Lemmas
5.1 and 5.3 in a straightforward manner.

6. ConelusiolaS. The ring of delay operators has proved useful in the study of
delay-differential systems. It provides a compact notation which exposes algebraic
features of the systems. Also it serves as a heuristic device for suggesting possible
results analogous to those of ordinary differential systems. The main results of

3 and 4 were in fact suggested in this way, although it should be stressed that the
concept of R"-controllability of delay-differential systems is only partly analog-
ous to that of ordinary-differential systems, since it is not concerned with what
happens to x(t) at t > 0. Nevertheless R"-controllability is a useful concept in
certain contexts and the test given in 4 is readily applicable and more general
than hitherto known tests.

It appears that the recent results of Manitius and Olbrot [9] and Zmood [10]
can be derived by the techniques of this paper.
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THE HIGH ORDER MAXIMAL PRINCIPLE
AND ITS APPLICATION TO SINGULAR EXTREMALS*

ARTHUR J. KRENER"

Abstract. The high order maximal principle (HMP) which was announced in 11] is a generaliza-
tion of the familiar Pontryagin maximal principle. By using the higher derivatives of a large class of
control variations, one is able to construct new necessary conditions for optimal control problems with
or without terminal constraints. In particular, we show how the HMP can be used to prove the
generalized Legendre-Clebsch condition of Kelley, Kopp, Moyer.and Goh. The principle advantage
of this derivation is that, unlike previous ones, it remains valid even when there are terminal
constraints.

1. Introduction. Although we are interested in high order necessary condi-
tions for optimal control problems, let us first consider the following nonlinear
programming problem. Minimize the smooth function y0(x) subject to the smooth
constraints yi(x)= 0 for 1,. , rn and x M ". The set 4 is not explicitly
described, instead, given x 4 we assume there are ways of generating smooth
curves s--x(s)M for s[0, e) such that x(O)=xe. To develop first order
necessary conditions for this problem we adjoin the constraints Yi to Y0 via
Lagrange multipliers u0, ul, , u,, where u0 is normalized to be nonpositive. If
x is a minimum, then every curve x(s) as above generates a necessary condition

(1.1)
0 dd

E iYi(x(O)) E i -X yi(xe) x(O) <-- O.
ds i=0 i=0

The use of the Lagrange multipliers requires some assumption of local
convexity on the set {x: yi(x)= 0, 1,-.., rn} 4 around xe. Since 4 is not
explicitly given, this cannot be verified. Instead we assume the following: the
gradients of the functions Y0, y, are linearly independent at xe and whenever
x (s) and x2(s) are used to develop necessary conditions via (1.1), for any
0=<h -< 1 there exists a curve x3(s) 4 such that x3(O)--X and

(1.2) d d d
s xZ(O) tt ss x (0) + (1- t) s x2(O).

As we shall see later, this form of convexity suffices to justify the multipliers. Of
course if rn 0, no convexity assumption or multipliers are needed and u0 can be
set to be -1.

The goal of any collection of necessary conditions is to isolate a hopefully
unique candidate for the minimum. Additional conditions may be required to
narrow the field of possibilities and to distinguish between potential maxima and
minima. If a collection of necessary conditions of the form (1.1) does not

* Received by the editors October 14, 1975, and in revised form February 10, 1976.
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Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts, 1974-75, and also
by the National Science Foundation under Grant MPS75-05248.
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completely accomplish this task, one can lo0k for additional curves x(s) or obtain
higher order conditions by differentiating (1.1) further.

If there are no Yi constraints (m 0), then it is clear that the first nonzero
derivative of uoYo(X(S)) must be negative for x to be a minimum. In general this
involves higher order partial derivatives of yo(x). For example, if (1.1) is assumed
to be zero, then the second derivative test is

to yo(X(O))= o SS x(O) OX’- yo(Xe) x(O)

d2

+ o yo(x e) x (0) O.

Suppose X E interior M ". Then (1.1) implies that (O/Ox)yo(xe) 0 andso (1.3)
reduces to the familiar condition where the Hessian ,o(02/Ox2)yo(xe) is negative
semidefinite at a minimum. On the other hand, if for some x(s), (d/ds)x(O)= O,
then (1.1) is trivially satisfied and (1.3) yields a condition which involves only the
gradient of Y0. The same condition can be obtained from (1.1) by reparametrizing
x(s) as x(sl/2).

If there are terminal constraints, then second order conditions similar to (1.3)
can be developed with some difficulty, since the use of the Lagrange multiplier
must be justified. For higher derivatives, this justification is so difficult as to
make the resulting necessary conditions of little practical value. The difficulties
arise because, in general, these conditions involve second and higher order partial
derivatives of Yo, Y1," ",Y,,. As was seen above, there is an exception to that; if
the first h- 1 derivatives of x(s) are zero at s 0, then

dh C3 dh

’iYi(x(O)) E li-XYi(xe)shX(O)<=O(1.4)
dsh

i=0 i=o

involves only the first partial derivatives of Yo, ", Ym. In this case, justifying the
Lagrange multiplier requires only a convexity assumption for higher derivatives
similar to (1.2). It is this type of necessary condition which we consider in this
paper.

Nowwe turn to optimal control problems which generate nonlinear program-
ming problems of the type we have been considering. Suppose we wish to
minimize yO(x(te)) subject to =f(x(t),u(t)), x(t)=x, yi(x(te))’-O, i=
1,’-’, m, and u(t)E f for t [t, tel. Let 4 denote the set of points accessible
from x using admissible controls. Suppose a control u(t) and trajectory x(t)
defined on [t, te] is a candidate for an optimal solution. We can generate curves
lying in 4 by considering the locus of endpoints x(te’, s) of a family of trajectories
x(t; s) generated by controls u(t; s) which are variations of x(t) and u(t) depend-
ing on the parameter s. The controls u(t; s) are obtained by replacing u(t) by some
other control v(t) for t Itx- s, t] where t (t, te). The reference control and
trajectory are obtained when s 0. In this way, using (1.1), one develops the usual
linear necessary conditions, i.e., the Pontryagin maximum principle (PMP), which
is most conveniently expressed in a Hamiltonian format.

It frequently happens in nonlinear control problems that the set of first
derivatives of the curves obtained by the above procedure does not fully represent
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all the degrees of freedom within the set d of accessible points around the
reference endpoint x(te). Such controls and trajectories are called singular (in the
sense of the PMP as opposed to the classical definition in the, calculus of
variations). For this reason the PMP can prove to be inadequate in determining
either a unique candidate or distinguishing between minimizing and maximizing
trajectories. (See [2].)

The high order maximum principle [HMP) is an attempt to overcome these
difficulties. More complicated control variations are used which have the property
that lower order derivatives of x (t s) are zero and the first nonzero derivatives lie
in directions within which were not available as first derivatives. Since the lower
derivatives are zero and a convexity assumption for higher derivatives similar to
(1.2) is satisfied, equation (1.4) can be applied to obtain new necessary conditions
which can also be expressed in terms of the Hamiltonian.

The organization of the rest of the paper is as follows. The statement of the
HMP is found in 2 and the proof in 3. Then the HMP is used to develop linear
and quadratic necessary conditions for singular extremals. Scalar controls are
treated in 4 and 5, and in 6, vector controls are treated. (These conditions are
called linear and quadratic not because they are linear or quadratic with respect to
the parameter s mentioned above, but rather because they are linear or quadratic
with respect to the L norm of the control variation. We elaborate on this later.)

The linear conditions are those implied by the PMP. The quadratic conditions
reduce to the generalized Legendre-Clebsch (GLC) of Kelley, Kopp and Moyer
[8] (scalar control) and Goh [4] (vector controls) when the problem in question is
normal or there are no terminal constraints. Using the HMP we can extend the
GLC to problems which do not satisfy these assumptions.

We wish to emphasize that these are not the only applications of the HMP,
rather, the HMP is a very powerful tool for constructing necessary conditions, the
simplest of which are theones mentioned above. We hope that by studying this
paper the reader will be able to construct new necessary conditions in an ad hoc
fashion which are appropriate to the problem of interest.

2. The high order maximal principle. Consider a system whose dynamics are
given by

(2.1) =]’(x, u)

subject to x(t) x and u(t) II, where x (x0, Xl," , x) with Xo t, u
(u 1, , u), ]’ a C-function of x and u, fl some subset of . The state variables x
are local coordinates on an (n + 1)-dimensional C-manifold M. However we
proceed as if they are globally defined and leave to the reader the task of "patching
things together", i.e., supplying the intrinsic meaning for all of the objects
described in a coordinate-dependent fashion.

The problem is to find a piecewise C-control u(t) II for t [t, te] which
generates a trajectory x(t) satisfying the boundary conditions

(2.2) x(t) x and yi(x(te)) O, 1,’", m,

which minimizes

(2.3) yO(x(te)).
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The functions Y0, Y1,’", Ym are assumed to be C and linearly independent
everywhere of interest. Since time is a state variable, (2.1) could be time-
dependent and the functions Y0,’", Ym could also depend on time. Control
problems where the integral of a Lagrangian are to be minimized can easily be
converted to the above format by the addition of another state variable.

The assumption of infinite differentiability is not required, it is only invoked
to avoid counting the degree of differentiability needed in a particular argument.
Piecewise differentiability means left and right limits always exist and there are
only a finite number of jumps in any compact interval. Throughout the paper we
assume that the controls being considered are C at the times in question. At
other times, similar results can be deduced by restricting to left or right limits and
by continuity. Since the details are tedious, we choose the convenient expedient of
leaving them to the reader.

Corresponding to each admissible control, u (t) II, is an admissible vector

field
fi (X) f(x, U (Xo))

which generates an admissible flow ,)/i (S)X defined as the family of integral curves
of the differential equation

d
-S ,i (S)X (’)t (S)X

satisfying the initial conditions

(O)x x.

Suppose the reference trajectory x(t)= T(t-t)x is generated by the
control u(t) for t [t, re]. Then a standard proof of the PMP is to replace the
reference control by another control u(t) for t e [t s, ] where t e (t, re). The
result is a family of trajectories x(t; s) indexed by small s => 0 whose locus of
endpoints is given by

O(te _to 0x(te; S) 3/ --tl)/l(s)To(t --S)X

T(t tl)TI(S)T(-S)X 1,
where x x(t). If we define a(s)x Tl(s)T(-s)x, then this can be written as

T(te t)ot(s)x .
For this reason, we call the map cz (s)x a control variation to u before x.

Alternately, u(t) could be replaced by ul(t) on the interval It, tl+s]
resulting in a locus of endpoints

x(te; S) T(te--t--S)T(S)X
,y(te tl)T(-S)/l(S)X 1.

oThis time we have a control variation a(s)x /(-s)/ (s)x to u after x. Various
combinations of the above are possible, for example, a(s)x=
/(-s/2)/l(s)/(-s/2)x, a control variation to u at x. As we shall see in 3, if
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u(t) and ul(t) are smooth at t 1, then all of the above yield the same necessary
conditions.

The important point about these variations a(s)x is that when they are
inserted into a trajectory generated by the control u(t), the result is a family of
admissible trajectories indexed by small s _-> 0 whose locus of endpoints is a
smooth function of s. With this in mind we define a control variation a(s)x to u(t)
at x as being of the following form"

(2.4) a(s)x y(q2(s))yk (pk(S)) ya(p(s))TO(ql(S))X,
0 k kwhere 3’ y ,’" ", y are the flows of admissible controls u(t), ul(t), ., u (t)

and qi(s) and pi(s) are polynomials in s satisfying qi(0) pi(0) 0 and pi(s) >-_ 0 for
small s _-> 0. This is similar to the bundle variation of Gabasov and Kirillova [2].
The reader should note that

x(te; S)= yO(te tl)ot(s)TO(t1- t)x
is the locus of endpoints of a family of admissible trajectory for small s _-> 0, and
hence a curve in /. Moreover, x(t s) is a smooth function of s and x(t 0) is the
endpoint of the reference trajectory. Notice that if ql(s) + q2(s) q-)-’, pi(s) O, then
the control variation changes the terminal time, e. In particular, the variations
a(s)x y(+s)x lengthen or shorten the reference trajectory.

A control variation a(s)x is said to be of order h at x x(t) if there exists an
e > 0 such that

d
(2.5) ds- a(O)x(t) 0

for ] 1,-.., h- 1 and It-t l < e. In particular, for h 1, there are no lower
derivatives for which (2.5) must hold and so every variation is of order at least one.
A control variation of order h is afortiori of order 1,..., h- 1. Because the
earlier derivatives are zero, it is the h derivative of x(te;s) which supplies the
necessary condition via (1.4). As we show in the next section, it is necessary to
require (2.5) to hold in a time interval around t so that the convexity assumption
for higher derivatives holds and the use of multipliers can be justified.

The high order maximal principle (HMP). Let u(t) be an admissible control
generating the trajectory x(t)= y(t-t)x for t[t, tel. If uO(t) minimizes
yo(x(te)) subject to the boundary condition yi(x(te))= 0 for i= 1,..., m, then
there exists a nontrivial adjoint variable A(t)= (Ao(t),’’- ,A,(t)) defined for
t [t, t ] and satisfying

(2.6) A (t) -A (t) .fl_0 f(x(t), u(t)),
Ox

0
(2.7) A(te)=Y’.Pi-;--yi(x(te)), where Uo_--<0,

Ox

(2.8) A(t)f(x(t), u)<--A(t)f(x(t), u(t))=0 V u 61,

and for every control variation a(s)x of order h at x(t),

dh

(2.9) A (t) a(O)x(t)<--_0.
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Conditions (2.6), (2.7) and (2.8) are the familiar PMP and (2.1), (2.6) and
(2.8) can be conveniently expressed in terms of the Hamiltonian, H(,, x, u)=
f(x, u), as Hamilton’s differential equation

(2.10) ___O H(A (t), x(t), u(t)),
0A

(2.11) )t ----H(A(t),x(t),u(t))
Ox

and the Pontryagin-Weierstrass condition,

(2.12) 0 H(, (t), x(t), u(t)) max H(X (t), x(t), u).

(Equations (2.8) and (2.12) are zero because Xo t.) A u(t) and x(t) for which
there exists a , (t) satisfying (2.6) and (2.8) are called an extremal control and
extremal trajectory. If u(t) interior I, then (2.12) implies

H(A (t), x(t), u(t)) 0(2.13)
Ou

and the Legendre-Clebsch condition

02
(2.14)

Ou 2 H(A (t), x(t), u(t)) <-O.

The new condition (2.9) is a generalization of the Pontryagin-Weierstrass
condition to control variations of higher order. It in turn leads to a generalization
of the Legendre-Clebsch condition for extremal trajectories which are singular in
the classical sense (i.e., (2.14) not of full rank). This is demonstrated in 5 and 6.

We have fixed the initial point x(t) x but there is a straightforward
extension of the HMP to problems where the initial point is only partially
constrained. In this case (2.6)-(2.9) still hold and, in addition, A (t) must satisfy a
transversality condition similar to (2.7) as in the PMP.

When applying the HMP it is highly desirable to choose a minimal realization
of the problem under consideration where y(x) (yo(x)," , Ym (X)) is considered
as the output map. (For the theory of minimal realizations of nonlinear systems,
see Sussmann [16].) The reason for this is that the less state dimensions there are,
the easier it is to find higher order control variations satisfying (2.5), and so the
more necessary conditions result. An example of just this point is given in 5.

3o Proof of the 1-1MP. We start by noting that the order of a control variation
can easily be shifted upward.

LEMMA 3.1. Suppose a (s)x is a control variation oforder h atx 1. Thenforany
integer k there exists a control variation a2(s)x of order h k at x whose h k
derivative is a positive multiple of the h derivative of a l(s)x and hence yields the
same necessary condition when used in (2.9) of the HMP.

Proof. Define a2(s)x a(sk)x. It is straightforward to verify that a2(s)x is a
control variation as in (2.4) and of order h. k with the h-k derivative as
described.
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To compute higher derivatives of control variations, it is convenient to let
them operate on smooth functions as a partial differential operator.

LEMMA 3.2. A necessary and sufficient condition for a(s)x to be a control
variation oforder h atx is thatforsome e > 0 and]orevery C real-valuedfunction
tp(x) defined in some neighborhood of x 1,

d
ds

p(a(O)x(t)) 0

for j 1,..., h 1 and It- tll < e. Moreover if a(s)x is of order h at x 1,

dh 0 1) dh
dsh (((0)xl)=x (0(x d- (0)xl"

Proof. The proof is straightforward.
CooWe next show that if all the controls involved are at t then it does not

matter whether a variation is made before, after or at x x(tl).
LEMMA 3.3. Leta (s)x be a control variation to u(t) oforder h at x and q(s)

be a polynomial in s such that q(O)= O. Define a new control variation a(s)x
2y(q(s))al(s)y(-q(s))x. Then a is also oforder h atx andfurthermore yields the

same necessary condition in (2.9) ]:or

dh dh

dsh o 2(O)x (O)x

Proof. Consider a2(s)x as a function of four variables,

a2(sl, sz, s3)x y(q(s3))al(s2)y(-q(sl))X,

where Sl s2 s3 s. Then for any Coo-function, by the chain rule,

(3.1)
d (1)ai a

k

s (az(olx) Y"
i, ], k OS 0,$’i2 0$

q(O2(O’ O, Olx)

where the sum is over all i, j, k _-> 0, +.j + k I. For any k define a Coo-function,

ak
O(x) Os--3 (Y(q(O))x)"

For small s there exists a t(Sl) near t such that

"y(-q(sl))xl x(t(Sl)).

1Since a (s)x is of order h at x for 1 _-<] _-< h- 1 and small Sl,

Oi ok ai
0S--’2 0S--3 0(02(S1’ O, 0)) OS (aa(O)r(--q(Sl))X OS( (O)x(t(s1))) O.
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So for 1 _<- _-< h 1, equation (3.1) becomes

ds’ (()x) -, -r=-, o( (0, O, O)x )
=o Os Os3

d (Y(q(O))’)’(-q (O))xl)

d 0(x) 0,
ds

since y(q(s))y(-q(s))x 1= y(q(s)-q(s))xl= y(0)xl=x 1. The same argu-
ments can be repeated at each x(t), It- tll < e to show a2(s)x satisfies (2.5) in an
interval around t 1.

Similarly evaluating (3.1) for h, we have

dh dh dh

((O)x) d-;g P(al(O)x +d-- P(T(q(O))’)’(-q(O))xl)

d
sa 0(a l(0)x 1). Q.E.D.

If the control u(t) is not continuous at 1, then the trajectory has a corner at
x and the effect of control variations on either side are different. By comparing
these differences one can deduce various corner conditions for optimality, but this
is a topic we shall not pursue any further. We refer the interested reader to Kelley,
Kopp and Moyer [8], Oabasov and Kirillova [2], McDanell and Powers [12] and
Maurer [13].

The next two lemmas are crucial to the HMP because they show that for
higher order control variations satisfying (2.5), one can "add" them and, in
particular, form convex combinations as required by the use of Lagrange multi-
pliers. First we deal with control variations made at the same point of the
trajectory.

LEMMA 3.4. Suppose al(s)x, a’(s)x are control variations to u(t) at
c,) be a vector ofx =x(t1) of order hi,"’, h, respectively. Let c (Cl,

nonnegative real numbers. Then them exists a family of control variations a (s; c)x
of order h (= the least common multiple {h}) such that

dh dh’
d (0; c)x’ c,, , (O)x

i=1

Moreover a (s, c)x is continuous in c for small s >-_ 0.
Proof. For notational simplicity, assume r 2; the general case follows by a

similar argument. Using Lemma 3.1, we can assume that h hi h, and using
Lemma 3.3, that both variations are made before x 1, for example,

/ka (s)x (pk(S))’’’y (pl(S))T(q(s))x.

Define a family of new variations

a(s; c)x yk (Pk (C I/hs)) yl(pl(C I/hs))OI2(C/hs )o/O(q(c
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Introduce parameters s s2 $3 S into c (S; C)X as in the proof of Lemma 3.3.
Then for any C-function q,

d ( \ i/h j/h k/h 0 0 Ok

ds---Tqg(a(O; c)xl)=\i,j, k)Cl c2 C10Sil OsJ2 0--k3 O(Ol(O’ O’ O’ c)xl)"

If 1 --< =< h 1, this reduces as before to

de (I) Oi Ol-i
ds q((O; c)x)= C l--i q(o(O, O, O; C)X 1)

i=O OS 0S3

d 1)C S(49 (0 (O)x O,

since c is of order h at x
For h we have

dh dh dh

dsh (ol(O’c)xl):Clsh O(oll(O)xl)’-C2sh O(Ol2(O)xl). Q.E.D.

If a control variation a(s)x of order h is made at x 1, then the result is a family
of trajectories whose locus of endpoints is given by

x(te; S)= T(te- t)o(s)x 1.
The first h- 1 derivatives of x (te’, s) are zero and h derivative is given by

dh 0 O(te(3.2)
Msh x(te" 0)= ’X "Y -tl)x sh a(O)x

This is applied to (1.4) to obtain (2.9) of the HMP, but first we must show that we
can "add" the effect of control variations made at differing times.

LEMMA 3.5. Suppose al(s)x,..., ar(s)x are control variations to u(t) at
x 1= x(ta), x r---- X(tr) of order hi,’", hr respectively. Let c (cl,.. ", Cr) be a
vector of nonnegative real numbers. Then there exists a family of admissible
trajectories indexed by small s >= 0 and c whose locus of endpoints is given by
x(te; S’, C) such that

d
dsY x(te; 0; C)= 0

for j 1,..., h- 1 where h least common multiple {hi} and

dh

(0 )dh’
(3.3)

ds
hx(te; O; c)=

i=1
ci X TO(te-ti)xi oli(O)x i.

Moreover x (t s; c) is continuous in c for small S >-_ O.
Proof. Using Lemma 3.4, we can assume that the t are distinct. For

simplicity, assume r= 2, t <t and hi h2 h. The general case follows by a
similar argument. Consider the family of trajectories whose locus of endpoints is
given by

x(te; S; C) TO(te t2)oz(cl/hs)TO(t2-- tl)ot(c /hs)TO(tl-- tO)x.
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Suppose p is a C-function at X --x(te). Then using the chain rule technique,

dl (i) i l--ii/h,(l-i)/h tp(x(te" 0; C))slqP(x(te; O; c)) Cl t’2 "-i l-i
i=0 OS 082

Let

ol-i
O(X) q9 (T0(t t2)a2(c/ho)y(te- tl)x).

Then O(x) is a Coo-function at x(tl). Since a is of order h, for 1 _-<i <h,

0

OS I[t(oll(c l/hO)x1) O"

Therefore if 1 _-< < h, then

d l/h Ol
dsl qP(x(te; 0; C)):C 2 osl2(t) TO(te t2))Ct2(c/hO)x2: 0

since a 2 is of order h. A similar argument proves (3.3). Q.E.D.
In light of this lemma, we define a cone K in the tangent space at x X(te) as

the convex hull of all vectors of the form (3.2). This cone is a measure of the
controllability at x available through higher order control variations made all
along the reference trajectory. The completion of the proof of the HMP follows
Halkin’s proof of the PMP [5] using a fixed point argument. Intuitively for u(t) to
be minimal, the cone K of controllability must be separable by a hyperplane from
the cone of L of directions which satisfy the boundary conditions and decrease Y0.
Formally L is defined to be the cone of all tangent vectors r at x such that

and for i= 1,. , m,

(X y0(xe)) "r <--0

THEOREM 3.6 (HMP). Suppose them exists no nontrivial ad]oint variable
satisfying (2.6)-(2.9). Then u(t) is not minimal.

Proof. If A e= (A,""", he) defines a hyperplane separating K and L in the
tangent space of xe, i.e.,

heT" 0 V ’K,

heT"O V "rL,

then define

0
A (t) A -X ’O(te t)x"

It is easy to verify that h (t) satisfies (2.6)-(2.9).
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On the other hand, if no such Ae exists, then it follows that there exists no
hyperplane separating K* and L* where these are the cones in im+l defined by

y (xe)7 7" E K

L* { ---x Y X 7" 7" E L}
(Recall that y (Y0," ", Ym) and the (m + 1) x (n + 1) matrixOy/Ox(xe) is assumed
to be of full rank, m + 1.)

From the definition of L, the cone L* is generated by the vector (-1,
00, , 0), hence this vector must be in the interior of K*. Suppose o- ,tr are

linearly independent vectors in K* such that

(-1,0,...,0)= Z tr.
i=0

0Let 7" ,. ., 7" be vectors in K such that

0 e)Ti"r
Ox

y(x

For some h and for each 0,..., m, there is a control variation a i(s)x
made at some x(ti) such that (3.2) equals 7"i. These variations can be used to
construct a family of admissible trajectories whose locus of endpoints is given by
X(te’, S’, C) as in Lemma 3.5.

0The vectors tr ,..., o, form a basis for R +1 and we use I1" to denote the L
norm relative to this basis, i.e. IIY. ditrill . Idil In particular if r >-0, C 0 and. ci 1, then [Ir ciill- r.

By Taylor’s theorem and compactness, there exists a constantMand an e > 0
such that

S Msh+CiO-(3.4) y(x(te; S; )) y(xe)--,
i=

for all {(s, c)" 0 <: s <: e, C 0, C 1}.
For some e > 0, let

and

{m }S r CiO’i" O<--_r<--el, C >--0 and Y’. ci 1
i=O

tr* (-el/2, 0,’." ,0).

Clearly tr* interior S
_
K*. Define a map g" S --> "+ by

g r CiO’i y(x(te; (h!r) 1/h" c))
i=
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Then from (3.4) we see that if e is small enough, there exists a constant M1 such
that

g r’=oCiO’i y(xe) +r 2 CiO’i <=M1rl+I/h.
i=0

Let N(o-*, 8) denote the closed ball of radius 8 around tr* in the norm II" I1.
Choose 8 small enough so that this neighborhood is contained in S and choose
0 < 0 < 1 such that

(3.5) Mlol+l/h(8 q-tS1/2) l+l/h < 08.

Since S is a convex set containing both 0 and N(tr*, 8), it follows that it
contains N(Otr*, 08). Finally define

( 0 ) ( )gl r citr =y(xe)+r citr-g r , citr +Otr*.
=0 =0

Clearly gl is continuous and we claim that gl maps N(Otr*, 08) into itself. To
see this, suppose r citri N(Otr*, 08). Then

(3.6)
gl r i=o CiO’i --00"*

By the triangle inequality,

y(xe)+r Cio"i--g r
=0 =0

<M1rl+l/h.

Putting these two inequalities together with (3.5) we obtain

g r CiO’i --00": < 08
i=O

as desired.
By the Brouwer fixed point theorem there exists an r CiO’i such that

gl r :r CiO"
i= i=O

or

g r , CiO’i =y(xe)+Or*.
i=0

This implies that x(te; (h! r) I/h’, c) is the endpoint of an admissible trajectory
satisfying the boundary conditions with a smaller Y0 value, hence u(t) is not
optimal.

Actually x(te) is not even a local minimum for we can choose 0 as close to 0 as
we choose subject to (3.5). Q.E.D.

4. Linear conditions for scalar controls. Suppose the control of (2.1) is a
scalar and th, set [l is a subinterval of . The PMP characterizes the optimal
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control as one where the Hamiltonian achieves its maximum, and therefore we
need only consider the endpoints of f and any interior points where (2.13) and
(2.14) are satisfied. Typically for each x and A this means considering only a finite
number of discrete values of u. However, there is at least one important exception,
namely, if the dynamics are linear in the control

(4.1) a0(x) + ual(x).

Systems like this frequently arise in diverse applications because the assump-
tion of linearity is so convenient in the formulation of mathematical models.
Moreover, in Example 4.2, we show how necessary conditions developed for (4.1)
can be easily extended to systems where the control enters nonlinearly.

If the dynamics is linear in u, then so is the Hamiltonian, H, and OH/Ou does
not explicitly depend on u. If it is not zero, then the extremal control is bang-bang,
i.e., at an endpoint of 1. However, if it is zero, then the extremal control is singular
since (2.14) is trivially satisfied. Moreover, (2.13) and (2.14) do not isolate the
extremal control, and so we must consider the behavior of the system over an
interval of time.

Suppose u(t) and x(t) are extremal for t s [t, e] for some choice of A (t).
Assume that for t (t 1, t2), u(t) is C and in the interior of 1, hence singular. The
Hamiltonian is given by

H(A, x, u) Aa0(x) + uAal(x),

and (2.13) reduces to

(4.2) 0__ H(A (t}, x(t), u(t)) A (t)al(x(t)) 0
Ou

for t [t, t2]. Since A (t) annihilates H, this implies that

(4.3) H(A (t), x(t), u(t)) A (t)ao(x(t)) 0

for t [t 1, t2].
It is straightforward to verify that given an arbitrary vector field b (x) and any

solution A (t) of the adjoint differential equation along the trajectory x(t) which is
generated by the control u(t),

d
(4.4) d-)t(t)b(x(t))=A(t)[ao, b](x(t))+u(t)A(t.)[al, b](x(t)),

where the Lie bracket is defined by

[ai, b](x)= xx b(x) ai(x)- -x ai(x) b(x).

Repeated differentiation of (4.2) yields

(4.5)
dk 0

dtk Ou
H(A (t), x(t), u(t)) 0
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for t It 1, t2] and k 0,. ,o. In particular,

(4.6) H(A (t), x(t), u(t)) A (t)al(x(t)) O,
Ou

(4.7)
dO

H(A (t), x(t), u(t)) A (t)[a0, al](X(t))= O,
dt Ou

d2 0

dt--- 0-- H(A (t), x(t), u(t))
(4.8)

(t)[ao[ao, a1]](x (t)) + u(t)A (t)[a l[a0, a1]](x (t)) 0,

d3 0
H(A (t), x(t), u(t)) (t)[ao[ao[ao, al]]](x(t))

dt30u
(4.9) + 2u(t)A(t)[ao[al[ao, al]]](x(t))+(u(t))zA(t)[al[al[ao, al]]](x(t))

+ fi(t)A (t)[al[ao, aa]](x(t)) O,

and so on. (In the next section we show that [ao[al[ao, a 1]]] [a[ao[ao, a a]]].)
One could also differentiate (4.3), however, no new conditions result.

Since u(t)interior f for t(t1, t2) we can, without loss of generality,
assume that u(t) 0 for t [t 1, t2] and + 1 fl by redefining a0 and al as ao + ual
and ca for some constant c and by choosing a slightly smaller interval [t 1, t2] and a
new 1) so that every admissible trajectory of the new system is also admissible for
the old. Then (4.5) simplifies to

dk 0
(4.10)

dt---- 0-- H(A (t), x(t), u(t)) (t)adk (ao)al(x(t)) 0

for t [t1, t2], where ad(ao)al al and adk(ao)al =[ao, adk-l(ao)al].
Equation (4.5) (or (4.10)) is sometimes referred to as the linear necessary

condition for an optimal control because it is precisely this condition that one
would obtain by linearizing (4.1) around the reference trajectory and considering
the effect of a sequence of first order control variations at properly chosen times.
This is the McShane-Pontryagin approach. Moreover in the case of (4.10), it
involves brackets of ao and a which are linear in the controllable vector field a 1.

Equation (4.3) is a constant necessary condition, i.e., it is zero order with
respect to the controllable vector field al of (4.1). It follows from the first order
control variations

(4.11) t(s)x y(+s)x
whose derivative applied to (2.9) yields

d
A (t) -s t+/-(O)x(t)= +A (t)(ao(x(t))+ u(t)al(X (t)))_--< 0.

Since Xo t, this condition is independent of (4.5) (or 4.10)). Therefore u(t) 0 is
extremal for t [t 1, t2] if and only if the rank of {adk (ao)aa(x(t)): k 0,. } is
less than n at each t It 1, t2]. (If the rank is n, then (4.3) and (4.10) supply n + 1
linearly independent conditions, and hence only A (t)= 0 satisfies them.)
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Notice that (4.10) was not obtained directly from a control variation, but
rather by differentiating (4.2). As a first application of the HMP, we would like to
develop (4.10) directly via high order control variations. In the next section, these
same control variations are used to obtain conditions which are quadratic in a 1.

Before we start, perhaps a word or two is required about terminology. When
we speak of high order control variations, the order is with respect to the
parameter s of the variations which is a time-like parameter. On the other hand,
when we speak of linear or quadratic conditions, we mean relative to the
controllable part of (4.1), i.e., of first or second order with respect to the integral of
the absolute variation in control. In particular, when u(t)= 0, these conditions
can be expressed using brackets which are linear or quadratic in al.

Suppose y+/-l and yo are the flows of u+/-l(t)= +/-1 and u(t) 0. Then define
the control variations

oI
+/-O(s)x ,+/- (s),O(--S)X.

Computing the first derivative,

d
ds

a+/-(O)x +/-al(x)=+/-ad(a0)al(x)

and so these control variations yield (4.10) for k 0.
Next define

(s)x y+/-l(s)y(s)y(s)y(-3s)x,
which are variations of order two, since (d/ds)a+/-l(O)x O.

To compute the second derivative, it is convenient to use the chain rule
technique and allow a +/-1

to operate on an arbitrary C-function q.

s2 q(a+/-l(0)x)= +4(aoal((x))-alao(p(x)))

+/-4[a0, al]q(x)= +/-4ad(ao)al(q(x)).

When applied to the HMP this yields (4.10) with k 1.
We generalize the above for any integer r _-> 1. Define

(s)x (s)(s)(s)(-s 2s’)x.

If s is replaced by s and s by s2, then the chain rule implies that at s 0,

ds Os2
dr+j (r -Jr- j)! ( (9r+j

(4.12) ds"+ j! 0S]2 0S1 t9S2

d2’+j (2r+j)!(2r+j)! o4 02

ds ’-----q j! j!2! Os Os+
(2r +j)! 0+ 0

r+]

t92r+j
4r"

for j=0,- -,r-1.
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From this it follows that

d
0

for j= 1,. -, r and

dr+l

dsr+l (O(tl(0)x)= +(r / 1)!ad(ao)al(tp(x)).

Of course ol(s)x does not lead to a new condition, but its generalizations
otk(s)x do, where for k odd,

Ol k(S)X ,)/+/- (()sr)0(S)!l(()sr)lO(s)
(4.13a)

l(S)Otl:t:l((kk)Sr)l(--ks--2ksr)x,
ahd for k even,

(4.13b)
1

Sr ’)tO(s)

,y(s),y+/-l((kk)sr),y(-ks-2ksr)x.
Using (4.12) it can be shown that

d
ds--7 0

for j= 1,. , r-1 and

dr+’ (r+j)’. (()li()(_l)j_iaoj_i(ao+(_l)lal)iao(O(x))dsr+] P(Otrk(O)x)= +
]! /=0 i=0

(r+j)l
(-1) C,kao aa((x)),=

i=o

where C.i,k 2k=o (--1)’ ()1.
In the next lemma we show that C,k =0 if 0_--</. <k and Ck,k (--1)kk! From

+kthis it follows that if k < r, then ar is a control variation of order r + k and

dsr+k p(tx2k(0)X) +(-1)k(r + k) Y, (__.xk-i k-i
1)" ao ala(q(x)),

i=o

which by induction on k can be shown to equal

+ (- 1)k (r + k)!adk (ao)a 1(p (x)).

Applying these variations to the HMP yields all the linear necessary conditions
(4.10).
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LEMMA 4.1.1 For any integers 0 <-_] <-- k, let

Cj,k- 2 (--1) j-

Then C,k 0 ifj < k and Ck,k (-- 1)kk
Proof. By the binomial formula,

(e- 2 (--
--o

e.

Expanding e It in a Taylor series yields

(e- 1) 2 Y’. (-1)-’
t

--o --o

For j 0,. , k 1, the coefficient of t on the left is clearly 0 so

()l)0= (-1)- _(-1
=o ]!- ]! c,.

The coefficient of t is clearly 1 so

=0 k-- k! c,. Q.E.D.

+/-1Remark. In constructing a:(s)x, we used the flows 3 of ao +/- a to obtain a
high order variation whose first nonzero derivative is a multiple of +ad (ao)a

ad (ao)(ao+a)). Suppose fl(s)x are control variations of order h along x(t)
whose h derivatives are b(x(t)) for some vector field b(x). Let fl(s)x

(pi(s)) (p(s))T(q(s))x, where T are flows of admissible controls
and pi(s)O for small s. Define. (s)x=T(pi(s))... T(p(s))x, and
construct a (s)x as in (4.13) but wth replacing T If k < r h, the result is a
control variation of order k + r. h whose k + r. h derivative is a multiple of
ad (ao)b(x(t)) along x(t).

Example 4.1. Consider the linear system

A (t)x + ub(t),

where x(0) x0 and lul 1. Introduce time as a state variable, x0 t, so that the
system is autonomous and define x (Xo, x) such that

ao()
A (xo)x

a ()
b (xo)

en
0

dxo

ad(ao)a()= d d d b(xo)+A(xo)b(xodxo b(xo)- A (xo) b (xo)- 2A (xo) dxo
e author is indebted to H. Hermes for the proof of Lemma 4.1.
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and so on. For autonomous systems this simplifies to

ad (ao)a()
(_1)Ab

Any bracket which is homogeneous of degree two or more in a() is
identically zero. Therefore OH/Ou and all its time derivatives are independent of
u, and (4.5) reduces to (4.10) regardless of whether u(t)= 0 or not.

Suppose the system is controllable, i.e., at each x there exists a k such that
ao(), a (),. , ad (ao)a (x) is of full rank, n + 1. Then there exists no nontrivial
A(t) satisfying (4.3) and 4.10) and any extremal control must be bang-bang,
lu(t)l 1. A similar analysis is given by Hermes and La Salle in 9 of [19].

Nxample 4.2. Consider a nonlinear system which is not necessarily linear in
the control

=(x, u),

where x(0)=x and u f. Given a reference control u(t)interior for
t (t a, t2), we can put the system in the form (4.1) by prolonging the control.
Define a new state x,/a u- u(t) and a new control v ,/a. Let x= (x, x,/a)
and

0
a(x)

On the hypersurface x,/a 0, which includes the reference trajectory of the
original problem

(4.14) ad (ao)a ()
)], (x

where C0(x)=[(x, u(xo)) and ]’, (x) (O/Ou)C’(x, u(xo)). Notice that prolongation
introduces a new linear direction a (x(t)) and shifts the other linear directions by
one -ao factor (4.14). In particular, if the original problem is linear in the control,
2 o(x) + u[, (x), and u(t) 0, then prolongation essentially shifts ad-(o)’, to
--adk(ao)al.

Consider the necessary conditions (4.3) and (4.5) for the prolonged problem
where k=(A, An+l) and It(k, x, v) =k(ao(x)+val(x)). The reference control is
v(t)- 0 and for k 1,

__0 lt(x(t), x(t), v(t)) x(t)a(x(t)) 0,
Ov

which implies that A,,+l(t)= 0, i.e., the prolonged adjoint variable lives on the
original state space.

For k > 1,

dk t9
0 rl(X(t), x(t), v(t)) k(t)adk (ao)a(x(t))

(4.15) -A (t)adk-l(fo)fu(x(t))
dk-1 0

H(A (t), x(t), u(t)),
dtk-1 Ou
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and so prolongation also shifts, by one time derivative, the linear necessary
conditions of the original problem. Moreover (4.3) for the prolonged problem
reduces to (4.3) for the original:

0 H(k(t), x(t), v(t))= k(t)ao(x(t))

A (t)f(x(t), u(t))
H( (t), x(t), u(t)).

Prolongation increases the dimension of the state space by one, but also
introduces linear controllability in that direction (al(x(t))) along the reference
trajectory, so the codimension of linear controllability remains constant, and
extremal trajectories remain extremal. Prolongation can also be viewed as
restricting the class of admissible control variations. In the original problem the
variation in u was required to be piecewise Coo; in the prolonged problem the
variation in u is continuous and piecewise C. It is interesting to note that this
smaller class yields the same necessary conditions for u(t) interior . This is a
consequence of the infinite differentiability of the original problem and might not
hold if it were only finitely differentiable.

Perhaps a word or two about the form of the control variations ak(s)x is in
order. They somewhat resemble the variations of Kelley, Kopp and Moyer [8].

+/-kThe derivatives of ar (s)x can be conveniently thought of as polynomials in the
+/-1 3,0noncommuting variables a0 and al. Parametrizing y by s and by s has the

following net effect; one must differentiate r times to obtain an a factor, but only
once for an a0 factor. This allows us to control the relative degrees of a0 and a 1.

+/-1The binomial coefficients and signs of y give ak(s)x the appearance of a
kth order difference operator where 3,

0 is the shift operator and 3,+/-1 are the
positive and negative evaluation operators. Needless to say, this is no coincidence
since adk (ao)al(x) is precisely the kth time derivative of al(x(t)) in any coordi-
nate system where ao(x) is a constant vector field. There are numerous other kth
order difference operators and if one were to use them in an analogous fashion as
models for constructing high order control variations, then the same necessary
conditions would result.

It is not surprising that these necessary conditions can be expressed in terms
of brackets of a0 and a for, as is well known [10], these brackets span all the
directions in which the system (4.1) can evolve. However, it is a bit surprising that

+/-kthe k + r derivative of te should be exactly equal to a bracket of a0 and al when
viewed as a formal polynomial in a0 and a 1. There is a fundamental reason for this.
Consider the real algebra of all formal polynomials in two noncommuting
indeterminates, a0 and a 1. The bracket is defined as before, [ao, a 1] aoa a ao.
Then certain of these polynomials can be constructed from a0 and a via
bracketing and forming linear combinations. Such polynomials are called Lie
elements and they are characterized by Friedrich’s criterion (see Jacobson [6,
p. 170]) which, in our present context, can be described as follows. A formal
polynomial in a0 and al is a Lie element if and only if whenever a0 and al are
replaced by arbitrary Coo-vector fields, the result is a first order partial differential
operator on smooth functions, i.e., it involves only the first partial derivatives of
the functions.
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+/-kSince the first r + k- 1 derivatives of a are zero, Lemma (3.2) states that
the r + k derivative is a first order operator. Moreover, this is independent of the
choice of a0 and al, and so this derivative must be a Lie element. Because the
degree of homogeneity in ao and a is determined by the parametrization, the r + k
derivative can only be a multiple of adk(ao)al, the only bracket which is
homogeneous in ao and a of the appropriate degrees.

A first order partial differential operator is characterized by the Liebnitz rule
for the first derivative of a product of functions. (Friedrich’s criterion is merely an
abstract form of this.) The following will prove useful in the next section.

LEMMA 4.2. Suppose a (s)x is a control variation oforder h atx 1. Then the first
2h 1 derivatives of a (s)x are first order partial differential operators on smooth
functions at x 1.

Proof. By Lemma (3.2) the first through h derivatives are first order operators
at x 1. As for the others, let p(x) and ,(x) be smooth functions around x 1. Then by
the generalized Liebnitz rule for higher derivatives,

-S (" ((0)xl) (0((0)xl)
j--i

1).
i=O si sj_ (OI. (O)x

Since a(s)x is of order h at x 1, only two terms of the right side are possibly
nonzero if 0 <j < 2h, so this reduces to the Liebnitz rule for first derivatives,

d 1).SS/" C/P" t(Cg (0)X 1) (9(X 1) dJ d
(a(0)x 1)+s p(a(O)x )(x Q.E.D.

COROLLARY 4.3. Suppose a (s)x is a control variation which is oforder h atx
independent ofthe choice ofao and a 1. Then the first 2h 1 derivatives must be Lie
elements when viewed as formal polynomials in the indeterminates ao and a 1.

Although the control variations considered in this section have not led to new
necessary conditions, they are useful because their higher derivatives do, as we
shall see in the next section. Another important aspect of these variations is that
they allow us to make instantaneous control modifications to move in any linear
direction. This property will allow us to cancel out undesirable lower order effects
of other variations via Lemma 3.4, and thus arrive at higher order variations. We
formalize this property in the following.

LEMMA 4.4. Suppose Co(t)," , Ck (t) are bounded C-real-valuedfunctions
for t (t 1, t2). Define a vector field along x(t) by

k

b(t) ciadi(ao)al(x(t)).
i=0

Then for any h > 2k, there exists a control variation fl(s)x of order h such that

dh

dsh fl(O)x(t)= b(t)

for t (t 1, t2).
Proof. Proceed by induction on k. If k 1, choose a constantc large enough so

< (t 1, t2). Let uthat Ico(t)l=c for t l(t) co(t)/c and construct the control varia-
+0Uons a h (S)X as before using ao+u a instead of ao+al. This is a control
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variation of order h and

dh

dsh a-(O)(x(t)) h !ad(ao)(ulal)(X(t))

h !ul(t)al(x(t))
h!

=mCo(t)al(x(t)).
C

The desired variation is (s)x a((c/h !)I/hs)x.
Now suppose the lemma is true for k 1. Then define uk (t) Ck(t)/c where

c -> Ic(t)l for t (t 1, t2). Construct a+k(s)x using ao+(--1)kuka instead of a0 + a
where r h- k > k. This is a variation of order h and

dh

h ol;k(O)(x(t)) h !adk (ao)(ukal)(X(t))
ds

h !u k (t)adk (ao)al(x(t)) + linear combination

ofadi(ao)al(x(t)) fori=0,...,k-1.
kDefine [k(s)X--Otr((/h!)l/hs)x. By induction there exist k-I(s)x of order h

such that

dh dh

[3 ksh flk-(O)x(t): b(t)-sh (O)x(t).

The desired variation is obtained by "adding"/3 k and/3k- as described in Lemma
3.4. Q.E.D.

Remark. It is important to note that in the construction of these variations,
the flow of ao+/-uial is parametrized by a multiple of s where r=h-i for

0,..., k. Therefore should we continue to differentiate, the first derivative
that could possibly involve a term quadratic in a is the 2(h- k) derivative.

COROLLARY 4.5. Consider the nonlinear system ofExample 4.2 which is not
necessarily linear in the control. Suppose u(t) is Co and in the interior of f for
t (t 1, t2). Given any bounded C-real-valued,functions Co(t)," ", Ck(t) define a
vector field along x(t) by

k

b(t) , ciad (fO)fu (x(t)).
i=0

Then for any h > 2k + 2, there exists a control variation fl (s)x of order h such that

dh

ash fl(O)x(t)= b(t)

for (t, te).
Proof. Prolong the problem as before and apply Lemma 4.4.

5. Quadratic conditions tot scalar controls. For (4.1) assume that u(t) 0
interior I is an extremal control for [t- ] < e. Then (2.14) is trivially satisfied so
that u(t) is singular. Moreover since u (t) is an extremal control, (4.3) and (4.10)
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are satisfied for some A (t). Because these are equality constraints rather than
inequality constraints, replacing A (t) with - (t) does not alter them. Therefore
they do not distinguish between minimizing and maximizing singular extremals.

To clear up this ambiguity, quadratic necessary conditions were developed by
Kelley [7], Kopp and Moyer [9], Kelley, Kopp and Moyer [8], Tait [17], Goh
[3], [4], Robbins [14], [15] and others. We refer the reader to the survey articles of
Gabasov and Kirillova [2], Bell [1] and Jacobson [18] for extensive bibliographies.
These conditions are sometimes referred to as the generalized Legendre-Clebsch
conditions (GLC) because they resemble the Legendre-Clebsch condition (2.14)
when expressed in terms of the Hamiltonian. Generally the proofs of the GLC
ignore the problem of terminal constraints either by assuming there are not any, or
by a normality assumption, a sometimes vague concept in the literature. Essen-
tially, normality means that there exists sufficient local controllability around the
reference trajectory to meet any terminal constraints that might be imposed
without affecting the validity of the GLC. We give a more precise definition later.

In this section, using the HMP, we develop quadratic necessary conditions
which generalize the GLC to problems with terminal constraints without using a
normality assumption.

Let D denote the linear space of Lie elements which are homogeneous of
degree and j in the indeterminates a0 and al, respectively, and let

Di span U D,
j=0

D=span 1,3 D,
i=0

D=span U D.
i,j=O

Let D(x)(Di(x),DJ(x),D(x)) denote the linear subspace of a tangent
vector at x obtained by substituting the vector fields of (4.1) in the Lie elements
and evaluating at x.

Suppose u(t)= 0 and x(t) are a singular extremal control and trajectory on
It1, t2]. Following Robbins [15], we say that the control is singular ofdegree h + 1
on this interval if h is the smallest integer such that for some t (t 1, t2),

[al, adh(ao)al](X(t)).Dl(x(t)).

The next theorem describes the quadratic necessary conditions for such a control
to be minimal.

THEOREM 5.1. Assume that u(t) and x(t) are defined for (4.1) on [t, te].
Suppose u(t) 0 interior 1 on the subinterval (t, t2). If u is singular of degree
h + 1 on this subinterval and h is finite, then h is odd. If u(t) is minimal, then there
exists a A (t) satisfying the PMP on [t, ] such that

(--1)(h+l)/2A (t)[al, adh(ao)al](x(t)) <-0

on the subinterval it 1,/,2].
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Note that the theorem does not imply that the degree of singularity is finite,
just that if h < o, then h must be odd, whether the extremal trajectory is minimal
or not. Later we give an example where the degree of singularity is infinite. There
may exist several subintervals of [t, e) on which the degree of singularity varies.
Before proving the theorem, we state a generalization and a corollary which do
not assume linearity in the control or u(t)= 0. First we make a generalized
definition. Suppose u(t) and x(t) are a singular extremal control and trajectory
for (2.1) on [t 1, t2]. The control is singular o[degree h + 1 on this interval if h is the
smallest integer for which there exists A(t) satisfying the adjoint differential
equation (2.6) and the constant and linear necessary conditions

(5.1) H(A (t), x(t), u(t)) O,

dk
0
H(A (t), x(t) u(t)) 0(5.2)

dtk Ou

for k 0, , o on any nontrivial subinterval of It 1, 2] such that for some in this
subinterval,

0 dh+l 0
H(A (t), x(t), u(t)) O.

OU dth+l Ou

Notice that a control could be singular of degree h + 1 0 or
THEOREM 5.2. Assume that u(t) and x(t) are defined for (2.1) on [t, tel.

Suppose u(t) interior on the subinterval (t 1, t2). If u is singular ofdegree h + 1
on this subinterval and h isfinite, then h is odd. Ifu(t) is minimal, then there exists a
A (t) satisfying the PMP on [t, ] such that

(__l)(h+l)/2 0 dh+ 0

Ou dth+10u H(A (t), x(t), u(t)) <-_ 0

on the subinterval [t 1, t2].
A singular extremal control u(t) interior and trajectory x(t) are normal

on (t 1, t2) if for each t (t 1, t2) there exists only one linearly independent A (t)
satisfying the constant and linear necessary conditions (5.1) and (5.2). Since
x (x0, , x,) this is equivalent to the assumption that the variations +/-(s)x of
(4.11) and k(s)x Of (4.13) supply exactly n-dimensional local controllability at
each x(t) for t (t 1, t2).

In particular for (4.1) and u(t) 0, this is equivalent to the assumption that
the dimension of Dl(x(t)) is n 1 for each t (t 1, t2).

COROLLARY 5.3 (Kelley, Kopp and Moyer [8]). Assume that u(t) and x(t)
are defined for (2.1) on [t, te]. Suppose u(t)6 interior 1 and is normal on the
subinterval It 1, t2]. Ifu(t) is minimal, then there exists a A (t) satisfying the PMPon
[t, which is unique to the scalar multiple by normality. Let h be the smallest
integer such that

0 dh+l 0

OU dth+10u H(A (t), x(t), u(t)) 0
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for some t (t 1, t2). If h is finite, then h is odd and on the subinterval [t 1, t2],

(__l)(h+l)/2 0 dh+l (9

Ou dth+10u H(A (t), x(t), u(t)) <- 0

must hold.
Proof. We now prove Theorem 5.1. In Example (5.2) we show that Theorem

5.2 is equivalent to Theorem 5.1 by prolongation. The corollary follows
immediately from Theorem 5.2.

Except for a nowhere dense set, every t (t 1, t2) is contained in an open
interval where Dl(x(t)) is of constant dimension with a basis consisting of

{al(x(t)), ad(ao)al(x(t)), ad (ao)al(x(t))}

for some I. Without loss of generality we can assume that the open interval is all of
(t 1, t2), for at other points the theorem follows by taking continuous limits.

By repeated application of the Jacobi identity for Lie elements, [bi[bj, bk ]]
[[bi, bj]bk]+[b[bi, Ok]], and the skew symmetry relation, [6i, bi]= -[b, 6i], it is
easy to see that

l--1

[al, adi(ao)al] Y (-1)i[ao[adJ(ao)al, adi-i-l(ao)al]]
(5.3)

i=0

adi-l+ (- a)[ad (ao)al (ao)a 1].

If is even and i/2, then skew symmetry implies that the last term on the right
side is zero so

(i/2)--1

(5.4) [al, adi(ao)al] Y (-1)i[ao[adi(ao)al, adi-J-l(ao)al]].
/=0

From (5.3) and (5.4) it can be shown that a basis for the linear space D2 of Lie
elements consists of

(5.5a) {[al, adi(ao)al], adZ(ao)[al, adi-Z(ao)al], adi-l(ao)[al[ao, al]]}

if is odd, and

(5.5b)
{[a0[al, adi-l(ao)al]], ad3(ao)[al, adi-3(ao)al], adi-l(ao)[al[ao, al]]}

if is even.
Now suppose that u is singular of degree h + 1, i.e.,

[al, adi(ao)al](x(t))Dl(x(t))
on the subinterval It 1, /2] for 1,. , h- 1, but not for h. Bracketing both
sides with a0 yields

(5.6) adi(ao)[al, ad (ao)al](X(t)) Dl(x(t))
for/" 0, , c, 1,- , h 1 and [t 1, t2]. In particular,

(5.7) O2 (x (t)) O l(x (t))

on [t 1, t2] for i= 1,. , h-1.
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If h is even, (5.5b) and (5.6) imply that [al, adh (ao)al](X(t)) Dl(x(t)) which
contradicts the definition of h, hence h must be odd. Notice also that (5.6) implies
that the only bracket which keeps (5.7) from being true for i=h is
[a, ad (ao)al](X(t)).

To prove the rest of the theorem we must construct an appropriate high order
control variation. We start with a+k(s)x for any k => (h + 1)/2, r > k and r > h. We
have already computed the first k + r derivatives of this variation and we know by
Corollary 4.3 that the first 2(k + r)- 1 derivatives are Lie elements. We wish to
study the jth derivative where k + r <j -< h + 2r _-< 2(k + r) 1.

It is easy to see that this variation causes no displacement in the time direction
and so the ]th derivative cannot possibly contain an a0 term. Moreover, from the

+kparametrization of the components of ar (s)x we know that the jth derivative is a
sum of elements of D if r_-<j<2r and a sum of elements of D and D2 if
2r_--<j<3r.

We already have control variations in the directions of Dl(x(t)) so we are
only interested in the part of the/’th derivative that lies in De for 2r < --< 3r. Again
from the parametrization we know that the part from D is more precisely from
Df_, and hence a linear combination of (5.5). Moreover from (5.7) we know that

D_2r(X(t)) Dl(x(t))
for 1--<]- 2r < h, so the first derivative that could possibly furnish a new test is
] h + 2r. (Note that by the choice of r and k, it follows that ] < 3r and ] < 2(k + r)
as desired.) This derivative can be expanded in the basis (5.5) but we are really
only interested in the coefficient of [a l, adh(ao)al] for this is the part of the
derivative that lies outside Dl(x(t)).

To compute the coefficient of [a, adh (a0)al], we need only compute the
coefficient of the monomial alahoal in the ]th derivative for this is the only bracket
of (5.5) that contains that monomial. We defer to a later lemma the computation
that shows that the sign of this coefficient is (--1)(h+)/2.

In summary, we know the following. The first k + r- 1 derivatives of a +k(s)
(X(t)) are zero, derivatives k + r through h + 2r- 1 lie in Dl(x(t)) and the h + 2r
derivative consists of some parts from D(x(t)) plus a positive multiple of
(--1)(h+1)/2[a1, adh(ao)a](x(t)). To complete the proof we must make a+k(s)x
into a control variation of order h + 2r at x(t) by canceling out all the lower
derivatives for t (t 1, t2).

To do this we must apply Lemma (4.4) using the fact that
{al(x(t)),..’, ad (ao)a l(X (t))} spans Dl(x(t)). The lemma allows us to construct a
control variation of any order >2/whose first nonzero derivative is any vector
field along x(t) which lies in D(x(t)). Therefore we must choose k and r such that

+kk + r > 21 and by adding" new variations to a (s)x, we can cancel out its lower
derivatives from k + r through h + 2r- 1. Call the resulting variation (s)x.

We must be careful in doing this, for it is possible that the sign of
[al, adh(ao)al](x(t)) in the h + 2r derivative of (s)x differs from its sign in the

+kh + 2r derivative of a (s)x, and this would change the test. Recall that the
parameters of the flows of ao+a in a+k(s)x are s and, on the other hand, the
variations of Lemma 4.4 used to cancel derivatives r + k through 2r + h- 1 are
composed of the flows of ao + uia r/k-Iparametrized by s or higher powers of s.
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So, if k > 1, then these "added" variations cannot possibly change the coefficient of
[al, adhaoal](X(t)), although it could change the part of the h +2r derivative
which lies in Dl(x(t)). However this is not important for the test since (4.10)
implies that A (t) annihilates Dl(x(t)).

In closing, we emphasize that this necessary condition is an inequality
precisely because the bracket involved is quadratic in a l. If we used a-g(s)x
instead of a+g(s)x as a base for our high order variation, the same necessary
condition would result because this is equivalent to replacing a l(x) by -al(x)
which leaves invariant the brackets quadratic in al. Using either of these varia-
tions, we have controllability in the direction (--1)(h+1)/2[a1, adh(ao)al](X(t)), but
not its negative. Q.E.D.

LEMMA 5.4. Let Ck,h be the coefficient of alahoal(qg(x)) in

d2r+h
dS2r+h’qg(Ot+r k(O)x)

where k > (h + 1)/2, r > k and r > h. Then

Ck,h ----0 if h 2, 4, ,2k-2

and

(_ 1)(h+l)/2..t.k,h >0
Proof. By direct computation,

ifh= 1,3,-.., 2k-1.

Ck,h=(2r+h)! }’. (--1)i+J()() (]-i)h
O<=i <j<--k h

If h > 0 and is even, then

i,j=0 /" h!

Expand (e-t- 1)k (et- 1)k by the binomial formula:

(e-’--l)k(et--1)k= (-1)i+’()()e (i-ilt.
i,j=O

Expand e(]-i)t in a Taylor series"

e-t- 1)g(el- 1)
g Z (-1)’+

(J- i)h th"
h=0 i,j=O h!

For h 2, 4,. , 2k- 2, the coefficient of h on the left side is clearly 0 so

k {k{k’x (j--i)h 2

i,=0 j h! (2r + h)!

and the first claim of the lemma has been shown.
If we assume h is a real variable, then for fixed k, Cg,h is a sum of k

exponentials. Therefore it has at most k 1 zeros, which we have just shown to be
h 2, 4,. , 2k- 2. It follows that Cg,h alternates signs at h 1, 3,. , 2k- 1
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and, in particular, the sign of Ck,2k_ must be the same as the coefficient of the
largest exponential which is (-1)k (-1)(h+1)/2. Q.E.D.

Example 5.1. Consider the problem of minimizing x4(te) subject to x= 0,
xo(te) 1 and

o 1, 3 x/2,
21 U, 34 -x2/2,

32 XI

Clearly the trajectory determined by u(t) 0 is not optimal, but let us apply
the previous theorems and corollary. This trajectory, x(t)=(t, 0, 0, 0, 0) for
tel0, 1], is a singular extremal since A(t)=(0, 0, 0, 0,-1) satisfies the PMP
(uniquely to scalar multiple) and 02/Ou2H O.

A straightforward calculation shows that [ai, ad(ao)aa](x(t))D(x(t)), so
the degree of singularity h + 1 2 and we apply the test

-A (t)[al, ad(ao)al](X(t)) <-_0

which is trivially satisfied. Therefore Theorem 5.1 does not rule out u(t)= O.
To understand the relationship between them, let us apply the other theorem

and corollary. For some t [0, 1] (in fact, every t), the adjoint vector/z(t)
(0, 0, 0, 1, 0) satisfies the necessary conditions (5.1) and (5.2) and the adjoint
differential equation on [0, 1]. For any [0, 1],

Od20
H((t), x(t), u(t)) O,

Ou dt20u
so again h + 1 2 and Theorem 5.2 only allows us to test if

Od20
H(A (t), x(t), u(t)) <-- O,

Ou dt Ou

which of course is trivially satisfied.
As for Corollary 5.3, it does not apply since the trajectory is not normal

(dimension of Dl(x(t)) is 2 < n 1 3).
These quadratic necessary conditions failed to rule out an obviously nonmini-

mal (in fact, maximal) trajectory because the problem was not given as a minimal
realization (see Sussmann [16]). We are only interested in Xo(te) and Xn(te), SO we
define y(x)= (y0(x), yl(x))= (x4, x0) as our output. It is clear that the x3 coordi-
nate is superfluous to the input-output description of the problem and may be
dropped. Then [a, ad(ao)al](X(t))= 0 and so h + 1 4. Since

A (t)[a, ad3(ao)a](x(t)) 1 0,

the trajectory is nonoptimal. Similarly, when applying Theorem 5.2, we find h 3
and the corresponding test rules out u(t) 0. Moreover since the dimension n + 1
of the state space is now 4 rather than 5, and the dimension ofD l(x (t)) is still 2, the
trajectory is normal by the comments following Theorem 5.2. Corollary 5.3 also
rules out the trajectory.

Notice that if an additional terminal constraint, x3(te) --0, is added to the
original problem, then the output map must be expanded to include x3 and this
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coordinate cannot be eliminated. Therefore the quadratic necessary conditions no
longer rule out the control u(t)= 0, but this is as it should be for this control
generates the only trajectory satisfying the terminal constraints.

Example 5.2. Once again consider a nonlinear system which is not necessarily
linear in the control as in Example 4.2. Prolong the system as before by
introducing new state and control variables. On the hypersurface Xn+l 0, which
includes the reference trajectory

[al adh(ao)al](X) (fo)fu,.(x)-2 adh-2-i(fo)[fu, adi(fo)fu](X)
i--0 0

when f0, fu are as before and fu.(x)= (O2/Ou2)f(x, u(xo)). This shows that the
GLC for h 1 of the prolonged problem is equivalent to the Legendre-Clebsch
condition of the original.

If the original problem is linear in the control, /=fo(x)+ uf (x), and u(t)
0, then the prolongation shifts D_2(x(t)) to Dh2(X(t)). It also shifts the GLC for
h-2 to the GLC for h; the lower order GLC is satisfied with equality and
therefore multiplication by ,k(t) cancels all but A (t)[f, adh-2(fo)f](x(t)) on the
right side of (5.8).

Prolongation can be used to show that Theorem 5.1 implies Theorem 5.2 for
an arbitrary nonlinear system (2.1). A straightforward calculation shows that for
h__>l.

0 dh-1 O
H(A (t), x(t), u(t))

Ou dth-10u
h-2

A (t)adh-l(fo)fu,u(X)+ Y. A (t)ad (f0)[f, adh-2-i (fo)fu](X(t))
i=0

-Jr (t)[a 1, ad
h (ao)a 1](x(t)).

Many proofs of the GLC are based on the reverse of prolongation. In the
literature this is known as a "transformation of control variable" or "passing to
the accessory minimum problem". By using the integral of the old control as the
new control variable, the GLC for h is converted into the GLC for h-2.
Repeated application reduces the GLC for h to the Legendre-Clebsch condition
which has been previously demonstrated. The principal difficulty in applying this
technique is that in effect, one is dropping the dimension of the state by changing a
state variable to a control variable. Another way of looking at this is to say that one
is allowing impulse controls. One must justify the claim that necessary conditions
developed using this wider class of controls are also necessary conditions for the
original class. These problems are usually ignored in the literature and instead
normality is assumed to be sufficient to overcome any difficulties that arise in this
fashion and also to meet the terminal constraints.

Example 5.3. To see that the degrees of singularity h + 1 can be infinite,
consider the problem of minimizing x2(te) subject to x(0)= 0, Xo(te) 1, lul--< 1
and

-/o 1, i2 x/6,
l=U+X2

1-
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A straightforward computation shows that along the trajectory x(t)= (t, O, O)
generated by the control u(t)= 0 for the adjoint variable A (t)= (0, O,-1),

dh 0

dth Ou
H(A (t), x(t), u(t)) 0

and

odho
OU dth Ou

(t), x(t), u(t)) o

for all h. Therefore this trajectory is a singular extremal, and the quadratic tests
are inconclusive. To show the nonoptimality of this trajectory, the HMP must be
used to construct a necessary condition which is particularly suited to the problem
at hand, i.e., a cubic or higher test.

Let tz+(s)x and cz (s)x be defined by (4.11) and (4.13) respectively, such that

d
+/-(0)x-- =t: (1, 0, 0),

ds
a

d
"7(s)x + (o, o),

+/-l(s)x. It is easy to show that this is aand so the trajectory is normal. Consider a
variation of order two and

d2

ds-- a=l(s)x + 4[a0, all(x),

4-1but this bracket is zero along x(t). Therefore; in this case, a are of order at least
+/-13. Computing the next derivative which also must be a Lie element (since tr is of

order 2 for all ao and al),

d3

+a(s)x :t:6[a0[a0, al]](x)- 10[al[a0, aa]](x).
ds 3 t

The first of these brackets is zero and the second is (0, -2, 0) along x(t). Therefore
this derivative can be canceled by "adding" tr-(21/3s3/6)x via Lemma 3.4. Call
the resulting variation fl+(s)x; it is of order 4 along x(t). Because of the

+0 +/-1parametrization of a it follows that the fourth derivatives of/3
+/- and a are

identical. This derivative is not a Lie element, but it is in the span of D(x(t)). By
direct computation,

d4

ds---z B+/-(s)x +/- (0, 0, 6).

Applying this to the HMP yields the nonoptimality of u(t)= O.
This is actually a third order test because it is a multiple of [al[al[a0, a 1]]]

x)= (0, 0, 1) which is cubic in al. A similar conclusion can be obtained by the
method of Hermes [20].

This example demonstrates how one constructs necessary conditions which
are adapted to a particular problem. First one applies the standard linear and
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quadratic tests developed in the last two sections. If these are inconclusive, i.e.,
they are satisfied with equality rather than strict inequality, then one must
construct cubic and higher tests ad hoc. The basic building blocks are the family of

+/-kvariations ar (s)x. One works with as small a k and r as possible and considers the
higher derivatives. If these can be canceled using linear or quadratic controllabil-
ity, then one "adds" the appropriate variations to do so. Higher derivatives are
considered and hopefully a definitive test is eventually realized.

6. Quadratic conditions for vector controls. In this section, we generalize the
results of the last to a system with vector controls,

(6.1) : ao(x) + Z ua(x),
i=1

where u (ua,..., u) is constrained to lie in l, a subset of with nonempty
interior.

By fixing all but one of the controls and varying the other, one obtains the
previously discussed linear and quadratic necessary conditions for each control.

These are the same linear necessary conditions involving (dh/dth)(O/Oui)H
(or if u(t)= O, adh(ao)ai) for 1,-’’, l, and the same quadratic conditions
involving (c3/c3ui)(dh/dth)(c3/c3ui)H (or if u(t) O, [ai, adh (a0)ai]) for 1, , I.
There are, however, new quadratic necessary conditions associated with the
mixed partials (O/Oui)(dh/dth)(O/Ou)H (or if u(t)= 0, [ai, adh(ao)a]) for i,f=
1,-..,1.

These conditions were first developed by Goh [4] using a sequence of
accessory minimum problems under an assumption of normality. We use the
HMP to prove these results and extend them to problems with terminal con-
straints without normality.

Let D denote the linear space of Lie elements which are homogeneous of
degree in the indeterminate a0 and homogeneous of degree ] in the vector of
indeterminates (a,. ., at), and let Di, D, D, D(x), Di(x), D (x) and D(x) be as
before. Since there is more than one controllable vector field, there are some
significant differences. For example, D which previously was {0} since [a 1, a]-
0, now contains the nontrivial Lie elements [a, ai] where ].

Suppose the reference control is u(t)= 0. Associated with each control
there is a degree of singularity hi / 1 defined as before; hi is the smallest integer
such that for some t 6 (tx,/2),

[ai, adh’(ao)ai](x(t)) Dl(x(t)).

We wish to emphasize tile fact that Dl(x(t)) contains adk (ao)aj(x(t)) where ] i,
but the arguments of Theorem 5.1 are still valid, so that if hi < o, it must be odd.

THEOREM 6.1. Assume that u(t) and x(t) are defined for (6.1) on [t, tel.
Suppose u(t)=0interior II and each ui is singular of degree hi + 1 on the
subinterval t 1, t2). ffu(t) is minimal, then there exists a A (t) satisfying thePMPon
[t, t ] such that on the subinterval [t, t2],

(6.2) A (t)[ai, adk (ao)aj](x(t)) 0



286 ARTHUR J. KRENER

for k 0,. , (hi + hj)/2-1, 1 <-_ i, j <-_ I. Moreover, if hi < for 1,. , k <-_ l,
then the k k matrix whose i, ] entry is

(6.3) (- 1)%+1/2A (t)[ai, adh’+h)/e(ao)aj](x(t)),
where 1 <-_ i, ] <- k must be symmetric and nonpositive definite.

The following theorem generalizes the above to an arbitrary nonlinear
system (2.1) where u(t) is not necessarily zero. Recall that the control ui is
singular of degree hi + 1 on It 1, 2] if hi is the smallest integer such that for some

(t 1, t) there exists A (t) satisying the adjoint differential equation (2.6) and the
constant and linear necessary condition

(6.4) H(A (t), x(t), u(t)) O,

dk 19
(6.5) dt---# 19--i H(A (t), x(t), u(t)) 0

for k 0,. , oo and ] 1, , on any nontrivial subinterval of It 1, te] such that
for some t in this subinterval,

19 dh+l
19
H(A (t), x(t), u(t)) # O.

19Hi dth +1 19Hi

Again we wish to emphasize that (6.5) must hold for every u and if h < c, it must
be odd.

THEOREM 6.2. Assume that u(t) and x(t) are defined for (2.1) on [t, te].
Suppose u(t) interior and each ui is singular ofdegree hi + 1 on the subinterval
(t 1, t2). Ifu(t) is minimal, then there exists a A (t) satisfying thePMPon [t, t such
that on the subinterval [t 1, re],

19 dk 19
H(A (t), x(t), u(t)) 0

19ui dtk 19u
for k 0," ", (hi + h)/2, 1 <- i, j <- I. Moreover if hi < az for 1,. , k <-_ l, then
the k x k matrix whose i, ] entry is

(_l)(h+l)/2 19 d(h’+h)/2+1 19

19ui dth’+h)/+l 19u
H(A (t), x(t), u(t)),

where 1 <-_ i, j <- k, must be symmetric and nonpositive definite.
As before, a singular extremal control u(t) interior fl and trajectory x(t)

are normal on (t 1, e) if for each t(t1, 2) there exists only one linearly
independent vector A (t) satisfying the constant and linear necessary conditions
(6.4) and (6.5).

COROLLARY 6.3 (Goh [4]). Assume thatu(t) and x(t) are definedfor (2.1) on
[t, te]. Suppose u(t) interior f and is normal on the subinterval (t 1, t2). Ifu(t) is
minimal, then there exists a A (t) satisfying thePMPon [t, te], which is unique to the
scalar multiple by normality. Let hi be the smallest integer such that

0 dh,+ 19

1911 dthi+ 1911
H(A (t), x(t), u(t)) 0
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for some (t 1, t2). Then each finite hi must be odd and on the subinterval It 1, 2]
such that

odko
OU dtk Ou

H( (t), x(t), u(t)) o

must hold for k 0,. , (hi +hi) 1 i, <- I. Moreover if hi < oo for
1,. , k <- l, then the k x k matrix whose i, entry is

(_l)(hj+l)/2 0 d(h’+hj)/2+l c3

Oui dt(h’+hp/24i H(A (t), x(t), u(t)),

where 1 i, j <- k must be symmetric and nonpositive definite.
Remark 1. Goh [4] does not express his necessary conditions in above form,

but they are equivalent. The Hamiltonian formulation of Corollary 6.3 makes the
conditions easier to describe and apply. They are closer to Robbins 15], but his
results are weaker for they do not include quadratic conditions involving two
controls which are singular of differing degrees.

Remark 2. The above results make it desirable to choose coordinates in the
control space 1

_
so that the controls Ul, , u are singular of as high a degree

as possible. We discuss how this is done in Examples 6.1 and 6.2.
Proof. We now prove Theorem 6.1, Theorem 6.2 follows by prolongation as

before, and the corollary follows immediately from Theorem 6.2.
By repeated application of the Jacobi identity,

(6.6)

p-1

[ai, adk(ao)ai]= Y. (-1)[ao[ad(ao)ai, adk--’(ao)ai]]
o’=0

+ (- 1)P[adp (ao)ai, adk-p (ao)aj ].

Letting p k, we obtain

(6.7)
[ai, adk (a0)a ] (- 1)k/l[aj, adk (ao)ai]

k-1

+ Y, (-1)[ao[ad(ao)ai, adk--l(ao)aj]].
cr=O

These equations imply that a basis for the linear spaceD of Lie elements consists
of the union of (5.5) with

(6.8) {adk-(ao)[ai, ad(ao)ai] O <- cr <- k, 1 <-_ <] <-_ k}.

Note the presence of terms like [ai, adk (ao)ai] in this basis even when k is even.
If =], then (6.2) follows immediately because ui is assumed singular of

degree hi + 1. Suppose /" and k <- (hi + hi)/2-1. Choose any ki and k such that

ki + k k and ki -< (hi 1)/2, k _-< (h 1)/2. Choose ri > ki, r > k such that

ki + ri k + ri. Define a pair of control variations

#(s)x * "+" *(r, ’(s)r I,s)srn ’(S)skJ(s)y(--2p(s)-- 2q(s))x,
where

+k. +k. 0srn ’(slx a n ’(sty (p(sllx
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using the control ai instead of al;

a, ts)y tq(s))x
k. +/-

using the control aj and p(s) kis + 2k’s t’ q(s) kjs + 2 ’s ’. In other words, fl (s)x
-k. +k.are constructed by "adding" ak’(s)x and a,, ’(s)x made wth ai to a ,(s)x and

-k(S)X made with a.
kFrom the definitions of ,k’ and , (s)x and the chain rule we have

dp d’+/-k(r, (0)X y0(p(0))X,
ds

da o+/-k,ox=
d o(

dsa tr, -s / q(O))x

if 1 =< p < ki + ri, and

dk+r dk+r (ri d- ki)
dski+ri ri (O)x dski+r 0(0))/(--1)ki

ki
adk’(ao)ai(x),

d,+r,dk’+ri
k,(o)x sk,ri T(q(O))x(--1)k’dsk’+" k[

adk(a)a(x)"

Using this we see that

da
fl(O)x d k. d

ds
’(0)X

(6.9)
d :k+s /(p(0) + q(O))a t, ’(0)3’(-P(0) q(O))x

d
+d-- 3’(2P(0) + q(O))ak(0)/(--2p(0)- q(O))x

if 1 <_--p <2(ki +ri). If p 2(ki +ri) we have the above plus the extra terms on the
right,

(6.10) : (_1),/ ((ki + r)!) [ad,(ao)ai, ad(ao)a].
ki k

We wish to make +/-(s)x into a control variation of order 2(ki +ri) by
"adding" other variations to cancel out the right side of (6.9) for p=
1,-.., 2(ki + ri).

Since at, ’(s)x and a are "added" to make fl+/-(s)x and the former are
of order ki + r, so must be the latter. Moreover the ki + ri derivative of/3 +/-(s)x is
just the sum of the corresponding derivatives of the former and hence zero.
Therefore +/-(s)x are control variations of order at least ki + ri + 1 independent of
ao, ai and a and so all their derivatives up to 2(k + ri)+ 1 are Lie elements.

Studying the right side of (6.9) forp <- 2(ki + ri) we see that it contains no cross
terms, i.e., terms with both an a and an a2 factor. It involves only linear brackets
and brackets either quadratic in a or quadratic in a. By the relationship of k and
k to the degrees of singularity hi and hi, it follows that the right side of (6.9) along
x(t) is in Dl(x(t)). Therefore it can be canceled using Lemma (4.4).
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The result is a pair of control variations of order 2(ki + ri) whose 2(ki + ri)
derivatives are given by (6.10). Using (2.9) of the HMP it follows that if u(t) is
minimal, then

(6.11) X (t)[adk’(ao)a,, adkJ(ao)aj](x(t))= O.

Differentiating (6.11) with respect to time yields

X (t)adp (ao)[adk’(ao)a, adkJ(ao)aj](x(t)) O,

and so (6.6) and induction on k ki + k implies (6.2).
To show (6.3) we first assume that each hi h for 1,. , k. Let M(t) be

the k x k matrix whose i, j entry is

(-- 1)(h+l)/2A (t)[ai, ad(ao)a](x(t)).

It follows from (6.2) and (6.7) for odd h that M(t) is symmetric. To show that M(t)
is nonpositive definite along minimal trajectories is equivalent to showing that for
any u (t) (u(t), Uk (t)),

u(t)M(t)u(t) <= O
along minimal trajectories.

Given any such u(t), define a new system with scalar control v by

(6.12) bo(x) + vbl(x),

where bo(x) ao(x) and bl(x) Y’. ui(xo)ai(x). Applying Theorem 5.1 to (6.12) we
see that the control v is singular of degree h + 1 and we obtain the necessary
condition

(6.13) (--1)(h+l)/2X (t)[ba, adh(bo)bl](X(t)) <=0.

Now

(6.14)

[bl, adh (bo)bl](X(t)) Z ui(xo)ui(xo)[ai, adh (ao)a](x(t))
id

2+ terms from Dp(x(t)) for p < h.

So, applying (6.13) and (6.2) to (6.14) yields the desired result.
Suppose the degrees of singularity of the various controls are not the same. If

we prolong u, i.e., define a new state X,+x ui and new control v :/,+1, then we
obtain a system of the form

b0(x) + vbi (x) + E ujb(x),

where x (x, X,+l) and

bo(x) (a(x) +x"+la(x))0
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Along Xn+l "--0 for ] i,

[b, ad(bo)b]()= 2 ad--(ao)[a, ad(ao)a](x)
o’----0

0

[b,, adp (bo)b](x) ([a, ad 0)a(x)]),
[b, ad(bo)b]()=

ad (ao)[a, ad(ao)a](x)

0

0

erefore the degree of singularity of v us hi + 3. In this way, all the controls can
be made singular of the same degree and (6.3) follows from repeated use of the
above identities. Q.E.D.

Example 6.1. Suppose u(t) generates a normal singular extremal for (2.1)
on [/1, t2] and we wish to apply Corollary 6.3. To obtain as many necessary
conditions as possible it is desirable to make a time-dependent change of
coordinates of the control space fl l.

Start with the symmetric x matrix

Mo(t) OuiouH(A (t), x(t), u(t))

where li,]l and A(t) is uniquely determined to the scalar multiple by
normality. By passing to a subinterval if necessary, we can assume that rank Mo(t)
is constant and equal to l-ll where 110 by assumption. ere exists an
orthonormal basis e(t),..., e(t) for such that

Mo(t)e(t) 0

for 1,- , l. Make the change of coordinates

u)=Eo(t)u1,
where u)= (u), u)) are the original coordinates, u1) (u), u1)) are
the new coordinates and

Eo(t) (e(t) e(t)).
On the subspace l 9 spanned by e(t), , e(t), we continue to change

coordinates. Consider the l x l matrix

d0 0
H( (t), x(t), u(t))),Ml(t)

Oui dt20u
where 1 i, ] 11. is matrix is symmetric, and by passing to a subinterval if
necessary, we can assume it is of rank l-12 for each t (t, t). Choose an

l(t) e(t) for such thatorthonormal basis e

M(t)e (t) 0



HIGH ORDER MAXIMAL PRINCIPLE 291

for 1,. , 12. Make the change of coordinates

U
(2) =E2(t)u (1),

where

E2(t)=te(t) e,(t) O__lO 1/t
We continue on in this fashion until some Mk (t) is of full rank or it becomes

clear that some controls are singular of infinite degree. Then apply the corollary.
Example 6.2. Suppose u(t) generates a singular extremal for (2.1) on [t 1, t2]

which is not normal and We wish to apply Theorem 6.2. Once again, to obtain as
many necessary conditions as possible, we must make a change of coordinates in
the control space.

Since the trajectory is not normal at each t e (t l, i2), there exists more than
one linearly independent A satisfying the constant and linear necessary conditions
(6.4) and (6.5). By passing to a subinterval if necessary, we can assume that the
dimension of the space of such A is constant, say 19, at each t e (t 1, t2), and therefore
there exist p linearly independent solutions A l(t), ,AP(t) of the adjoint
differential equation (2.6) satisfying (6.4) and (6.5).

Define p symmetric x matrices:

0
2

M’(t) H(A’(t), x(t), u(t))
OuiOu

where 1 o-p and 1 _-< i, ] _-< 1. By passing to a subinterval if necessary we can
assume that the rank of the p x matrix,

IMP(t)tMo(t)

is constant, say 1-11. Choose an orthonormal basis e(t),..., eo(t) for l such
that

Mo(t) e(t) 0

for 1,. ., 11. Make the change of coordinates

u()=Eo(t)u (1)

where u (), U
(1) and Eo(t) are as in Example 6.1.

On the subspace q spanned by e(t),..., e(t),’we continue to change
coordinates. Consider the p symmetric la 11 matrices

M(t)
Od20

Oui dt20us H(A (t), x(t), u(t)))
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where 1 tr p and 1 =< i,/" _-< 11. Define

tMll(t)tMl(t)

and so on until some Mk (t) is o full rank or it becomes clear that some controls are
singular o innite degree. Then apply Theorem 6.2.

7. Conclusion. The purpose of this paper was to introduce the HMP as a
useful tool for constructing high order necessary conditions for optimal control
problems with terminal constraints. The HMP is a natural extension of the PMP
based on a generalized form of the Pontryagin-Weierstrass condition.

We used the HMP to rigorously demonstrate the GLC for problems with
terminal constraints with or without normality. Heretofore the proofs of the GLC
relied on a blanket assumption of normality to guarantee their validity.

The HMP can also be used to develop necessary conditions specifically
tailored for the problem of interest as in Example 5.3. These special conditions
might involve cubic or higher effects of control variations. Further research is
needed to discover whether they can be put in a systematic form.
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DIFFERENTIAL STABILITY IN NONLINEAR PROGRAMMING*

JACQUES GAUVIN" AND JON W. TOLLE

Abstract. This paper consists of a study of stability and differential stability in nonconvex
programming. For a program with equality and inequality constraints, upper and lower bounds are
estimated for the potential directional derivatives of the perturbation function (or the extremal-value
function). These results are obtainedwith the help of a constraint qualification which is shown to be
necessary and sufficient to have bounded multipliers. New results on the continuity of the perturbation
function are also obtained.

Introduction. This paper is concerned with the differential properties of the
extremal-value function for a nonconvex nonlinear program under perturbations
of the right-hand side. In particular, conditions will be given under which bounds
can be derived for the directional derivatives of this function. In order to obtain
these results, conditions for the stability of the solution set, the multiplier set, and
the extremal-value function are derived.

Stability and differential stability have been well-studied for convex pro-
grams. Rockafellar [ 15], [16] has established and utilized the connection between
stability and duality. For a survey of this and related work see Geoffrion [6].
Gol’stein [7] has obtained a strong result on the directional differentiability of the
extremal-value function under weak assumptions. Hogan [10] also considers
these same directional derivatives for use in constructing an optimization
algorithm. Williams [18] and Robinson [14] have investigated differential stability
for the more special case of linear systems.

In the nonconvex case, Evans and Gould [4] have given sufficient conditions
for stability (continuity of the perturbation function) of a program with inequality
constraints for "right-hand side" perturbations. Greenberg and Pierskalla [8]
have obtained some extensions of these results to functional perturbations and to
programs with equality constraints. In reference [9] Hogan gives extensions to
parameterized nonlinear programs and Robinson [13] has estimated changes in
the solution sets for quite general parameterized nonlinear programs. For
differential stability in nonconvex programming fewer results have been pub-
lished. The standard theorem seems to be of Fiacco and McCormick [5] in which
the optimal objective value in a neighborhood of a local optimum is shown, under
strong assumptions, to be differentiable with its gradient equal to the Kuhn-
Tucker multiplier vector corresponding to that local optimum.

Recently there have appeared some papers which have investigated the
stability of nonconvex programs through the use of penalty functions and
augmented Lagrangian functions. Rockafellar [17] shows the important role
played by differential stability of degree 2 in nonconvex duality theory and for the
existence of a saddle point for a certain augmented Lagrangian. Conditions, which
include the classical second order sufficient conditions to have an isolated
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optimum, are shown to be sufficient for this stability of degree 2. Armacost and
Fiacco [1] study functionally perturbed nonconvex programs through the use of
penalty functions. They compute first and second order changes in the local
extremal-value function via these penalty functions.

In 1 of this paper, the basic terminology and notation used as well as some
fundamental results from matrix theory, point-to-set maps, and the theory of
differential equations are presented. In 2, some relations between stability and
the set of Kuhn-Tucker vectors for a mixed nonlinear program are established. A
known constraint qualification is shown to be necessary and sufficient to have
bounded Kuhn-Tucker vectors. This constraint qualification is then used to derive
the continuity of the extremal-value function. In 3, lower and upper bounds for
the potential directional derivatives of the extremal-value function are given as
well as conditions for the existence of the directional derivatives.

(1.1)

1. Preliminaries. In the paper we will consider the mixed nonlinear program

and its perturbed program

(1.2)

maximize f(x), x R ",
subject to

g(x) <- O, 1,. ., m,

hi(x) 0 y=l,...,p,

maximize f(x), x R ",
subject to

gi (x) _-< bi, 1,. ., m,

hi(x ci, ]= 1, p,

where the vectors b and c represent "small perturbations". The functions f, {gi},
and {hi} will be assumed to be continuously differentiable functions defined on R"
unless otherwise specified. The gradients of these functions will be denoted by Vf,
{Vgi}, and {Vhi} respectively. All vectors will be used interchangeably as row and
column vectors and the inner product of any two vectors x and y will be denoted
x.y.

For fixed b and c the feasible region for (1.2) will be denoted by U(b, c)=
S(b)fqT(c) where S(b)={x:gi(x)<-_bi, i=1,..-,m} and T(c)={x:hi(x)=ci,
j= 1,..., p}. The feasible perturbations are D= {(b, c): U(b, c) } and the
extremal-value function is the function fsuo: R"" Rp

---) g defined by

sup {f(x) x U(b, c)},
fs,r,(b, )

For (b, c) D, we define the optimal set P(b, c) as follows:

P(b, c)= {x U(b, c):f(x)= fup(b, c)}.
We shall sometimes consider U(b, c) and P(b, c) to be point-to-set mappings from
g Rp into the subsets of R".
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For $ U(b, c) we denote the active inequality constraints for (1.2) as

I(.; b)= {i gi(.) bi}.

Also we denote by K($; b, c) the set of Kuhn-Tucker vectors corresponding to $,
that is, the set of (u, w) R Rp such that

(1.3)

p

E u,Vg,(,)+ E
i=1 i=1

ui-->0, i= 1,- , m,

u,(&(Y)-b)=O, i=l,...,m,

and define

K(b, c)= O K($; b, c)..P(b, c)

In order to assure that K($; b, c) be nonempty when is a local maximum of
(1.2) it is necessary to impose some type of constraint qualification on the
functions {&} and {hi} at . In this paper the following two qualifications will be
used:

(i) There exists a )7 e R" such that

V&(.) 37 < O,
(CO1)* Vhi(y )7 0,

(ii) The gradients {Vhi()} ] 1,..., p are linearly independent.

The condition (CQ1)* is the Mangasarian-Fromowitz constraint qualification (see
[11]).

(CQ2)*
The gradients {V&($), Vhi(.)} I(; b),

] 1,. , p, are linearly independent.

In the absence of equality constraints (CO1)* is equivalent to the Cottle constraint
qualification" the system

Y uV&(.,Z) O, u _-> O,
iOz; b)

has no nonzero solution. If the & are convex and the h affine, (CQ1)* is the
well-known Slater condition.

In this paper we shall have occasion to use the pseudoinverse of a matrix. If A is
rn x n with rank m then AA 7- is nonsingular and the matrix A# Ar(AA 7")-1 is
called the pseudoinverse of A. The following properties of A # will be useful.
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PROPOSITION 1.1. IfA is m x n with rank m then
(i) AA#

(ii) A #b is a solution ofAx b,
(iii) .for any which is a solution ofAx 0 there exists a R such that

2=(I,,-A#A).,
(iv) any 2 which is a solution ofAx b can be written

2=A#b+(I-A#A)2.
For completeness, we include some important concepts from the theory of

point-to-set maps. For a more detailed exposition the reader is referred to Hogan
[9] or Berge [2]. In the following, F will represent a point-to-set mapping of
E Rk into the subsets of R .

DEFINITION 1.1. The map F is upper semi-continuous at 2 e E, if for any
open set containing F(2) there is an open neighborhood N(2) of 2 such that
F(x)

_
for each x e N(2) f’) E.

The concept of upper semi-continuity will be more suited to our purposes if
phrased in terms of sequences.

DEFINITION 1.2. F is said to be closed at 2 e E if {x,} c E, xn --> 2, yn e F(x),
and y,-> )7 imply that )7 e F(2).

DEFINITION 1.3. F is uniformly compact near 2 eE if there is a neighbor-
hood N(2) of 2 such that the closure of the set xtce)F(x) is compact.

With the above definitions we can relate the concepts of closed maps and
upper semi-continuity. The proof of the following proposition is found in [9].

PROPOSITION 1.2. LetFbe uniformly compactnear2 E. Then Fis closed at2
if and only if F(2) is compact and F is upper semi-continuous at 2.

Finally we state two results on the solution of nonlinear differential equations
which will be useful in the sequel.

Let K and L be open subsets of R and Rp respectively and let be a
continuous mapping from K xL into a bounded subset of R n. Consider the
two-parameter family of ordinary differential equations with specified initial
values

O’(t) (O(t), :),

(to) r/

where s L and r/ K. The following proposition is an easy generalization of
Peano’s existence theorem (see, for example, [3]).

PROPOSITION 1.3. Let f be any compact subset of L. Then ]’or rl K there
exists a > 0 such that]or every l such that IIl r/ll-< t and every If, there exists
at least one solution to (1.4). Moreover, all solutions to (1.4) for el_. and
II - exist and form an equicontinuous and uniformly bounded family on
some fixed interval [to, tl], tl > to.

By using the Ascoli-Arzela theorem together with the integral equation form
of (1.4) the following corollary to Proposition 1.3 can be deduced.

PROPOSITION 1.4. Let be a sequence ofvectors in f_. converging too and l
be a sequence of vectors in K converging to 7 K. If (t) is a solution of (1.4)
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corresponding to n and *1 1 then the sequence {n(t)} contains a subse-
quence, {m (t)}, which converges uniformly to o(t) on [to, tl]. Moreover o(t) is a
solution to (1.4) ]’or o and 1 1 and ’(t) converges to ’o(t) pointwise on
[to, tl].

2. Stability and the Kuhn-Tucker vectors. In this section we investigate
some stability properties of the program (1.2). The stability of a nonlinear
program is traditionally measured in terms of the semi-continuity properties of
the point-to-set maps U(b, c) and P(b, c) and the function fsup(b, c). Here we show
how these properties for fsup(b, c) derive from the basic assumptions of uniform
compactness of U(b, c) and the existence of optimal points where the constraint
qualification (CQ1)* holds. In addition, the concept of stability is extended to
include the behavior of the set of multiplier vectors, K(; b, c) for P(b, c).
Besides their intrinsic interest, many of these results will have important conse-
quences in the developments in 3.

The first result, due to Evans and Gould [4] and Greenberg and Pierskalla [8],
shows the importance of the uniform compactness assumption on the feasible set.

LEMMA 2.1. If U(O, O) is nonempty and U(b, c) is uniformly compact near
(0, O) then U(b, c) and the extremal-value ]’unction fsup(b, c) are upper semi-
continuous at (0, 0).

Proof. Because the. functions gi and hj are continuous U(b, c) is closed at
(0, 0) and therefore, by Proposition 1.2 it is upper semi-continuous at (0, 0). The
upper semi-continuity of fsup at (0, 0) now follows from the results in [8].

In this study we shall find it necessary that the Kuhn-Tucker vectors for a
given optimal point.form a compact set. The next result shows that the constraint
qualification (CQ1)* is necessary as well as sufficient for this property. This
theorem complements the recent work of Robinson [13] in which (CQ1)* is shown
to be equivalent to a type of local stability for the set U(b, c). Taken together these
results strongly suggest that (CQ1)* is the natural constraint qualification to
invoke when studying questions of stability for a nonlinear program.

THEOREM 2.2. Let be a local maximum forprogram (1.1). Then K(; 0, 0)
is a nonempty, compact, and convex set if and only if (CQ1)* is satisfied at

Proof. If K(; 0, 0) is nonempty then it is clearly closed and convex. So it will
suffice to show that (CQ1)* is equivalent to K(; 0, 0) being nonempty and
bounded.

Consider the linear program

minimize Y. (--Ui)
I( ;0)

subject to

I(2 ;0)

P
UiVgi() " Z 14IjVhj() f(),

j=l

6 I(.f; 0),

wj unrestricted, j=l,...,p,
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and its dual

maximize Vf() y

subject to

Vg,(2) y =<-1, 6I(2; 0),

Vhj(X).y =0, j= 1,...,p,

y unrestricted.

Let VH(2) be the matrix whose rows are the gradients Vhj (2). If (CQ1)* holds, the
dual is feasible. For any y which is dual feasible there exists a z such that

y [I,, VH(Y)#VH(Y)]z

where VH(2)# is the pseudoinverse of VH(2) (see Proposition 1.1). Define thearc
a(A) by the differential equation

a’(Z) [I,, -VH(a(Z))#VH(a (A))]z,

,(0)=X.

It is easily shown that for small A this arc is feasible for program (1.1) (see the
proof of Lemma 2.4 for a similar argument). Thus for A sufficiently small,
f(a(A))<-_f(a(O))=f(Y) and Vf(Y). y Vf(a(0)). a’(0)_-<0. Hence the dual pro-
gram is bounded and the primal is feasible and bounded. It follows that the set of
feasible u vectors is bounded. From part (ii) of (CQ1)* it follows immediately that
the set of feasible w vectors is bounded.

Conversely, if we assume K(Y; 0, 0) to be nonempty and bounded then the
primal problem is feasible and bounded, so the dual is feasible and part (i) of
(CQ1)* is satisfied. If the gradients {Vhi(2)}, ] 1,. , p are not linearly indepen-
dent then for a fixed u the solutions of the system

w Vh (x)= x)- Z u, Vg,(x
i=1 i=1

define an unbounded linear manifold. But this contradicts the assumption and
therefore part (ii) of (CQ1)* must hold.

It should be observed that (CQ1)* does not imply that the Kuhn-Tucker
vector is unique as do stronger constraint qualifications, e.g., (CQ2)*.

A standard goal in the study of stability is to assure the continuity of the
perturbation function fsup(b, c). The next set of lemmas culminate with the proof
that this continuity is a consequence of the uniform compactness assumption and
the constraint qualification (CQ1)* thus extending results given in [4] and [8]. In
the process of establishing this theorem a constructive means of obtaining points
in U(b, c) for (b, c) near (0, 0) will be given.

Henceforth z (z 1, z 2) will represent a unit vector in R" x Rp. Such a z will
be called a direction vector. The next two lemmas establish that if (CQ1)* holds
then U(Az 1,/Z2) is nonempty for 0 <_-)t _<-, for some > 0.
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LEMMA 2.3. If (CQ1)* is satisfied atsome 2 P(O, 0), thenforeach direction z
there exists a R such that

(i) Vgi(2) _-<z], I(; 0),
(ii) Vh](2) 37 z, ] 1,-.-, p,
(iii) Vf() 37 min(u,w)K(;o.o) {u z + w" z2}.
Proof. Consider the following linear program

(P)*

and its dual

(D)*

min {u z + w z2}
subject to

p

Y’, u,Vg,(;)+ Y’,
i=1 ]=1

uigi(2) O, 1," , m,

u>--O,

w unrestricted,

max {V/(2) y}

subject to

Vg,(g). y + gi(;)v, <-_z], i= 1, m,

Vh](2) y z, j 1,..., p,

y, v unrestricted.

From Theorem 2.2, the primal problem, (P)*, is bounded and feasible. Thus by the
dual theorem of linear programming there is an optimal dual solution )7 such that
(i)-(iii) hold. [3

LEMMA 2.4. If (CQ1)* is satisfied at some P(O, O) then, for every direction
z, there exists a > 0 and a continuously differentiablefunction (. z) :[0, , ] R
such that ,(0; z)= and ,(h; z) U(hz 1, AZ2) for h [0, X].

Proof. Let z be given. Let satisfy (i) and (ii) of Lemma 2.3 and )7 given by
(CQ1)* at 2. Then VH(2)()7 + )7) z 2. From the properties of the pseudoinverse
matrix given in Proposition 1.1 we have

Y + VH()#z2 + [In VH(g)#VH()]() +)7).

Now define (A z) by the differential equation

(2.1)
@’(A; z) VH(q(A z))#z +[I,, -?H((A z))#VH(q(A z))](y +

q,(o; z)=

and note that

z)=
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By Proposition 1.3, there exists a solution to this initial value problem in a positive
interval, say IAI -< , where c is independent of z.

Since

I{)lttH((A z))= H(b(At; z)) dt

A VH(O(At; z))O’(At; z) dt

A z dt Iz

we have that h(O(1 z)) Iz, ] 1,. ., p, for all I, 0 N I N. Moreover, for
e I($; 0),

g, ((x; z)) g,() + Vg,() (; + ;)x + o(X)

<xz+oX

for A such that 0AA for some &, 0<& a. Also, for iI($; 0), &((0; z))=
&($) <0 implies &((A z))Az for A such that 0A& where 0<&. We
may conclude that (A z) U(Az 1, Az) for 0 <
e next lemma demonstrates that there exists a A > 0 which is valid for all

direction z and therefore shows that U(b, c) is not empty for (b, c) near (0, 0).
LEMMA 2.5. ff (CQ1)* is sasfied atsome U(0, 0) then there exists a A > 0

andfor every direcon z a cona’nuously differenable function (.; z)" [0, A]R
such that (A; z) U(Az , Az2) for each A [0, ].

Proof. Let Zo (z, z) be a given direction vector and let y0 VH($)z.
Let given by (CQ1)* such that

(2.2) V&(,). (Yo + 7) < 1, e I($; 0).

For any direction z in some fixed neighborhood No of Zo let )7 VH()#z2. If No is
sufficiently small, then (2.2) holds for Yo replace by )7. For each z e No, define the
function (a; z) by the differential equation (2.1). As in Lemma 2.4, we have
H(g,(A; z))= az2 for all A, 0 =<A =<a and all z and

g,(,(a; z))<_-az, a e [0, (z)]

for some h (z) > O.
We next show that if the neighborhood of Zo is sufficiently small then the A (z)

can be chosen independently of z in that neighborhood. Suppose not; then there
exists a sequence of direction vectors, {z"}, converging to z0 such that the
corresponding sequence {A-} {(z")} converges to zero. This means that there is
an i{1,..., m}, a subsequence {zm} tending to Zo, and a positive sequence
{am} "- 0 such that

(2.3) gi((im zm)) >1m(Zli m.
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By applying Proposition 1.4 we can assume that the sequence( z"*) converges
uniformly to O(h Zo) on the interval [0, a ] where ,(h Zo) is a solution to (2.2) for
)7 Yo. We Show, by considering two cases, that (2.3) leads to a contradiction.

Case 1. If iI(2; 0) then, by the uniform convergence, (2.3) leads to

g,((0; z0)) g,(2) => 0,
which is a contradiction since gi is inactive at 2.

Case 2. If 1(2; 0) then gi(,(0; zm))= 0 and

gi(l(Am zm)) gi(l(O zm)) Im (Z ])
By the mean value theorem there exists a A, e [0,,,,] such that

Vgi(I/t(A*m zm)) ’(1" Zm) > (Z)
Replacing g’(Am ;z’) by the corresponding right-hand side in (2.1) and using the
uniform convergence we obtain

Vgi(2)" ()70 + )70) > Zo,

which is a contradiction to (2.2).
We have now shown that in some neighborhood of z0 there is a X (z0) such

that g(A z) e U(Az 1, Az 2) for all A, 0 _-< A -< (z0). Applying this result to each
direction vector we obtain a cover of the unit sphere in R +P. By choosing a finite
subcover and taking the minimum of the corresponding A (z) we obtain the desired
result. El

We now establish the continuity of fu, at (b, c) (0, 0).
THEOREM 2.6. Suppose that U(0, 0) is nonempty, U(b, c) is uniformly com-

pactnear (0, 0), and (CQ1)* holds atsome 2 P(O, 0). Thenfsup(b, c) iscontinuous
at (0, 0).

Proof. fsup is upper semi-continuous at (0, 0) by Lemma 2.1. To show thatfs,p
is lower semi-continuous; let {(b ", c")} be a sequence of points such that

lim inf fsup(b, c) lim fsup(b n, c" ).
(b,c)--,(O,O)

Writing (b", c n) as A"(/n, "), A"’- 0, where (/, ?")= z" is a unit vector, we
obtain (possibly using a subsequence) a sequence {(/", ?")} converging to the unit
vector (b, c) z.

Using Lemma 2.5 we have that 4,(A"; z")e U(b", c") for n large enough to
insure that A _-<,(. Thus

]:sup(b", c")

and by the uniform convergence argument of Lemma 2.5

lim fsup(b n, c n) -> lim f(g,(a"; z"))

=(g,(0; z))
f(2) fsup(0, 0).
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Consequently, fsup is lower semi-continuous and hence continuous at (0, 0). [1

In the next theorem it is demonstrated that the constraint qualification
(CQ1)* is preserved under perturbation. More general constraint qualifications
need not have this property.

THEOREM 2.7. Assume (CQ1)* holds at 2 P(O, 0). Let {(b", c")} and {x,}
be sequences such that (b", c")-* (0, 0), x, P(b", c"), and x,-. Then for n
sufficiently large, (CQ1)* holds at x, and there exist subsequences {(um, Win)} and
{Xm} with (u", wm) K(x,, b", cm) such that (u m, wm)-(a, if) for some (,
) K(2; O, 0).

Proof. Since x , for n sufficiently large it follows that I(x ;b") I(; 0)
and that {hi(x)}, j 1,. ., p, are linearly independent. Since (CO1)* holds at ,
there exists a )7 such that

Vgi (2). ; < O, 1(2; 0),

i o, j=l,...,p.

As in the proof of Theorem 2.2 there exists a z 6 R" such that

; [I,, VH(2)#VH(2)]z.
Define ,, [I,, VH(x,,)#VH(x,,)]z.
Then 57,, 57, so for large n

(2.4)

and by definition

(2.5)

Hence (CQ1)* holds at x,, for n sufficiently large.
Let (u", w") K(x,, b", c"). Then for each n

w"VH(x,,) Vf(x,)- Z u’Vgi(x,,)
i=1

and thus

(2.6) w" [V/(x,)- Z u’]Vg(x,,)]VH(2,,)#.
i=1

From (2.4) and (2.5) we have

Vt(x.). g. Z uTVg,(x.),
i=1

<- uTVgi(x,, f,,

for any j I(; 0). Consequently

u7 <= Vf(x,,) 37,
Vgl (x,,) :,,’ i e I(2; 0),

u7 O, ]: 1(2; 0).
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These inequalities together with (2.6) imply that the sequence {(u n, wn)} is
bounded. Any convergent subsequence must clearly converge to some (ti, if)
K(; 0, 0).

From the proof of Theorem 2.7 it is apparent that the sequence {x} and a can
just as well be taken to be local maxima rather than global.

As a consequence of Theorem 2.7 we obtain
COOLL2.8. If U(O, O) is nonempty and compact, and if (CQ1)* holdx at

each P(O, O) then K(O, O) is compact.
Proof. Choose any sequences ((u, w)}, (u, ) K(O, 0). Takex P(0, 0)

such that (u, w)K(x; 0, 0). Since P(0, 0) is eompaet, there exists a subse-
quenee (x,) and an P(0, 0) such that x, -. From Theorem 2.7, choosing
(b ’, c ") --(0, 0), there exists a subsequenee ((u , w)), (u , w) K(x; 0, 0) and
a (r, )K(2; 0, 0) such that (u , w)- (, ). 1

The next theorem generalizes Theorem 2.7 in that it gives conditions under
which sequences (x} and ((u, w)), with (u, w)K(x; b, c), have con-
vergent subsequences as (b, c) (0, 0) without assuming that x 2 P(0, 0).
THEO 2.9. Suppoxe U(O, O) is nonempty and U(b, c) is uniformly com-

pact near (0, O) and that (CQ1)* holds at each P(O, 0). Thenfor any xequences
{(b, c)), (x,,}, with (b", c")- (0, 0), and x P(b, c) there exist subsequences
{x,} and {(u m, w’)} with (u ", w’)K(x,; bm, c’) such that x,- and (u ",
w’)-(a, ff). Moreover P(O, O) and (, if) K($; 0, 0).

Proof. Since U(b, c) is compact, {x} has a subsequence {Xk} such that Xk -.$ is clearly in U(0, 0). By Theorem 2.6 fsup is continuous at (0, 0) so

f() lim f(Xk) lim fsup(b k, c k) fup(0, 0).

Hence P(0, 0). The theorem is now proved by applying Theorem 2.7 to {Xk}
and {(b k, ck)}.

COROLLARY 2.10. /f U(0, 0) is nonempty and U(b, c) is uniformly compact
near (0, 0), and if (CQ1)* holds for every P(O, 0), then for some t5 > 0 (CQ1)*
holds at each x P(b, c) with II(b, c)ll <= , and the point-to-setmapK(b, c) is closed
at (0, 0).

The proof is a direct consequence of Theorems 2.7 and 2.9.

3. Directional derivatives for the extremai-value iunction. Throughout this
section z (z , z2) will again represent a direction vector. The directional deriva-
tive of fv(b, c) at (0, 0) in the direction z is given by

(3 1) Dfap(0, 0)= Alim0+ [fsup(zl’z2)-fsup(O’ 0)]
providing, of course, that the limit exists. Our purpose is to determine conditions
under which the directional derivatives will exist for all z and to compute their
values. If the derivatives cannot be shown to exist then we will establish upper and
lower bounds on the lim sup and lira inf of the difference quotient appearing in
(3.1). These bounds enable us to gauge the rate of variation of fs,p in the direction
z at (0, 0) if the derivative is not known. The directional derivatives (or the bounds
on the lira sup and lira inf) will be expressed in terms of the direction z and the set
K(0, 0), the Kuhn-Tucker vectors at (0, 0). As special cases we will obtain the
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known results for convex programs and for the program with constraint functions
whose gradients are linearly independent.

The results contained herein can be considered an extension of the work of
Gol’stein [7]. Gol’stein proved that for general perturbed convex programs the
directional derivatives exist and satisfy a saddle-point condition. No assumptions
of convexity are made here but the perturbations are restricted to be changes in
the right-hand sides.

Rockafellar [17] has established, using second order conditions, the stability
of degree 2 of fsup(b) which is defined in the following manner: in a neighborhood
of b 0 there exists a function r(. ), twice ditterentiable, such that fsup(b) <-- r(b)
and fsup(0)= r(0). This form of stability yields certain bounds on the potential
directional derivatives of fup. In this section we obtain sharp bounds under
conditions not requiring second order derivatives.

THEOREM 3.1. Suppose that U(O, O) is nonempty, U(b, c) is uniformly com-
pact near (0, 0), and (CQ1)* holds at some 2 P(O, 0). Then for any direction z

(3.2) lixof
fsup(’Z 1, AZ 2) __fsup(O, O) __--> min {u" Z -- W" Z2}.

A (u,w)e:(;o,0)

Proof. For a given z, let (A; z) be the curve given in lemma 2.3. We have

lim inf
]’p(Ax’ Az2) -]’p(0, 0)

A-O /

z)) d_--> liminf_,o A f(,(A z))

vf( (0; z)= W(2)" (; +
where y satisfies the conclusions of Lemma 2.3 and 37 satisfies (CQ1)*. Since the
left-hand side of the above inequality is independent of 7 we can let )7 --> 0 and use
(iii) of Lemma 2.3 to obtain the desired result. [-!

We can derive a sharper bound by strengthening the hypothesis of Theorem
3.1 as follows:

COROLLARY 3.2. 11’ the hypotheses of Theorem 3.1 are satisfied and, in
addition, (CQ1)* holds at each P(O, O) we have

(3.3)
i[af Lup(AZ

1, Z2)
lim -Lup(O, 0)
x-,0 A

max min {U 2’ _. W Z 2}."
eP(0,0) (u,w)K( ;0,0)

Proof. Corollary 2.8 assures the compactness of K(0, 0) and the result
follows by applying Theorem 3.1 to each $ P(0, 0).

It can be shown that Theorem 3.1 and Corollary 3.2 can be valid for some
specified direction z under a weaker constraint qualification than (CQ1)*. In
particular we need that the linear program (P)* of Lemma 2.3 have a basic optimal
solution satisfying strict complementary slackness for the specified z.
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THEOREM 3.3. Suppose that U(O, O) is nonempty, U(b, c) is uniformly com-
pactnear (0, O)and (CQ1)* is satisfiedforeach P(O, 0). Thenforany direction z

lim sup {fsup(Azl, Az2)-fsup(O, O)}
x->O A

(3.4)
-< max max (a 2’

__
1 2’ 2).

P(O,O) (t,,) K(- ;0,0)

Proo] Let {A}, A --> 0/, be any sequence such that

lim sup fsup(Az 1’ Az2) -fsup(0’ 0)

(3.5)
-/ A

lim fsu(AnZ , AnZ2)--[p(0, 0).
By Lemma 2.4, U(A,z , Az2) is nonempty for An small. Let Xn P(AnZ , AnZ).
Since U(A,z 1, Az) is uniformly compact near (0, 0), there is a subsequence,
again indexed by n, and a $ such that x $. Since [up is continuous (by Theorem
2.6), $ P(0, 0). Then

(3.6) fsup(AnZl’ AnZ2)__fsup(0, 0) f(xn)--f(.).

Consider the linear program

min -{u z + w z 2}
subject to

p

i=1 ]=1

and its dual

uigi() O, 1,. ., m,

u -> 0, w unrestricted,

max V/(:) y

subject to

(D) Vgi(J) y + gi()vi <--z], 1,"’, m,

Vhi(2)" y =-z, j 1,.’’, p,

y, v unrestricted.

From Theorem 2.2, the primal problem (P) is feasible and bounded, thus the dual
problem has an optimal solution 37 and

(3.7) Vf($). )7 min -{u. z l- W" Z2}.
(u,w)K( ;0,0)

From Proposition 1.1,

37 -VH($)#z 2 + [In VH($)#VH($)]37.



For n sufficiently large, VH(x,,) still has full row rank and we can define

y-,, -VH(x,, #z 2 + [I,, VH(x,, #VH(x, )]17.
Let 17 given by (CQ1)*. By Proposition 1.1, there is a Y R" such that

37 [I,, VH(2)#VH(2)]3.
Define ,, [I,, -VH(x,,)#VH(x,)]Y,
and for e > 0, let y e37,, + 17, --> 3 et7 + 17 where, by definition,

(3.8) Vg,(2) f <-z,, e I($; 0).

Since VH(x,,)f,, =-z2, we have, by Proposition 1.1,,, -VH(x,,)#z 2 + [I, 7H(x,,)#VH(x,,)]:,,.
As in Lemma 2.4, consider for each n the differential equation

’.(* z) -VH(O, (l z))#z 2

(3.9) +[I, -VH(q,,(A z))#VH(q,,(, z))]y,,,

O.(O;z)=x..

Since y --> 13 and x,, --> 2, Propositions (1.3) and (1.4) apply to the differential
equations (3.9). Thus there exists a subsequence of solutions {0m( Z)} converg-
ing uniformly to 00(; z) on [0, a] where 00(; z) is a solution to (3.9) with x,,
replaced by 2 and y by 13- In the same manner as in Lemma 2.4 we can show that
for X e [0, a]

hi(m (A z)) hi(lm (0; z))-

=,,.z;-,z;.
Hence if rn is sufficiently large

hi(lm(am; Z))--O ]--- l, ", p.

Also we can show that for rn large

gi(@m (A,,, Z)) <= O, i=l,...,m.

Otherwise there exists an and a subsequence, still indexed by m, such that

gi(lm (am Z)) > O.

By uniform convergence, if : 1(2; 0),

lim gi(O,,, (Am z)) gi (bo(0; z)) gi(2) >= 0
which contradicts the fact that is inactive at 2. If I(2; O)

g lrn /m Z g lm O Z 2> mZ

By the mean value theorem, for some Am e [0, Am ],
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If we replace ’m(,n; z) by its right-hand side in (3.9), we obtain, by uniform
convergence,

Vg,(2) 3 =>-z,

which is a contradiction of (3.8).
It now follows that for n sufficiently large,,(x; z) e u(o, o)

and hence f(2) ->fOP,, (A,,; z)). Thus

f(Xm)--f()) <______ {f(@m (Am;Z))--f(i.m (0; Z))}
=--Vf(l//m(m Z))" I[Im(m" Z),

for some Am e [0, A], by the mean value theorem. By (3.7), (3.9), and uniform
convergence, we have

lim f(x,)-f (2) < Vf(2)
A0 An

-V/() e)7- min -{u. z + w. z}.
(u,w)eK(2 ;0,0)

Since the left-hand side is independent of e we can let e -> 0 to obtain from (3.5)
and (3.6)

lim sup
le’uP’/Z 1’ ’Z2)--up(0’ 0) __<

A-O
max

(u,w)eK(2; 0,0)
{U zl"[-W Z2}

for some 2 e P(O, 0). Since P(0, 0) is compact, the result follows.
The bounds given by (3.3) and (3.4) are sharp in the following sense"

examples exist in which the directional derivatives of fp exist at (0, 0) with

and

Dzfsup(O O) max max {/. z .[_ 1. z2}
P(0, 0) (a,ff,)eK(;0,0)

Dfsup(0 0) max min ;o,o){a 2 + ft. }
2eP(O,O)

for some z. The following example illustrates this phenomenon as well as
providing a situation in which neither bound is attained.

Example 3.1.
maximize f(x) x2

subject to

gl(X)=X2+X21<--O,
g2(x)=x2-x<--_O,
g3(x) =--X2-- 1 -< 0.
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The unique maximum point occurs at 2 (0, 0) where (CQ1)* holds with
K(2; 0)={Ul, u2, 0)" Ul+U2 1, Ul, u2->0}. For any z ER 3, S(Az) and is
compact for A sufficiently small. For z=(1//, 1/x/-,0), P(Az)={(O,A//},
fsup(AZ) A/x/ and

1 1 1
max .z== max {Ul+U2}.Dzfsup(0) x/ aK(; o) x/ ul+uz=l

u0,u2-->0

For z (0, 1, 0), P(Az) ((0, 0)), f,p(Az) 0, and

Dzfup(0)=0= min u.z= min {u2}.
tK(;0) u+u2.=

u-->0,u2_-->0

Finally, for z (1, 0, 0), P(Az)= {(A., A/2), (-/A/2, A/2)}, fsup(AZ)= A/2, and
Dzfsup(O) 1/2 so that

0= min {.z}<Dzfup(0)< max {.z}=l.
aK(;0) aK(;0)

We are now able to deduce the existence of the directional derivatives in a
number of special cases.

COROLLARY 3.4. If the hypotheses of Theorem 3.3 are satisfied with (CQ2)*
replacing (CQ1)* then for all directions z, the directional derivative exists and is
given by

max {a. ZI-[-I Z2}.Dzfsup(O, O)
eP(O,O)

Ifin addition is the only point ofP(O, 0), then Dzfsup(0, 0) is the linearfunction ofz
given by

Dzfsup(0, 0)= t" Z _[_ 1" Z2.

Proof. The result follows immediately from Corollary 3.2 and Theorem 3.3
by noting that the constraint qualification (CQ2)* implies that the Kuhn-Tucker
vector for is unique.

COROLLARY 3.5 (Gol’stein [7]). Suppose the functions -f and {g},
1,..., m, are convex and that the functions {hi}, ] 1,..., p, are affine. If

U(O, O) is nonempty, U(b, c) is uniformly compact near (0, O) and (CQ1)* is
satisfiedfor each 2 P(O, O) then fsup has a directional derivative for the direction z
at (0, O) and

max min
;0,0

{a z + ff z}.(3.10) Dzfsup(O, O)
eeP(O,O)(a,)K(e

Proof. Take the sequence xn --> as in the beginning of the proof of Theorem
3.3. For any 02, rP) K(; 0, 0),

f(x,,)-f(2)<-_L(x,,, a, g,)-L(2, a, ff)+A.(t2, zl+ff zz)
where

L(x, a, r)=f(x)-t2" g(x)- g" h(x)
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is the Lagrangian function. From the convexity assumption, is a local maximum
of L(x, a, rP) in R"; hence

lim
f(x’)-f(x) < min z 2}

.-.0 A,, =a,)K(;0,0){t + z

From (3.5), (3.6) and eorem 3.1, the result follows.
We can also obtain the directional derivative Dzfsup(O O) by placing a

restriction on the rate of change of the point to set map P(b, c) at (0, 0).
THeOReM 3.6. Assume the [uncgons in the program (1.1) are ice congnu-

ously different’able. Let U(O, O) be nonemp@, U(b, c) be uniformly compact near
(0, O) and (CQ1)* be sagsed for each P(O, 0). If, for given z and each
P(O, 0), every sequence x, P(A,z 1, A,z) with x, satisfies IIx -

then Dzfup(O, O) exists and is given by (3.10).
Proof. Choose the sequence A, and x, as in the beginning of the proof of
Theorem 3.3. As in Corollary 3.5,

a, a, zl+ z

for any (a, if)K($; 0, 0). Write II&ll 1; then

<llx= - ll=
h, 2A

where tx +(1- t)$, for some t [0, 1]. erefore

lim ’x’" -J’"
f( f(

<- min ;0,0)a.. z + z 2}
A. (a,a,)K(

for some P(0, 0). Thus (3.5), (3.6) together with Theorem 3.1 give the
result. !-1

Finally, note that (3.10) holding for all z does not imply that fsup is differenti-
able at (0, 0). If (3.10) holds for all z and if Dz/sup(0, 0)=-D-z.fsup(O, 0) then we
have

(3.11)
max min {a z + rP z 2}

P(O,O) (t2,ff,)K( ;0,0)

min max {/ z q._ 1 z 2}
P(0,0) (a,O)eK(x ;0,0)

for all z. Thus if (3.10) holds then (3.11) can be thought of as a necessary condition
for the existence of ’fsup(0, 0). Note that if there is a unique 02, rP)s K(; 0, 0) for
each P(0, 0) and (3.11) holds then the Kuhn-Tucker vectors are the same for
each P(0, 0). Also if P(O, 0) is a single vector and (3.11) holds then K(; 0, 0)
is a singleton set.

Acknowledgment. The authors would like to express their gratitude to R. T.
Rockafellar for his useful suggestions.
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L-INSTABILITY CRITERIA FOR INTERCONNECTED SYSTEMS*

M. VIDYASAGARf

Abstract. Various conditions are presented for a feedback interconnection of subsystems to be

L2-unstable. These results are of two types: (i) "small gain" type results that involve the formulation of
a test matrix, and (ii) "passivity" type results that can be applied directly to the various subsystem and
interconnection operators. The application of these results is illustrated through examples.

1. Introduction. Recently there has been a great deal of interest in analyzing
the stability of "large-scale" systems by treating them as an interconnection of
simpler subsystems. The results obtained using this approach are applicable both
to Lyapunov stability [1]-[3] and input-output stability [4]. In this paper, we
obtain some results relating to the L2-instability of interconnected feedback
systems. To the best of the author’s knowledge, this is the first time that instability
results have been presented for large-scale systems using the functional analysis
approach.

In 2, we derive some "small gain" type criteria for instability. These criteria
are indirect, in the sense that they require the formulation of a "test" matrix,
which is then checked for certain properties. The results of 2 generalize some
work of Takeda and Bergen [7], and can be thought of as the instability
counterparts to those in [4]. In 3, the criteria of 2 are applied to some specific
situations to illustrate how they can be used in practice. In 4, we present some
"direct" or "passivity" type of instability criteria. The adjective "direct" refers to
the fact that the criteria do not involve the formulation of a test matrix, but can be
applied directly to the various subsystem and interconnection operators. The
criteria derived in 4 are applied to some examples in 5. Finally, 6 contains the
concluding remarks.

We now introduce the concepts of stability and instability that are used in this
paper. Let L2 L2[0, oo) denote the set of real-valued square integrable functions
over the interval [0, oo). Given a function f: [0, c)-(-oo, oo), the function
fT(" ): [0, o0)-(--o0, O0) defined by

If(t), t <= T,
(1) f(t) t O, t > T,

is called the truncation of f(-) to the interval [0, T). The linear space L2e--
/-,2e[0, 0) is the set defined by

(2) L2e {f(" :&(" G L2 VT< o}.

The class of interconnected systems studied in this paper consists of those of

* Received by the editors November 26, 1975, and in revised form May 27, 1976.
"t" Department of Electrical Engineering, Concordia University, Montreal, Quebec, Canada

H3G 1M8. This work was supported by the National Research Council of Canada under Grant
A-7790.
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the form

(3a) ei ui- Y. Hijyj, i= 1,..., m,
j=l

(3b) Yi Gie, 1,..., m,

where ui is the input to the ith subsystem, yi is the output and e is the "error". We
assume that u, e, y belong to the product space L for some integer ni, that

?i F/iGi L2e -> L2e, and that/-/i L 2e-n1 .._> L2. The system (3) represents an interconnec-
tion of m subsystems.

Throughout this paper, we make the following basic assumption:
Corresponding to each m-tuple (u, , Urn) with u L2, there exist e, y,,LEe, 1,’’’, m, such that (3) is satisfied. Conditions on the operators G,/-/i

which insure that the above assumption holds can be found in [8, Chap. III].
In this set-up, we say that the system (3) is L-stable (or simply stable) if, for

F/ieach m-tuple (Ul, Urn) with u L2, any corresponding e, yi L2 satisfying
(3) actually belong to L2. Similarly, the system (3)" is LE-unstable (or simply
unstable) if there exists some m-tuple (u,..., Urn), with ui L’, such that the
corresponding e or y do not belong to L2 for some i.

Throughout this paper, we consistently deal with a particular type of L-
unstable subsystem operator. In order to avoid endless repetition, we give a name
to this class of operators. This is formalized below.

DEFINITION 1. The operator G" L’-. LEe is said to belong to Class U if
(i) G is linear.
(ii) The set M defined by.

(4) M/= {x L’: Gx L’}

is a proper subset of L’.
(iii) There is a finite constant Yci such that

(5) II ,xll, --<   ,llxll, Vx m,

where I1" II, denotes the norm on L2.
(iv) There is a tamily of constants ai.(T) such that

(6) II( ,x) ll, oo),

Remarks. Conditions (i)-(iv) imply, as shown in [7], that G represents an

L2-unstable system, that M is a closed subspace of L2, and that the set

(7) M- {x L’" (x, y), 0 Vy M},

where (., ) denotes the inner product on L’, contains some nonzero elements.
We refer to % as the conditional gain of G. Note that (5) does not define
uniquely, so that the conditional gain of G is not unique, as we define it.

2. Criteria involving test matrices. In this section, we present some sufficient
conditions for the system (3) to be unstable. These criteria generalize the results in
[7], and Can be thought of as the instability counterparts to those in [4]. The
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criteria presented in this section all involve the formulation of a "test" matrix,
which is then checked for certain properties. We only present the general
theorems in this section, and a discussion of the theorems is postponed to 3,
which also contains some applications.

THEOREM 1. Suppose that, ’or all i, the operator Gi belongs to class U, and
suppose there exist finite constants qij such that

(8) ll(x)ll,<n,llxll, VT<oo, VxL-,2o

Define the rn x m matrix P by

(9) Pq u’Y

(where)’cj is the conditional gain o]’ Gi). Under these conditions, the system (3) is
unstable if

(10) p(e)_-< 1

where p(P) denotes the spectral radius o]’ P. Specifically, i] uiEMiL/{o} for.., ]’or some i.1, m, then yigL2’
Pro@ Suppose by way of contradiction that ui E M-, ui S0 Vi, and that

Yi L’’Vi, By (8) and (3a), it follows that ei e L’ Vi. Since ei, Yi Lz"j, this implies,
by Definition 1, that ei eM Vi. Let

(11) Zi--Ui--ei- 2 Hqy] Y’. Hi]Gie];
]=1 /=1

since U M and ei e Mi, we have

(12) Ilzill/ Iluill/ + Ile, ll/
Since ui # 0, (12) implies that

(13) IIz, ll, > Ile, ll,.
On the other hand, from (11), we get

(14)

Vi.

I1,11, IIn,yll, -< n,llyll,
j=l

j=l j=l

Now, since P has all nonnegative entries, the Perron-Frobenius theorem [9, p. 66]
states that (i) p(P) is an eigenvalue of P, and (ii) one can find a row eigenvector
v [v v,] of P, corresponding to the eigenvalue o(P), such that v _-> 0 Vi. The
fact that v is a row eigenvector of P corresponding to p(P) means that

(15) Y’, oiPu o(P)vj, j 1,..., m.
i=1
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We can now conclude the proof. On the one hand, from (14) we get

(16)
i=1 i=1 i=1

]=1

On the other hand, from (13) we get

(17) u, llz, ll, >
i=1 i=1

where we use the fact that at least one vi is positive. However, (16) and (17) are in
contradiction, since p(P) _-< 1. This contradiction shows that yie L). for some i. [-1

COROLLARY 1.1. Under the conditions o[ Theorem 1, the system (3) is
unstable if the leading principal minors ofI-P are all positive.

Proof. It is shown in [4] that if the leading principal minors of I-P are all
positive, then p(P) < 1. F1

Theorem 1 states that, if all of the subsystem operators G are unstable and all
of the.interconnection operators/-/j are stable, then the overall system is unstable
provided the test matrix P ,has a spectral radius less than or equal to one. In
Theorems 2 and 3 below, the restriction that all of the subsystem operators are
unstable is removed at the expense of some added conditions on the test matrix P.

THEOREM 2. Suppose k < m, and that the operators G, 1, , k, belong to
class U. Suppose there exist finite constants for "li, k + 1, , m, such that

(18) II(G,x) lli  ,llx ll,, VT<(x:), VxL’’.

Suppose there existfinite constants qij such that (8) holds. Define the m x m matrixP
by

(19a) p r/D,

(19b) Pi
and partition P as follows:

(20)
P=m-k - ess

Under these conditions, the system (3) is L2-unstable if (i) p(P) <- 1, and (ii) at least
one column of Psu contains all positive elements. Specifically, if u-e/V//{0} for
i= 1,- , k, andui =0fori=k+l, , m, thenyL2 forsomeiin{1, , k}.

The proof of Theorem 2 requires the following simple result:
LEMMA 1. LetPbe as in Theorem 2 and suppose that at least one column ofPsu

contains all positive elements. Let v Iv1," Vm] be any nonnegative row eigen-
vector of P corresponding to the eigenvalue p(P). Then v >0 for some in
(1,... ,k}.
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Proof ofLemma 1. Partition v as follows:

(21) v [Val /)b ]
k m-k

The fact that v is a row eigenvector corresponding to p(P) means that

(22a) )aeuu q- )besu P (e))a,

(22b) v,Pus + Vtss p(P)Vb.

Now suppose by way of contradiction that v 0. Then (22a) reduces to

(23) VbPsu =0.

However, since Vb is nonnegative and at least one column of Ps, contains all
positive elements, (23) implies that Vb 0. Hence v 0, which contradicts the
assumption that v is an eigenvector (and hence a nonzero vector). Therefore,
some component of Va is positive. [-1

Proof of Theorem 2. Suppose ui e M{/{0} for i= 1,..., k and U "-0 for
k+ 1,..., m, and assume by way of contradiction that yieLz for

1, , k. Then ei M for 1, , k. Now, as in the proof of Theorem 1, define

(24) zi ui-ei Z HoGjej.
/=1

The hypotheses on ui imply that

(25a) Ilz, ll, >lleill, for i= 1,..-, k,

(25b) IIz,ll,- Ileill, VT<, for i=k + 1,..., m.

From (25a), we see that there exists a T< such that

(26) IIz,MI, >lle,ll, for i= 1,..., k.

Let Tbe so chosen. Next, let v Iv1, Vm] be a nonnegative row eigenvector of
P corresponding to the eigenvalue p (P). Then on the one hand, we have, as in the
proof of the Theorem 1, that

(27)
=1 =1 ]=1

=P(P) ,
]=1

and on the other hand, from (26) and (25b),

(28) > villeiT-II,
i=1 i=1

In deriving (28), we have used the fact that v >0 for some in {1,. ., k}. Since
(27) and (28) contradict each other if p(P) =< 1, it follows thatyL’ for some in
{1,--.,k}. E!
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Theorem 2 shows that an interconnection of stable and unstable subsystems
is itself unstable, provided (i) the test matrix P has a spectral radius less than or
equal to one, and (ii) at least one of the unstable subsystems is connected to every
stable subsystem. Theorem 3 below is actually a corollary to Theorem 2, but
because of its significance, is stated as a separate theorem.

THEOREM 3. Under the conditions of Theorem 2, the system (3) is unstable if
p(P)< 1.

Proof. Suppose p(P)< 1. Since the constants y, i= 1,..., k, and r/i, i, j-
1, m, are only upper bounds, they can be replaced by larger numbers without
affecting the validity of the bounds. In particular, one can replace y by
and ’0il by ’0il + 8 for k / 1, , m, and choose e > 0 sufficiently small that the
spectral radius of the resulting matrix P is still less than 1. Since the first column of
the submatrix P contains all positive elements, the instability follows by
Theorem 2.

COROLLARY 3.1. Under the conditions of Theorem 2, the system (3) is
unstable if the leading principal minors of the matrix I-P are all positive.

3. Applications of test matrix criteria. In this section, we apply Theorems 1
and 2 to various specific situations, to illustrate how they can be used in practice.

Application 1. We show that the "small gain" results of Takeda and Bergen
[7] can be obtained as special cases of both Theorem 1 and Theorem 2. The system
studied by Takeda and Bergen is described by the equations

(29) e u Y2, e2 u2 - y 1,

(30) yl= Glel, y2 G2e2
They show that if (i) G1 is linear, unstable, and has conditional gain yc (G1), and (ii)
G2 is stable, and has gain y(G2), then the overall system is unstable provided

(31) "yc(G1)y(G2) <= 1.

In particular, Y L2 if U2 0 and u Mi/{0}, where M is defined as in (4).
To put the system (29)-(30) into the framework of Theorem 1, we observe

that if u2 0, the system under study can be described by

(32a) el u G2Yl,

(32b) yl Glel.
This is of the form (3) with rn 1 (i.e., only one subsystem). Thus, Theorem 1 can
be applied, and the test matrix P reduces to the scalar yc(G1)y(G2). Hence, the
condition p(P) _-< 1 reduces to (31).

To put the system (29)-(30) into the framework of Theorem 2, we let rn 2
(i.e., two interconnected subsystems) and k 1, (i.e., one unstable subsystem).
Then the constants y, and 3’2 are given by

Yc ’Yc (G1), T2 T(G2),
while the "interconnection matrix" H is given by
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Thus the test matrix P becomes

"Yc (G1) ."
Now, if ’c (G1) > 0, the condition that one column of the submatrix Psu contains all
positive elements is satisfied. Moreover, p(P)_<- 1 if and only if (31) holds. In this
case, the system is L2-unstable by Theorem 2. On the other hand, if 3c(G1)= 0,
then p(P)= O, so that the system is L2-unstable by Theorem 3.

Application 2. To illustrate the possibility of loop transformations in applying
Theorems 1-3, we consider two interconnected feedback systems described by
the equations

(33a) el(t) u1(t)-k11(t)y1(t)-k1.(t)y2(t),

(33b) e2(t) u2(t)- k21(t)y(t)- k22(t)y2(t),

(33c) yl(t)-- (gl * el)(t),

(33d) y2(t) (g2 * e2)(t)

where denotes convolution. It is assumed that gl and g. are generalized
functions belonging to the Banach algebra [8, p. 26], and that kl(" )-k22("
are regulated functions satisfying the following assumptions, respectively:

(34a) 0<aa <=k11(t)<=b1 t,

(34b) 0 < a< k.2(t) _-< b2 t,

(34c) Ik.(t)[--<fl

(34d) Ik(t)i_-<t32
Let D1 be the closed disk in the complex plane centered on the negative real axis
and passing through -1/a1 +]0, -1/bl d-]O, and let DE be similarly defined. In
order to set up the subsystems, we assume that

1. the locus to --l(]to) does not intersect D, but encircles it finitely many
times;

2. the locus to -g(l’to) neither intersects nor encircles the disk DE,
where "^" denotes Laplace transformation.

In order to perform the loop transformations, we restate (33) in the form

(35a) e(t) ul(t)-k’l(t)y(t)-klE(t)yE(t),

(35b) e’(t) UE(t)- kEl(t)yl(t)- k’Ez(t)yE(t),

(35c) yl(t) (g * e)(t),

(35d) y2(t) (g’ * e)(t),
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where

(36a)

(36b)

(37a)

(37b)

and

(38a)

(38b)

k’ll (t)= kl(t)-Cl,

k’22(t) k22(t) c2,

i(s) 1(s)/(1 + Cll(S)),

(s) g(s)/(1 + c2,z(s)),

c1=(a1+b1)/2,

c2 (a2 + b2)/2.

Now, the system (35) is in a form suitable for the application of Theorem 2. Using
by now well-known arguments, one can show that, if kl kl2 kl k2=-O,
then the subsystem corresponding to el and yl is unstable, whereas the subsystem
corresponding to e2 and y is stable. Hence rn 2 and k 1 in this case. Moreover,
the conditional gain Yc is given by

(39) ’}tcl sup

while the gain Y2 is given by

(40) 3’z sup I.(jto)i.

Similarly the bounds on the interaction operators are given by

(41a) rill (bl- al)/2 A_ rl,

(4 lb) rt 12 12,

(41c) ’021

(41d) fizz (bz-a2)/2 a__ rz.
In order to obtain suitable conditions for instability, it is necessary to

introduce the concepts of a "margin of stability" and a "margin of instability". In
the present context, we say that the subsystem 1 has a margin of instability 61 if

(42) sup [(jo) (61 + rl)= 1

and similarly that the subsystem 2 has a margin of stability 6z if

(43) sup I;()l (a2 + r2)= 1.
touR

Note that 61 can be determined graphically by plotting l(jto) (the untransformed
transfer function), as follows: Plot j(fio), and choose 61 such that the disk
centered on the negative real axis and passing through-1/(b1+61)+]0 and
-1/(al- 61) +]0 just touches the plot of (fio). Also, since the conditions to be
given below are anyway just sufficient conditions, one can always replace 61 by a
suitable lower bound, if it is more readily obtainable. It is clear that similar
considerations apply to 62 as well.
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We are now in a position to state the stability criteria. From Theorem 2, the
test matrix P is obtained as

(44) p I’lc/11 "}/cl 12’21.
"/’/21 /c T/222J

Now, from (42) and (43), it is clear that

(45a) r/llyl rl/(l + rl)< 1,

(45b) r/22’2 r2/(2 + r2) < 1.

Also, we can safely assume that cl 0, since the problem is trivial otherwise.
Returning to the test matrix P, if r/21 0, i.e., if the unstable subsystem is not
connected to the stable subsystem, then p(P) is clearly less than one, so that
overall instability follows by Theorem 3. On the other hand, if r/2 >0, then
1"/21c 0, SO that Theorem 2 is applicable. In this case, a sufficient condition for
the overall system to be unstable is that p(P)=< 1, which reduces (after routine
algebra) to

(46) (1-lllYC1 (1 -’r/22"2)-’r/12)t2 ’1"/21/c1 >0,

or in other words,

(47) fll" f12 --<" 2.
The simple interpretation of the condition (47) is that overall instability results if
the product of the interaction gains is less than or equal to the product of the
margin of instability and the margin of stability.

In closing, it should be noticed that, if one assumes that the plot of l(]to)
neither encircles nor intersects the disk D1, then (47) with strict inequality is a
sufficient condition for stability. Thus Theorems 1-3, together with earlier results
[4], [5], form a complete package for testing the stability as well as instability of
interconnected feedback systems.

4. Direct instability criteria. In this section, we derive some "direct" criteria
for the instability of interconnected feedback systems. These criteria differ from
those in 2 in that they can be applied directly to the various subsystem and
interconnection operators, and do not require the formulation of an auxiliary test
matrix. The criteria presented in this section are of the "passivity" type, and can
be thought of as the instability counterparts to the results given in [ 10]. They also
generalize some results of Takeda and Bergen [7].

Throughout this section, we concentrate on an interconnection of some
stable and some unstable subsystems. However, in order to avoid notational
clutter, we lump all the stable subsystems into one big subsystem, and all the
unstable subsystems into another. Thus the system under study is described by

(48a) el Ul-H11Y1-H12Y2,

(48b) e2 UE-HElYl-HEy2,

(48c) yl Glel,

(48d) Y2 GEe2,
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where ex, Ul, ylELe, e2, u2, y2EL2e, Gi" L2eL2’e, and/-//j" L2-L2’e. It is
further assumed that the operator/-/j is specified by an nix ni matrix of constants.
Clearly there is no loss of generality in assuming the system description (48),
because the operators G can be "block-diagonal"; moreover, the interconnec-
tion operators can always be chosen to be constants, by increasing the number of
subsystems if necessary. We assume the following:

(A1) e operator G1 belongs to class U (see Definition 1).
(A2) There exists a positive constant 8, such that

(49) (el, Gle) 81[[e1[12, el M1,

where (.,.) denotes the inner prodfict, and

(50) M1 {el L Glel L}

and M1 is a proper subspace of L1.

(A3) The operator G2 is passive; i.e.,

(51) (ea, G2e2)T>O VT, e2EL2e

where (. ,- ) denotes the truncated inner product.
(A4) e (nl + na) x (nl + n) matrix H defined by

Hll H12(52) H:
H21 H22A

is skew-symmetric.
(A5) e matrix H has an inverse, which is denoted by P. e matrix P is

"partitioned" as follows:

where P is of the order n x n.
(A6) e operator G+P:LLsatisfies

(54) (G+P)e 0 e O.

e assumptions (A1)-(A6) are much less restrictive than they appear to be
at a first glance. This is brought out in 5, where some applications are studied.

The main result of this section is given next:
To 4. Under assumpons (A1)-(A6), the system (48) is unstable. In

pargcular, henever u and u are o the [orm u Hv, u Hv, or some
v e M/{0}, e have that either y L or L.

Proof. Let u Hv, u=Hv, for some v e M/{0}. Since P , it is
easily shown that

(55) PUl +e12u. =/31 Mi/{0},
(56) e21u "- e22u2 0.

Now, suppose by way of contradiction that Y L and y L-. Then, clearly,
nlelL2, e2EL2, from (48a) and (48b). Now, elL’, ylL2 implies that
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e Ma. By routine manipulation, we get

(Yl, Ul)+(Y2, U2)--(y, el)+(y, e2)

--[(Y, HlxYl +H12Y2)+(Y2, H21Y1 + H22Yz)]
(57)

=(Yl, el)+(y2, ez)

where we have used (A4), (A2) and (A3), in succession. Also, one can "solve"
(48a) and (48b) for Y and Py, and obtain

(58) y P(u e) +el.(u:z- e2),

(59) y2 P2(u1-el)+P22(u2-e2),

Hence, from (58), (59), we get

(Yl, el)+(y2, eE)=(Pll(U-el)+P1E(u2-e2), ea)

+(P21(u1-e1)+ P22(u2-e2), ez)

(60) [(P11e +Paze2, el)+(Pzael +Pzze2, e2)]

+(PllUl +PlzU2, e1)+(P21Ul + P22u2, e2)

0
where we have used the skew-symmetry of P, and (55), (56), respectively.
Combining (57) and (60), we see that el 0, whence Yl 0. Therefore (48a) and
(48b) reduce, to

(61a) 0= Ul H12Y2,

(6 lb) e2 u. HzEY2.
Multiplying (6 la) by PEa, (61b) by P22, and adding gives

(62)
P22e2 P21u -- Pz2u2 (P21H12 + Pz2H22)Y2

--Y2 -G2e2,

where we have used the facts that (i) PIU + PEEU2 0, (ii) PE1H12 / PE2HE2 equals
the identity operator on L2 and (iii) (48d). Hence, (62) implies that

(63) (GE / PEE)e2 O.

However, by (A6), this implies that e2- 0. By linearity of P22, it follows that
P.e=O, whence from (63), we have y2=G2e2=0. Hence (61) implies that
U 0, u 0. However, this contradicts the hypothesis that PllU q-P1EU2 0.
Hence either Y

COROLLARY 4.1. Let (AT) and (A8) be defined as follows"
(AT) The operator G2 is strongly passive; i.e., there exists a positive constant

such that

(64) (e2, Ge2)r >- zlle2ll
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(A8) The operator G2 is unbiased; i.e.,

(65) e2=OG2e2=O.
Then the conclusions of Theorem 4 hold with (A3) and (A6) replaced by (A7) and
(AS).

Proof. With (AT) in place, (57) is modified to

(66) (Y 1, U 1) q- (Y2, U2) ille 1112 -I" 211e21]2,
and hence from (60) and (66), it follows that el 0, e2 0; since G1 is linear, el 0
implies Y 0, while the unbiasedness of G2 implies that Y2 0. The desired
contradiction is obtained immediately, showing that either yleL. or
y2tgL2.

As Theorem 4 is stated, one can only conclude that, corresponding to a
certain class of inputs, either y :L orY2 EL2. By adding two extra assumptions,
it is possible to draw a stronger conclusion, namely that, for a certain class of
inputs, Yl L1. This is demonstrated next:

COROLLARY 4.2. Let (A9) and (A10) be defined as follows:
(A9) The operator I+ H22G2: L’e x L’e satisfies the condition

(67) (I/ HEEGE)e2 L e2 L.
(A10) G2 maps L’ into itself.

With these definitions, if (A1)-(A6) and (A9)-(A10) hold, then Yl -L’ whenever

Ul and u2 are of the form u=HllVl, UE=H21Vl fOr some va MiL/{0} The same
conclusion is valid if (A1)-(A4) and (A7)-(A10) hold.

Proof. Suppose U and u2 are of the indicated form, and assume by way of

contradiction that y E L2 Then u2-H21Yl GL Thus (48b) assumes the form

(68) (I + H22G2)e2 u2 HEIy 1"

since the right side of (67) belongs toL:, it follows by (A9) that e2 L:, and then
by (A10) that y2 L:. Thus, from (48a), we have that el L. From this point
onwards, the proof is as in Theorem 4. U

5. Application of direct criteria. In this section, we illustrate the applications
of the criteria obtained in 4. Specifically, we discuss the implications of
assumptions (A1)-(A10), and we show how the earlier results of Takeda and
Bergen [7] can be obtained as special cases of Theorem 4. We also discuss the
considerations involved in introducing "multipliers", and close out with an
illustrative example.

Discussion of (A1)-:(A10). (A1) states that the first subsystem is unstable in
the particular manner specified, while (A2) requires the unstable subsystem to be
"conditionally strongly passive." If G1 is represented by a convolution integral,
these two conditions are easy to check, as detailed in [7], [8]. (A3) requires the
subsystem G2, which need not be stable or linear, to be passive. (A4) requires the
interactions to be "nondissipative", while (A5) requires the interaction matrix to
be invertible. This last condition has an interesting implication: namely, bounded-
input-bounded-output stability is equivalent to bounded-input-bounded-error
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stability if H is invertible. On the other hand, if H is singular, then bounded-
input-bounded-output stability implies bounded-input-bounded-error stability,
but the reverse implication may not be true. (A6) and (A9) pertain to the behavior
of the second subsystem, in the case where only the "self-interaction" terms Hll
and Hz2 are present--(A6) states, roughly, that a zero output can only be due to a
zero input, while (A9) states that, with only self-interaction terms, the second
subsystem is stable. Note that (A9) is trivially satisfied if H22 0. (A7), (A8) and
(A10) are self-explanatory. Note that (A6) implies (A10) if Pz2 0.

Application 3.1 Consider a system described by (29) and (30), which is the one
studied by Takeda and Bergen [7]. As demonstrated in 3, this system can be put
in the framework of (48) by defining

H=
-1 0"

Hence (A4) and (A5) are satisfied. Also, since

p __/_/_1= [0 -1]1 0

(A6) reduces to the requirement that G2e2 0zz)> e2 0. Now, if (A1)-(A3) hold,
then Theorem 4 states that either Y L2 or Y2 L2 whenever u2 Ma/{0} and
u 0. Moreover, Corollary 4.2 is applicable to this situation, because (i) (A9) is
satisfied trivially because H22--0, and (ii) since P22--0, (A6) implies (A10).
Hence, by Corollary 4.2, we can conclude that whenever Ul 0 and u2 M-/{0},
it is in fact y that does not belong to L2. This is the same as the result obtained in
[7].

More generally, if we let n n2 (so that L’ and L’- are the same space), and
let H be of the form

H= -A* 0

(where A* denotes the adjoint of A) such that A*A andAA* are both invertible,
then we obtain the results of Sundereshan [ 11].

However, in comparing Theorem 4 to earlier results in [7] and [11], it is
important to recognize two facts: 1. There is no previous analogue to Theorem 4.
In fact, earlier results are really special cases of Corollary 4.2, where stronger
conclusions are drawn than in Theorem 4, but at the expense of added conditions.
Thus, Theorem 4 is an original contribution, whereby weakened conditions for
instability are given. 2. Theorem 4 removed the very stringent requirement, laid
down in [7] and [11], to the effect that exactly half of the subsystems are unstable.
Here, stable and unstable subsystems can occur in any combination. However, a
mathematically essential assumption (whose physical significance is not too clear),
is that the total number of subsystems is even, because otherwise H would be a
skew-symmetric matrix of odd order which is always singular.

Application 4. In any stability or instability criteria derived using passivity,
the scope of application of the criteria is vastly enlarged by the introduction of

Recall that Applications and 2 are contained in 3.
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multipliers. It is possible to introduce multipliers into Theorem 4, but some care
must be taken, as illustrated in the sequel.

Given the original system description (48), suppose we want to introduce a
multiplier Z. Then first of all, we must have n n2 (i.e. L andL are the same
space) in order for Z-1 to exist. Hence, we are immediately restricted to having
exactly half unstable and half stable subsystems. (This assumption is not made in
Theorem 4mindeed, it is possible to have stable and unstable subsystems in any

,,1 -1 has the property that Z-1mixture therein.) Suppose nl n2 and that Z: L2 L2
exists. We introduce the multiplier Z into the system (48) by defining

y Zy e ’2 Ze.
Then the system description (48) is modified to

(69a) el u1-H1Z-1y’-H12y2,
(69b) e Ze2 ZH21Z-1y ZH22Y2,

(69c) Y’I ZGlel,

(69d) Y2 G2Z-le’2
Thus G1 and G2 have been replaced by ZG1 and G2Z-1, respectively, as desired.
However, in the process the operator H has been modified to

H,= FHIZ-
[_ZH21Z- ZHz2J

The main difficulty with introducing multipliers is that, even though the original
operatorH satisfies (A4), the new operator H’ need not do so. This difficulty is not
encountered in the "single-loop" feedback stability theory, because if

H=
-1 0’

then H’= H, regardless of what Z is. However, in the more general case under
study here, one can use a multiplier Z only if the new finterconnection operator"
H’ satisfies (A4) and (A5).

Application 5. In general, it is not always easy to rearrange the system in such
a way that the interconnection operator H satisfies (A3) and (A4). To illustrate
this, consider the system shown in Fig. 1. If we number the various subsystems as
slrown, the interconnection matrix becomes

-0 1 0 0 0-

-1 0 0 0 0

0 0 0 -1 1

0 0 -1 0 0

_1 0 0 0 0_

which is not even skew-symmetric. With a little thought, one can rearrange the
given system as shown in Fig. 2, in which case H is skew-symmetric. However,
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since there are five subsystems, H is singular. In order to make H nonsingular as
well as skew-symmetric, one is obliged to "pad" the system by adding a sixth
subsystem, as in Fig. 3. The operatorF is so chosen that F’5(I +F6F)-1 Fs; i.e.,
F’5 Fs(I-F6Fs)-1. It can be shown that, if F5 is strongly passive, then F is also
strongly passive provided e is chosen sufficiently small. In this case, the operators
G and H are given by

F-Fs 0

0 F

-01 0 0 10-
-1 0 0 0 0 0

0 0 0 1 -1 0

0 0 -1 0 0 0

-1 0 -1 0 0 1

0 0 0 0 -1 0_

Depending on which are the stable subsystems and which are the unstable
subsystems in Fig. 3, one can get a variety of instability criteria. Let us assume, for
the sake of definiteness, that F1 is an unstable operator belonging to the class U
and satisfies (A1)-(A2). Under these conditions, the system depicted in Fig. 3 is
unstable provided (i) the operators F. Fs, Fs, F4 F5 are all passive, and (ii) (A6)
holds. The full expansion of this latter condition involves only routine algebra, and
is therefore omitted in the interests of brevity.

+

FIG.
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FIG. 2

(R)

F6 el

FIG. 3

6. Condusions. In this paper, several results have been presented pertaining
to the LE-instability of interconnected feedback systems. These results fall
naturally into two categories: (i) criteria that involve the construction of an
auxiliary test matrix, and (ii) criteria that can be applied directly to the various
subsystem and interconnection operators. It so happens that the test matrix
criteria are of a "small gain" type, while the direct criteria are of a "passivity"
type. However, this need not always be so. Recent research indicates that
"passivity type" criteria involving test matrices can also be derived. These results
will be reported elsewhere.

All of the theorems presented here generalize, in a very natural way, the
corresponding results for the "single-loop case". But, more importantly, by
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utilizing the results derived here, it is possible to study the stability status of
interconnected systems containing some stable and some unstable subsystems. In
an earlier work [3], instability results are derived that can be applied only to the
very limited case of all subsystems being strongly unstable, whereas in [11], one is
obliged to assume that exactly half of the subsystems are unstable while the other
half are stable. No such unnatural assumptions are made in this paper. Further-
more, the results given here are natural instability counterparts to recent results in
the stability of interconnected systems [4], [10].

An as yet unsolved problem, which assumes a great deal of importance in
light of the results of this paper (as well as related work [10]), is the following:
Given an interconnected system of the form (3), when is it possible to rearrange
the system and redefine the subsystem operators in such a way that the intercon-
nection matrix is skew-symmetric?
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AN EXTENSION OF DUALITY-STABILITY RELATIONS
TO NONCONVEX OPTIMIZATION PROBLEMS*

E. J. BALDERf

Abstract. By an effective extension of the conjugate function concept a general framework for
duality-stability relations in nonconvex optimization problems can be studied. The results obtained
show strong correspondences with the duality theory for convex minimization problems. In specializa-
tions to mathematical programming problems the canonical Lagrangian of the model appears as the
extended Lagrangian considered in exterior penalty function methods.

1. Introduction. Given an initial nonconvex optimization problem we con-
sider it embedded in a family of perturbed optimization problems (the initial
problem corresponding to the zero perturbation). It is well-known that the main
results on duality in convex minimization problems are intimately connected with
stability properties (such as continuity and lower semi-continuity) of the canonical
perturbation function of the family of perturbed problems at the zero perturba-
tion [1], [13], [16], [18], [19], [28], [29], [30]. One can distinguish between
asymmetric and symmetric duality descriptions. The former makes sense, for
instance, in optimization problems in mathematical programming [1] and allows
then some slightly more general statements than the latter. In turn the symmetric
approach allows the introduction of a family of perturbed dual problems whose
corresponding dual problem ("the dual’s dual") is the original problem, e.g., 13],
[18], [30]. Such symmetry is obtained in the description of convex minimization
problems by assuming ab initio lower semi-continuity of the convex functions that
are minimized.

We shall proceed now as follows. After the introduction of some notions of
our framework we shall be in a position to give a heuristic motivation for the
extension of the conjugate concept and related results which appear in a formal
fashion in 2. In 3 the results obtained are then applied in our framework to
obtain asymmetric duality-stability relations for nonconvex optimization prob-
lems. Such relations were already obtained by Rockafellar [31] in a particular
case. The notion of Lagrangian is introduced in the framework and we show that
in specializations to mathematical programming problems this Lagrangian
appears as the well-known extended Lagrangians one encounters in exterior
penalty function methods. The interpretation of such Lagrangians via the conju-
gate function concept with its appealing geometric intuition may be helpful to
practitioners. The so-called exact multiplier methods, for instance, will have a
simple geometric interpretation in terms of a stability propertyman extended
f.orm of subdifferentiability--of the perturbation function of the problem.

The very general approach taken in our treatment seems fully justified in
view of existing interest in problems with infinitely many constraints, such as in
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optimal control (e.g., [ 17]). We also give results, again in a very general setting, on
the properties which the multipliers in the unconstrained optimization method
must satisfy in order to ensure that the (almost-) optimizers of the extended
Lagrangian yield an optimal solution of the original problem. Finally, we shall
discuss some conditions on the original problem that guarantee certain forms of
subdifferentiability of the perturbation function.

We shall now introduce a part of the framework which we shall use for o0r
duality-stability descriptions. It is an adaptation (also notationally) to the noncon-
vex case of the model in the interesting paper [18] by Joly and Laurent which
continued the impressive work by Rockafellar (e.g., [28], [29]).

In what follows 1 will denote the real numbers, + the nonnegative real
numbers, the extended real numbers with the convention (+oo)+(-oo)=
(- oo) + + oo) + oo. The m-dimensional Euclidean space will be denoted by ",
its nonnegative (nonpositive) part by ,(_m). Whenever this is relevant " will be
supposed to have the topology induced by the Euclidean metric.

LetXbe a nonempty set, letf be an extended real-valued functional on X, we
write then f c. To avoid trivialities we will assume f +0% i.e., f is not
identically equal to + oo on X.

Consider the initial minimization problem"

(P) inf f(x),
xX

and call its value oz.
It is useful to observe that one can always extend f to some suitable universe

X by setting f equal to + oo on X\X.
Let U be a set in which we fix a certain element and denote it by tr. Let the

functional btbe such that b(x, tr) =f(x) for all x X.
(P) can be thought of as embedded in the family of perturbed minimization

problems

(Pu) inf b(x, u), u e U.
xX

For u e U denote the value of (Pu) by h (u); h (tr)= a.
We now give a brief sketch of duality-stability relations in convex minimiza-

tion problems and motivate heuristically what is to be formalized for nonconvex
optimization problems in subsequent sections.

In convex minimization problems X and U are taken to be vector spaces; the
fixed element in U is taken to be the (algebraic) zero element of U. A vector space
V is introduced, the dual space, supposed to be in bilinear correspondence with U
(i.e., such that there exists a bilinear form (., on U V; in this outline we omit
the topological aspects of the matter). In case U is the m-dimensional Euclidean
space l"* (mathematical programming) one takes V to be "; the usual inner
product provides the bilinear form. The dual functional h, v is defined as
h,(v) inf,v(h(u)-(u, v)), v V. Obviously, for v V, h,(v)
sup{/Ir/, ,l +(., v) <-_h). The dual optimization problem (Q,), defined by
supvvh,(v), consists therefore of a consideration of the supremum of all those
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r’S for which there exists v V such that r/+(., v)=<h. If the original convex
minimization problem (P) has been embedded appropriately (i.e., by a suitable
choice of U and b) the perturbation function h is convex. From any picture one
forms of the situation it will be obvious that there is ample reason to investigate
the possibility of having supovh.(v)= h(r)= infxxf(x), and that the behavior
of h at r will play some role.

In the nonconvex case the perturbation function h will be nonconvex in
general. The picture of the convex case leads us to look for a set V and a
nonbilinear form c ltv such that the graphs of the "aftine" functionals

rt + c(-, v), r/ , v V--hypersurfaces--lying below the graph of h have a
capacity to become pointed near r. This would then create a possibility of having
the supremum of all those r/’s for which there exists v Vsuch that r/+ c(., v) _-< h
equal to h (r), provided that h behaves reasonably at r. In other words, we can
then expect duality-stability relations to hold.

2. Conjugate functions. Let Vbe a set, c tv a functional which we shall
refer to as the coupling functional of U and V [8], [11], [24]. The coupling
functional will play a role analogous to the one the bilinear duality on a couple of
paired topological vector spaces plays in convex minimization problems [19].

Following a suggestion made by Moreau [23], [24], who observed that the
bilinear form which appears in the original conjugate function apparatus can be
replaced by a nonbilinear form without invalidating many of the essential
tautologies, we can use c to describe the extended conjugate function apparatus
[11], [23], [24], [32], [33].

By an elementary c-functional on Uwe shall indicate a functional of the form
c(., v)+ r/for some v V, r/ R; in case r/ R in the previous form the corre-
sponding functional will be called a finite elementary c-functional.

Let us denote by Fc(U) the set of all functionals a tr that are the
supremum of a family of elementary c-functionals on U:

a sup (c (., vi) + rli),
iel

for some nonempty index set L {vi} V, {r/i} . Mutatis mutandis we define the
elementary c-functionals on Vand the set F (V), reversing the roles of U and V.

The c-conjugate functional a Fc(V) of a functional a v is defined by

a*(v)=sup(c(u,v)-a(u)), v V,
uU

and mutatis mutandis we define the c-conjugate of a functional on V.
The second c-conjugatefunctional a F U) of a t is defined by repeti-

tion" a (a)c.
A trivial consequence of the definition is that for a t for all u U, v V

a(u) + a (v) >= c(u, v) (Young’s inequality),

hence always for a rg

(2.1) a>-ac.
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The following statement follows directly from the definition [ 11, Satz 3.6]:

a =a itt a F(U),

or, what is to say the same, the greatest minorant of a which belongs to Fc(U) is
a%

Let e _-> 0. The functional a t is said to be e-c-subdifferentiable at Uo U if
a(uo) is finite and if there exists Vo V such that for all u U

a(u)-a(uo)>-c(u, Vo)-C(Uo, Vo)-e

(in other words, if there exists a finite elementary c-functional which is a minorant
of a whose value at u0 differs e from a(uo)). Such a v0 V is called an e-c-
subgradient of a at Uo.

The (possibly-empty) set of all e-c-subgradients of a at Uo is called the
e-c-subdifferential of a at Uo, denoted by c- Oa(uo).

In case e 0 the reference to the prefix 0 is omitted entirely. Thus we have
c-subdifferentiable, c-subgradient, c-subdifferential, c- Oa(uo), etc.

Combining the above it is simple to observe that for a s% e _-> 0, Uo U,
Vo V

hence

(2.2)

VoC-Oa(uo) iff C(Uo, Vo)<=a(uo)+aC(vo)<=C(Uo, Vo)+e,

c O,a (Uo) f implies a (Uo) _-< a (Uo) -< a (Uo) + e,

also, because a and a have the same elementary c-functionals as minorants

(2.3) a (Uo) a (Uo) implies c Oa (Uo) c Oa (Uo).

Moreover, for a F (U), Uo s U, v0 V

(2.4)
Vo c Oa (Uo) itt a(uo)+a(vo)=C(Uo, Vo)

itt Uo c Oa (Vo).

The class F(U) is easy to identify in the case of convex minimization
problems, where U and V are topological vector spaces having locally convex
topologies, compatible with the bilinear duality c. In that case the class F(U),
with the exclusion of its two elements which are identically equal to +c and -o
respectively, is exactly the set of all lower semi-continuous, convex, proper
"functionals on U [19]. This is an immediate consequence of the Hahn-Banach
theorem.

As we are about to see, another situation can occur in which, for a suitable
coupling functional c, the class F (U) is easy to identify. Of course this is very
important since the class Fc(u) is extremely intractable by its definition. In fact,
we shall see that once such an identification has been made several duality-
stability relations follow immediately.

Let U be equipped with a topology. The coupling functional c vv is said
to be of needle type at Uo U if for every neighborhood N of u0 and every v V,
r/6 there exist a v’ V and a neighborhood N’ of u0, N’ N, such that for all
u C: N’

c(u, v’)-C(Uo, v’)<-c(u, v)+n,
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and such that for all u N’

c(u, v’)- c(u0, v’) _-< 0.

The coupling functional c is said to be of needle type on U if c is of needle type at all
points of U.

The following lemma will be of help to identify coupling functionals of needle
type in case U is metrizable.

LEMMA 1. Suppose the topology on Uis generated by a metric d. Let Uo U, lets
be a monotonically increasing function s: g+ --> g+ with s(O)= 0 and a constant K
such that for all x +, s(2x) <-Ks(x). Suppose the coupling functional c
has thefollowingproperty: forevery v Vthere existul U, rll g,pl gsuch that

c(. v)>-ps(d(. u))+n.

Suppose also that the collection offinite elementary functionals includes all func-
tionals -ps(d( Uo)), p >-_0 (or functionals that minorize these and that are equal
to zero at Uo). Then c is of needle type at Uo.

Proof. Let N be a neighborhood of Uo. Let 8 > 0 be such that the open ball N’
around Uo with radius 8 is contained in N. For given v V, r/ R there exist u U,
r/l, pl --we may suppose without loss of generality that px >0--such that

C(U, V)+r >= -plS(d(u, Ul))-[- ’1"1

for all u U. We claim that for p large enough -ps(d(u, Uo)) is smaller than the
right-hand side of the inequality above for all u N’. Indeed, for u U with
d(u, Uo)>-- and d(u, Uo) <- d(uo, u) we have by the triangle inequality and the
monotonicity of s that our claim holds. And for u U with d(u, Uo)>-8 and
d(u, u0) > d(Uo, u 1) we have by the triangle inequality and the properties of s that

ps(d(u, Uo))-ps(d(u, Ul)) _-> (p -plK)S(8),

so our claim also holds for those u N’. Now all that remains to be checked is the
second inequality in the definition of the needle type of a coupling functional at u0,
and this is trivial to verify.

We observe that monomials on R+ satisfy the conditions imposed upon s in
the lemma.

Example 1 a. U lm, V ’. Define c by

c(u, v)-- vilui[, u m, 1) ff7.
i=1

Then c is of needle type at the origin.
Example 2a. U H, a Hilbert space, V + x H,

c(u, v) VolUl--(w, u), v (Vo, w) / x H, uH,

where we use standard notation for the norm and inner product on H. Then c is of
needle type on U.

Example 3a. U L, a normed vector space, V g/, 3’ > 0,
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where we denote the norm on L by II" II. Then c is of needle type at the zero
element of L.

A functional on U which is minorized by a finite elementary c-functional will
be called c-tempered. For a v we have

a is c-tempered iff a
(2.5)

iff for alluU, ac(u)-c.

The l.s.c. (lower semi-continuous) hull of a functional a v is defined by

ti (u) lim inf a (u ’).
r--

THEOREM 1. If C V is Ofneedle type at Uo U, then for every c-tempered
functional a which is l.s.c, at Uo we have

a (Uo) a (Uo).

Moreover, iffor all v V, c( v) is l.s.c, at Uo, then for every c-tempered a

t(Uo) a (Uo).

Proof. First suppose a(uo) is finite; let e >0 be arbitrary. Since a is supposed
to be l.s.c, at Uo there exists a neighborhood N of Uo on which a takes values
_-> a (Uo)- e. Also, we know that a is c-tempered, i.e., that for certain v V, r/ ,
a _-> c (., v)+ r/. Since c is of needle type at u0 there exists v’ V and a neighbor-
hood N’ of Uo, N’cN, such that for all ueN’, c(u,v’)-C(Uo, V’)<=
c(u, v)+l-a(uo)+e and such that for all u N’, c(u, v’)<-C(Uo, v’). Now the
elementary c-functional c(.,v’)-C(Uo, V’)+a(uo)-e minorizes a, hence
a (Uo)>= a(uo)- e. It follows that a (Uo)= a (Uo). In case a (u0) is not finite, i.e.,
equal to +o, the argument is repeated by taking increasingly large numbers
instead of a (uo) e.

In case c (., v) is l.s.c, at Uo for all v V, then for a t, c-tempered, its 1.s.c.
hull i is also c-tempered. By the previous part of the theorem , (u0) a (Uo).

THEOREM 2. I[ C vv is Of needle type on U, then every l.s.c, c-tempered
functional belongs to Fc(u).

Moreover, iffor all v V, c (., v) is l.s.c, on U, thenfor every a a -,
a F (U) iff a is l.s.c, andc-tempered.

3. Duality-stability relations. The results of the previous section will be
applied in the framework for nonconvex optimization problems.

Suppose that the coupling functional of U and V, introduced in 2, is
normalized in the sense that for all v V, c (tr, v) 0 (where tr denotes the fixed
element of U).

Define g h Fc (V). We define then the dual minimization problem corre-
sponding to the family {(Pu)lu U} to be

(Q) inf g(v),
vV

and call its value/3.
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Remarks. Usually the dual of a minimization problem is formulated as a
maximization problem (such as in the heuristics of 1), but of course the present
formulation, following [18] and [19], constitutes no real difference.

It seems worthwhile to observe that (Q) may well be a convex minimization
problem. This is the case, for instance, when V is a vector space and c(u,. is
convex on V for all u U 11, Satz 4.3]. The coupling functionals in the examples
of 2 all satisfy this requirement.

It is clear that we have, by (1.1),

(3.1) -a -h(o’)_-< -hCC(o) inf g(v)=fl.
oV

Due to our assumptionf+, we have in addition

(3.2) a < +, /3 > -.
Because of this and (2.5) we can distinguish between two cases.
Case 1./3 +. In this case g +, h is not c-tempered and a duality gap

exists when a -c.
Case 2./3 finite. Now h is c-tempered and because of Theorem 1 we have

immediately
THEOREM 3. If fl < + C.and c is of needle type at tr, then

h is 1.s.c. at cr implies -a =ft.

Moreover, if also for all v V, c(-, v) is l.s.c, at tr, then

-fl h(o’).

Conditions in terms of the original problem that ensure lower semicontinuity
of the perturbation function are well-known for convex minimization problems
[18], [19], [30], also for certain types of nonconvex problems [7], [’19]. Since most
of our interest will lie in optimization problems of the kind one encounters in
mathematical programming, it seems appropriate to single out results for this class
here. We shall say that a minimization problem infxxf(X) is of mathematical
programming type (or is a mathematicalprogram) if its objective function has the
following structure. There exist a functional f0 Rx, a map G" X Z, whereZ is a
top.ological vector space ordered by some closed convex cone C in Z (z’_-< z iff
z’-z C, z, z’ Z) such that f(x)=fo(x) for x 6X if G(x)<=O (0 denotes the
algebraic zero of Z) and f(x)=+ for xX if G(x)-O. In this setup it is
customary to take U Z, cr 0 and to consider the perturbed problems

(P,) inf (fo(X)lG(x) <= u), u U.
xX

That is, we define b (x, u) fo(X) if G(x) _-< u, b (x, u) +c otherwise, xX, u U.
For such a mathematical program the following condition ensures lower

semi-continuity of the perturbation function at o-" f0 1.s.c. on X, G order closed
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(i.e., u u0, x Xo, u >- G(x) implies Uo >- G(xo) for any net {u}, u0 in U and
any net {x}, Xo in X) and there exist ti int C, d > or, such that {fo =<
is compact (if int C is empty it suffices to require the existence of d > r such that
{fo -< d} is compact). The finite dimensional transcription is well-known.

Since g Fc(V) we have by (2.4) that if fl < + oo the set B of solutions of
(Q), ( VIg() -/} is characterized by

B c OhCC (tr).

Thus, by (2.2) and (2.3), c-subdifferentiability of h at tr is equivalent to the
existence of a finite dual solution and the absence of a duality gap; that .is,

(3.3) c-Oh(g) iff B and -a=fl<+oo.
We shall denote the set of primal solutions, {$ e Xlf($)= a}, by A.
The asymmetry, mentioned in the introduction, in our approach is further

underlined by a study of the Lagrangian of (P)---or rather {(Pu)lU e U}--which
is defined by

(x, v) sup (c(u, v)- b(x, u)), x
ug

The Lagrangian of the mathematical program is of the form

:(x, v) -fo(x) + e(G(x), v), x e X, v e V,

where we define

5(u, v) sup (c(u’, v)lu’ e U, u’> u), u e U, v e V.

Of course, for v e V, g(., v) is monotonically nonincreasing. In specializations c:
appears as the extended Lagrangian one encounters in exterior penalty function
methods [12], [31], [34]"

Example lb. Mathematical program; c, U, V as in Example la. Let G
(gl,’’’,gp, gp+l,’’’,gm), where gi’X-, i=l,...,m, l<-p<-m, let C=
R

_
x (0, , 0) be the negative cone in U; then

p

g(G(x), v)= 2 vi max(gi(x), 0)- .
i=1 i=p+l

v, lg(x)l, x e x, v e v.

Example 2b. Mathematical program; c, U, V as in Example 2a with H N".
Let G, C be as in Example lb; then

p

e(G(x), v) [Vo max2 (gi(x), wi/2Vo) + wi max (gi(x),- wi/2Vo)]
i=1

2 [vo(g,(x))+w,g(x)], xeX, v=(Vo, W)e v.
i=p+l

Example 3b. Mathematical program; c, U, V as in Example 3a. Let G: X-
U, C= {tr}; then

e(a(x), o)-- ollG(x)ll,
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As in [19], one finds

(3.4) fl inf sup ,a(x, v),
vVxEX

since in fact supxxe(x, v)= g(v), v
infoE v ’(x, v), x X, and in general there is no equality, as one can verify by a
simple counterexample. We shall observe soon that in optimization problems of
mathematical programming type "symmetry" for the Lagrangian (i.e., equality
instead of the inequality above) is inherently present in case c is of needle type at
or. A similar remark can be made for convex minimization problems.

THEOREM 4. Iffor . X and Vfor all x X, v V

e(x, ) <= e(, ) <- e(, v),

then B. In case 8 < + oo, c is ofneedle type at cr and qb (, is l.s.c, at cr we have
in addition that A. If, moreover, for all v
then

A iff qb(,. is l.s.c, at or.

Proof. From the above and (3.4) it will be clear that g(t3) SUpxx a(x, iT) =/
infovt’(a, v)=<-cr. In case/ < +0o and c is of needle type at cr we have, by
Theorem 1, that b($, )’s lower semi-continuity at cr implies -f()= -bC(cr)=
infovf(:, v), where we denote b(,. by b. By the same theorem the last
statement is proved.

Remark. It is easy to observe that for an optimization problem of mathemati-
cal programming type, as introduced above, one always has that for all x X,
4(x, is 1.s.c. at o-.

The following theorem is a consequence of the definition of ,a and (3.3).
THEOREM 5. If h is c-subdifferentiable at cr, then for A, B we have that

]’or all x X, v V

e(x, ) _-< e(, )_-< e(, v);

in particular for c Oh (or)

sup ’(x,
xX

The last statement of Theorem 5 conveys some of the essence of what is
known under the term exact multipliers for the extended Lagrangian. In a single
(if’exact) maximization the value of the original problem is attained and for the
optimization problem of mathematical programming type we can then speak
about a single unconstrained optimization. This notion has received some atten-
tion in recent years [5], [15], [25], [34], due to the well-known disadvantages of
sequential minimization where a dual sequence {vk} is generated such that
limk_.ooSUpxx(X, v)=lim-.oog(v) -a (see Theorem 3); this implies that
the v are almost-subditterentials of h. The essential problem here is that if the vk
generated show an extremal behavior (i.e., one or more of the components--real
numbers---of the v tend to infinity for growing k) this invariably causes the
Hessian matrices of the extended Lagrangiansmand cases where these do not
exist are computationally even worsewto become ill-conditioned. And this of
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course badly affects the search at each step for an (almost-) maximizer Xk of
t( v).

Another problem is, naturally, that any cluster point of {x} nccd not
necessarily bc an optimal solution of the original problem, and usually one is more
interested in optimal solutions than in the optimal value of a problem. For an exact
multiplier wc also wish to obtain an optimal solution via single exact optimization.

Wc shall address ourselves to the questions raised. In this matter wc shall
nccd some structure which is present if wc suppose the optimization problem (P)
to be of the very general mathematical programming type defined above. This will
be assumed henceforth. We also need an additional structural property of the
coupling functional.

The coupling functional c vv is defined to be flexible at tr U if for every
neighborhood N of tr and every v’, v" V, r/ there exist a v V and a
neighborhood N’ of tr, N’ N, such that for all u e; N’

(3.5) c(u,v)<-_c(u,v’)+n,

and such that for all u e N’

(3.6) c(u, v)<=c(u, v").

Obviously if c is a coupling functional which is flexible at o- and for which for some
v e Vc(-, v)_-< 0, then c is of needle type at

The coupling functionals of Examples 1, 2, 3 are all flexible at o-. In the vein of
Lemma 1 more of such functionals can be determined. Suppose that a sequential
procedure produces in its course a sequence of dual parameters {Vk }. Any sensible
sequential procedure will adjust its parameters in such a way that g(Vk)-->
(supposed finite) and be based on the presumption that fl -a (see Theorem 3).
Such adjustment can take place either by jacking up some component(s) of the
parameter indiscriminately [ 12], [26], with its ensuing numerical difficulties, or by
a more sophisticated method, such as Hestenes’ multiplier method [4], [27] in
which careful shifting of the "parabolic needle" (Example 2) of a certain sharp-
ness, which i held fixed during each phase of shifting, takes place before the
sharpness is increased. For the goal should bewith as little jacking up of the
parameters as possible--the construction of almost-subdifferentials of h, as is
evident by defining ek g(Vk q- Or, k , which shows that Vk
with ek "-> 0.

Suppose further that each optimization step of ((., Vk), k , yields an
almost-optimizer Xk within a certain precision Ak. We are interested in conditions
guaranteeing that any cluster point of {Xk} will be an optimal solution of the
original problem.

THEOREM 6. Suppose the topology on U is generated by a norm. Suppose that
the couplingfunctional c RUv isflexible at tr. Let {Nk } be a sequence ofopen balls
around tr whose diameters decrease monotonically to zero. Suppose that in order to
solve the originalproblem a sequence {v,} in Vis generated, V’k
where {ek } is a sequence of nonnegative numbers converging to zero. Let {hk} be a
sequence of nonnegative numbers. Let {lk } be a sequence ofreal numbers such that
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r/k < ek --Ak, k . For k let l)k be an element in Vsatisfying (3.5), (3.6) with
N Nk, r r/k, V’ V" V k. Let Xk X be such that (Xk, )k SUpx (X, /)k --/k,
k . Then ifG is orderclosed we have thatevery clusterpointof {Xk} isfeasible.

If in addition fo is l.s.c., {r/k} and {Ak} converge to zero, and the family
{c(., Vk)} is equi-upper-semicontinuous at tr, then every cluster point of {Xk } is a
solution of the original program.

Proof. Observe that we have implicitly assumed that a is finite and that fl
equals -a. The values g(13k), k , are finite, therefore also the values --fo(Xk)+
6(G(Xk), Vk), k. Let Uk U satisfy C(Uk, Vk)>----6(G(Xk), Vk)--6k, Uk >----G(Xk),
where k 1/2(-- r/k ek Ak), k 6 . Now, for k ,
(3.7) --o--Ak <= --fO(Xk)+C(Uk, Vk)+k <- --h(Uk)+C(Uk, Vk)+k.

We must have uk Nk, k t, since assumption of the contrary leads to a -/k -<
g(lk)d-tk +r/k, hence to a contradiction. In other words Uk-tr and by order
closedness of G the proof of the first part is completed.

If the additional assumptions are satisfied we obviously have

lim sup C(Uk, Vk <---- O.
k

Thus if x* is a cluster point of {Xk} we find by (3.7) that -a -< -[0(x*) and the first
part of the theorem guarantees feasibility of x*.

Of course equi-upper-semicontinuity is present trivially if, for all k ,
c (., Vk) <---- O, but also the following criterion is immediate if, for all k t, c (., Vk)
happens to be concave (Examples 1, 2, 3).

LEMMA 2. Let {ai}iel be a family o] concave ]unctionals on the vector space U
equipped with a norm I1" II. Let a(tr; u) denote the Gateaux derivative of a, at tr in
the direction u, u U, I. Then {ai} is equi-upper-semicontinuous at tr i] there
exists a constant K such that for every I, u U, Ilull- 1, a(; u)-<K.

Some comment on the meaning of Theorem 6 ought to be given. Certainly
the theorem does not specify how to adjust the dual parameters {v}, nor does it
explain how to find from these the parameters {Vk} whose existence is postulated
by the flexibility assumption. Rather do we intend to provide practitioners with a
general structure which, it is hoped, will facilitate the analysis of concrete methods
and will provide geometric intuition. Thus it should be obvious, for instance, that
the choice of Ak’S (r/k’S) and Nk’S will be a compromise between computational
accuracy in the maximization steps, the amount of increase in some component(s)
of the parameters and the rate at which the points Xk approach the feasible region.

In the case of Example 2 (finite dimensions) we can refer to [31, Thm. 3]
for a result similar to Theorem 6 (via Lemma 2) with a certain elegant choice of
Ak’S, ek’S and Nk’S. The counterexample following that result shows that the equi-
upper-semicontinuity condition for the Vk’S produced is indispensible.

Consider now the case of an exact multiplier with exact optimization of the
Lagrangian (e.g., [5], [15], [25], [34]). Suppose that somehow--we shall discuss
this aspect of the matter below--we have been able to determine an exact
multiplier f c-Oh(tr). (Again implicit in this statement is the assumption

-/, a finite number). Suppose Xmaximizes the corresponding Lagrangian
exactly. The question arises whether : is an optimal solution of the original
problem.
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THEOREM 7. Let c Rtv beflexible at tr. Suppose c Oh (tr), and suppose
that the corresponding to (3.5), (3.6) for some neighborhood N of tr, some r/< 0,
v’ v"= has the additional property that c(u, ) < c(u, ) for all u N\{o’}. Let

Xmaximize a(., ) and suppose that sup (c(u, )lu U, u >= G()) is attained.
Then is a solution o] the original problem.

Proof. Let Ul U attain the supremum mentioned in the statement
of the theorem. Then -a -f0() + t?(G(), ) _-< -h(ul) + c(ul, )
-h(Ul)+C(Ul, 3)/C(Ul, 7)-C(Ul, 3) -< -c +C(Ul, )-C(Ul, 3). This implies
that C(Ul, 3) _-< C(Ul, ), hence Ul tr. So is feasible. It also follows that[o() c.

Remarks. In the case of inexact optimization a statement similar to Theorem
7 can be made which requires a slightly stronger additional property of c(-, 7)-
c(., 3), namely that the collection of its level sets forms a neighborhood base at tr.

It will be clear that the assumption that (G(), 7) c(u, ) for some u U,
u _-> G() is not a heavy one. If, for instance, c(., iT) is u.s.c., concave and
{ul c(u, )->0} is compact, the assumption is already satisfied, because then all
level sets of c(-, 7) will be compact [19].

In the case of Example 2 (finite dimension) the possibility of solving the
original problem by exact (or inexact) maximization of the Lagrangian corre-
sponding to an exact multiplier has already been pointed out by Rockafellar [31].
Work of Zangwill [34], Pietrzykowski [25] and Howe [15] on such exactness in the
case of Example 1 seems of less practical value since the Lagrangian is non-
differentiable (however, see [9]).

The conclusion that nonditterentiabilities are a necessary evil in exact
methods, reached in [5], seems premature in view of both the case dealt with by
Rockafellar and our framework. The conclusion reached in [5] is based upon a
formulation of the Lagrangian which, in our model, could correspond, to a
coupling functional c that satisfies the additional restriction c(-u, v)= c(u, v),
u U, v V. There seems to be no a priori justification for such an approach. On
the contrary, any picture of the situation shows us that if one requires in such a
case smoothness of c(-, v) at tr to ensure ditterentiability of ((., v), v V,
thereby forcing the derivatives of all c-elementary functionals to be "zero" at
one forfeits immediately the possibility to have a c-subgradient of h at tr in all but
a few very special cases.

Problems that are formulated as local problems, i.e., the search for a local
minimum, still fit into our framework by an adequate specialization of X.

Let us finally consider the question of the existence of c-subgradients of the
perturbation function at the zero perturbation; we have seen these subgradients
constitute the exact multipliers, so knowledge about them could be very useful
indeed (Theorem 7). Unfortunately, this will turn out to be a very difficult matter.

To begin with we shall restrict ourselves to the case where the perturbation
space U is a topological vector space. For a v, u0 U, u U we define the
upper and lower Dini derivatives of a at Uo in the direction u by

Da(uo; u)= lim sup(a(uo+Au)-a(uo))/A,
x$0

D_a(u0; u) lim inf (a(uo /Au)- a(uo))/A.
x$0
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Remark. Let a tJ. A necessary condition for c-subdifferentiability of a at tr

is that there exists a v V such that for all u U

D_a(o;u)>-_Dco(o;u),

where co denotes c(., v).
We shall say that a 6 t: is locally convex at Uo6 U [3] if there exists a

neighborhood N of u0 such that for all u 6 N, 0 _-< A _-< 1,

a(Au + (1- A )Uo) <--_Aa(u) + (1-A )a(uo),

and we shall say that a u is locally concave at Uo if a is locally convex at u0.
The following lemma provides sufficient conditions for c-subdifferentiability

in a situation where first order properties alone give enough information.
LEMMA 3. Suppose that the coupling functional c is flexible at tr. If a v is

locally convex and finite at tr and c-tempered, and if there exist a v V and a
neighborhoodNoftrsuch thatco is locally concave at trand such thatfor all u N

D_ a(tr; u) >-_Dco(tr; u),

then c Oa (tr) .
Proof. Observe that there exists a neighborhood N’ of tr in which a(u)-

a(tr) _-> D_a(tr; u) -> Dco(tr; u) >- co(u), u N’. Then use the flexibility property.
The next result concerns a conclusion that can be drawn by studying the

behavior of the directional derivatives in a neighborhood of
LEMMA 4. Suppose that the coupling functional c is flexible at tr. If a u is

c-temperedand ifthere exist a v Vanda (circled) neighborhoodNoftrsuch that
(a) for all u e N, a-co is continuous and finite-valued on [tr, u] (the line

segment {Au [0 _-< h _-< 1}),
(b) for all u N and for all u’ in fir, u], except at most a countable number,

D_ a(u’ (u" u)u)>-_Dco
then c Oa (tr)

Proof. Apply [22, 34.1] and use flexibility.
As is well-known, second order conditions for a functional can guarantee its

convexity in a small neighborhood. This motivates the following lemma, where we
denote the topological dual (adjoint space) of U by U*.

LEMMA 5. Suppose that the couplingfunctional c isflexible at tr. Ifc has a linear
component, that is, if[or all v Vand u* U* c v + ( u*) is a c-elementary
functional, if a is c-tempered and if there exist a v Vand a neighborhood N of tr

sach that a -cv is convex in iV, finite and continuous at tr, then c- Oa (tr)
Lemmas 3, 4 and 5 can be useful in cases where the behavior of the

perturbation function h near o" is known, for instance in the convex case. It will be
clear that in the nonconvex case usually both first and second order properties of
the perturbation function of the embedded problem must be known in order to
prove (extended) subditterentiability. This knowledge, of course, has to be
formulated in terms of the original ingredients of the optimization problem, since
actual computation of any value of h will usually be as difficult as solving the
original problem.

Such sensitivity analysis has been conducted recently in [6], [10] and [20].
Although some interesting results have been obtained, the analysis made up until
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now seems far from complete. We also refer to [14] for additional references.
Second order differentiability properties of the perturbation function have

been discussed in [10]; here the perturbation parameter is supposed to be
one-dimensional. Another way to guarantee second order ditterentiability of the
perturbation function is to impose the standard second order sufficiency condi-
tions of mathematical programming [12], [21], [31].

Taking a closer look at the matter, we remark that a result in [34] for the
coupling functional of Example 1 can be derived directly from Theorem 7,
Lemma 3 and the observation that the Slater condition imposed in [34] guarantees
the existence of a subgradientmin the sense of convex analysis--of the (convex)
perturbation function.

Another result on exact multipliers with the same coupling functional, a
nonconvex local problem in [25], follows from Theorem 7, using Theorem 3 in
[20].

Acknowledgment. The author wishes to thank the referee for stimulating
criticism and for some helpful references.
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ON OPTIMAL CONTROL PROBLEMS WITH BOUNDED STATE
VARIABLES AND CONTROL APPEARING LINEARLY*

H. MAURER"

Abstract. Necessary conditions for the switching function, holding at junction points of optimal
interior and boundary arcs or at contact points with the boundary, are given. These conditions are used
to derive necessary conditions for the optimality of junctions between interior and boundary arcs. The
junction theorems obtained are similar to those developed for singular control problems in [1] and
establish a duality between singular control problems and control problems with bounded state
variables and control appearing linearly. The transition from unconstrained to constrained extremals is
discussed with respect to the order p of the state constraint. A numerical example is given where the
adjoint variables are not unique but form a convex set which is determined numerically.

1. Introduction. Jacobson, Lele and Speyer [2] and Hamilton [3] have
studied the necessary conditions for junctions between optimal interior and
boundary arcs in control problems with bounded state variables. Under the
assumption of a regular Hamiltonian--this assumption usually holds if the control
variable appears nonlineady--they obtain a certain smoothness of the control at
junction points. Depending on the order p of the state inequality constraint, it is
then possible to predict whether the constrained extremal will contain a boundary
arc or will only touch the boundary.

Control problems with bounded state variables and control variable appear-
ing linearly have received little theoretical and practical attention. Here the
Hamiltonian fails to be regular. Thus one cannot establish the smoothness of the
control variable at junction points. In these problems the switching function plays
a fundamental role. Instead of smoothness properties of the control variable,
smoothness conditions for the switching function at junction or contact points are
derived in this paper. These conditions are used to obtain necessary conditions for
the optimality of junctions between interior and boundary arcs which are similar
to junction conditions for singular control problems developed by McDanell and
Powers [1]. The results were suggested by the observation that a boundary arc is a
singular arc in the sense of the minimum principle.

2. Statement oi the problem. We consider the following control problem
with control appearing linearly: determine the scalar, piecewise continuous con-
trol u (t), t [0, T], which minimizes the functional

(2.1) J(u)=G(x(T))

subject to

(2.2) =f(x, u)=A(x)+[(x)u,

(2.3) x(0) Xo, 4,(x (T))= 0,

(2.4) [u(t)l<=K(t), K(t)>0, 0=<t=<T,

* Received by the editors August 27, 1974, and in revised form June 10, 1976.

" Mathematisches Institut der Universitiit Wiirzburg, 87 Wiirzburg, Am Hubland, West Ger-
many. The author was supported by a Postdoctoral Fellowship of the Canada Council at the University
of British Columbia, Vancouver, Canada.
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and the scalar state inequality constraint of order p

(2.5) S(x) <- a, ct .
The state x is an n-vector. Henceforth all vectors are column-vectors. The
functions G:", 4""k, k < n, are supposed to be differentiable. The
functions [1, [2: " ", S: " are assumed to be analytic in a suitable
domain; K(t) is assumed to be analytic in [0, T]. These assumptions guarantee the
validity of the expressions developed in the sequel, although less stringent
differentiability properties would suffice which are, however, lengthy to state in
each different case. The terminal time T is fixed.

Nonautonomous control problems and control problems with an integral cost
criterion in (2.1) or with free end-time can be reduced to the above form by
introducing additional state variables.

An extremal arc of (2.1)-(2.4) is called an unconstrained extremal whereas an
extremal arc of (2.1)-(2.5) is called a constrained extremal. For given a 6 the
state constraint (2.5) is called active if the optimal unconstrained trajectory x(t)
violates (2.5).

Along a trajectory x(t) of (2.2) the ith time derivative of S(x(t)) will be
denoted by S, i-> 0, where S= S. By definition of the order p of the inequality
constraint (2.5), Sp is the first derivative containing the control u explicitly. S
contains u linearly because of (2.2) and hence

S S (X), 0," p 1,
(2.6)

Sp SP(x, u) a(x) + b(x)u.

A subarc of x(t) for which S(x(t)) < c is called an interior arc; a boundary arc
is a subarc of x(t) where $(x(t)) a for t =< t _-< t2 with 0 <- tl < t2 =< T. Here tl and
t2 are called the entry- and exit-time of the boundary arc; ta and t2 are also termed
function points. An arc x(t) is said to have a contact point with the boundary at

ta (0, T) if S(x(tO) c and S(x(t)) < a for t # t in a neighborhood of tl. If x(t)
has a contact point with the boundary at tl for p => 2, then the relation S(X(tl)) 0
follows and hence x(t) touches the boundary at ta.

By differentiation of S(x(t))=-a, t <-t <-t2, one gets the entry conditions of a
boundary arc

(2.7) S(x(tl)) Og, S (x (tl)) 0, 1, , p 1.

The boundary control is determined by Sp (x, u) 0 which gives in view of (2.6) the
feedback expression

(2.8) Ub U(X)=-a(x)/b(x).

Along x (t) we consider from now on the functions Si, a, b, Ub as functions of time.
General Assumption 2.1. The following conditions hold on a boundary arc in

[q, t2]: b(t)O for t[t,t2] and lub(t)[<K(t), i.e., la(t)l<lb(t)lK(t), for t
(t, t).

By virtue of b (t) 0 and the analyticity of the functions [a, [2, S, the boundary
control Ub(t) is analytic in (q, t2).
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3. Necessary conditions. The necessary conditions are developed in [2], [4],
[5]. It has been shown .in [6] that the function rt* of bounded variation in [4,
Thm. 3.2], [5, Thm. 14.2] has a continuous derivative r/ on the interior of a
boundary arc for pth order state inequality constraints provided that Assumption
2.1 holds. This result follows by rigorizing the formal arguments in [2].

Define the Hamiltonian by

(3.1) H(x, u,A, rl)=A Tf(x)+A Tf2(x)u +rIS(X)

where A R", r/ I and where the superscript denotes the transpose. The neces-
sary conditions of the minimum principle then are the following:

1. There exists a scalar function r/(t)_>-0, a real number rio>_-0 and rRk

such that the adjoint variable h (t) R" satisfies

(3.2) ,T --A Tfx -TqSx a.e., A T(T)’- qoGx(x(T))+rT4tx(x(r)).

2. The function r/(t) satisfies rt(t)(S(x(t))-a)=-O, t el0, T], and is continu-
ous on the interior of a boundary arc.

3. The jump condition at a contact point or junction point tl is

(3.3) h r(t-) h v(t-) uS(x(q)), Ul >--0.

4. The optimal control u(t) minimizes the Hamiltonian, i.e.,

(3.4) H(x(t), u(t), h (t), r/(t)) min H(x(t), u, A (t), l(t)).
lul<=g(t)

The coefficient of u in (3.1) is called the switching function and is denoted by

(3.5) b(t) A 7"(t)fe(X(t)).
The switching function determines the optimal control in (3.4) as follows.

Optimal controlfor interior arcs" Nonsingularcase. Let b(t) have only isolated
zeros on a subinterval I c [0, T]. Then the optimal control is nonsingular on ! and
is given by

(3.6) u(t) -K(t) sgn b (t), L

Singular case. If b (t) -= 0 on a subinterval ! c [0, T] then u (t) is singular on L
Let q _-> 1 be the order of the singular arc; cf. [7]. b(eq) is the lowest order time
derivative of b which contains u explicitly and we have

(3.7) ( (2q) A (x, h)+ B(x, h)u.

We note that b(2q)=,T in the terminology of {}4. Let A(t)=2q

A(x(t), A(t)), B(t)=B(x(t), ,(t)). It is assumed throughout this paper that the
strengthened generalized Legendre-Clebsch-condition (GLC-condition)

(3.8) (- 1)"B(t) > 0, tI,

holds and that the singular control us(t)=-A (t)/B(t) determined by b(e")(t)-=0
satisfies

(3.9) [us(t)[<g(t), i.e., [A(t)l<lB(t)[g(t) fort/.
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Optimal control for boundary arcs. The optimal control is the boundary
control uo in (2.8). The minimization in (3.4) then implies in view of Assumption
2.1 that

+< .(3.10) H, &(t) 0, t =t=t.
Thus the boundary control is a singular control in the sense of the minimum
principle. One can expect therefore a duality between singular control problems
(without state constraints) and control problems with bounded state variables and
control appearing linearly. Such a duality has already been conjectured in the
literature; cf. [1], [2]. The junction theorems in 5 will clarify this duality.

4. Relations for the switching function at contact points or junction points.
Let u(t) be a control which is analytic on a subinterval I [0, T] and let x(t) be an
analytic solution of (2.2) on L Define the functions g" I--> " recursively as in
[3, (17)] by

(4.1) po-fu --fz, o+1- oi--fx(i, >=0.

Then the following relations hold on I:

(4.2) Six-l-k(gk (_ k1) S, i=l,...,p, k=0,...,i-1.

The formulas are proved by induction over and k. For 1,..., p and k 0
(4.2) follows from S S-f and o f,. We outline the induction step - + 1
and k - k + 1. Suppose that (4.2) is true for + 1 and k and also for and k. Then
we get Six-(k+l)(k (--1)kS/u 0 as <p. Differentiating the last equation yields

0 +
Using this relation we obtain in view of Sx-= (S-(+a)f) and (4.1)"

i--k l>f _S/x-(k: +l>qk
Thus, (4.2) is shown to be true for + I and k + I.

Setting k i in (4.2) we find the following formulas given without proof in
[3, (18)]:

(4.3) Sx
O, <p 1,

(-1)p-ISPu= (-1)P-b, =p- 1.

On a subinterval ! of an interior arc, where the control is analytic, the ith time
derivative & ") is given by

(4.4) q(i>(t)’-a r(t)q,(t), tsI, i>=O.

By using the adjoint equation (3.2) and (4.3) we obtain on a boundary arc in [q, tz]
the relations

(4.5) 4)((t) A T(t)qi(t) O, t( <--__ t <-- t, 0,’’’, p 1,

(4.6) O((t) A (t)p(t)-(-1)-rt(t)b(t)=O, t(<-_t<-t.

Let k be the lowest integer such that 0 contains the control u explicitly. It follows
from the theory of singular control problems (cf. [7]) that k is even, i.e., k 2q
with q _-> 1; cf. (3.7).
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LEMMA 4.1. Let tl (0, T) be a contact point orfunction point of an optimal
control u and let u be piecewise continuous in a neighborhood oft1. Let u (r), r >-_ O, be
the lowest order time derivative of u which is discontinuous at tl. Suppose that
p <= 2q + r. If vl >- 0 is the jump in (3.3), then the following relations hoM"

(4.7) b((t-) b((tT), 0, , p 2,

(4.8) (P- 1)(t-) (P-)(tT) -/1(-1)p-lb (tx).

Proof. As the control u is piecewise continuous and hence piecewise analytic
in a neighborhood of q, the derivatives b (i)(t:) exist. The assumption p _-< 2q + r
(which is always satisfied for p -<_ 2) implies that oi is continuous at tl, 0, ,
p- 1. Substituting the jump condition (3.3) we get for 0,. ., p- 1"

b((t) A r(t)oi(t) b((t) vS,(x(tl))p,(tl).

Combining this with (4.3) gives the equations (4.7), (4.8).
Now let t be the entry-time of a boundary arc. Then b(g(t]) 0 for _-> 0 by

virtue of (3.10) and (4.7), (4.8) imply

(4.9) b()(t]-) 0 for 0,..., p 2,

(4.1O) Pl (- 1)P-Xb (P-x)(t?)/b (tl) --> O.
The relations (4.9), (4.10) remain valid at the exit-time t2 with t7 (resp. ua)
replaced by t- (resp. -u2). Equation (4.9) constitutes p- 1 additional relations at
tl besides (2.7). Also, (4.9) should be viewed as an analogy to the fact that for a
regular Hamiltonian (this is mostly the case if the control appears nonlinearly) the
control u(t) and its first p- 2 time derivatives are continuous at tl; el. [2]. Thus
(4.10) corresponds to [2, (81)].

5. Junction theorems. This section is concerned with the study of junctions
between interior arcs and boundary arcs. As a boundary arc is a singular arc one
can expect junction theorems similar to those in McDanell and Powers [1]. In this
paper the admissible controls were assumed to be piecewise continuous and hence
all controls are piecewise analytic in the sense of [ 1] as the functions fl, fz, S, K
were assumed to be analytic. The following proofs are carried through for the
entry-time t but are also valid for the exit-time t with minor modifications.

5.1. Junctions between interior nonsingular arcs and boundary arcs.
THEOREM 5.1. Let tx be the time at which an interior nonsingular arc and a

boundary arc of an optimal control u are foined. Let u(, r >-_ O, be the lowest order
derivative of u which is discontinuous at tx and letp <-_ 2q + r. If > O, then p + r is
an even integer.

Proof. This proof is closely modeled after the proof for Theorem i in [1]. Let
e > 0 be an arbitrary number such that tl 8 is a point on the interior arc and ta + e

is a point on the boundary arc. By u(i,)(ta) and u)(tl) we mean the limit as e -> 0 of
u(i)(ta-e) and u(i)(tx+8) respectively. Expanding S(q-e) in a Taylor series
about t one finds that

(5.1) S(P+r)(tT) -;(a + bu)(tT)
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is the first nonzero term of the Taylor series. Since a + bu 0 and hence a -buo
one obtains

(5.2) S(tl-e)=(-1)p+
eP+

(p + r)b(ta)[u()(tl)- u r)(tl)] + O(e+r).

Let r -sgn b(tl- e). Then u,(t)= rK(t) and thus u)(tl)= o-K()(tl) for _>-0. A
Taylor expansion on the boundary arc gives

(5.3) ffK(t + e) u (tl + e)
e () (e)"[u. (ta)-u((ta)]+o

Substituting this in (5.2) yields

(5 4) S(ta-e)=(-1)p+reP"
r!

b(q)[rK(t +e)-u(ta +e)]+o(e+)
(p+r)!

Since S(t-e)<O on the interior arc, (5.4) implies (as e >0)

(5.5) --i =(--1)p+r sgn b(tl) sgn [o’K(tl +e)-u(q +e)].

By assumption PI ) 0 and hence b (P-x)(t-) # 0 from (4.10). Expanding q(tx-e) in
Taylor series and using (4.9), (4.10), we find

(5.6) r =-sgn b(tl-e)= (-1)p sgn b(P-)(t]-)=-sgn b(tx).

Combining this with Assumption 2.1 (that ]u(q+e)]<K(q+e)) yields
sgn b(q) sgn [o-K(tx + e)- U(tl + e)] sgn b(q) sgn r =-1. Hence it follows from
(5.5) that (-1)p+= 1 and thus p + r is even.

COROLLARY 5.2. Let the point tl be given and let u (, r >- O, be the lowest order
derivative ofan optimal control u which is discontinuous at ta when t is considered
as a function point between an interior nonsingular arc and a boundary arc. Let
p<-_2q+r.

(i) Ifp+r is odd and , >0, i.e., q(P-x)(t]-) #0, then t can only be a contact
point with the boundary.

(ii) Let p + r be odd. Then P 0 if t is a function point between an interior
nonsingular arc and a boundary arc.

To our knowledge only the case r- 0 occurs in the numerical examples
treated in the literature. A sufficient condition for r 0 is [a(tx)[ < b(t)]K(tx). In
particular we have r- 0 for a(q)= O.

Let us investigate now the case u -0 in (4.10), i.e., b(-)(t-)= 0, as it has
been done for a regular Hamiltonian in [3]. The next result is dual to a result for
singular control problems [1, Thm. 2].

THEOREM 5.3. Let t be a point at which a nonsingular interior arc and a
boundary arc ofan optimal control u are foined. Let qb (o+’)(t]-), m >= O, be the lowest
order nonvanishing derivative ofck and let u (r, r >--O, be the lowest order derivative of
u which is discontinuous at t.

(i) I1 p + m < 2q + r, then p + r +m is an odd integer.
(ii) Let p<-2q+r<-p+m and let f be the lowest integer such that

A T(ta)oi(t)#O. Then 2q+r<-f and --sgn(h T(tOo+,(t-)A T(tx)
0i(t)) (--1)p++"
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Proof. The proof is based on the proof of Theorem 5.1 and it suffices to modify
(5.6). Let min {i[h T(tx)Pi(t) 0}. Then by definition of the integer m we have
/" ->p as p _-< 2q + r. Differentiating the expression (4.6) on the boundary then yields
r/(i(t-) 0 for 0,. ,/"-p 1 and

(5.7) A 7"(tl)qi(t)= (-1)P-?(i-P(t)b(tl) O.

We have q(i-P(t)>O as r/(t)0. Now define s=sgn(Ar(tl)qp+m(t-()Ar(ta)
qj(t-)) where (P+m)(t-)--- h T(tl)qp+m(t- # O. Then (5.6) is replaced by

(5.8) o’=-sgn (tl-e)=(-1)p+m+l sgn b(P+’(t-) (-1)’s .sgn b(tx).

In this equation (5.7) and T-")(t-)>0 are used. We then have
sgn b(tl) sgn [o’K(tl + e)- U(tl + e)] sgn b(ta) sgn o" (-1)’s. Hence (5.5) yields

(5.9) -1 (- 1)P+r+"s.

If p + rn < 2q + r, then qi(t) is continuous at tl for 0, , p + m, in which case
/" p + rn and s 1. Then (5.9) implies that p + r + rn is odd. If p =< 2q + r _-< p + m,
then/" _-> 2q + r and part (ii) of the theorem follows from (5.9).

The proofs of Theorems 5.1 and 5.3 motivate the interesting fact that the
conditions Ul>-0 and r/(t)>-0 play the dual role to the GLC-condition
(-1)qB(t) _-> 0 in singular control problems.

Summing up we find that for the normal case r 0 a rough classication of the
constrained extremals with respect to the order p is as follows: for p 1 boundary
arcs and contact points are possible and , 0 holds at every junction point or
contact point provided that [a(tl)[ <[b(tOlK(tl). The last statement anticipates
Theorem 5.6(i). Corollary 5.2(i) then states that the constrained extremal touches
the boundary only for p odd, p _-> 3 and ul > 0. The same result holds for a regular
Hamiltonian; cf. [2]. Finally for ua > 0 and p even contact points and boundary
arcs are possible.

Remarks. 1. One should use care in applying the junction theorems of this
section in the presence of several control variables. Further work on the exact
differentiability properties of the control components at junction points is
required to obtain similar junction theorems in this case.

2. It is possible to derive formally conditions for nonanalytic junctions as in
[1] where the control u(t) has an infinite number of switches in the neighborhood
of a junction point tl on the interior nonsingular arc. We shall not follow this up
due to a complete lack of examples.

5.2. Junctions between interior singular arcs and boundary arcs. The next
theorem is nearly identical to [1, Thin. 1] and is remarkable insofar as it does not
involve the order p of the state inequality constraint.

THEOREM 5.4. Let tl be a point where an interior singular arc and a boundary
arc of an optimal control u are foined. Let q be the order ot the singular arc and
assume that the strengthened GLC-condition (-1)qB(t0 >0 holds. Let u(, r >-0,
be the lowest order derivative of u which is discontinuous at t and let p <-_ 2q + r.
Then , O, i.e., the multiplierA (t) is continuous at t, andq + r is an odd integer.



352 H. MAURER

Proof. The proof is similar to those for Theorems 5.1 and 5.3. The singular
control us and the boundary control ub are determined by A +Bus 0 and
a + bub 0. The Taylor expansion (5.2) becomes here

EP+r t (ep+’)(5.10) O>S(ta-e)=(-1)P+(p+r)!b(q)[u a)--ur)(ta)]+O

On the interior singular arc the relation i)(t) (t)q(t) 0 holds for all => 0.
This gives u 0 by virtue of (4.10) and p _-< 2q + r. Hence A (t) is continuous at ta.
Furthermore q(t) is continuous at t for < 2q + r. Then we obtain

(5.11)
<2q +r,

as u (’) is discontinuous at tl. Define/" 2q + r-p and differentiate the relation
(4.6) on the boundary ] times, whence rt (i)(t-) 0 for 0,. ,/"- 1 and

(5.12) (- 1)p-lr/(>(t)b(t) (A + Buo)(’)(tO.
Subtracting the identity (A + Bus)(r)(tl)--0 from (5.12) results in

(5.13) (-1)v-q(q)(t)b(tx) B(tl)(u(or)(tl)- u>(tx)).
Substituting this in (5.10) and taking the sign on both sides gives

(5.14) -1 (-1)’ sgn r/O)(t-) sgn B(tl) (-1)’+’

as r/)(t-) >0 and (-1)qB(q) >0. The conclusion that q +r is odd then follows
from (5.14).

In the normal case r 0, Theorem 5.4 implies that boundary arcs are possible
if q is odd whereas the constrained extremal touches only the boundary if q is
even. A necessary and sufficient condition for r 0 is contained in the next lemma,
whose proof is trivial.

LEMMA 5.5. Let ta be afunction pointofan interiorsingular arc anda boundary
arc. Then the control u is discontinuous at tl iff (aB bA)(q) O.

In the presence of several control variables Theorem 5.4 will remain valid
only in special cases. A numerical example with two variables and p 1, q 1 is
discussed in [8, Example 7.1].

5.3. The ease p = 1. In numerical examples the constrained extremals con-
tain in general only boundary arcs. It will be shown in Theorem 5.6(ii) that the
constrained extremal has at least one boundary arc. Let ta and t2 be the entry-time
and exit-time of a boundary arc and assume r 0. If the interior arc is nonsingular,
then ux 0 and/22 0 by Corollary 5.2(ii) and (4.10) yields the following relations
for the switching function:

(5.15) (t]-) 0, (t) =0.

These relations are important for the numerical calculation of the multipliers A (t).
Moreover the integer rn in Theorem 5.3 must be even for boundary arcs if
1 +rn <2q. To our knowledge only examples with rn =0, i.e., q(t]-)0 and
(t) # 0, are known so far; cf. Example 2, 7 below. If the interior arc is singular,
then va v2 0 follows from Theorem 5.4.
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THEOREM 5.6. Let p 1 and assume that [a(ta)[ < [b(t)[K(tl) holds at every
contact point t.

(i) Let t be a contactpoint with the boundary. Then 0 and b (tx) 0. The
control u is discontinuous at t i]’t is interior to a nonsingular arc or iftx is a
junction point between a nonsingular and a singular arc. I]’ (aB- bA

(tl) 0, then tl cannot be interior to a singular arc.
(ii) Let the unconstrained extremal be uniquely defined by the minimum

principle. Then a constrained extremal corresponding to an active con-
straint (2.5) cannot have only contact points but contains at least one
boundary arc.

Proof. At a contact point t one has S(tO 0 and S(q- e) < O, S(q + e) < 0 for
e > 0 small. Hence

(5.16) S(t-;) (a + bu)(t) >- O, sl(t-) (a + bu)(t() <- O.

Case (a). Let tl be interior to a nonsingular arc. If we assume that the control
u is continuous at tl, then (5.16) implies (a +bu)(q)=O, which contradicts
U(tl) +K(q) and the assumption la(t)l < Ib(tOlK(tO. Therefore u is discontinu-
ous at tl and we get by subtracting the two inequalities in (5.16)

(5.17) b(tO(u (t-) u (t-)) > O.

We have by (4.8)

(5.18) k(t)=rk(t-)-vb(tl), v >-O.

Now b(tl) > 0 implies u(t-;) > O, u(t) < 0 and therefore b (t-) <_- 0, b (t-) >- 0 by the
minimum principle. Hence vb(q)<-O by (5.18) resulting in v=0. Similarly,
b(tl) < 0 implies vib(t) >- 0 and thus v 0.

Case (b). Let the point t lie on a singular arc. If t is interior to this singular
arc, then clearly b(t-) =b(t-) 0 and vl =0 follows from (5.18). The singular
control u is continuous at t and (5.16) implies (a + bu)(q) 0, which is equiva-
lent to (aB- bA)(q) 0. Then it follows from (aB bA)(tl) 0 that tl must be a
junction point between a singular and a nonsingular arc. In this case the assump-
tion la(q)[ <lb(q)lK(tx) also yields that u is discontinuous at t. Let u(t-[) be the
singular control. Then b(t-)=0 in (5.18) and arguing as in Case (a) gives the
desired result v -0. This proves part (i).

Suppose now that the constrained extremal has only contact points. Then
vl 0 holds at every contact point by (i) and thus h (t) is continuous on [0, T]. So,
tire constrained extremal satisfies also the necessary conditions of the minimum
principle for the unconstrained extremal. This contradicts the uniqueness assump-
tion as the equality of the unconstrained and constrained extremal is ruled out by
the assumption that the constraint (2.5) is active. This proves part (ii).

6. Transition from unconstrained to constrained extremals. An attempt is
made to outline the qualitative behavior of the constrained extremals depending
on the order p and the parameter a in (2.5). In particular, we want to disCuss for
what parameters a boundary arcs may occur. We restrict the discussion of
boundary arcs to the orders p 1 and p even for which the normal cases r rn 0
in Theorem 5.3 and r=0, v >0 in Theorem 5.1 are assumed. Let x(t), u(t),
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A 0(t) be the unconstrained extremal and let b(t) be the unconstrained switching
function. Define

(6.1) a0 max {S(x(t))[t [0, T]}= S(x(tO).
The following assumption is made throughout this section.

Assumption 6.1. There are only finitely many points tl satisfying (6.1) and
tl 0 and tl T do not satisfy (6.1).

This assumption means that the unconstrained extremal has only finitely
many contact points and no boundary arcs for the trivial constraint S(x) -< ao. The
constraint (2.5) is only of interest for d =< do and is active for d < d0. We denote
the problem (2.1)-(2.5) by (P) and an extremal of (P,) by x(t; d), u(t; d),A (t; d).
The following concept of stability is useful in order to describe the qualitative
behavior of the extremals.

DEFINITION 6.2. (P) is called strongly stable at ff if there exists a neighbor-
hood V of ff such that (i) (P) has a unique extremal x(t; d), u(t; d), A (t; d) with
r/o 1 in (3.2) for d V, and (ii) the function d (X(" ;d), U(" ;d), a(" ;d)) is
continuous at ft.

LEMMA 6.3. Let p 1 and assume that la(t0l <lb(tl)lg(to holds at every
point tl in (6.1).

(i) The unconstrained extremal satisfies the entry-conditions (2.7), (5.15) for
d do at every point tl in (6.1).

(ii) Let (P,) be strongly stable at do. Then there exists d < do such that the
constrained extremal ]’or d [d 1, do) contains at least one boundary arc.
Any such boundary arc evolves continuously with respect to d from a point
tl in (6.1).

Proof. Part (i) is a consequence of Theorem 5.6(i). If (P) is strongly stable at
d0 then the hypothesis of this lemma implies that the hypothesis of Theorem 5.6 is
satisfied for d [dl, d0) with suitable d < do. Hence (ii) follows from Theorem
5.6(ii).

LEMMA 6.4. Letp be even and letp <- 2q. Assume that at every pointtl in (6.1)
thefollowing condition holds: either la(t)l < Ib(t)lK(t)l ifu is discontinuous at tl
or oh does not have a zero of order p at tl if tz is continuous at tl.

(i) The unconstrained extremal does not satisfy the entry-conditions (2.7),
(4.9) ]:or d do at every point tl [0, T].

(ii) Let (P) be strongly stable at do. Then there exists d < do such that the
constrained extremalfor [, ao) touches the boundary only. Moreover,
ifc has only simple zeros in (0, T).and /f$(0) # 0, b(T)# 0, q(tl) # 0
for all points tl in (6.1), then d < do can be chosen in such a way that the
constrained extremal for d [dl, dO) has the same number of switching
points as the unconstrained extremal.

Proof. (i). Assume that (2.7), (4.9) hold at a point tl [0, T]. Then this point
must also satisfy (6.1). Since the function S(t) S(x(t)) has a maximum at tl, the
inequalities

(6.2) Sp(t) (a + bu)(t:) _-< 0

follow from S (tl) 0, 1, , p 1, and p even. If u 0 is discontinuous at tl we
obtain (a+bK)(tO<-O from (6.2), which contradicts the assumption
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Ib(tl)lK(tl). If u is continuous at tl then b does not change sign in a neighbor-
hood of tx. As q(i)(tx) 0, 0, , p 2, and p is even, we find b(P-l(tl) 0 in
thi.s case, which contradicts the assumption that b does not have a zero of orderp
at t.

(ii). If (P) is strongly stable at ao, then (i) implies that (2.7), (4.9) cannot be
fulfilled at any point tl [0, T] for a [a 1, ao) with suitable a < O0- This proves
the first statement in (ii), and the second statement is a direct consequence of the
assumed shape of b.

The meaning of Lemma 6.4 is the following: if p is even and if (P) is strongly
stable at ao, then boundary arcs can only occur after a transitionalphase in [a 1, ao)
where the constrained extremal has only contact points. However, there are
examples for p even where this transitional phase does not occur; compare
Example 2, 7. In this case, (P) cannot be strongly stable at ao. The next lemma
is concerned with such a situation.

LEMMA 6.5. Let p be even, p <-2q, and let the unconstrained extremal be
unique. Suppose that cb o has simple zeros in (0, T) and that ck (0) 0, bO(T) 0,
q(tx) 0 for every point tl in (6.1). Further assume that the switching points of the
nonsingular control u o are already uniquely determinedby the end-conditions (2.3).
Then (P) is not strongly stable at ao.

Proof. Suppose that (P) is strongly stable at ao. Then Lemma 6.4(ii) shows
that the constrained extremal for a [al, ao), a O0 suitable, has only contact
points and has the same number of switching points as the unconstrained
extremal. But then the constrained trajectory for a [al, ao) must coincide with
the unconstrained trajectory as we have assumed that the switching points of u o

are already uniquely determined by (2.3). This is a contradiction and hence (P)
cannot be strongly stable at ao.

An application of Lemma 6.5 is provided by Example 2, 7, for p 2. In this
example the multipliers ,t (t; Ceo) corresponding to the trivial constraint S(x) <-_ ao
are not unique whereas the unconstrained multiplier A (t) is unique.

7. Numerical examples.
Example 1. In this example the inequality constraint x - t is used instead of

x _-< a. This explains the different sign for ao. The problem is to minimize the
end-time

.1 X2, XI(0) 3 xI(T) 0,

(7.2) k2 --X " U, X2(0 1, x2(T) 0,

[u(t)l_-< 1, 0_-<t_-< T,

and the state inequality constraint of order p 2

(7.3) S(x) -xl =< -ce, i.e., Xl -> a.

The unconstrained optimal trajectory x(t) is the well-known solution of the
undamped oscillator problem (see [9, p. 111]) and consists of the arc xoACO

(7.1) J(u)=T

subject to
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shown in Fig. 1 where A (3, -1) and C (-1, 1) are the switching points of the
unconstrained optimal control u(t).

FIG. 1. Geometricalconstruction ofextremals touching the boundary

One gets c0 min {x(t)lt [0, T]}= x(tl) 1-4= -1.2361. The control u(t)
is continuous at tl and b(tl) 0. The multiplier (t; a0) with r/o 1 in (3.2) is
unique and is equal to the unconstrained multiplier ,t (t). Since boundary arcs for
Ceo < ce would be restricted to the stationary point (ce, 0) they cannot form part of a
constrained extremal because of the functional (7.1). Therefore, any constrained
extremal has only contact points. It is not difficult to compute the constrained
extremals and to verify that (P,,) is strongly stable at Ceo. Hence Lemma 6.4(ii)
applies. Figure 1 indicates how the constrained extremals touching the boundary
are constructed with the same number of switching points as the unconstrained
extremals: one chooses first the switching pointA * lying betweenA (3, -1) and
B (/17-1, 0) on the circle through Xo with center at (-1, 0). This results in a
second switching point C* lying between C=(-1, 1) and D=
("/ri7- 5, 1- (/i--4)2) on the circle through (0, 0) with center at (-1, 0). If A *
moves from A to B, then the corresponding contact point (ce, 0) moves from
(a0, 0) to (eel, 0) with a0 1-,=- 1.2361 and c1 3-4]-=-1.1231. This
geometrical construction shows that the constrained extremal exists for parame-
ters ce (Ceo, ce 1]. Moreover, (P) is strongly stable at c [ce0, ce 1).

It is easily shown by elementary calculations that.the relations (4.6), (4.7) for
the switching function at the contact point tl hold in this example with ul > 0 for
a0 < ce < eel. In the limit one obtains formally b (tl-) 0 for a al. Thus for a al
the entry condition (4.9) for a boundary arc is satisfied. But no constrained
extremal exists for a < ce as mentioned before.
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Example 2. The following time-optimal control problem of a nuclear reactor
is taken from Hassan et al. [10] where some numerical results are given. A
detailed numerical, solution was obtained by Heidemann [11] and the author by
using numerical techniques similar to those in Maurer and Gillessen [12]. The
encountered boundary value problems were solved with the method of multiple
shooting developed by Bulirsch, Stoer and Deuflhard [13]. The numerical
calculations were performed on the computer terminal of the Mathematisches
Institut der Universitit K61n. The following presentation stresses the structure of
the solution in relation to the junction theorems of 5 more than the numerical
aspect which is elaborated in [11 ].

The problem is to minimize the end-time

(7.4) J(u)= T

subject to

1 kl(X3-1)x1+ kzx2, Xl(0) no, x(T)=
A2 kx-kEX2, x2(0) nokl/k, x(T)= n/k2,

(7.5)
3 U, X3(0) 0, x3(T)= 0,
[u(t)[_-< 0.2, O<-t<-T,

where x is neutron density, x is delayed neutron concentration, x3 is reactivity,
kl 5.0, ke 0.1, no 0.04, nT- 0.06. The process is subject to either

(I) the state inequality constraint of order p 1

(7.6) S(x)--x3p

or

(II) the state inequality constraint of order p 2

(7.7) S(x) xx <-a.

In the sequel, the adjoint variables are calculated for rio 1 in (3.2).
Unconstrained extremal. The optimal control is

(7.8)
0.2, t[0, t*),

u(t) -0.2, t (t*, t**),
0.2, t (t**, T],

with T 7.047806, t* 0.4798784. T, t** 0.9798784. T. The multiplier A (t)
is determined by the initial value A (0) =-(2.970144, 2.845469, 5.0). The three
parameters t*, t**, T in (7.8) are uniquely determined by the three conditions for
the final state x(T). The switching function b(t)= A 3(t) is shown in Fig. 2 (its
negative has been chosen because of (3.6)) with respect to normalized time tT.

(I) Inequality constraint (7.6) oforderp 1. For the unconstrained extremal
x(t) one obtains po=max{x(t)]t[O, T]}=x(t*)=0.2. t* 0.6764179. The
point t* is a switching point of the control u(t) and therefore 4,(t*) =0. The
numerical results in [11] suggest that the problem (Po) is strongly stable at
p (0, po]. Since S(x, u) u, i.e., a(t) 0 and b(t) 1, the boundary control is
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Ub O. The constrained extremal contains one boundary arc and no contact points
for p (0, po) (cf. Lemma 6.3(ii)) and the optimal control is

(7.9)

0.2, t [0, 50),
t [5p, t2],u(t)=

.2, (t2, t**),

.2, t e (t**, T].

The three parameters t2, t**, T are uniquely determined by the final state x(T).
The numerical results also demonstrate that Theorem 5.3(i) holds with p 1, r 0
and m 0 and thus (t]-) 0, tl 5p, (t-) 0 for p (0, po).

(II) Inequality constraint (7.7) of order p=2. We get ao=
max {x(t)lt [0, T]}= x(tl)-- 0.1213660, tl= 0.5429932. T where T=
7.047806. The point tl is not a switching point of u(t) and (tl) 0; see Fig. 2.
The assumptions of Lemma 6.5 are satisfied here and hence (P) is not strongly
stable at ao.

It will turn out below that the multipliers A (t; ao) are not unique whereas
A(t; a) is unique for TT<Og <OlO,

The constrained extremal contains one boundary arc for nT < a < ao. Here
the contact point tl for a ao splits up into the boundary arc for a.. < ao. The
optimal control is

(7.10) u(t)

0.2, t e [0, t*),
-0.2, t

-k2x3, te[q, t2],
-0.2, t (t2, t**),
0.2, t e (t**, T).

The boundary control u =-k2x3 is obtained from S2(x, u)= 0. The five parame-
ters t*, ta, tz, t**, T are uniquely determined by the three conditions for x (T) and
the two entry conditions S(tO , Sa(ta) 0. The multipliers A (t; a) are uniquely
determined by the necessary conditions and are continuous in a. Hence (P) is
strongly stable at a (nT, Ceo). One finds , Al(t]-) >0 and r/(t) -kA2(t) >0,
Al(t) =Aa(t)--0 for t6[t, t2]. The numerical values for -kx3 are such that the
control u(t) in (7.10) is always discontinuous at tl and rE. Thus the necessary
conditions of Theorem 5.1 for a boundary arc are satisfied with ux > 0, p 2, r 0;
i.e., p + r is even. For reasons of numerical comparison the numerical values are
given for a =0.105: T= 7.344445, t* =0.4253868. T, t =0.4793580. T, t=
0.6285059. T, t** 0.9806927. T, A (0) -(4.052238, 3.882192, 5.0), u
3.83874.

Performing the limit a’ao, i.e., q-t2-O, in (7.10) we get the dashed
switching function shown in Fig. 2 with respect to normalized time t/T. This
switching function is admissible for the unconstrained control (7.8) in the sense of
the minimum principle for the trivial constraint x -< ao. However, this switching
function is not an admissible switching function for the unconstrained problem
(2.1)-(2.4).
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5

unconstrained

limit -0
NU* t, t**]... i- ",

0.I \

FIG. 2. Unconstrained and the limiting constrained switching]unctionfor ot Oo

The numerical values for the multiplier A (t) corresponding to the dashed switch-
ing function are fixed by the initial value (0) -(3.376317, 3.234608, 5.0) 7- and
the jump 71 9.056300 of A (t) at tl 0.5429932. T. Now we want to charac-
terize all multipliers A (t; Ceo) satisfying the necessary conditions with r/o 1 in
(3.2). The multipliers can be parametrized by the interval [0, 7] in the following
way" for given u [0, 7] there exists A (t; ao) satisfying the necessary conditions
with prescribed jump , at tl. Thus the range of A(t; ao) sweeps from the
unconstrained multiplier A(t), for which Ul =0 and b(tl)0, to the special
constrained multiplier A(t) with jump /1 at t for which the entry condition
4(q) =0 for a boundary arc is satisfied. Then for a <ao the entry condition
b (ti-) 0 can be met continuously with multipliers A (t; ) which are continuous in
a. In particular we have u(a)+ P2(a)"- 1 for a’ce0 where Pi(Og) are the jumps of
A (t; a) at the points t, i= 1, 2, in (7.10).

The limiting case corresponding to h(t) and 7 was not computed by
performing the limit tl-t2-0 in (7.10)this leads to a numerically unstable
boundary value problembut was computed by translating the above considera-
tions numerically. Regard u as a homotopy-parameter and calculate the multi-
plier satisfying the necessary conditions with given jump ul at t starting the
homotopy at u 0. For instance one obtains h (0) -(3.104701, 2.974376, 5.0)r
for u 3. Then 91 is the homotopy-parameter (treated numerically as a free
parameter) which produces the entry condition b(tx)= 0.

Let us denote the value of the functional (7.4) subject to the state constraint
x -< a by T(a). Then the numerical results suggest that T(. is not differentiable
at ao but is convex in a neighborhood of ao. Furthermore, it turns out that the
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right-sided derivative is T’(a) 0 and the left-sided derivative is T’(a)= --1
-9.056300. Thus we have

(7.11) -OT(ao) -[ T’(a), T’(a-)] [0, 1]

where OT(ao) is the subgradient of T(a) at a0. This is a special result of the
perturbation theory developed in [14].

Example 3. Consider the problem of minimizing

(7.12) J(u) =- x2 dt

subject to

(7.13) u, lul 1, x(0) =x(3) 1

and the state inequality constraint of order p 1

(7.14) S(t,x)=1/2t-x<=a,
The unconstrained extremal is

(1- t, -1, 1/2(t- 1):), t [0, 1),
(7.15) (x(t),u(t),A(t)) (0, O, 0), t [1, 2],

(t- 2, 1, -1/2(t- 2)2), t e (2, 3],

and has a singular arc of order q 1 in [1, 2]. Here (2.6) and (3.7) give S 1/2- u,
0 (2) =-u. Thus a =1/2, b =-1, A =0, B =-1 and aB-bA =-1/2. We have

a0 max {S(t, x(t))[t
where the point tl 2 is a junction point between a singular and a nonsingular arc;
cf. Theorem 5.6(i).

The constrained extremal exists for a e [1/2, 1]. It is clear from (7.15) that the
constrained extremal is

(1 t, -1), t [0, 1),
(0, 0), t[1, 2a),

(7.16) (x(t), u(t))= (1/2t-a, 1/2), t[2a, 4-2a],
(t- 2, 1), t (4- 2a, 3].

The optimal trajectory has a singular arc in [1, 2a] and a boundary arc in
[2a, 4- 2a]. The multiplier A (t) satisfies A -x + r/ with rt(t) 0 for
t [2a, 4-2a] and rt(t)->0 for t [2a, 4-2a]. The switching function is &(t)=
A(t) and hence A(t)=0 for t [1, 4-2a]. These conditions and the minimum
principle (3.6) determine uniquely A (t), and we get

1/2(t- 1), t [0, 1],
(7.17) A(t; a)= 0, t[1,4-2a],

21-{-(t-Z)2+(Z-Za)2}, t[4-Zce, 3],

and q(t)=x(t)=1/2t-a>-O for t[2a, 4-2a]. The multiplier A(t;a) depends
continuously on a and hence (P) is strongly stable at a (1/2, 1]. For a =1/2 the
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constrained extremal is formally contained in (7.16), (7.I7) where the singular arc
in [1, 2a] and the nonsingular arc in [4-2a, 3] degenerates.

Let us check the various junction theorems for a (1/2, 1) first. At the junction
tl 1 of the nonsingular and singular arc Theorem 1 of [1] holds with q 1, r 0;
i.e., q + r is odd. At the junction t2 2a of the singular interior arc and the
boundary arc we have q 1, r 0 and r/(t2)= 0, 9(t-)= 1/2. Thus Theorem 5.4 is
verified with q + r odd and also (5.13) holds with f 2q +r-p 1. Finally, at the
junction t3--4-2a of the boundary arc and the nonsingular interior arc we get
b(t3) 0, t(t-) t3-2--2-2a S0. Then Theorem 5.3(i) applies with p 1,
m =0, r=0, q= 1; i.e.,p+m <2q+r andp+r+m 1 is odd.

Now we consider a 1/2. Here tl 1 is a junction of a nonsingular interior arc
and a boundary arc. We obtain b(tl)= (ta)= 0, b2)(ti-) 1 and hence m 1 in
Theorem 5.3. Since we have p 1 < 2q + r p + m 2, part (ii) of Theorem 5.3
applies. There the integer /" becomes ./=2 as A(tl)qi(tl)=0, i=0, 1, and
,t(tOq2(t)=-u(t)=-1/2. This follows also from (5.7) by virtue of r/(tl)=0,
9(t) 1/2. Hence -sgn (A (t)q2(t-)A (t)tp2(t-)) 1 (-1)p+r+’n as p + r +m 2 in
Theorem 5.3(ii).
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CONTROLLABILITY AND OBSERVABILITY OF PARABOLIC
SYSTEMS--AN ADDENDUM TO TWO
RECENT PAPERS OF Y. SAKAWA*

JEAN-CLAUDE E: MARTINf

Abstract. In two recent articles Sakawa has established necessary and suffident conditions to

insure the controllability (observability) of parabolic systems of finite multiplicity m. One of these
conditions is that there must be at least m controllers (sensors). In this short note it is shown that the
results of Sakawa can be extended to the case where only one discrete scanning controller (sensor) is

used. In some special cases Sakawa’s results can be utilized to establish the observability of a system
when only one time-varying sensor is used.

Introduction. In two recent articles [1], [2], Sakawa has considered the
controllability and observability problems for partial differential equations of
parabolic type. For the controllability problem [1], Sakawa used controls of the
form 2= g(x)/(t) distributed over the system’s spatial domain D or its bound-
ary. In 2], the system’s state u(t, x) is observed with either n spatial averaging
sensors whose outputs are Y(t)=D (X)U(t,X)dx, i= 1,...,n, or n ideal
pointwise sensors, i.e., y(t)= u(t, x), ,..., n. Sakawa established that for
parabolic partial differential equations involving a time-invariant elliptic operator
of finite multiplicity m there must be at least m suitable controls (sensors) to
ensure the controllability (0bservability) of the system.

For economical reasons and physical simplicity it is often desirable in practice
to use only one controller (sensor). The goal of this short note is to show that using
the results of Sakawa it is possible to control (observe) the state of th.c system with
only one controller (sensor). Two cases will be considered: (i) the discrete
scanning control (observation) where the controller (sensor) can be moved
discretely along a given trajectory in the interior of the system’s spatial domain or
on the boundary, (ii) for some special cases, the time-varying sensor.

Since the two problems--controllability and obscrvability--havc the same
development, only the obscrvability problem will be described in detail and, to
facilitate reference to Sakawa [l]and 2], we shall use the same notations.

Problem statement. As in [2] letD be a bounded domain of an r-dimensional
Euclidean space. The boundary ofD is denoted by S and is supposed to be smooth
enough.

We consider the linear parabolic partial differential equation

(1) Ou(t,x)/Ot=Au(t,x)-q(x)u(t,x) on(0, T]xD,

with the boundary condition

(2)
a()u(t, () +(i-a(()) Ou(t, )/On =0,

O=<a(:)=< 1, :e&
* Received by the editors June 16, 1975, and in revised form November 26, 1975.
f Department of Mathematics, Ecole Polytechnique Federale de Lausanne, CH-1007 Lausanne,

Switzerland.
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and the initial condition given by

(3) lim u(t, x)= Uo(X) LE(D).
t-0

Under suitable conditions [2] there exists a unique solution to the initial-boundary
value problem described by (1), (2) and (3) and the solution is given by

mi

u(t,x)= , e-’VE uiidPii(x),
i=1

where {q(x);/" 1,. , mi, 1, 2,...} is a complete orthonormal system in
L2(D). Each i/satisfies

AdP,i(x)--q(x)di/(x)=--Aicbii(x), x D,

with boundary conditions (2).
The coefficients u/are given by ui o Uo(X)i(x) dx and the system is said

to be of finite multiplicity rn if sup (mi) rn < c.

Discrete scanning sensor. As in [2] we consider an observation of the solution
over a finite time interval (0, T] using either a spatial averaging sensor (measure-
ment of type 1) or an ideal point-sensor (measurement of type 2).

Let Xk; k 1, , N, be subintervals of (0, T] satisfying

Xk ("]Xn #, k # n,

N

U x,, = (0, T].
k=l

The observation of the solution will be defined as

(4) yk(t) =IIo W(X --Xk)U(t, X) dx, t Xk,

otherwise,

where w(x--Xk) is the weighting function of the sensor "centered" at the point
Xk D. w(’) Lz(D) in the case of a spatial averaging sensor and w(x) 6(x)m
the Dirac measuremfor ideal point-sensor.

Let

w .= Jo dx

(x)

--measurement of type 1,

--measurement of type 2,

and as in [2] let us define the Nxm matrices W by
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Then, using the same proof that is in [2, Thm. 1, p. 18] one can show that the
system is observable in any finite time if and only if N_->m and rank W/= mi,

1, 2,..., which means that we must make at least m measurements at m
different points. Restrictions concerning ideal point-sensors [2, p. 21] still hold in
this case.

Time-varying sensor. In this section we consider elliptic operators whose
eigenvalues {A/; 1, 2,...} satisfy the following "separation condition""

A _->p >0,

/i+l--Ai p, 1, 2, .
Let the weighting function of the time-varying sensor w(t, x)L(O, TxD) be
defined by

N

w(t, x)= Ck(X) e-t,
k=l

where 0<pk < P, k 1, ,N.
The observation is defined by

y(t) Io w(t, x)u(t, X) dx

and can be written as

N
_(Ai+Pk) i ky(t)= e UijWij

i=1 k=l j=l

kwhere wij o Ck(X)dij(x) dx.
Since Pk < P, k 1," , N, and {h} satisfies the separation condition (5), we

have

(6) (Ai-[-Pk)#(Ai-l-pn) forallk, n<-N andalli, j=l, 2,....

Thus, Theorem i of [2, p. 18] holds and the system can be observed with only one
static time-varying sensor.

Remark. In the case where the eigenvalues of the elliptic operator do not
satisfy the separation condition (5), Theorem I of [2, p. 18] can still be applied to
establish the observability of the system u.sing only one time-varying sensor if N
alues Pk, k 1,’" ", N, can be found such that inequality (6) holds.

Controllability problem. Let us consider the parabolic partial differential
equation

(7) Ou (t, x)/Ot Au (t, x) q (x)u (t, x) + g(x xk)f(t)
with boundary and initial conditions given by equations (2) and (3). Assume that
the time interval (0, t] can be covered by N nonvoid, nonoverlapping time
subintervals gk;

N

(0, t] U Xk.
k=l
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The control’s spatial function gk(x) g(x--Xk) is "centered" at the point Xk for
t ,,’k and, as in [ 1], gk (X); k 1, , N, are H61der continuous on the compact
domain D. It can also be assumed that for some values of k, gk-----0 which
corresponds to the time needed to switch the controller from one location to
another one.

The solution of the parabolic equation can be written as

U(t) UtUo’+’kY’ Ut-.gkf(T) dq’,

where U is the fundamental solution at time t of the system defined by (7) and (2).
Using Theorem 3 of I1, p. 393] one can immediately see that system (7), (2)

and (3) is null controllable if m locations Xk k 1, , m, can be found such that
the matrices Gi (see [1, p. 393]) satisfy rank Gi m for all 1, 2,. ..

Conclusion. This short note gives two examples where the results of Sakawa
[1] and [2] can be applied to prove the observability (and controllability) of
parabolic partial differential equations of finite multiplicity m using only one
sensor (controller).

The case of a discrete scanning sensor (controller) can be easily implemented
in practice. The time-varying sensors which applied to more restrictive cases will
also be much more difficult to realize technically.
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THE SEPARATION PRINCIPLE FOR
STOCHASTIC EVOLUTION EQUATIONS*

RUTH F. CURTAIN AND AKIRA ICHIKAWA"

Abstract. The separation principle is proved for a general class of linear infinite dimensional
systems. The dynamical system is modeled as an abstract evolution equation, which includes linear
ordinary equations, classes of linear partial differential equations and linear delay equations. The noise
process in the control system is modeled using a stochastic integral with respect to a class of Hilbert
space valued Gaussian stochastic processes, which includes the Wiener process as a special case. The
observation process is finite dimensional and is corrupted by Gaussian type white noise, which is
modeled using the Wiener integral. The cost functional to be minimized is quadratic.

Introduction. The separation principle is a classic theorem of finite dimen-
sional stochastic control theory (see [14] and [1]) and it is natural to ask whether
the principle holds for more general systems. In [5] Brooks gives an abstract
version of the separation principle for a finite dimensional system with general
disturbance and a weighted quadratic cost functional. As he uses a functional
analytic approach he obtains the optimal control in a nonfeedback form, which is
not too attractive from the applications point of view. Balakrishnan in 1] and [2]
uses a similar approach, and so obtains the control in a similar form. His results are
obtained for time invariant linear systems described by semigroups and so apply
linear delay systems and distributed systems. It is worth noting that he uses a
nonstandard model for the noise disturbances which differs from all the other
authors. By imbedding the feedback stochastic control problem in a stochastic
open loop problem, Lindquist in [13] develops a technique which embeds the
separation principle to system disturbed by colored measurement noise and
systems with time delays. In [4] Bensoussan and Viot extend the earlier work of
[3] for systems described by parabolic partial differential equations of Lions’ type.
They define a fixed Hilbert space, which the class of feedback controls are dense in
and then use a variational approach to obtain the separation principle for a
general convex cost function and constrained controls.

In this paper we consider a very general class of systems which includes all the
aforementioned except for an example in Lindquist 13] where he considers delay
equations with delays in the control. With that exception, it is possible to model
linear delay equations and distributed systems described by linear integro-
differential equations in terms of an evolution operator (see Curtain and Pritchard
[6]). The noise disturbance in the signal is modeled using a stochastic integral with
respect to an orthogonal increment type process introduced by Curtain in [10],
and which includes the usual Gaussian white noise, colored noise and also Poisson
type noise. In 2.4 the optimal control problem for complete observation is
solved for this general noise disturbance. For the incomplete observation case a
separation principle is obtained under the extra assumption that all noise distur-
bances are Gaussian. This stochastic evolution model has already been success-
fully used by Curtain in [8] and [9] to solve the filtering and smoothing problem,

* Received by the editors December 29, 1975, and in revised form July 28, 1976.
t Control Theory Centre, University of Warwick, Coventry, Warwickshire CV4 7AL, England.
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and in fact this paper is a natural extension of this work. Using the results from [8]
and [9], we are able to use an approach similar to that of Balakrishnan in [1] and
[2] to prove the separation principle for the class of linear feedback controls. We
are also able to embed it to the admissible class of Bensoussan and Viot in [4].

1. Mathematical preliminaries.
1.1. Evolution operators. We summarize the theory of evolution operators

developed in [6] and [9] for the modeling of linear infinite dimensional systems
appropriate for control applications.

DEFINITION 1.1. Mild evolution operator. Let H be a real Hilbert space and
T [0, T] a real finite time interval and denote A(T) {(t, s): 0 --< s -< t -< T}. Then
0//(.,. ): A(T)-(H) is a mild evolution operator if

(a) all(t, r)ll(r, s)= ql(t, s) for O<-_s <-r<-_t<- T, all(t, t)= I,
(b) /(t, s) is weakly continuous in s on [0, t] and in t on Is, T].
Mild evolution operators are closed under perturbations by operators D 6

9oo(T; .(H)) (the class of (H)-valued functions which are strongly measurable
on T with essr sup IID(t)ll < oo) in the following sense:

(1.1) OD(t, S)X 01(t, S)X + (t, r)D(r)(r, s)x dr, x sH.

If D 9(T; ’(H)), (.1.1) has a unique solution which is also a mild evolution
operator; //(t, s) is called the perturbation of a//(t, s) corresponding to D.

1.2. Abstract probability theory. We recall the following definitions and
results on Banach-space-valued random variables and conditional expectations
from [9] and [4]. Let (12, ,/z) be a complete probability space, X, Y real
separable Banach spaces, H, K real separable Hilbert spaces and T [0, T] a real
finite time interval.

DEFINITION 1.2. An X-valued random variable is a map u: l X which is
measurable with respect to/z-measure. If u e Ll(f,/z; X), we define its expecta-
tion

ud .

If u L2(",/6; H), we define its covariance operator by

Cov (u)= E{(u -E{u}) (u E{u})},

where u v (K, H) is defined for u H, v K by

(u v)h u(v, h), h K.

Note that u u is a self-adjoint nuclear operator with trace (u u)= [lull
DEFINITION 1.3. AnX-valuedstochasticprocess is a map u: Tx II-->Xwhich

is measurable on Tx II using the Lebesgue measure on T.
DEFINITION 1.4. X- and Y-valued random variables u and v are independent

if {w: u(w) e A} and {o9: v(o)) e B} are independent sets in for any Borel sets A
in X and B in Y.



THE SEPARATION PRINCIPLE 369

DEFINITION 1.5. An H-valued random variable h L2(’,/.t,;/-/) is Gaussian
(Poisson) if (h, ei) is a real Gaussian (Poisson) random variable for all i, where {ei}
is a complete orthonormal basis for H.

DEFINITION 1.6. Conditional expectation. Let x, y be X- and Y-valued
random variables respectively and let =L2(’,/.t,;X) and denote by tr the
measure y induces on Y and y {x : x (to) fy (to)}, where f: Y->X is
measurable with respect to r. Then the conditional expectation of x given y, Ey{x}
is the projection of x on .

Note that y is isometrically isomorphic to a closed subspace of and so we
write =L2(Y, tr; X). Er{x} also has the statistical interpretation as the best
global estimate of x on y.

For estimation problems based on a Y-valued stochastic process y(t)
meas (ll,/x; C(T; Y)), we define the random variable Yt to be the restriction of
y(s); 0=<s =< T to (0, t). Then y, is a random variable with values in C(0, t; Y) and
y, can be defined as above and Ey,{x(t)} is the conditional expectation of an
X-valued stochastic process x(t) with respect to y, as t varies. Ey,{x(t)} is a
well-defined X-valued stochastic process in ].y, dt, where

I ., dt (x(t) L2(T; )lx(t) , a.e. t}.

In fact any x , dt is an element of 2(C(0, t; Y), 0-,; L2(0, t; )), where tr, is
the probability measure induced by y, on C(0, t; Y).

1.3. Stochastic evolution equations on a Hiibert space. We summarize the
main results from [9]. (ll, ,/) is a complete probability space and H, K are real
separable Hilbert spaces.

DEFINIa:ION 1.7. Orthogonal increments process. An H-valued orthogonal
increments process {g(t), t T} is such that

(1.2) g(t)= gi(t)ei,
i=0

where {ei} is a complete orthonormal basis for H, and gi(t) are real orthogonal
increments processes satisfying

(a) E{gi(t)} iip(t),

where p(t) is a monotonic nondecreasing real function and .i=o/i < oo,

(b) E{(,i(t2)-gi(s2))(,i(tl)-i(s1))}=O, O<=Sl <tl <S2<t2 <- T,

(c) E{(i(t)-i(s))(i(t)-i(s))}=Aii(f(t)-f(s)), O<--s <t<--_ T,

where (t) g(t) Iag(t), [ is a monotone nondecreasing function, Y’.=o A < oo;
A, A, and A ._-<AAi. The expectation function is r(t) E{g(t)}=(.,=o
and A/(t) is the incremental covariance function, where A is given by

E{[g(t)- g(s)] [g(t)- g(s)]} A[f(t)-/(s)], 0 <_- s <_- -< T,

where g(t) g(t) r(t). A is nuclear with trace A Yi=o hi and Aei Yi=o hi#. If
r(t) O, g(t) is called a centered orthogonal increments process.
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A special case of a centered process is the Wiener process,

(1.3) w(t)= E i(t)ei,
i=0

where /3i are mutually independent real Weiner processes with incremental
covariance hi and i=o hi < o. w(t) actually has independent increments and has
continuous sample paths.

Another orthogonal increments process is the Poisson process,

(1.4) p(t)= E 5(t)e,
i=0

where 7ri are mutually orthogonal real Poisson processes with parameter/xi and
=o/x <.

For orthogonal increments processes we can define the stochastic integral
r(s) dg(s) for 2(T; (H, K)) (the class of strongly measurable (H, K-
valued functions with ll,(s)ll= d(s)<),

(1.5)
(S) dg(s) (s)ei @i(s) -Ji- E I.i (s)ei dp(s),

i= i=o

alp(s) dg(s)e C(T; L2(fl, KI),

and has the properties

(1.6)

(1.7)

dP(s) dg(s Y’, lUI, dP(s)ei dp(s)= dp(s) dr(s),
i=O

 {11o To’ trace *(s)(s)A dr(s)

-< II ,(s)ll= trace A dr(s).

Using the definition of stochastic integration with respect to orthogonal
increments, it is possible to consider stochastic evolution equations of the follow-
ing type"

dx(t) A (t)x(t) dt +(t) dg(t) + h(t) dt,

x(O) =Xo,

where A (t) is the generator of an evolution operator q/(t, s),e 2(T; (g,/-/)),
h eL2(Txfl; H), xoeL2(fl; H) and g(t) satisfies Definition 1.7. First we define
the mild solution to be

(1.9) x(t)=(t, O)xo+ all(t,s)dP(s) dg(s)+ ll(t,s)h(s) ds.

Even if q/(t, s) is only a mild evolution operator, (1.9) is a well-defined H-valued
stochastic process and (h, x(t)) is continuous in mean square on T for all h s H.
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If q/(t, s) is an almost strong evolution operator, under additional assump-
tions on and g, (1.8) has a unique strong solution in the following sense (see [9]).

DEFINITION 1.8. Equation (1.8) has a strong solution x(t) if x
(T; L2(I; H)), x(t)D(A(t)) w.p. 1 and x(t) satisfies (1.8) almost everywhere
on Tx 1). We say that x is unique if whenever xl and x2 are solutions,

sup Ilx(t)-x=(t)ll 0}= 1.
tT

2. The optimal control problem.
2.1. The model. Following the approach in [7], [8] we take the signal and

observation models to be

(2.1) x(t)= q/(t, O)xo+ all(t, s)B(s)u(s) ds + ql(t, s)G(s) dg(s),

(2.2) y(t) C(s)x(s) ds + F(s) dw(s),

and the cost functional to be minimized

Io(2.3) J(u)=E{ [(M(t)x(t),x(t))+(N(t)u(t), u(t))]dt

+E{(Rx(T), x (T))}.

(f, , g) is a complete probability space, H, K, U are real separable Hilbert
spaces, T [0, T] a real finite time interval, q/(t, s) is a mild evolution operator on
H, B(T;(U,H)), G2(T;L(K,H)), xoLz(tI, tx;H); E{xo}=o,
Cov {Xo} Po and g is K-valued orthogonal increments process. So if we take the
control u(t) to be in L2(Tx f, U), (2.1) defines the signal x(t) as an H-valued
stochastic process. If w is an R"-valued Wiener process with incremental
covariance matrix W and if F, F- L2(T; .(R n)), C (T, ’(H, Rn)), then
the observation process y(t) is a vector-valued stochastic process in

Lz(TxO; R") meas (D,,/x; C(T; R"))(3 C(T; Lz(I’,K")).

Finally we suppose that Xo, g, w are mutually independent andM (T; (H)),
N, N-1 (T; L(U)), R (H), M(t)>-0, N(t)>0, R _->0.

Our problem is to find an admissible control u q/ad which minimizes J(u).
0ad will be specified later.

2.2. Filtering results. We consider (2.1), (2.2) with no control, that is

(2.4) ((t) 01 (t, O)xo + (t, s)G(s) dg(s),

(2.5) r/(t) C(s)((s) ds + F(s) dw(s).

We quote the results from [8] for the filtering problem for the system (2.4),
(2.5), that is, to find the best estimate (t) of the form (t) to 27(t, s) d7(s) +(t)
which minimizes {ll(t)- (t)ll} for all t e T.
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There is a unique optimal linear least squares filter given by

(t) (t, 0)g0+ ql(t, s)G(s) dr(s)+ St(t, s)K(s) dn(s)
(2.6)

ql(t, 0)o+ (t, s)G(s) dr(s) + (t, s)K(s) dr(s),

where r(s)=E{g(s)}, @(t, s) is the perturbation of the mild evolution operator
(t, s) corresponding to -K(t)C(t), K(t) e(t)C*(t)(F(t)(t))- and e(t),
v(t) are given by

(2.7) u(t) rt(t)- C(s)(s) ds,

(tx (t, o’o*(t, olx + (, s[a(slAa*(s
(2.8) + P(s)C*(s)(F(s) WF*(s))-1C(s)P(s)]Y*(t, s)x ds.

P(t) is the unique solution of the Riccati equation (2.8) in the class of weakly
continuous self-adjoint operator functions on H. P(t) is also the covariance
operator of the error process e(t)-(t). The innovations process u(t) defined by
(2.7) also has the representation

(2.9) u(t)= F(s) dv(s),

where v(s) is an n-dimensional centered orthogonal increments process with
incremental covariance matrix W. We also have

(2.10) ,, ,,
where L2(’], ;X), X a Hilbert space and we are using the notation from

1.3.
In [8] the special case of g(t), a Wiener process and x0, Gaussian, is

considered, that is, (2.4) has a "Gaussian white noise" disturbance. Then (t) is
the best global estimate of e(t) based on r/(s); 0-<s-<t, i.e.,

(2.11) (t) E,,{:(t)} Ev,{:(t)}.

This is also true whenever x0 and g(t) are Gaussian. Furthermore, v(t) in (2.9) is
now an n-dimensional Wiener process.

2.3. Admissible controls. Following Bensoussan and Viot [4], we take the
class of admissible controls

0ad alln,’dt y, dt c L2(T; )

where L2(O, g; . So for u ad, (2.1) is a well-defined stochastic process
and u is actually "feedback" in the sense that there exists a measurable map
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such that

u(t) @(t, y,).

Because of the problem involved in the existence and uniqueness of solutions of
(2.1), (2.2) under arbitrary feedback controls, it is not clear how large is the class of
feedback controls which yield controls in a//ad. Although as in [4] we can show that
feedback control laws u(t)= (t, y,) where is measurable, nonanticipative and
satisfies a uniform Lipschitz condition are admissible. We can also show that all
linear feedback controls (see Lemma 2.1) and feedback controls of the observa-
tions with a small delay, u(t)= (t-e, y,_) are admissible (see [4]).

First we define for each u q/ad,

(2.12)

(2.13)

and so we have

xu(t) ll(t, s)B(s)u(s) ds,

yu(t) C(s)x(s) ds,

x(t)=(t)+x,(t),
(2.14)

y(t)=,l(t)+y(t).

Then define :(t), e(t)by

(2.15)

(2.16)

2(t)=(t)+x.(t),
e(t) x(t)-(t) (t)-(t).

Then from (2.6), (2.7) and (2.12), we obtain

(2.17)

(2.18)

:(t) au(t, 0):o + (t, s)B(s)u(s) ds

ll(t, s)K(s) dr(s)+ all(t, s)G(s) dr(s),

v(t) y(t)- C(s)(s) ds.

LEMMA 2.1 (cf. [12], [13]). The following class of linearfeedback controls are
admissible:

u(t) L(t, s) dy(s) + (t),

where a LE(T; U) is nonrandom and L 2(A(T); &(R", U)).
Proof. It is easy to see that (2.1) and (.2) has a unique solution corresponding

to u(t). Hence u j q/y, dt. We show that u q/u, dt (= q/n, dt by (2.10)) by
showing that there exists R2(A(T);o(R",U)) such that u(t)=



374 RUTH F. CURTAIN AND AKIRA ICHIKAWA

Io R(t, s) dr(s)+ til(t). Now

u(t) L(t, s) dy(s)+

io io [ IoL(t, s) dr(s)+ L(t, s)C(s) all(s, 0)o+ ql(s, a)B(a)u(a) da

+ (s, a)G(a) dr(a) + (s, a)K(a) d(a) ds + a(t).

So

(2.19)

where

u(t) a2(t)+ Ll(t, s) de(s)+ L2(t, s)u(s) ds,

ti2(t) ti(t) + L(t, s)C(s)all(s, O)Yods

+ L(t, s)C(s) all(s, a)G(a) dr(a) ds

is deterministic and

L(t, s)= L(t, )C()(, s)K(s) da +L(t, s),

L2(t, s)= L(t, a)C(a)(a, s)B(s) da.

But solving (2.19) for u is equivalent to solving the deterministic Volterra integral
equation on L2( U),

(t) go(t)+ (t, s)(s) &,

and this always has a unique solution for [ L(T; U) of the form

[(t) s(t, s)go(S) &

for some kernel function S e a((; (U)) (see 11]). So

i’ Iou(t) S(t, s)a(s) ds + S(t, s) L(s, ) d() ds

0 otS(t, s)a(s) ds + S(t, s)L(s, ) ds d()

a(t) + R(t, ) d(a)

as required.
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We note that Ev,{(t)} (t) and if e is Gaussian Ev,{(t)} (t) and so it is
easily verified that

(2.20) E{(M(t)x(t),x(t))}=E{(M(t)(t),(t))}+E{(M(t)e(t), e (t))}.
So in the Gaussian case the problem of minimizing (2.3) is reduced to minimizing

(2.21) Jo(u)=E [(M(t)2(t),(t)}+(N(t)u(t), u(t))] dr}

+E{(R:(T), :(T))}
subject to (2.17).

2.4. Optimal control assuming complete observations. For complete obser-
vations, we do not need to assume Xo, g(t) to be Gaussian. We suppose we can
observe exactly the following signal process:

z(t) all(t, 0)Xo+ It(t, s)B(s)u(s) ds + ll(t, s)G(s) dr(a)
(2.22)

+ all(t,s)Go(s)dv(s),

where Go e (T; (K, H)), v is a K-valued centered orthogonal increments
process, and xo L.(;/-/). We wish to minimize the following cost functional
over admissible controls in a o//,,, dr"

(2.23) J(u) E [(M(t)z(t),z(t)}+{N(t)u(t), u(t)}]dt

+E{<Rz T), z T)>}.

For each u e Rd, z(t) is well-defined and can be written

z(t)= Zo(t) + (dOu)(t),(2.24)

where

Zo(t) ql(t, 0)Xo+ ag(t, k)N(s) dr(s)+ ll(t, s)Go(s) dv(s)

is independent of u and (Lz(T, U), Lz(T, H)) is given by

(.5 (u(O o(, s(su(s &.

Using standard techniques similar to those used in [1], [2], [5], we show that
J(u) has a unique minimizing control.

LEMMA 2.2. There exists a unique minimizing control in a given by

(2.26) u.(t) -g(t)-lB* [ ll*(T, t)RE,,{z.(r)}

+ ql*(s, t)M(s)Eo,{z,(s)}

where z,(t) is the signal (2.22) (or (2.24)) corresponding to u,(t).
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Proof. Let q/= L2(’,/.6; U); then it is easily verified that 0ad is a subspace of
LE(T; q/). Thus 0ad itself is a Hilbert space. Let 1 be defined by lu (u)(T)
and let =LE(I/z;H). We denote by (.,.) the inner product in and by
((.,.)) inner products in L2(T; ) (or LE(T; )). Then J(u) can be written

J(u ((M(zo +u), Zo +u)) + ((Nu, u )) + (R[zo(T) +u], z0(T) +lu),
so it is strictly convex and lower semi-continuous. Hence there exists a unique
minimizing element u. given by

Nu, +dp’R [zo(T) + u,] + dP*M(zo+u,) O.

Let z,(t)= Zo(t)+(du,)(t); then interpreting adjoint operators x*, * appro-
priately (see [1], [2]) we obtain

u,(t) =-N(t)-B*(t)[ all*(T, t)REo,{ z,(T) + I, r q/*( s, t)M(s)Eo,{z,(s)}}] ds.

Define the adjoint state

(2.27) p(t) I 7-

then

From (2.22) we obtain

(2.28)

ll*(s, t)M(s)z,(s) ds + g*(T, t)Rz,(T);

u,(t) -N(t)-lB*(t)Eo,{p(t)}.

z,(s) ll(s, t)z,(t)- ll(s, o-)D(o-)/3(o-) do"

+ all(s, o")G(o") dr(o")+ It(s, o")Go(o") dr(o"),

where D(t) B(t)N(t)-B*(t) and/3(0-) Eo={p(o-)}.
Let Q(t) be the solution of the Riccati equation

(2.29)
O(t)h q/(T, t)Rallo(T, t)h

+ (s, t)[M(s) + O(s)D(s)O(s)]Uo(s, t)h ds,

where llo(s,t) is the perturbation of the evolution operator //(s,t) by
-D(s)Q(s). The existence and uniqueness of the solution of (2.29) in the class of
weakly continuous self-adjoint operator-valued functions is shown in [6]. From
Lemma 2.3 in [15] we also know that Q(t) satisfies another equivalent Riccati
equation"

(2.30)

T

O(t)h ll*(T, t)Rall(T, t)h + all*(s, t)

[M(s)-O(s)D(s)Q(s)]Oll(s, t)h ds.

Let i6(s) Eo,{p(s)}, s >= t. The following lemma enables us to write u, in the
feedback form.
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LEMMA 2.3.

(t)-O(t)z,(t) o(s, t)O(s)G(s) dr(s).

Proofi From (2.27) and (2.28) we have

/3(t)=/(t)= ll*(s, t)M(s) (s, t)z,(t)- (s, o-)D(o-)/(o-) do-

+ ql(s, tr)G(tr) dr(g) ds

+ all*(T, t)R all(T, t)z,(t)- ’//(T, o")D(o")/(o") do"

+ I,T v//(t, tr)G(o") dr(o")]
’ll*(s,t)M(s)(s,.t)ds+ll*(T,t)R(T,t) z,(t)

ql*(s, t)M(s) ql,(s, o")D(o")/(o") do"

+ *(T, t)R (T, o")D(o")/(o")

+ *(s, t)M(s) (s, o")a(o") dr(o")

+ ll*(T, t)R ll(T, o")G(o") dr(o")

Using (2.30), (2.28) and Fubini’s theorem, we can show that

(t) O(t)z,(t) *(s, t)O(s)D(s)[(s) O(s),(s)] ds

+ *(s, t)O(s)G(s) dr(s),

where f,(s)=E,{z,(s)}, set. Since/(T)-O(T),(T)=0, using the adioint
version of (1.1) we have

(t)- O(t)z,(t) (t)- O(t),(t) ll(s, t)O(s)a(s) dr(s).

Now the optimal control u,(t) is given by

u,(t) -N(t)-lB*(t)[Q(t)z,(t) +/5(t)],(2.31)

where
T

(2.32) (t) all(s, t)O(s)G(s) dr(s).

This is the same feedback control law as in the deterministic case.
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Remark. In the r--0 case if we define O(t) by

T

O(t)h all*(T, t)REo,{z(T, t, h)}+ all*(s, t)M(s)Eo,{z(s, t, h)} ds,

where z(., t, h) is the unique optimal signal for the problem described by

z(s) all(s, t)h + ll(s, a)B(a)u(a) da + ql(s, a)Go(a) dv(a),

J,(c) E. [(M(s)z(s), z(s))+(N(s)u(s), u(s))] +E{(Rz(T),

then we can show that Q(t) is a self-adjoint operator on H satisfying (2.28).
We can now state our main result of this section.
THEORE 2.1. Consider the optimalcontrolproblem of (2.2_2) where we wish to

minimize (2.23) over the class of admissible controls in 0ad q/v, dr. Then there
exists a unique optimal control given by

(2.33)

u.(t) -N(t)-lB*(t)[O(t)z,(t) +5(t)],

(t) ql(s, t)O(s)G(s) dr(s),

z,(t) qlo(t, 0)o+ allo(t, S)Go(S) dr(s)

+ qlo(t, s)O(s) dr(s)- go(t, s)D(s)$(s) ds,

where O(t) is the unique solution ofthe integralRiccati equation (2.29) and llo(t, s)
is the perturbation of the miM evolution operator ql(t, s) by -D(t)O(t).

Our optimal control is also the best feedback control law of the type
u(t) =L(t)z(t)+ (t), L oo(T, .(H, U)), L2(T, U) since for such feedback
controls (2.22) has a unique solution and they are admissible.

2.5. Incomplete observations for the Gaussian case. We return to our
original problem of 2.1 of minimizing J(t) over all u 0?/ad under the assumption
that Xo, g(t) are Gaussian. First we find the optimal control in the class j lC, dr.
This is a well-posed problem as v(t) is completely specified by (2.6), (2.7) and so is
independent of the controls. Using the representation (2.9) for v(t), we have
a//v, //v, (since F-l(t) exists) and the expression (2.17) for (t) becomes

(2.34)
2(t) q/(t, 0)’o+ ql(t, s)B(s)u(s) ds

IO IO+ ll(t, s)K(s)F(s) dr(s)+ all(t, s)G(s) dr(s),
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which gives a complete description of the system and the cost to be minimized is

(2.21)
[(M(t)(t), (t)}+{N(t)u(t), u(t)}] dt}

+E((R;(T), (T))).

The following theorem is a direct consequence of the results in 2.4.
THEOREM 2.2. The problem described by (2.34), (2.21) has a unique optimal

control u. given by

(2.35) u,(t) -N(t)-lB*(t)[Q(t),(t) +t(t)],

where Q(t) is the unique solution of (2.29), ,(t), t(t) are given by

(2.36) (t) all,(s, t)O(s)G(s) dr(s),

,(0- (t, So+ ,(t, sa(s dr(sl- o(, sD(s)(sl s
(2.37)

+ l(t, s)P(s)C*(s)[F(s) WF*(s)]-1 dy(s),

and (t, s) is the perturbation ofthe mild evolution operatorll(t, s) by -D(t)O(t)-
P(t)C*(t)[F(t) WE(t)*]-C(t). Furthermore u, Ogad.

Proof. Equations (2.35), (2.36) are direct results of 2.4, and ,(t) is given by

(2.38)
.(t) allo(t, O)xo + allo(t, s)G(s) dr(s)- ago(t, s)D(s)(s) ds

+ qlo(t, s)K(s)F(s) dr(s).

Substituting u(t)= o F(s) dr(s) and for v in terms of y from (2.18) yields

,(t) ago(t, 0)o+ llo(t, s)G(s) dr(s)- qlo(t, s)D(s)(s) ds

+ ago(t, s)K(s) dy(s)- alto(t, s)K(s)C(s),(s) ds,

and (2.37) follows from the definition of (t, s) as a perturbation of g(t, s) by
-D(t)Q(t)-P(t)C*(t)[F(t) WF*(t)]-1 (see (1.1)). So 2.(t) y, a.a. t and u,(t)
q/y, a.a. t from (2.10), q/v, q/n,, and so u, is admissible.

In [4] it is proved that u e a//v, dt 1 a//y, dr, then E{. } E,{. } and so we
have

COROLLARY 2.2.
.(t)=Ey,{x(t)}.

Summarizing, we state our main result.
THEOREM 2.3 (separation theorem). Consider the problem of minimizing

J(u) given by (2.3) subfect to_ (2.1), (2.2) where Xo and g(t) are Gaussian over the
class ofcontrolsfrom 0"ad ]’ 0, dt fq ally, dr. Then there exists a unique optimal
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control u,(t) given by

(2.39) u,(t) -N(t)-lB*(t)[O(t),(t) + ti(t)],

(2.40)
,(t) (t, 0)o+ l(t, s)G(s) dr(s)- (t, s)D(s)(s) ds

+ (t, s)P(s)C*(s)[F(s) WF*(s)]-1 dy(s),

where P, O are the unique solution of Riccati equations (2.8) and (2.29), respec-
tively, and (1 (t, s) is the perturbation of the miM evolution operator ql (t, s) by
-D(t)O(t)-e(t)C*(t)[F(t) WF*(t)]-C(t). The optimal cost is given by

(2,.41)

f0
T

J(u,) trace {RP(T)}+ trace {M(t)P(t)} dt + (R(T), (T))

+ ([M(t) + O(t)D(t)O(t)](t), (t)) dt

T

+ trace F*(t)K*(t)Q(t)K(t)F(t) Wdt

+ 2 (D(t)O(t)(t), 7(t)} dt + (D(t)(t), (t)) dr,

where

(t) E{,(t)} llo(t, 0)o+ ago(t, s)G(s) dr(s)- ago(t, s)D(s)(s) ds.

Proo[. From (2.20),

}J(u)=Jo(u)+E{(Re (T), e(T)}}+E{ (M(t)e(t), e(t)) dt

T

=Jo(u)+trace {RP(T)}+ trace {M(t)P(t)} dt

since

Cov {e (t)} P(t).

Jo(u,)
t

[(M(t)2,(t), ,(t)} + {N(t)u,(t), u,(t))] +E{(R,(7), 2,(T)}}

= ([M(t)+O(t)D(t)O(t)]2,(t),2,(t)} dt +N{(R2,(, 2,(}}

+E{Ior2(B*(t)O(t),(t), N(t)-aB*(t)(t)) dt} + Ior{D(t)(t), #(t)) dt.
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Since

.,(t) (t) + llo(t, s)K(s)F(s) dv(s),

Thus (2.41) follows.
Remark 1. If g(t) is centered, then r(t)= 0, t(t)= 0 and (2.41) becomes

J(u,) trace {RP(T)}+ trace {M(t)P(t)} dt + (O(0):o, o}

+ trace F*(t)K*(t)O(t)K(t)F(t) Wdt.

Remark 2. If our signal model (2.1) includes an extra deterministic forcing
term Io (t, sff(s) ds, where/’e/(r; then Theorem 2.3 holds replacing (t)
in (2.39), (2.40), (2.41) by

61(t) Jt
and adding

q/(s, t)Q(s)f(s) ds + It T ll(s, t)Q(s)G(s) dr(s)

Iota(t, s)f(s) ds to .(t) in (2.40).

3. Applications and concluding.remarks. As in Bensoussan and Viot [4] it is
possible to extend the separation principle to more general classes of cost
functionals and to allow for u to take its values in a compact convex subset of U.
Although our class of admissible controls is difficult to specify, it does include all

T

Jo(u.) ([M(t)+Q(t)D(t)O(t)]Y(t),$(t)) dt+(RY(T),Y(T))

+ trace F*(t)g*(t)ll(T, t)Rllo(T, t)K(t)F(t) Wdt

+ trace F*(s)K*(s),(t, s)

[M(t) + O(t)D(t)O(t)]o(t, s)g(s)Ns)ds dt

+ 2 {B*(t)O(t)(t), (t)B*(t)(t)} dt + (D(t)(t), (t)) dt

([M(t)+O(t)D(t)O(t)](t),(t)) dt+(R(,(}

+ trace (t)K*(t)O(t)K(t)F(t) Wdt

+ 2 (D(t)O(t)(t), (t)} dt + (D(t)(t), (t)} dr.



382 RUTH F. CURTAIN AND AKIRA ICHIKAWA

feedback controls of a measurable, nonanticipative and Lipschitzian type as
defined in 2.3. In particular our control u, is optimal in the class of linear
feedback controls of the form

u(t) L(t, s) dy(s) + t(t)

from Lemma 2.1.
The types of systems covered by the theory is large, including the parabolic

partial differential systems considered by Bensoussan and Viot [4], hyperbolic
partial differential equations and linear partial-integro.-differential equations; for
several examples of distributed systems described by evolution equations see [6].

Another large class of systems included in this theory is linear delay equations
and so this paper generalizes some results of Lindquist [12], [13], although here
we cannot allow for time delays in the control or in the cost. For details of
representing stochastic delay equations by stochastic evolution equations we refer
the reader to [8], [9], [10].

For complete observations the noise disturbance in the system is not
restricted to be of Gaussian white noise type, but can allow for jump type
disturbances, for example Poisson-type, and colored measurement noise. Several
examples of different types of noise disturbances may be found in [8], [9], [10].
However, for incomplete observations we do need the Gaussian assumption.

Acknowledgment. We thank the referee for suggesting improvements in our
original, manuscript.
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A HYBRID ALGORITHM FOR NONLINEAR PROGRAMMING*

R. W. CHANEY?

Abstract. In this paper we present a "hybrid" first-order algorithm, designed to solve finite-
dimensional nonlinear programming problems having both equality and inequality constraints. The
algorithm is built up from the method of exterior penalty functions, the Pironneau-Polak method of
centers, and a quasi-Newton method of Luenberger. The algorithm is shown to generate sequences
which, under appropriate hypothesis, will converge linearly at a rate "asymptotically" independent of
the penalty coefficient. The main technique employed in the convergence analysis is the finite-
dimensional version of the indirect method of Hestenes. The algorithm seems well suited to a situation
in which there are many variables and rather few constraints; for then,the demands made on storage
and the direction finding subprocedure would be relatively modest.

1. Introduction. Suppose f, fl, fz," , f,,,, 1," v are continuously
differentiable functions on n-dimensional real Euclidean space R n. Define

S= (3 {x R’" fk(X)<--_O}(3 {x R"" i(x)=O}.
k=l j=l

We formulate the problem

Next, we define

P: minimizef over $.

S ["’] {X E R"" fk (X) --< 0}.
k=l

Given t > 0, we set fo f+ 1/2t Y’q= 4 and formulate the problem

P" minimizefo over $1.

Throughout the paper, the function fo will be understood to depend upon t,
although our notation suggests otherwise.

We shall present below a first-order algorithm for solving problem Pt. The
algorithm is a blend of a quasi-Newton method due to Luenberger [7] and the
Pironneau-Polak method of centers [ 10]. The purpose of the former method is to
circumvent the ill-conditioning which often plagues penalty function approaches;
the latter method deals with the inequality constraints in such a way as to
maintain feasibility for problem Pt at every iteration. The direction-finding
procedure in the Pironneau-Polak algorithm is a quadratic programming prob-
lem. Its dual has rn + 1 variables, which are constrained only to be nonnegative
and to add up to 1 (see [9]).

The algorithm is presented below in 2, its linear convergence is established
in 3, and two numerical examples are given in 4. The rest of this section is
devoted to a discussion of several connections between problems P, and P. Of
course, many connections are well-known; see, e.g., [4], [7] or [ 11]. First, we must

* Received by the editors December 10, 1975, and in revised form July 8, 1976.
? Department of Mathematics and Computer Science, Western Washington State College,

Bellingham, Washington 98225.
384
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set some notations and hypotheses. We shall assume throughout the paper that
the functions f, fk, and b. are continuously differentiable, that S is nonempty, and
that S1 has a nonvoid interior.

Notations. We denote by (., .) and [. [respectively the Euclidean inner
product and norm in Euclidean space R n. If A is a n x n matrix, ]]A denotes the
operator norm of A. If F is a real-valued function onR n, then VF and 72F denote
respectively the gradient of F and the Hessian of F. We shall, in fact, always use V
and V2 in place of Vx and VxEx respectively; that is, gradients and Hessians are
always taken with respect to x. We let Vb (x) be the matrix whose columns are the
gradients Vbl(x), VbE(X),.’., Vb(x).

Next, we define W,, to be the set of all points (w0, wl,..., w,,) in R
such that w0/ w +... / w,, 1 and Wk >--0 for each k. W,, is the set of all
"multiplier candidates" for problems Pt. Given t > 0, we define functions G and Lt
on Rnx W,, by the formulas G(x, W)--k=lWkfk(X and Lt(x, w)
Wofo(X) + G(x, w). We define the function L on R"xR x W,, by

L(x, A, w) Wof(X) + . A,b/(x) + G(x, w).
=1

The functions Lt and L are Lagrangians for problems Pt and P respectively. And,
given t > 0 and x in S,, we define the set At(x) of "optimal multipliers" to consist
of all w in W, such that G(x, w) 0 and VLt(x, w) 0. Given x in S,, we define
the set A (x) of active constraints as follows: A (x) {k ->_ 1: f(x) 0}. And, for w
in W,, we putK(w)={k ->1: w >0}.

Finally, following Hestenes [5, p. 25], we let C(x) denote the tangent cone of
S at x. Accordingly, C(x) is the set of all unit vectors u inR" for which there exists
a sequence {x}=, in S such that x # x for each q, such that {x} converges to x,
and such that {[x-x[-’(x-x)} converges to u; we are making the (harmless)
abuse of identifying a set of unit vectors as a cone.

Similarly, we let Cx(x) denote the tangent cone of S, at x.
HYPOTHESIS I. Assume that problem P has a unique solution . Assume also

that there exists a unique pair (h, ) in Rx W,, such that G(, )=0 and
VL(:, ,, r) =0. Assume moreover that 0>0, that the matrix Vb() has rank ,,
and that

(1.1) f(x)-->oo as [x[->oo.

We conclude this section with two basic results about an exterior penalty
function method.

PROPOSITION 1.1. Assume that Hypothesis I is satisfied.
(i) Then each problem Pt has a solution.
(ii) For every neighborhood U1 of there exists t(Ua) >-0 such that x is in UI

whenever t >-t(U) and x solves problem Pt.
Proof. (i) is an immediate consequence of (1.1) and the inequality f0-->]’.
Now suppose Ua is a neighborhood of 2 for which the conclusion in (ii) is

false. Then there is a sequence {tq}q=l such that lim tq +co and such that, for each
q, some solution yq to problem Ptq does not lie in U1. By (1.1) the sequence {yq} is
bounded. We may assume that {yq} converges to 33. Clearly, )3 # 2 and )3 is in S
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If we can now show that 33 must solve problem P, we shall have a contradiction
to Hypothesis I. Now, for each q,

(1.2) f(2) ->f(yq) + 1/2to Z bi(Ya)2.
j=l

Taking the limit on q in (1.2), we find that is in $.

Finally, let x be any element of S. Since f(yq)=<fo(yq)<=fo(x)=f(x), we see
that f()<=f(x). Hence, would have to be a solution to problem P.

Poeoswor 1.2. Assume that Hypothesis I is satisfied. For t > 0, let x solve
problem Pt. Suppose w is in At(x). Then

(i) lim_,o W’ot4)i(x ) Ai for each j 1, , u
and

(ii) lim,_,oo w’ .
Proof. We have, by assumption,

(1.3) 0= wtoVf(x’) + Wo tqbi(xt)Vqb/(x’) + VG(x’, w’).
i=l

For each t >0, let if’R have components Wtoqbl(x’), WtotC2(xt), ., Wtotqb(x’).
Then (1.3) becomes

(1.4) 0 b + Vck(xt), t,
where

(1.5) b’ wVf(x’) + VG(x’, w’).

hence, for t sufficiently large, we have, in view of Proposition 1.1,

(1.6) 4,’= -{7qb(xt)7"Vqb(xt)}-lV(xt)7"bt.
Now suppose that (ii) is false. Hence there exists {tq}q= such that limq_oo tq

+0o and {w’,} converges to some w in Wm for which w # . From (1.6), we see that
{,} must converge to some h in R . Then, from (1.4) and (1.5), we get

0= woVf(.)+VG(, w)+ ;tV6()= VZ(, ;t, w).
j=l

Since G(x t, w)=0 f.or each t, we have G(, w)=0. It follows from one of the
uniqueness provisions of Hypothesis I that w and ,. We have a contradic-
tion and so (ii) is proved.

Now, returning to_(1.6), we see that lim Ot exists. From_ (1.4) and (1.5), we
see again that 7L(, ,, r) 0 and so, again, by uniqueness, A ,.

2. The algorithm. Throughout this section, we shall hold the penalty coeffi-
cient t fixed.

DEFINITIONS. Given x and y in $1, we put

d(x, y) max.{fo(x)-fo(y), f(x), fz(x), ", f,, (x)}

and

(2.1) Rt(x) ={I,, + tVb(x)Vb(x)7"}-1,
where I, denotes the n x n identity matrix.
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Remarks. If Vb(x) has rank u then Vb(x)rVb(x) is nonsingular and we have
the formula

(2.2) R,(x)=I,-Vc(x) -I, +Vd)(x)’V4)(x) V4)(x).
Thus, in (2.2) we must invert a u x u matrix, which is presumably not too
ill-conditioned, ,whereas, in (2.1), an ill-conditi0ned n x n matrix must be
inverted.

Luenberger [7, p. 291] uses the matrix R, in the design of a first-order
quasi-Newton algorithm for minimizing unconstrained exterior penalty functions.
The matrix R, is used to counteract the potential ill-conditioning caused by the
penalty coefficient.

ALGORITHM FOR PROBLEM Pt (t 0).
Step 0. Choose Xo in Sa and set 0. Choose/3 in the open interval (0, 1).
Step 1. Obtain a solution h in R and h in R" to the convex quadratic

programming problem QP,(x):

subject to

and

minimize h o + 1/2(h,R,(xi)h

hR1, h R", (Rt(x,)Vfo(X,), h)<=h

fk(xi)+(R,(x)Vfk(x,),h)<=h fork= 1,...,m.

Step 2. If h/ 0, stop. Otherwise, set vi Rt(xi)hi. Compute i >0 according
to this subprocedure"

step (a). Set/z 1;
step (b). If d(x + Ixvi, xi) <=1/2lhi, then set/i =/.t and go to Step 3; otherwise,

go to step (c);
step (c). Replace/.t by fl and go to step (b).
Step .3. Set X+l x + Iiv, increase by 1, and go to Step 1.
Remarks. It should be pointed out that, in practice, one would solve the dual

of problem QP,(x) rather than the primal problem itself. The dual has only one
constraint; in fact, the dual problem is this:

minimize G(xi, w)-1/2(VL,(xi, w), R,(xi)VL,(xi, w)) over w in Win.

Also, it should be observed that the linear search procedure in Step 2 is due
originally to Armijo [1]. When there are no equality constraints, the algorithm
reduces to the Pironneau-Polak method of centers [10] with an Armljo linear
search. But it would not quite be the same as the version given in [9] by Pironneau
and Polak, for, in [9], Pironneau and Polak use in Step 2(b) the condition "if
d(x -t- ftl)i, Xi) <--1/2(hi +(hi, Rt(xi)hi)) ." in place of "If d(xi q-ftVi, Xi) <--1/2h .".
The author knows of no decisive result which would cause one to prefer one of
these slightly differing versions to the other.

Next, we present some basic results about the algorithm.
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LEMMA 2.1. Let {Yi}il be a sequence in S which converges to yo. For each
] >-0, leth and hi be optimalfor QP,(Yi), where QPt(" is the problem described in
Step 1 ofthe algorithm. Assume that o o{hi }i= converges to and {hi}i= converges to
h-. Then o and are feasible and optimal for problem QP,(yo).

Proof. Let e > 0 be given. Because R, f and Vfk are all continuous, it follows
that ho + e and ho are feasible for problem QPt(yt), provided j is large. Therefore

(2.3) h+(hi, Rt(yi)hi)<-_h+e +1/2(ho, R,(yi)ho) forlarge/’.

From (2.3), we get, letting/" approach infinity,

(2.4) go + 1/2(, Rt(yo)g) <= h o +e+ 1/2(ho, Rt(yo)ho), e > O.

Now/o and/ are clearly feasible for problem QP,(yo); in view of (2.4), they are
also optimal.

Remarks. If we apply the Kuhn-Tucker theorem to problem QPt(xi), we find
that nonnegative numbers.a/o, ail, ", Olim exist so that

(2.5) aio-]- Olil + 21- aim 1, R,(xi)hi + , aikR,(xi)Vfk (Xi) O,
k=O

(2.6)

and

(2.7)

Ctio{(R,(xi)Vfo(xi), hi)- h } 0

aik{A(Xi)+(Rt(xi)Vfk(X,), h,)-h}=O for k 1,..., m.

For each i, define ai in W,, to have components aio," ’, ai,,. From (2.5)-(2.7), we
get

(2.8) G(xi, ai)-(h, R,(xi)hi)= h.
CONVERGENCE THEOREM. Suppose that the algorithm stops at xi or that

is a limit point of an infinite sequence {xi}io generated by the algorithm. Then the
zero solution is optimal ]:or problem QPt ()). Moreover, the John conditions hold at
; i.e., the set At()3) is nonvoid. (Here, we maintain the assumptions made at the
start of the paper. Moreover, we assume {xi}io is bounded.)

Remarks. A direct proof can be given or the proof can be made to fit one of
the models discussed in Polak [ 11].

The proof is very similar to the proof of Theorem 3.12 in [9].
LEMMA 2.2. Assume that the algorithm generates a sequence {xi}io which

converges to a solution x ofproblem Pt. Every limitpointof {ai}i%0 is in At(xt). Also,
there is a positive integer i such that aik 0 whenever >-il and k is a positive
integer not in A (x ).

Proof. By the convergence theorem,/o 0 and/ 0 solve problem QPt(x t).
Moreover, this problem admits no other solution. For, if/o and/ were also
optimal for QPt(x), then, proceeding as in the derivation of (2.5)-(2.8), we could
obtain rP in Wm such that

(2.9) G(x’, r) 1/2(/, Rt(x’)/) =/+ 1/2(hT, R,(x’)/)= O;

since G(x t, ff)<-0 and (/, R,(x’))>= O, we would then get.from (2.9) the equation
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(h", R,(xt))=0; since R,(x) is positive-definite it would follow that/=0 and
hence that/o= 0.

Now, according to (2.5), the sequence {hi} is bounded. It follows from (2.8)
that {h} is also bounded. By Lemma 2.1 (and the fact that QPt(x t) has but one
solution), we see that {Ih, I} and {h} both converge to 0.

If k >- 1 and if k is not in A (xt), it follows now from (2.7) that aik 0 for all
large i. Moreover, since Rt(x t) is nonsingular, it follows from (2.5)-(2.7) that any
limit point of {ai} is in At(xt).

3. Rate of convergence. In this section, we shall show that the algorithm just
presented will often generate sequences {xi}io which converge at a linear rate. In
fact, it will be shown, that if t is large enough,and if x solves problem Pt then
lim supi-oo [fo(Xi+)--fo(Xt)J/[fo(Xi)--fo(X t)] =< O(t), where limt_,oo O(t) < 1.

Before presenting the technical development, we shall provide an intuitive,
preliminary discussion. Under proper hypotheses, including second-order condi-
tions, we establish three main lemmas. We show in Lemma 3.2 that there exists
M1 > 0 such that IlR,(x)V=f(x)ll <--M1 for each t, so long as x is sufficiently close to a
solution x’ to problem Pt; this inequality shows how the matrix R,(x) counteracts
the ill-conditioning caused by the large eigenvalues of V2Lt Then, we prove in
Lemma 3.3 that

fo(Xi+ 1) fo(Xi) l(h?+ 1/2(hi, Rt(xi)hi))

or

fo(xi+l) fo(Xi < 1/2h
so that we may be certain that the move in the direction vi is a comparatively good
one. Then we show in Lemma 3.4 that, in turn, the quantity h+ 1/2(hi, Rt(xi)hi) is
"sufficiently. negative" relative to fo(X’) --fo(Xi). It is easy to combine these last two
lemmas to prove that {fo(xi)}i=l is Q-linearly convergent to f0(x) as mentioned
above. The section concludes with another theorem from which it follows that
Ix,- x t[ and {tlVch(xi r(xi- xt)[ 2} are both R-linearly convergent to 0, with the rate
being again asymptotically independent of t. The terms "Q-linearly convergent"
and "R-linearly convergent" are used as in [8].

Now we state some lengthy, but not unusual, hypotheses.
HYPOTHESIS II. Assume Hypothesis I holds. Assume that strict complemen-

tarity holds at 2; i.e., assume K(r)=A (). Moreover assume that 2 is a regular
point of S [5, p. 29]; i.e., assume that C(2) isthe set of all unit vectors u such that
(Vfk(.), U)<--O whenever k is in A(2) and (Vbj(2), u)=0 for each ]= 1,..., ,.

HYPOWHESIS III. Assume Hypothesis I holds and that the functions
f, fx," , fro, bl, ’, b. are twice continuously differentiable on some neighbor-
hood U1 of 2. Assume moreover that a number m0 exists in the interval (0, 1] for
which (u, V2L(2, A, r)u)>m0 whenever u is a unit vector in C(2) and
(Vfk(), U) 0 for all k in K().

Remarks. If Hypothesis III holds, there are neighborhoods U2, V2, and W2
of, and r respectively such that Vb (x) has rank u whenever x is in U2 and such
that (u, V2L(x, A, w)u) > mo whenever x is in U2, A is in V2, w is in W2, u is a unit
vector in C(d), and (7fk(), U)= 0 for every k in K(r).
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HYPOTHESIS IV. Assume that Hypotheses I and III hold and that U is as in
Hypothesis III. Assume that a number t _-> 0 exists such that for every t _-> t it is
true that the algorithm generates a sequence which converges to a point x in U
which solves problem P,.

Remarks. With the listing of the hypotheses now complete, we shall proceed
to the discussion of five lemmas. We let H, denote the Hessian of the Lagrangian
Lt for problem Pt. We have

(3.1)
Hi(x, w) woV/(x) +VG(x, w)

+ E (tWoqbj(x))V2qbj(x)+twoVqb(x){Vqb(x)}.
j=l

LEMMA 3.1. Assume Hypotheses II and III hold. Suppose 0 < y < 1. There
exists to >-- 0 such that if t >- to and x solves problem Pt then

(u, Ht(x t, w t)u ) >- mo+ ytwIVb (xt)ru 12
whenever w is in At(x t) and u is a unit vector in C1(x t) for which (Vfk (X t), U) 0for
all k in K(wt).

Proof. Suppose that the conclusion is false. There are sequences {tp}p
{wtp}, and {up} such that limp_,ootp +oo, xto solves problem Pro, w to is in At, (xtp), Up
is a unit vector in Cl(xt,), (Vfk(Xt"), Up)= 0 for all k in K(w to) and yet

(3.2) (up, H,.(x’, w’)u)< mo+3,towglv4(x’.)u.l, p >- 1.

We may assume that {up} converges to u.
Now suppose k is in K()=A(). Then 1k )0. By Proposition 1.2, w, >0

for large p and so (Vfk (x to), up) 0. Hence (Vfk (), u) 0. In short,

(3.3) (Vfk(), u)=0 for all k inK(r)=A().

Now, from (3.1) and (3.2), we get

tp 2(3.4) (up, V2L(x tt’, ’t,, < mo+ Ttp.Wo lVqb(xt,,)7"up[
where we have defined pto as in the proof of Proposition 1.2.

By Proposition 1.2, we derive from (3.4)

(3.5) 0 _-< lim sup (1 y)tpw. IVb (x tp) 7-up [2 =< mo- (u, V2L(, A", )u).

From (3.5), we deduce, first of all, that [Vb()ru[ 0 and so

(3.6) (Vbi(), u)= 0 for] 1,..., u.

Since is assumed to be a regular point of S, it follows from (3.3) and (3.6) that u
must be a unit vector in C(). But then, (3.3) and (3.5) yield a contradiction of
Hypothesis III.
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LEMMA 3.2. Assume that Hypothesis II is valid. There is a number M1 >
with this property: Given t >-O, there exists , > 0 such that if x’ solves problem
and Ix -xt[ < 6,, then IlRt(x)V2[o(x)ll<-Mx.

Proof. Let U1 be as in Hypothesis III. Given x in Ux, we find a formula for
Rt(x)V2[o(X) as follows (where we have omitted the argument x):

R,(x)V2fo(x)=R, + tVbVb

By Proposition 1.2, the numbers tbj(xt), t _-> 0, are uniformly bounded and so
the norms of the matrices Rt(x’)VZfo(X’) will be uniformly bounded, say by N. Let
Ma be a number larger than N. Then, given t _-> 0, there is a number 6t > 0 such that
if Ix-x’[<6t, then the numbers t4i(x) will be close enough to tcki(x ) that
Rt(x)VZfo(X) will be bounded by M1.

Remark. In the next three lemmas, we shall suppose t to be fixed. Accord-
ingly, we may use the notation R Rt(xg) without ambiguity.

LEMMA 3.3. Assume Hypotheses III and IV and let M be chosen so that
M>-_ 1, m>m, and so that [[V2/k (X)][ <Mwhenever 1 <- k <- m and x is h U. Let
t >_-max (to, h) be fixed. Here to and ta are as in Lemma 1.3 and Hypothesis IV
respectively.

For each i, let xi and tzi be as in the algorithm. If/xi 1, then d (xi+1, xi) <- 1/2h .
There exists an integer i2(t) such that

Md(xi+1, Xi) [ (h -[- 1/2(hi, Rihi)),
whenever >-i2(t) and tz < 1.

Proof. By construction, we must have d(xg+lzv, xg)<-_1/2h in case/z= 1.
Now, suppose t < 1. Then tzg is a positive integral power of/3. We have

(3.7) d(Xi + [UbiVi, Xi 1/21ih
while

(3.8) fo(Xi "- .i--lvi) fo(Xi) > 1/2tzi-Xh
or, for some k _-> 1,

(3.9) fk (Xi " .lbi[-- l)i > 1/2i- h

Since {Xi}i%0 converges to x and {hi}i=o converges to 0, then there exists i*
such that Xi’-ULO is in Ua and IXi’J-bDi--xtl<t whenever i>=i and 0-</z =<1;
here, 6t is chosen as in Lemma 3.2.

Now, if (3.9) holds, then, we have, for large i, ./i].l-ln,_ 0i <
1/ --1x2/v V2fk(xi .jt_i[Llbi[3-1Vi)Vi), where O<i < 1fk(Xi)’k’li[-l(Vfk(Xi), Oi)’Jc"t-lbi]J i,

Since/x/3-a_-< 1 and f(x)_-< O, we get
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Let Oi denote the positive-definite square root of Ri and put
OiV2fk(xi + tjilzi8-1vi)(i. We get

(Vi, V2fk(Xi + i[.l,i[3-1Vi)Vi (Oihi, SiOihi)
(hi, Rihi).

Qihi, Qihi)

Since IIO, II--< it follows that II  ll--< M, Hence, from (3.10), we obtain

(3.11) -Bh <-Mlzi(hi, Rihi) or large i.

On the other hand, if (3.8) holds, then, for large i,
tzi-(Vfo(Xi), vi) + 1/2(lziB-)2(vi, Vfo(Xi + seitz-vi)vi), where 0 < :i < 1. It follows
that

(3.12) -/3h/-</zi(vi, V2fo(xi + ilzi-vi)vi) for large i.

Setting T OiVfo(Xi)Oi, we have

-h <- [.I,i( (ihi, Ti(ihi) 4- [ubi(1)i, {VZfo(xi 4- i[.lbi-ll)i) V2fo(Xi)}l)i).
Now T/is similar to Ri2fo(Xi) and so, by Lemma 3.2,

(3.13) -h <-_ ixiglR /=hi[2 4- [d,i(l.)i, {2fo(X 4- il,i[3--1Vi)-- 2fo(Xi)}Vi.
Since the final term in (3.13) is o(Ivi[) and since M>M, we see that (3.11) must
hold in this case also.

From (3.7) and (3.11), we have

(3.14) d(xi 4- [J,il)i, Xi) for large i.
2M(hi, Rihi)

By some elementary algebra, we have

and so

(h/o):z 2lh/l(hi, Rihi) --(hi, nihi)2 + (Ih ’1- (hi, nihi))2

>= 21h?](hi, Rihi)-(hi, Rihi)2

(hi) >
(hi, nihi) 21h?l -(hi, Rihi)-" -2h?-(hi, nihi).

If we combine (3.14) and (3.15), we get,

d(xi + tzivi, xi) <= .fl(h + for large i.

LEMMA 3.4. Assume Hypotheses II, III and IV hold. Suppose t >-_ to, where to
is as in Lemma 1.3, and t >= tl, where ti is as in Hypothesis IV. Suppose , is in (0, 1).
Let st min {W o w’ At(xt)} and assume st >0. Set mt min (st, too). Then there
exists a positive integer i4(t, 3,) such that

h + 1/2(hi, Rihi) <= -mtT2{fo(Xi)-fo(X t)}, >- i4(t, 3/).

Proof. Since 0 < m, =< 1 and G(Xi, ai) <= O, we see from (2.8) that

(3.16)
1{hi + 1/2(hi, nihi)} <-- G(xi, oti)--2mt-, (hi, nihi).
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If we now add (1/(2m,y))lR/2hi+mtyRr,1/22(xi-x’)[2 to the right member of
(3.16), we get

1
(h +1/2(h,, R,h,)} <- G(x,, a,) +(h,, x,-xt))

+-(x,-x’, Rr, (x-x’)).

But, from (2.1) and (2.5), we then obtain

1{h +1/2(h,, R,h,)} <- G(x,, a,)- (VL,(x,. a,). x,
mt’Y

(3.17>
+]x,-x’[+YtlV,(x,>r(x,-x’)[.

Now suppose that there exists an infinite subsequence K of the positive integers
such that

G(x, a,)-(VL,(x, ao), x -x’)

(3.18)

In view of (3.17), the proof would be complete ifwe could show that (3.18) leads to
a contradiction.

For each q in K, define uq by Ixq-x’lu =x-x’. We may assume that
{u: q K} converges to u in Cl(x’), and, by Lemma 2.2, we may assume that {a}
converges to w’ in At(x’). Let il be as in Lemma 2.2. For q->i, we have
G(x’, aq)= 0; hence, from (3.18), we get

Lt(x, a,)-L,(x’, a)-(VL,(x, aq), xi-x’)

(3.19) +-X(Ixo x’l2 + tlV4, (xo)(xq x’)[2}

>(a,o-S,y){]’o(X)-fo(X’)}, q >=ia.

If we divide both sides of (3.19) by Jx x’l and let q approach infinity, we obtain

(3.20) (VL,(x’, w’), u)-(VL,(x’, w’), u)>-(Wo-Sty)(Vfo(X’), u).

Now VL(x’, w’)=0. Hence, if (Vfk(X’), u)<0 for some k in K(w’), then we
should have (Vfo(x’), u)>0; but this would contradict (3.20).

By Lemma 3.1, we have

(3.21) (u,H,(x’, w’)u)>=mo+ytWolV(xt)rul.
In view of (3.19) and Lemma 2.2, we have

(1-s)(xq-x’, H(sx’+(1-s)x, a)(x-x’)) ds
(3.22)

+--Z{Ix, -x’l2 + tlV(x,)r(x, -x’)l2} >0 for large q.
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If we divide both sides of (3.22) by Ixq-x’l2 and then let q approach infinity, we
get

and so, by (3.21),

nY{1 + tlVrk(x’)rul}>-_1/2(u, H,(x’, w’)u),

(3.23) mr3"{1 + tlV(x’)ul mo+ tw’olV(x’)ul.
Since m,3" <mo and mt <-st <- Wto, we find that (3.23) cannot possibly hold. We
have obtained a contradiction.
LMM 3.5. Under the assumptions made in Lemma 3.4, there exists, a

positive integer is(t, 3’) such that

hi <-_-2p,3"2(fo(xi)-/o(X’)}, >= is(t, 3"):

here, p, rnin (1/2,
Proof. There is little difference between this proof and the preceding one. In

place of (3.16), we have

1 ,hO <= 2G(xu a,)-l--(h,,
P,3"

Then, in place of (3.17), we get

1--h <= 2G(xi, ai)- 2(VLt(xi, ai), xi -x’) +p,3"{lxi -xtl2 + tlV4(x,)r(xi x’)l}.
pt3"

The counterpart to (3.18) is

2G(xq, aq)-2(VLt(x, ), x
+p,,{lx -x ’l + tlV(x)r(x -x ’)1} >-2s,3"{fo(xq)-fo(x

The rest of the proof proceeds as before.
THEOREM 3.1. AssumeHypotheses I-IV, supposeMis as in Lemma 3.3, and

s, min{w" w e A,(x)}>0. As in Lemmas 3.4 and 3.5, put m, =min (s, too)
and p, min (1/2, m). For t >-max (to, tx), define

0(t) max { 1 -ps,, 1 fl4}
Then, .for >-max (to, tl),

(3.24)
fo(Xi+l)--fo(X t)

lim sup < O(t).
i-oo fo(Xi) -fo(x’)

Remarks. Observe limt_.oo O(t) max (1 m**ffo, 1 -/3m*ro/AD, where
m* =min (o, too) and m** =min (1/2, m*). Hence the rate of convergence of
{fo(xi)}’=o is independent of t, for large t.

If we were to replace the Armijo linear search in Step 2 of the algorithm by an
exact linear search, we could obtain (3.24) with O(t) taken to be 1- msffM.

Proofof Theorem 3.1. Let 3" in (0, 1) and t _->max (to, tl) be given. Let i6(t, 3")
be the largest of the integers i(t), i4(t, 3"), and is(t, 3"), which are given in the three
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preceding lemmas. Suppose >-i6(t, 3/). If/xi 1, we get

(3.25) fo(Xi+) fo(Xi) <= d(xi+, xi) <= 1/2h <- -ps,y2(fo(Xi) fo(X )}.

If [/i < 1, we get

(3.26) ]o(xi+l)-fo(X) <=(h +1/2(h, Rih)) <- ([o(X)-fo(X’)}.M

If we add fo(xi)-fo(x’) to both sides of (3.25) and (3.26), it is clear that (3.24) will
follow.

THEOREM 3.2. Assume that all ofthe hypotheses of Theorem 3.1 are satisfied.
Let O(t) be defined as in Theorem 3.1. Then,

lim sup 4/mo)xi x tl2 + tWo[V6 (xi)r(xi x ’)l2 -< O(t).

Remarks. This theorem is an immediate consequence of Theorem 3.1 and
the lemma which follows.

We see, in particular, from Theorem 3.2, that {xi} is R-linearly convergent to
x’, at a rate which is essentially independent of t, provided that t is large.

LEMMA 3.6. Assume the Hypotheses II and III hold. Suppose 0 < y < 1 and
let to again be as in Lemma 3.1. Assume thatx is a solution to problem Pt, for t >= to.
Then there is a neighborhood U3, ofx’ such that

2Wo{[o(X)-fo(Xt)} > moylX -x’lz + ytWolV4(x)7"(x -xt)lz

whenever w’ is in A,(x’), x is in $ fq U3t and x x’.
Proof. Suppose that the conclusion is false. Then, for every positive integer q,

there exists x in S so that O<lx-x’i<l/q and

w{/o(X)-fo(x’)} + Ix-x’
For each q, define uo by Ix-x’lu=x-x’, We may assume that {u}=
converges to a unit vector u in C(x’). Since G(x’, w’)=0 and VL,(x’, w’)=0, we
have

L,(x,, wt)-L,(x’, w’)-(VL,(x’, w’),xo-x’)-G(x, w’)

( 1) ,i
1

,iV(x)(x x,)(3.27) + [x,-x +ytWo

Now we divide both sides of (3.27) by Ixq -x’l2 and take the limit as q approaches
infinity; we obtain

1
(3.28) -(u,H(x’, w u)+limsup

q--cx3

1
f2.< moy.

-ytw olVqb (x’) 7"u,lw ’) =-i-+X

Since each x is in $, each number -G(x, w’) is nonnegative, and so, by (3.28),
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the sequence {-G(x,, wt)/lx,-xt[2}=l is bounded. Consequently,

0 lim
G(x,, w t)

lim
G(x,v w’) G(x’, w’)

w(Vfk (X’), U).Ix,,-x’l ,, Ix,,-x’l
Since (7[ (x’), u)=<0 for every k in K(w), we see that (V[ (x), u)= 0 for every k
in K(w). Hence, by Lemma 3.1,

(3.29) (u,H(x t, w’)u)>-_mo+ytWolV4(x)rul2.
Since each -G(x, w’) is nonnegative and moy < mo, we see that (3.29) and (3.28)
are incompatible.

Remark. The proof of Lemma 3.6 is a variant of the proof by Hestenes [5, p.
37], which contains the essence of the finite-dimensional indirect method. A
slightly sharper form of Hestenes’ theorem is given by Chancy [3, Lem. 3.1].
Lemma 3.6 is a sufficiency theorem for a local minimum.

4. Numerical results. The algorithm presented in 2 has been used to obtain
numerical solutions to several problems of small dimension. The two examples
discussed here are representative.

In each case, we found "approximate" solutions to problems Pt for succes-
sively larger values of t. A point xi was accepted as an approximate solution as
soon as [h/lEd e, where e was a certain positive number depending upon t. In
particular, we began with t 20 and then took, in order, t 100, t 500, and
t 2500. At each transition, t was therefore increased by a factor of 5. Moreover,
at each transition, e was reduced by a factor of 5. And, after the transition, the
approximate solution for the previous problem became the Xo for the new
problem.

Example 4.1. The first problem considered was the following:

minimizex+x2+ 2x42 + 4x5

subject to

6 _-< -x+x+2x+x]+x, 3 -- 5Xs + X3X5

and

x+2x+x2=5, x+x]=4.
Now the solution to this problem, written as a row vector, is

(2.0, -1.0, -2.0, 0, 1.0). In one experimental "run" on this problem, we chose to
begin from the initial point Xo=(1.5, 0,-1.5, 0.5, 2.0). The results are sum-
marized in Table 1.

TABLE 1

20 .01000 17 .00843773
100 .00200 8 .00165843
500 .00040 10 .00024239

2500 .00008 11 .00007297

Number of iterations Final value of [hi[2
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The final point, obtained after 46 iterations in all, was (2.00000503,
-0.99996611,-2.00001019, 0.0, 1.00000380).

Example 4.2. Another problem considered was this"

minimize x+x2
z +x+xlX2 %" 3X2X3

subject to

and

9<-3x+2x+x, x-x3 <=O

x+2x22=6.
The choice of the initial feasible point, as required in Step 0 was

(1.0, 1.5, 2.5).
This problem was chosen with less contrivance than the previous one,

inasmuch as the author devised it with little thought and with no attempt to gain
prior knowledge of the solution.

The results are summarized according to the pattern set in the previous
example. See Table 2.

TABLE 2

Number of iterations Final value of [hi[

20 .01000 42 .00326915
100 .00200 7 .00120892
500 .00040 8 .00016816

’2500 .00008 9 .00002097

The final point, obtained after 66 iterations in all, was (0.55125710,
-1.68765049, 2.84816566).

5. Concluding remarks. There are other methods for solving nonlinear
programming problems, which might suitably be termed "hybrid". We shall not
attempt to compare the present method with others in any detail. We shall merely
mention two other methods, these two being the combined penalty function and
gradient projection method of Luenberger [6] and the extensively developed
method of multipliers, which was originated by Hestenes and by Powell. These
two methods do have several features in common with the algorithm presented in
this paper: Exterior penalty functions are used in conjunction with another
technique, and an effort is made to nullify the ill-conditioning associated with the
use of exterior penalty functions.

To solve problem P by the method of multipliers one can form the augmented
Lagrangian

(5.1)
K(x, w,A,z,t)=f(x)+ Y. Wk(fk(X)+Z)+ 1 )z

k=l t Xk=l (fk(X) %-Z

/=1 /=1



398 R.W. CHANEY

cf. Bertsekas [2] and Rockafellar [12]. In (5.1), the z are slack variables and the
vectors w and A are multiplier candidates (but w is not constrained to be in W,,).
The method of multipliers proceeds as follows: Given iterates w and A and a
penalty coefficient t, one minimizes (5.1) over all x and z to obtain x and z. The
values of x and z are then used to define w+, A +, and t+. In practice, the
minimization over z is carried out explicitly in advance and z disappears from the
problem. For this detail and many others, one should see [2] and [12] and the
many references cited therein.

Bertsekas has shown [2] that the classical method of multipliers can profitably
be viewed as a steepest ascent method for maximizing a certain dual function.
Bertsekas has [2] used this observation to show that if certain typical sufficiency
conditions are satisfied and if {t} stays bounded, then the method of multipliers
will construct sequences {w i} and {A } which will converge O-linearly to the
optimal Lagrange multiplier. Rockafellar has shown [12] that the (approximate)
minimizers x of the augmented Lagrangians must converge "at least as fast" as
the sequences {A } and {w}; Rockafellar’s result, which is established in [12] for
the convex case, implies that the sequence {x} will converge R-linearly to the
optimal solution. This result is similar, at least in qualitative terms, to Theorem 3.2
in the present paper. (No attempt is made to compare the value of O(t) with the
analogous value for the multiplier method; cf. [2, p. 531].)

To an extent, then, a comparison of the multiplier method with the method
developed here may depend on the amount of work required to generate x+ from
x (in the respective methods). It becomes difficult to set fair standards for a direct
comparison, because the method for unconstrained minimization is not specified
in the multiplier method. Needless to say, since the multiplier method has been
tested considerably (see references cited in [2] and [12]), it certainly does not bear
the burden of proof in this matter.

Luenberger’s combined method generates [6] a sequence {x} as follows.
Given x, a Newton-like step is made with respect to certain dual variables, which
results in an intermediate point z; x+ is obtained from z by a steepest descent
move applied to an exterior penalty function. Given certain approximations, the
work required to obtain x+ from x in [6] seems much less than in the present
paper. On this basis, the present method seems poor by comparison. Further-
more, Luenberger presents a sharp result on the rate of convergence of the
sequence {x}, at least for an idealized version of the algorithm applied to
problems having linear equality constraints only. Again, however, it seems
difficult to set definitive standards for comparison. It would be desirable to have
computational examples for Luenberger’s combined method. This would be
particularly true for the case in which there are inequality constraints, inasmuch as
the convergence analysis in [6] deals mainly with equality constraints.

By contrast to the two methods just discussed, the algorithm presented here
gives, at every iteration, a point x which does satisfy the inequality constraints.
Moreover, the dual of the direction-finding problem does depend mainly on the
number of inequality constraints, hence, the present method may be of interest
particularly when there are many variables, few constraints, and when it is
important that the inequality constraints be satisfied. And, some version of it may
be suitable for certain infinite-dimensional problems like those considered in [9]
and [3].
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A FINITELY SOLVABLE CLASS OF APPROXIMATING
PROBLEMS*

GERARD G. L. MEYERt

Abstract. Let P be the following nonlinear programming problem: given m + 1 continuously
ditterentlable convex maps /o(.), fl(.) f"(.) from E into E, minimize f(z) subject to

f-i(z)<-O, = 1, 2 m. A well known approach for solving P consists of embedding P into a

family of approximate problems P(a). Given a > 0, the problem P(a) is to find a point z such that

fi(z)<-O, ] 1, 2 m, and such that for every h in E", there exists/" in J(z, or), j depending on h,
satisfying (V/j z ), h => 0, with J(z, a {j 1, 2 rn }1 fi (z) + 1/c >= 0} LI {0}. In general, e(a) can-
not be solved in a finite number of iteraiions and therefore one is obliged to use antizigzagging schemes
of varying complexity. The purpose of this paper is to describe a class C of problems P such that the
approximating problems P(a) may be solved in a finite number of steps. It is shown that if P is in C,
then its solution is unique and is stable with respect to variation in the cost function. There are
indications that this phenomenon is not restricted to the particular case under study and that there is a
definite connection between the stability of the solution of a problem and the existence of a finite
procedure for solving it.

Introduction. The class of feasible directions methods is a powerful tool for
solving constrained minimization problems, min-max problems and uncon-
strained minimization problems in the absence of continuity of the gradient [1],
[2], [3], [4], [7], [8], [9], [10]. The different versions proposed either involve all the
constraints [3], [7], [9] and do not require "antizigzagging precautions," or
involve only the constraints in a neighborhood of the current point and do require
"antizigzagging precautions" [1], [3], [7], [9], [10]. In this paper only the latter
case will be considered.

It is known that a large amount of complexity in the existing methods is due to
the arbitrariness of the antizigzagging procedures. Once the unnecessary com-
plexity is removed, one obtains a family of parametrized algorithms called
drivable methods of feasible directions [5], [6]. These algorithms are simpler than
the classical ones but still retain an antizigzagging procedure of sorts. This is due to
the fact that the family of problems P(a) in which the original problem P is
embedded may not be solved in a finite number of iterations.

This paper addresses itself to the question of characterizing a family C of
problems p such that the approximating problems P(a) may be solved in a finite
number of steps. It will be shown that C is not empty and that if P is in C, then its
solution is unique and stable with respect to a family of perturbations of P.

Approximating problems. Given rn + 1 continuously differentiable convex
mapsf( ), fa(. ),. ., f’(. fromE" into E, let Tbe the subset ofE" defined by

T={zlf(z)<O,i=l,2,. .,m}.

Assume that T is nonempty, compact and that for every z in T, the set
{Vf (z)lf (z) 0, j 1, 2,..., rn} is linearly independent.

PRO3LEM P. Find a point z in T such that for all z’ in T,

F(z)<-F(z’).
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In order to solve Problem P, one usually embeds it in a family of parametrized
problems P(ot). The main requirement is that as a approaches + c, the solution
set of P(a) converges in a suitable sense to the solution set of P. Such a possible
embedding is now described.

PROBLEMP(a). Given a positive scalar a, find a point z in Tsuch that for all h
in

with

max (VfJ(z), h)>=0,
]J(z,a)

J(z, a)= {/" s {1, 2,..., m}lf(z)+ 1/a ->_ 0} U{0}.

The properties of the family P(a), a > 0, are contained in the theorem below.
The proofs involved are not difficult and have been deleted.

THEOREM 1. LetD(P) andD(P(a)) be the solution sets ofthe problemsPand
P(a) respectively. Then:

(i) D(P) is a nonempty and closed subset of Tandfor all ct > O, D(P(ee)) is a
nonempty and closed subset of T;

(ii) D(P)
_
D(P(a2))

_
D(P(a1)) for all ce2 > a > 0;

(iii) Given any neighborhood N(D(P)) ofD(P), there exists d > O, depending
on N(D(P)), such that]or all a >=, D(P(a)) _N(D(P)).

The results of Theorem 1 suggest that it is easier to find points in D(P(ct))
than in D(P). One may therefore consider the following iterative procedure:
given a sequence {ai} converging to +o, generate a sequence {zi} by computing
for each a point zi in D(P(ai)). Every cluster point z* of {zi} is in D(P) and
therefore problem P has been transformed into an infinite sequence of approx-
imating problems P(a). It is clear that the usefulness of such a scheme will depend
on the availability of methods for solving P(a).

A class of iterative procedures. A family of algorithms parametrized by a
positive scalar/3 is now presented. The algorithms use a compact neighborhood S
of the origin in E and a positive scalar p. The set S is usually selected so that the
computations in Step 1 may be conveniently performed, and p may be chosen
arbitrarily large but must be finite.

ALOORITHM A (/).
Step O. Compute Zo in T and set O.
Step 1. Compute hi in S such that for all h in S,

max (Vfj(zi), hi)<= max (Vf(zi)h)
J(zi,[ J(zi,

Step 2. Let Ai =max {A E[O,[]lZi’t-Ahi T}.
Step 3. Compute/d, in [0, Ai] such that for all/x in [0, Ai],

fO(zi + tzihi (zi -- #hi).Step 4. Set Zi+l Zi 2v tzihi.
Step 5. If f(zi+l)=f(zi) stop; else set + 1 and go to Step 1.
Note that Step 1 is a linear program when S is polyhedral.



It is worth noting that many methods of feasible directions proposed in the
literature use sequences of algorithms A (/3) [7], [9], [10]. The successive values
given to fl are determined by schemes of varying complexity [5], [6]. In this paper,
the innate properties of the family of algorithms A (/3) are investigated. This is in
contrast to the usual approach in which the properties of iterative processes
containing A (/3) as a subprocedure are examined.

Solvable approximating problems. A class of approximating problems has
been defined and a family of algorithms has been given. It is clearly of interest to
know which algorithms solve which problems. Before this may be done, one needs
a precise and unambiguous definition of the solvability of a problem P by an
iterative procedure A.

DEFiNiTION. P is said to be A-finitely solvable iff every sequence {zi}
generated by A when applied to P satisfies"

(i) The sequence {z} is finite;
(ii) The last element of {zi} is a solution of P.

P is said to be A-asymptotically solvable iff every sequence {zi} generated by A
when applied to P satisfies:

(iii) The sequence {z} has at least one cluster point;
(iv) Every cluster point of {zi} is a solution of P.

P is said to be A-solvable iff every sequence {z} generated byA when applied to P
satisfies either (i) and (ii) or (iii) and (iv).

The theorem below characterizes the A (/)-solvable approximating prob-
lems P(cr). Its proof is not difficult and may be found in [6] or [7].

THEOREM 2. Let t >--_or >0; then P(tr) is A(B)-solvable.

A(B)-Finitely solvable approximating problems. An important behavioral
characterization of an iterative process consists in the identification of the class of
problems that it finitely solves. This helps in understanding some of the
algorithm’s possibilities and limitations. In particular, the knowledge of the class
of problems which are finitely solved by the procedure indicates in which cases the
algorithm may be used as a subprocess without antizigzagging schemes.

In this section, a class C of problems P such that the corresponding P(tr) are
A (/3)-finitely solvable is described. The approach followed consists essentially of
two parts. First a family of approximating problems P(a) which are A (/)-finitely
solvable is exhibited. Then the class C is presented. It is shown that ifP is in C then
P(cr) is A (fl)-finitely solvable.

The following hypothesis is sufficient to ensure that P(c) is A (/3 )-finitely
solvablewhen/ => cr _-> ft.

HYPOTHESS 1. There exists ff > 0 such that the origin 0 of E" is not on the
boundary of the convex hull of the set

for all y in D(P(ff)) and for all subsets K of I(y, ff)=
{/" {1, 2,..., m}lf(y) + 1/a ->_0}.

THEOREM 3. Suppose that Hypothesis 1 is satisfied and let fl >= a >-_ ff > O.
Then P(a is A (B)-finitely solvable.
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Proof. In order to prove the theorem, it is sufficient to show that if an infinite
sequence {Zg} is generated byA (/) when applied to P(a), then there exists a finite
k such that Zk/ Zk.

(i) Let fl _-->re -->ff >0 and let {zg} be an infinite sequence generated byA (fl)
when applied to P(a). Then there exist an infinite subset L of the integers, a point
z* in T and a subset J* of {0, 1, 2, , m} satisfying:

(i(a)) {zg}L converges to z*;
(i(b)) J(zg, )=J* for all in L.

The fact that/3 => a > 0 and the results of Theorem 2 imply that
(i(c)) z* is in e(a).
(ii) The set J* is a subset of J(z*, B) and clearly the index 0 belongs to both

the sets J* and J(z*, 1). It follows from Hypothesis 1 that only two cases are
possible:

(ii(a)) The origin of E" belongs to the interior of the hull of the set {Vf (z*)]/" e
j*};

(ii(b)) The origin of E" does not belong to the convex hull of the set
{Vf(z*)li e J*}.

In order to show that (ii(a)) is true, one shows that (ii(b)) leads to a
contradiction.

Suppose that (ii(b)) is true; then there exists h in E" such that
(ii(c)) (Vf(z*), h) < 0 for all ] in J*.

By construction, if ] is not in J*, then for every in L, the index ] is not in J(zg, [3).
This implies that f(zg) + 1/ < 0 for all in L and using the continuity of the map
f(. one obtains,

(ii(d)) f(z*) < 0 for all j not in J*.

It is known [6] that (ii(c)) and (ii(d)) contradict the fact that f(z) is bounded from
below on T. One concludes that (ii(b)) is not true and therefore (ii(a)) is true (i.e.,
the approximate Fritz-John necessary conditions are satisfied).

(iii) The auxiliary results needed to prove the theorem have been obtained
and one proceeds towards the conclusion of the proof. The fact that (ii(a)) is true
and that the maps fi (.) are continuously differentiable implies that there exists a
neighborhood N(z*) of z* such that the origin ofE" belongs to the convex hull of

{Vf(z)l]

for all z in N(z*). By construction

J(zi, J*,

and therefore the origin in E belongs to the convex hull of

{f](Zi)lf eJ(Zi, )}

for all in L and for all z in N(z*). But the sequence {zi}L converges to z* and
therefore there exists k such that z is in N(z*) for all =>k, in L. It is immediate
that f(zk /1) f(Zk) and the theorem is proved.
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The iterative procedure A (/3) finitely solves a nonempty family of problems
P(a). In order to obtain C one must find hypotheses on P which insure that the
corresponding P(a) areA (/3)-finitely solvable. The assumption below is sufficient
to guarantee that this is the case.

HYPOTHESIS 2. For every z in D(P), the origin in E" belongs to the interior
of the convex hull of the set

with

{vf;(z)li e u {0}}

I(z) {] e {1, 2,"" ,re}If(z) 0}.

THEOREM 4. Suppose that P satisfies Hypothesis 2. Then there exists 6 > 0,
depending on P, such that P(a) is A ([3)-finitely solvable for all [3 >-a >.

Proof. Assume that Hypothesis 2 is satisfied. The set D(P) is a subset of T and
therefore z in D(P) implies that the set

e I(z)}

is linearly independent. It follows immediately that the origin in E" is not on the
boundary of the convex hull of the set

{W(z)li e, K u {0}}

for all subsets K of i(z).
The maps fo(. ), f(. ),..., f,,(. are continuously differentiable and this

fact together with part (iii) of Theorem 1 shows that Hypothesis 1 is satisfied for
some a > 0. The result of Theorem 4 is then a direct consequence of Theorem 3.

Let C be the class of all problems P satisfying Hypothesis 2. The lemma
below is a direct consequence of Theorem 4.

LEMMA 1. Let P be in C. Then there exists ci > 0, depending on P, such that
every sequence {zi} generated by A (fl when applied to P with fl >-_ 6 satisfies:

(i) {z,} isfinite;
(ii) The last element of {zi} is in P(B).

Stability of P. The family C exhibits some remarkable properties. One of
them, namely the fact thatA (/3) generates only finite sequences when applied to P
in C when/ is large enough has been presented in the preceding section. The
properties of the solution set D(P) of P in C are now investigated.

LEMMA 2. Suppose thatPis in C; then D(P) consists ofone andonly onepoint:
Proof. By assumption, T is nonempty and compact andfo(. is continuous. It

follows that D(P) is nonempty. The maps fo(. ), fl(. ),.. ’, f,, (.) are convex and
therefore D(P) is convex. Suppose that z and z2 are two distinct points in D(P),
then the entire segment [z 1, z2] is in D(P). Let h z2-z 1. Then,

(i) h # 0;
(ii) (Vf(z), h) 0;

(iii) (V/1(Zl), h)-<0 for all ] such that fi(zl) O, ] # O.
This obviously,contradicts Hypothesis 2 and therefore D(P) contains only one
point.
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The solution set D(P) of P does not vary whenP is subject to small variations
in the cost function. In order to define these variations precisely, it is convenient to
introduce the class of problems V(P, ).

Class .V(P, ). Given P and >0, the class V(P, ) consists of all the
problems P characterized by

D(/;) {z in Tl(z)-</z’(z’) for all z’ in T},

whereo(. is a continuously differentiable convex map fromE" intoE satisfying

IIv (z)- Vf(z)ll <- e
for all z in T.

LEMMA 3. Suppose thatP is in C. Then there exists > 0 depending on Psuch
that, for all problems P in V(.P, ):

(i) The solution set D(P) of contains one and only one point;
(ii) D(/) D(P).
Proof. P is in C and therefore satisfies Hypothesis 2. It follows that there

exists > 0 such that Hypothesis 2 is still satisfied whenfo(. is replaced by/z-o(. ),
provided that (. is a continuously differentiable convex .map from E" into E
and also that

IlVt’(z) W(z)ll--< e
for all z in T. This shows that if/3 is in V(P, g), then there exists a problem, call it
/’, satisfying H.ypothesis 2 and such. that D(/) D(/b’). But, since P’ satisfies
Hypothesis 2, P’ is in Cand so D(P’) consists of a single point. The second pa.rt of
the lroof is an immediate consequence of the fact thatD(P) is a subset of D(P) for
all e in V(P, g).

It has been shown that if P is in C, the solution of the prgblem is not modified
by small perturbations of the cost function. It happens that this property in fact
characterizes C.

LEMMA 4. LetPbe given. Suppose that there exists > 0 depending on Psuch
thatfor all in V(P, g), the solution setD(.) of contains one and only one point
and D(P) D(P). Then P is in C.

.Proof. Let z be in D(P) and suppose that there exists g > 0 such that z is in
D(P) for all/5 in V(P, g). Let H be the convex hull of the set

{Vf(z)lf(z) 0, ] 1, 2, , m}:

The origin in E" does not belong to H but belongs to the convex hull of the set

HO {V/r’(z)}
for all continuously differentiable convex maps [o(. which satisfy

IIV (y) Vf(y)ll _-< e
for all y in T. It follows immediately that the origin inE" belongs to the,interior of
the convex hull of the set

HU{Vf(z)}
and therefore P is in C.
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Conclusion. It has been shown that a class C of problems P possesses two
important properties. On one hand, there exists a class of iterative processes
which terminate when applied to P in C. On the other hand, the solution of P in C
is invariant under a class of perturbations of P. It is the author’s conviction that
these properties are related, i.e., that there is a connection between the type of
procedures which halt when applied to a problem and the type of perturbations
which leave the solution of the problem unperturbed. If this were actually the
case, it would provide a powerful tool for the synthesis of efficient iterative
procedures.
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A NOTE ON THE LACK OF EXACT CONTROLLABILITY
FOR MILD SOLUTIONS IN BANACH SPACES*

ROBERTO TRIGGIANI"

Abstract. It is shown that exact controllability in finite time for linear control systems given on an
infinite dimensional Banach space in integral form (mild solution) can never arise using locally
Ll-Con.trols, if the associated Co semigroup is compact for all > 0. This includes, in particular, the
class of parabolic partial differential equations defined on bounded spatial domains.

Consider the control process described by the following integral model"

(1.1) x(t, Xo, U)=S(t)Xo+ S(t-’)Bu(z)d’, t>=O,

under the following standard assumptions: x(t, .,. belongs to a separable
Banach space X (state space); u(t) is a U-valued function, locally La (control
function), where U (control space) is also a Banach space; S(t), t >= O, is a strongly
continuous semigroup of bounded operators (of class Co); B is a bounded
operator: U->X; finally xoX. The integral is well defined in the sense of
Bochner. Unless otherwise stated, X will be assumed infinite dimensional. Also,
(1.1) is (strongly) continuous in [4, p. 88]. See [4, Chap. III] for the necessary
background for vector valued functions.

It is customary to refer to (1.1), for a locally La function u(t), as ’mild
solution’ of the correspondent differential equation

(1.1’) =Ax +Bu, x(O)=xosX,

where A is the infinitesimal generator of S(t).
Let t be the set of attainability from the origin of the system (1.1),

corresponding to La-control functions over [0, t] i.e.,

t {x X; x x(t, O, u), u( )La[0, t]}.

We then say that (1.1) is exactly controllable on [0, T], T>0, (respectively, in
finite time) in case:=X (respectively, U 0_-<t< sit X).

Notice that the strict solution x(t, Xo, u) of the differential model (1.1’)--for
Xo D(A) (domain of A) and, say, a Ca-control u (t)--always lies in D(A), which,
when the closed operator A is unbounded, is only dense in X, by the closed graph
theorem. In other words, exact controllability of the strict solution when the
generator A is unbounded is out of the question.

As for the mild solution, recently the author has shown
THZORZM 1.1 (see [9]). LetXbe infinite dimensional. Then, the system (1.1) is

never exactly controllable in finite time using locall Ll-Controls (in symbols:
U o<-t<o gt X) if the operator B" U-->X is compact.

Under the additional assumption thatX has a Schauder basis, a simpler proof
of the above result was previously given by the author in [10, 3, see Remark
3.3.2].

* Received by the editors April 5, 1976, and in revised form July 26, 1976.

" Mathematics Department, Iowa State University, Ames, Iowa 50011.
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For some cases where exact controllability is achieved, see [10, 3] (e.g.
B is onto and S(t) is a group).

In the present note we shall explicitly assume, in view of the above theorem,
that the operator B is bounded but not compact. We shall then transfer the
assumption of compactness from B to the semigroup S(t) for t > 0 and conclude
with a result establishing the lack of exact controllability in finite time of (1.1)
analogous to Theorem 1.1 above.

Remark 1.1. The assumption that the operator S(t) is compact on X for all
t >0 (semigroup of compact operators) is met by large classes of dynamical
systems of physical interest. In fact [6], [7] S(t) is compact for all t > 0 if and only if
(i) S(t) is continuous in the uniform operator topology for >0 and (ii) the
resolvent R (h, A) of its generator is compact at some (hence all [1, p. 210]) h in
the resolvent set of A. Assumption (ii) is always satisfied, say, by partial differen-
tial equations defined on bounded spatial domains and assumption (i) holds, of
course, for the large class of semigroups which are differentiable for all >0.
Hence, parabolic partial differential equations defined on bounded spatial
domains (whose correspondent semigroups are in fact holomorphic) represent an
important subclass of dynamical systems, whose correspondent semigroups are
compact for all t > 0. The forthcoming application-oriented book [1] is in fact
mainly concentrated on compact (even Hilbert-Schmidt) semigroups.

We shall prove
THEOREM 1.2. LetX be infinite dimensional. Then the system (1.1) is never

exactly controllable in finite time using locally L-controls (in symbols, tAo_t<oo
X) if the semigroup S(t) is compact for all t > O.

Proof 1. We shall first prove that the operator (2,

Ot $(T- t)Bu(t) dt, t LI[[0, T], U],

from LI[[0, T], U]oX is compact. To this end, define, for each e >0, the
operator 08,

T-g

(1.2) Ot s(r-t)Bu(t) dt, a L[[0, T], U]

from L[[0, T], U] X. That Q is compact for all e > 0 follows from writing the
right-hand side of (1.2) as

T-e

(1.3) S(e) S(T-t-e)Bu(t) dt

and the fact that as u(. runs over all vectors in the unit sphere of LI[[0, T], U],
the integral in (1.3) describes a bounded set in X.

Next we have from standard bounds on semigroups

IlOa-Q all= S(T- t)Bu(t) dt <= eMellnllllalll- 0 as e 0,

and hence Q, being the uniform limit of compact operators, is also compact.
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2. Therefore the image K,,(T) under O of the sphere in L[[0, T], U] of
radius n, centered at the origin, is a precompact set in X. LetK(T) be its closure.
Since X is infinite dimensional,/(T) cannot contain spheres i5, p. 269] and
hence is nowhere dense in X. Next, observe that exact controllability on [0, 7"]
demands X U--K(T). This is however impossible by the Baire category
theorem [8, p. 139]. Consequently U=/((T) does not fill all of X. Since
r U oo__/ (T), the lack of exact controllability of (1.1) on [0, T] is estab-
lished.

3. Take the sequence of time intervals [0, i], 1, 2,. . Then, step 2 says
that the subspace LJ:=l K(i) is a set of first category. Consequently,
K U o___ is also a set of first category [8, p. 140] and henceK does not fill all of
X. But i- 1 < T< i, 1, 2, .., implies

K(i-1)K,(T)K(i),
n=l, 2,..., i=1,2,....

(In fact a point reachable from the origin over [0, t] using the control u(t),
0 <= t -< t, is also reachable from the origin over a larger interval [0, t2] by applying
first the null control over [0, t2-t) and then the control t2(t) u(t-(t2-tO) over
It2- tl, t.].) Hence, from the above inclusions, taking the union over all n, one gets

Then, taking first the union over all T in [i- 1, i] and then over all i, one arrives at

K=U i_ U rU,.’=K.
i=1 0_T<oo i=1

Hence Uoz_r<oor K and Uor< r does not fill all of X. Actually, even
LJo_r<oo [LJ:--/,,(T)] is not all of X. Q.E.D.

Remark 1.2. Let Xo be given and let F.r. Then the point x inXdefined by
x S(T)xo+$ cannot be reached from Xo by using L[[0, T], U]-controls.

Remark 1.3. In the case of functional differential equations of retarded type
written as abstract ordinary differential equations, in the usual way [2] in the
Hilbert spaceX R" x L2[[-h, 0], R], the corresponding semigroup is compact
only for all t greater than or equal to a positive constant h (delay). The assumption
of Theorem 1.2 is therefore not satisfied. However, such case is covered by our
previous Theorem 1.1, since the corresponding operator B occurring in the model
has finite dimensional range in X[2].

Example 1 (parabolic partial differential equations in bounded domains). Let
12 be a bounded domain in R" with smooth boundary, let X L2(D) and let
A (x, D) be the partial differential operator of even order 2m,

A (s, D) .Y. a()D",

a(:) sufficiently smooth complex-functions of s in D,
(written in the usual notation) assumed to be strongly elliptic, i.e., satisfying

Re (-1)’A ’(s, g’) _-> cl -I
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for some constant C> O, every : 6 fl and ( R"; here A’((, is the principal part
of A ((, ):

A’(:, D)

Next, define the operator A by

Ax -A (, D)x,

E a()D.
I,,1=2,,

D(A H:Zm (f) fq H’(f).

Then, A is the infinitesimal generator of a holomorphic semigroup $(t) on X [7,
Thm. 5.2.9, p. 139] and [3, Chap. XIV 8.1 p. 1767]. Also, its resolvent R(., A) is
compact, since ll is bounded [3, Chap. XIV. 6.23, pp. 1739-1740]. Therefore, by
Remark 1.1, the semigroup S(t) is compact for all t >0. See also [1, Chap. 4] and
[5, Chap. 7]. As for an operator B of physical significance which is bounded but
not compact, besides the obvious example of the identity on U X Lz(l)), we
cite the multiplication operator (Bu (t))(s) m()/z (t, st), s efl, on Lz(fl)) where
m (s) is a fixed, nontrivial, bounded, measurable function on 12 [5, p. 382], and/z
(t, s) is the distributed control; etc.

Example 2. Let {x]}, ] 1, 2,... be an orthonormal system in the Hilbert
space X and let {,t]} be a sequence of isolated complex numbers (with no finite
accumulation point) which satisfy (i) Re h -< w < oo and (ii) Re ,t] -->- as ] --> .
Define the family of bounded operators S(t) by

S(t)x E eX"(x, x])x], x eX, t >--0.
]=1

Then S(t) is a C0-semigroup which is compact for t > 0, since leX,[ 0 as ] --> for
t > 0 [5, p. 383; 1, p. 90]. However, S(t) need not be holomorphic for > 0, which
occurs if the {,j} are chosen so that they are not contained in any triangular sector
of the type

{A’Reh<a-bllmh[}, a,b>O

[7, 2.2.5]. The infinitesimal generator is a normal operator and is given by

Ax Y A](x, D(A) {x e X: E IAi(x, x])l2 < }.
1=1

The spectrum of A is only point spectrum and it consists precisely of all the
numbers Aj. For all A A the resolvent R (A, A) of A is normal and given by

R (A, A)x ]Y"I= A a’] (x, x])x], x e X,

and is compact since 1/IA -,il --> 0 as ] --> c. For a related example see [1, Example
4.6.5].

For the approximate controllability problem, (-Jo__<t<oo , X in the spirit of
the classical finite dimensional theory see [ 11].



A NOTE 411

REFERENCES

[1] A. V. BALAKRISHNAN, Applied Functional Analysis, Springer-Verlag, New York, 1976.
[2] M. C. DELFOUR AND S. K. MITTER, Controllability, observability and optimalfeedback control

of affine hereditary differential systems, this Journal, 10 (1972), pp. 298-328.
[3] N. DUNFORD AND J. T. SCHWARTZ, Linear operators, part 2, Intersdence, New York, 1963.
[4] E. HILLE AND R. S. PHILLIPS, Functional Analysis and Semigroups, Colloquium Publications,

American Mathematical Society, Providence, RI, 1957.
[5] T. H. NAYLOR AND G. R. SELL, Linear Operators in Engineering and Science, Holt, Rinehart

and Winston, New York, 1971.
[6] A. PAZY, On the differentiability and compactness of semi-groups of linear operators, J. Math.

Mech., 17 (1968), pp. 1131-1141.
[7], Semigroups of linear operators and applications to partial differential equations, Lecture

Note 10, Dept. of Mathematics, Univ. of Maryland, College Park, 1974.
[8] H. L. ROYDEN, Real Analysis, 2nd ed, Macmillan, New York, 1968.
[9] R. TRIGGIANI, On the lack ofexact controllability for mild solutions in Banach spaces, J. Math.

Anal. Appl., 50 (1975), pp. 438-446.
[10] ., Controllability and observability in Banach space with bounded operators, this Journal, 13

(1975), pp. 462-491.
[11] ., Extensions of rank conditions ]or controllability and observability to Banach spaces and

unbounded operators, this Journal, 14 (1976), pp. 236-250..



SIAM J. CONTROL AND OPTIMIZATION
Voi. 15, No. 3, May 1977

OBSERVATION AND PREDICTION FOR THE HEAT EQUATION.
IV: PATCH OBSERVABILITY AND CONTROLLABILITY*

THOMAS I. SEIDMANt

Abstract. It is shown first that the problem of predicting the state at T of a solution of the heat
equation with homogeneous boundary conditions from observation on a patch of complementary
boundary data is well-posed in the presence of an a priori bound on initial data. Next, it is shown that
Russell’s star-complementarity sufficient condition for exact boundary controllability is far from
necessary by demonstrating controllability from the inner face of an annular sector in R". Finally, some
results are obtained as to the dependence of the optimal null-control on the patch considered and on T.

1. Introduction. We consider problems of observation and control for the
heat equation

() a =au
in a bounded domain in " in which interaction with the process---for either
observation or control--is limited to a boundary patch F1 (i.e., a relatively open
subset of the boundary F=Ofl). Some of the results presented here were
announced in [18] (note, in particular, Theorems 4.2, 4.4 and 5.2 there).

The author would like to express his thanks to David Russell both for the
stimulation of his work in this area and for several valuable discussions. The direct
stimulus to this work on problems of patch controllability and observability was
some work in progress by William Chewning at the time of his death; as with the
corresponding section of [18], this paper is dedicated to his memory.

In [13], [17] it was shown that null-controllability (i.e., existence, for each
initial uo in Lz(f), of boundary data q carrying u0 to zero terminal state at
t=T>0) is dual to well-posedness of observation/prediction (briefly:
observability =continuity of the map from observed complementary data to
terminal state) and that these equivalent properties hold for quite general regions
fl if F is all of F. Although not so stated, the extension principle used in the proof
of Theorem 3 of [17] gives this result for nonautonomous boundary conditions (cf.
[18]). The results of [19] give this for a cylinder fl x (0, 1) in " with F1 a base
of fl (F x {0}) and the results of [14] give this for star-complemented settings
(see Theorem 3 below).

The argument of [14] proceeds from corresponding results for the wave
equation (//= zXu) in f for which it is known (see [11]) that the control patch
"cannot be too small"--e.g., existence in f of a closed polygonal path with
reflection at vertices in F2 F\F implies (see [12]) nonexistence of a decay rate (in
the sense of scattering theory) and so noncontrollability: "trapped waves" in 1
cannot be exactly canceled by any admissible boundary control. On the other
hand, it was shown in [6], [7] (see, also: [3, Chap. III, 10.2]) that approximate
patch controllability (given a patch F, e > 0 and u0 there exists boundary data q,
supported in the patch, carrying Uo to a terminal state with norm less than e) holds

* Received by the editors February 26, 1976.
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under quite general conditions----it is equivalent to uniqueness for the Cauchy
problem: that u 0 on (0, T)x F and u 0 on (0, T)xF implies u-=-0. It has
been conjectured that the properties of observability and controllability hold for
an arbitrarily small patch in the case of the heat equation but this problem remains
open. In this paper we obtain a weaker form of patch observability- adequate for
certain applications--and also show, by some new examples, that the necessary
conditions for wave equation controllability are far from necessary for the heat
equation.

2. Constrained observability. We consider the observation/prediction prob-
lem in the presence of an a priori constraint on u--specifically, we assume given an
a priori bound on the norm of the initial state Uo. Note that in an important class
of applications for diffusion processes one has an interpretation of u as a
concentration, in which case one knows automatically that 0 =< u -< 1 pointwise so
that the result applies.

We let be a bounded region in " with "smooth" boundary F 012 and
divide F into an interaction patch F and a residue (passive boundary) F2 F\F;
let T> 0 be given and set (0, T) x 12, (0, T) x F, j (0, T) x Fj(/" 1, 2).
Denote by u an arbitrary solution of (1) in for which u (0,.) Uo is in L2(12). We
suppose a pair of (smooth) functions (a,/3) is given on E with a 2 +/32= 1 and
consider the boundary data

(2) au +/3u q on .
We also consider the complementary data

(3) flu au q on .
Let q., #i denote the restrictions of o, O to E. (] 1, 2) and assume oj in L2(Ej). By
a setting [, E, (a,/3)] we mean the specification of the region in which (1)
holds, the portion of 0f used for interaction and the form of the data (more
generally, [L, , 1, (a,/3)] if (1) is replaced by a more general diffusion
equation: ti Lu); this is slightly different from the notation of [18] although we
only consider time-independent geometries, as described above, for which , Z1
are determined by fl, F. We assume that the initial-boundary value problem
given by (1), (2) and specification of u (0,.) u0 is well-posed and let q/t be the set
of solutions of this with Iluoll--<M; correspondingly, let t be the set of pairs
[o, Sx] in L2(X)L2(Xl) defined by (2), (3) for u in q/u. The constrained
obkervation/prediction problem which we consider concerns the mapping
P: 7/’t L2(f): [q, ,]-u(T, .).

THEOREM 1. Let be a setting [or which specification of [o, 0] uniquely
determines u T, .). We assume,, for convenience, that > 0 on so the boundary
operator given by (2) has constant order 1. Then, for any M>O, the estimation
mapping Pt: t-*Lz(f) is continuous.

Pro& We have u (T,.) Suo+Bq with S compact from L2(f) and B continu-
ous from L2(Z) into L2(O); S is the solution operator for the pure initial value
problem (its compactness follows from that of the resolvent of A for each of the
sets of boundary conditions (2) for 0 =< t =< T) while the continuity of B follows
from [5, p. 78(iii)], taking, e.g., s =-1/3 which actually gives .continuity from
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H-1/6"-l/12(E) to H1/6(l’). Similarly, 1 SlU0 +BI( with S1 continuous from
L2(fl) and B1 continuous from Lz(X) into, e.g., H-7/6(1) on taking s -2/3 in [5,
p. 78 (iii)]. Now select a sequence (y l, y2," ") in H7/6(0 which is total for
H-7/6(1), i.e.,

(4) (Pl, yi) Iz yPl 0 (] 1, 2,...) implies 4’1 O.

Note that each scalar product appearing in (4) is continuously dependent on kl in
H-7/6(1) and so on Uo in L2(fl) and on o in L2(X). Suppose, now, ([k, ’k]) is any
sequence in Wvt with qk "> q, Ok --> 4’1. Let (Uk) be the corresponding sequence of
solutions of (1)with corresponding sequences of initial data (Vk) and of terminal
data (Wk), i.e., Vk Uk(O, in q/vt and Wk Uk(T, PM[qk, kk] in L2(fI) so

(5) Wk SVk + Bqk, 4’k SlVk + BlOk.

By the weak sequential compactness of q/vt, any subsequence of (Vk) contains a
weakly convergent sub-subsequence Vk<i)--’V, to which (1), (2) associates a
solution u,. Now, for each ], ($k<i), Yj) (1, Yj) but

(D/c(/), Sy/) + (Blq:i),

--> (v,, S*yi) + (Blq,

whence, by (4), t/,1 Sl/), + Blq (observe that this shows that Fvt is closed in
L2(E) L2(1)). At the same time, the compactness of $ means that v/c<i)--v,
implies Svk<i)--> Sv, so wk<i)--> [Sv, +Bq] w,. Thus, w, is the terminal data for
u, associated with [q, 1] in Fvt and, by assumption, this is uniquely determined
by [, ] so w,. Pyrite, 4q]. Since every subsequence of ([q, ]) contains a sub-
subsequence for which w/c<i)--> w,, it follows that w --> w,mi.e., Pt[q,
Pvt[q, q’] proving continuity of Pvt.

Remark 1. It is clear from this argument that the observation of may be
topologized in anyH (1) (e.g., any negative s) since the sequence (y 1," can be
selected in C(1). On the other hand, the condition/3 > 0 in the theorem is
related to the use of the L2(X) topology for q: the results of [5] give u (T,.) Lz(I)
for (1), (2) with13 # 0, o Lz(X) and Uo Lz(fI). If/3 0 (Dirichlet problem), then
the order of the boundary operator given by (2) is zero and an argument almost
identical to the above gives the same conclusion provided 7/’vt is now topologized
so that observation of o is in HZ’(v) with s > 1/4 (e.g., in Hi(X)); one might
expect similar results if/3 0 on part of, although in such a case the results of [5]
no longer apply (assuming, of course, that the relevant initial-boundary value
problem is well-posed).

Remark 2. If the pair [ql, 1] is sufficient to determine u(T,. uniquely, then
in the presence of a priori bounds on both Uo in Lz(fI) and 4’2 in Lz(Xz), the
analogous mapping: [qa, Oa]-> u(T,. is continuous since the maps B and Bt are
continuous from H-1/6’-1/2() to H1/6() and H-7/6(1) respectively, while the
embedding of Lz(Xa) H(X0 into H-1/6’-1/12(1) is compact (cf., e.g., [5, p. 99])
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so the analogous argument (with tkl and u(T, now dependent on the unknown
pair [po, Uo] rather than just on Uo) works. In applications one is quite likely to be
considering homogeneous boundary conditions ((2) with 0) and in that case
(cf., Theorem 4.4 of [18]) one similarly might obtain continuity of the mapping:
1 u(T,. without regard for the requirement that the order of the boundary
operator be constant (i.e., one may then permit 0 on part of ). We state these
results below, without further proof, as Theorem 2.

Remark 3. If, e.g., f/has an analytic boundary F, then [10] the uniqueness
hypothesis of the theorem is satisfied for any relative open subset F. One would
expect, however, that this would hold under much weaker conditions than global
analyticity of F.

THEOREM 2. (i) Let be a setting with nonvanishing for which [, Ox]
[0,0] implies u( .)=O. and let P:[,O]u(T,.) with [, Ox]
L2(E) x(E) associated with Uo L2() such that Iluoll or

(ii) let be a setting with flO for which [, ] [0, 0] implies u(T, .)=0
and let P: [,]u(T, .) with [, O]H()xH-(Ea) associated with Uo
L2() such that Iluoll or

(iii) let be a setting with nonvanishing for which [, ] [0, 0] implies
u(.)=0 and let P:[I,a]u(T,.) with [I,]LE(E)x(a)
associated with Uo L2(), 2 L2(2) such that Iluoll, 1l 211 or

(iv) let be any setting for which [, 1] [0, 0] implies u( )= 0 and let
P: u(T, with 1 () associated with 0 and Uo L2(O) such that

en, in each case and for any M> O, P is well-defined and continuous to
L2().

The standard ’state identification’ problem of finite dimensional control
theory is the determination of Uo from observations over 0 < t < T. It is clear that
the argument above gives this (with observation of on) in the presence of an
a priori bound on u (to, for some to < 0 and assuming 0 for t0 < t < T. In this
case it is clear that such an a priori bound is actually necessary but for the cases (i),
(ii), (iv) considered in Theorem 2 one might plausibly conjecture that (with
s 0: L2(X)) the imposed bound is unnecessary--indeed, for a variety of
situations (see eorems 3, 4, 6, below) this is known.

3. Some new geometries. The duality between boundary observation/
prediction and control problems (stated below as Theorem 3; cf.,[17], [18]) shows
that the continuity of an unconstrained estimation map (-u(T, for q - 0) is
equivalent to a null-controllability result but the results of Theorem 2, above,
seem to have no implication for patch controllability (other than the approximate
controllability already implied by the uniqueness hypothesis). For convenience,
we state the Duality Theorem (cf., [17], [18]) in a form suitable for our present
uses.

THEOREM 3. Let be an autonomous setting. Then null-controllability and
well-posedness of the estimation (observation/prediction) problem are equivalent,
i.e., the following are equivalent:

(a) For every Uo in L2(f) there exists in L2(X) for which the solution u o]’ (1),
(2) starting at Uo has u T, O.
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(b) There is a constantKsuch that I[u (T, .)ll -< KI[]I for all solutions of (1), (2)
with O, and u(O, in L2(f), where is defined on Y, by (3) and normed in
L.(’).

The optimum (minimum L(Y)-norm) control o, when this exists, is in the
closure d,t o]the setdAo]]unctions , in L(Y,) definedby (3) forsolutionsoi-
with u(T, in L() and satis[ying homogeneous boundary conditions (2).

The most general available results, on patch controllability for (1) were
obtained by D. Russell [13], [14], paraphrased below.

Ti-mogs 4. Let be an autonomous setting for which one has exact
null-controllability ]rom [or the wave equation (i.e., ]:or some T > 0 and every
(Uo, r}0) in H(f) xH(l) them exists o in H/(Y) for which the solution of
ii =u with (2) has u-- =0 at t= T). Then the heat equation (1) is null-
controllable by o in L(Y) (i.e., Oo--O) for every T>0, every Uo .in L(I). In
particular, this holds il a 1 on Y and is star-complemented.

Here is called star-complemented if there is a star-shaped body l’l. exterior
to for which F. 0.--essentially, this means the existence of a point
exterior to f from which all ofF is "visible" (i.e., the segmento-a, lies outside
f for each o. in F). Using the extension principle ([18, Thm. 3.5], stated below as
Theorem 5), the autonomy condition on can be relaxed---although still with
a--1 on.

TI-mOgS 5 Let the setting [., , (a, B)] have an extension + [. +,, (a, B)+] (i.e., " +, T+ T, . , (a, B)+ matching (a, B) on Y) which is
null-controllable. Then is itselt null-controllable.

We note that the argument for this in [17], [18] requires uniqueness for the
solution of (1), (2) with u0=0 (existence, where relevant, is automatic) and we
hencelorth assume this implicitly.

It is known ([9], using duality, or [1]) that a rectangle (e.g., with a 1) is
null-controllable from one face for (1) while this is false [11] for the wave
equation. Thus, the implication of Theorem 4 is not reversible. On the other hand,
the rectangle is a "perturbation" of a star-complemented setting: "tilt very
slightly" the parallel faces adjacent to the control face. See Fig. 1. In general, the
star-complementarity condition on the geometry seems reasonable for the wave

F1

FIG.

equation but rather unnatural for the heat equation, suggesting that any non-
trivial face should suffice for control or observation. While this remains conjec-
tural, the examples adduced below certainly indicate the substantial gap between
what suffices for the heat equation and what is needed for the wave equation.

Basically, the argument shows that, in certain separable geometries, null-
controllability from one ’face’ implies null-controllability from the ’opposite face’,
after which Theorems 4 and 5 can be. applied; specifically, we consider an
n-dimensional annulus or annular sector.
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Before proceeding we state and prove a result concerning ordinary.differen-
tial equations. As this seems of interest in its own right, it is presented in
considerably greater generality than is needed later.

THEOREM 6. Let tr>0, a>l and set cE=(tr+l)[max{1, tr/a}]1-1/a

(c c(tr, a) > 0). LetS be any monotonefunction on [to, tl] with [SI <-- tr and let y be
any nontrivial solution ol

(6) + (s + o
on [to, tl] satisfying the boundary conditions

(7) aoy (to) +flo) (to) 0 alY (q) + 1(q)

(a+B 1 aEi + fl; Bo <-0). Then

(8) Inolnll, In,/nol exp [(tl- to)x/-a@],
where #o, 71 are the complementary boundary data:

rio =/3oy (to) ao) (to), r/1 Bly(ti)-aif(ti).

Proof. With no loss of generality we may take to 0, tl T, y(0)>= 0 and S
nondecreasing on [0, T]. Taking 0 _<- 0o < r such that ao cos 0o, flo -sin 0o we
define r r(t)> 0 and 0 O(t) on [0, T] by the Prfifer substitution’ ) r cos 0,
y=r sin0 with 0(0)=0o; let O=0(T), noting that (7). implies a=cos0,
fll sin 01. Clearly, r(0)= Inol and r(T)--It/if. From (6) we have

/r =-s sin o cos o, J 1 + 6: sinE/9(9)

so that

(10) log In /nol (e/r) dt $ sin 0 cos

We distinguish the subintervals

M=[T,, T]=(t[0, T]: S(t)_->0},

[0; T,] (t [0, T]: S(t) <= 0},

and separately estimate the integrals ,,Ca, of (t/r) over each of these.
On M, >0 and we rewrite ffa as an integral dO. Let /9, 8(T,) satisfy

JTr/2 <- O, < (J+ 1)r/2 and let Kzr/2 < 01 <= (K+ 1)zr/2 (this defines J, K).Then
o $ sin 0 cos O-do y,. (_1)(,(11) - . 1 +$ sin 0 =

where

with

[sin O cos Of dO(k)
akr/2 sin2 0 "+" Uk

l/S, krr/2 <=O <=(k + l)rr/2,
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Since S is nondecreasing, the alternating series in (11) is bounded by the larger of
o(c-1), o0(c or (as Uk >----i/or)more conveniently by

m+),/2 [sin O cos O]"K)
,$K’rr/2 sin2 O + 1/or

dO

1 Io dz
2 z + 1/r’

z sin O,

SO

(12) [,, _-< 1/2 log (or + 1).

The interval is now further subdivided into the sets

{t B" -S sin2 -< a},

(t B" -S sin2 8 => a}.
On one has

so
li’/rl--Is sin o cos 0l -< Isl /: ls sin2 81 /2 <-

(13) I&l meas _-< T4r-aam
Finally, we .observe that < 0 on and that the monotonicity of S ensures that
g’ {t [0, T]: < 0} is a single (possibly empty) interval [0, 7**]: otherwise there
would be points r, r2 with 0(r) 0(r2) while 0(rx) > 0 > (z2) and r < r2 which
would contradict S(1)-<-S(r2) (alternatively, if $ were differentiable with > 0,
then at a critical point of 0( 0) one would have ’= sin20 >0; the more
general case is obtainable from this by a limit argument). Clearly, then, one cannot
have sin 0 0 in so we many subdivide into the two (possibly empty)
sub-intervals

; {t " O < O <- r/2}, d= {t " zr/2 <- O < ,r}.

Since -S sin 0 cos 0 has opposite signs on , we have I&l max {IN[, [o%1}
and, setting z sin2 O, we have on either of these

1 > z > a/IsI > a/o" z,, 1/Isl _1 sin. O
a

(if o, < a, then fl0 is empty and we may set z, 1). Over " or cg

;   _si_nO_ oSO ol(i/r) J S sin20+1
1 [21sin 0 cos OIdO
J -o:i/s

1 I 2[sin 0 cos OldO
-2 sinO-(1/a) sinzO

-1-1/a
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so

(14) i/2
1-1/a

log 1/z, 1/2
1-1/a

log (max {1, r/a}).

Combining (10), (12), (13), (14), noting that [to tl]’- ,NfUU, and taking the
exponential gives the desired estimate (8). El

Remark 4. The theorem gives Jr/a/r/of exp [C?(trt/Z)] and this is easily seen to
be sharp (tr/z cannot be replaced by tr with 3,<1/2); an example can be
constructed with, e.g., ao al 1 and S -tr on [0, T], S o, on [T, T] where
T (--T >> 1) is determined to satisfy the boundary conditions: 0(0) r/2 0(T).

Remark 5. Observe that any boundary data at t to, tl other than r/o, r/1 can
be obtained directly from these"

(15) By(t)-a(t) [/.B + aia]r#, j=O, 1,

so for i=Biy(ti)-ay(ti)(i=O, 1),

(16) I’ ’14l
and Theorem 5 can be applied.

COROLLARY. Let $ be anyfunction on [to, h] with IsI -< o, and having at most
m "changes ofdirection" (i.e., there exist {-i} with to < ’1 <" < ’, < h, partition-
ing [to, tl] so thatS is monotone on each subinterval); let y satisfy (6), (7). Then with
r, a, c c(tr, a), lo, 11 as in Theorem 5,

(17) Ino/n,I, In,/nol--<c exp [(h-to)V/--aa].

Proof. Let -o=to, 7"m+1t1 and set ti=^yi3)(’i), /i=yiy(’i)with y=
[y2(.) +)2(.)]i/2 so ty(’) +fl) (-) 0; set fly (5.) t)(-).Theorem 6 then
applies to each of the (m + I) intervals [-, ’+i], giving

for ]=0,..., rn whence (17) follows by multiplication on noting that Ir/ol
I, ol,

LEMMA 1. Let w, p, q be positive on [Xo, x] andsuppose A >- 1 is such that there
is a nontrivial solution of

w(py’)’- qy -Ay,
(18)

aOy (Xo) -I- flOy’(Xo) 0 alY (X 1) q" ly’(X 1).

Let S (A q)p/w 1 and suppose aoflo <= 0 <- a11. Then

(19) Isl-<_fA,
where C=[l+Cl(ql/qo-1)] with Cl=max{p/w}, ql=max{q} and qo
min {q} > O.
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Proof. The differential equation (18) gives: (A -q)yE/w =-(py’)’y. Integrat-
ing over [Xo, xa] (integrating by parts on the right), gives

(20) I I I(A-qo) y2/w >- (A-q)y2/w =-py’y]+ p(y,)2.

Since aafll >_-0, the condition at xx in (18) implies y’(xl)y(xx)-<_O and, similarly,
aoflo -< 0 implies y’(Xo)y (Xo) -> O; thus the right hand side of (20) is nonnegative so
A >_- qo. Clearly S <-_ Ap/w _-< CIA while

-S <- 1 +(ql-A)p/w <-A +(q/qo- 1)Ap/w

(since 1 ---h, ql <=(q/qo)h) which proves (19).
Returning, now to our control-theoretic considerations, we let Io be any

simply connected domain (assume 0fo smooth, if not empty) on the unit (n 1)-
sphere in R" (unit circle for n 2) and let f be the region in " given in "polar
coordinates" by

(21) f {x rt: ro < r < r, o}

with 0 < ro < rl. The boundary F 0 consists of the inner]ace F1 {roto: toe lo},
the outer face Fo={rxoo: tos lo}, and (if l is not the entire annulus) the lateral
boundary F3 {rto: ro<=r<-_r, tos 0fo}; set F2 FoUF3.

Geometrically, l is the intersection of the annulus {x: ro < Ix[ < rl} with the
"cone" {rio: oo lo}. It is not hard to see that a setting with control from the outer
face F2 is star-complemented so that Theorem 3 will apply (if a 1 on F1 U F3) to
give controllability. See Fig. 2. Our aim will be to show controllability from the
inner face F1 and also to weaken, somewhat, the condition on (a, ) required by
Theorem 4.

FIG. 2

It is easily seen that such a region f contains trapped waves (in the context of
the wave equation) if the "open" (interactive) portion of the boundary is limited to
the inner face. For example, in the case of an annulus in R one can always inscribe
a regular polygon (having "sufficiently many" sides) in the outer circle r r so as
not to touch the inner circle r ro. Thus, controllability from F cannot be
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obtained for the heat equationmusing Russell’s argument [13] directlymfrom
such controllability for the wave equation since [11] the wave equation setting is
not controllable. Clearly, this geometry can in no sense be considered a perturba-
tion of star-complemented situations and it would appear that any "nearby"
setting must similarly be noncontrollable for the wave equation.

THEOREM 7. Let f be given as in (21), (0, T) x II, Xj (0, T) x Fj and let
[, 1, (a, fl)] with ct =- 1 on E3 and (a, fl) constant on o with ct >-_ O. Then

is controllable for the heat equation. Similarly, * [, ,o, (, fl )*] is controllable if
a*=-i on 3 and (a, fl)* is constanton ,1 with t*fl*>-O.

Proof. Let 0<r<ro<rl<r’ and 0<T,=T-e<T; let o=
{rto: r*o < r < r*, t 12o} and o [(0, T,) x I, o, (1, 0)]. The setting o is
star-complemented and Theorem 4 applies to give controllability. Now o is an
extension of [(0, T,) I)1, 1o, (ce, fl) 1] where Ill ={rto: r*o<r<rl, to Ilo}
and (a, fl) hasa- 1 onE (.J 5;3 and (c,/)1 (a, fl)on so, byTheorem 5, is
controllable. By Theorem 3, this is equivalent to the existence of a constant K
such that

(22) Ilu(T,," )ll-<- Kllll
for all solutions u of (1) in= (0, T,)x I) satisfying homogeneous boundary
conditions (2) on E (using,(ce,/3) 1) for Uo in L2(fl) and with the complementary
boundary data given on E by (3).

The Laplace operator separates in this geometry

02 n-1 1
L

(23)
r Or

(note that L is "purely angular") so we have the expansion

(24) u (t, r) Y a,,A()gi, (r) exp [-Xi,t]
j,k=l

where the {fk} are eigenfunctions of L (i.e., Lfk Vkfk with fk 0 on 01Io; note
that 0 -< Vk "* OO) and the {gj.k, Aj.k} are determined by the eigenvalue problem,for
Bessel’s equation:

rl-n (r"-lg’)’- (Pk/rE)g -Ag,
(25) g(ro) 0, ag(rl)-flxg’(r)=O,

where (al, ill) are the constant values of (a, fl) (i.e., of (re, fl)) on Eo. From (24),
assuming suitable normalization of {fk} and {gi.k},

(26)

2Ilu(T,,.)ll2= W, la,, exp[-2Aj,k(T-e)],

I111=- Y Io* IX rl,ka,k exp [-A,,,t]l dt
k

with j,k the observable complementary boundary data (cf., (25)) for gj.k at r r
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(after "integrating out" f):

r#,, agi,, (rx) + agi(, (r).

Combining (26) with (22) gives

E lai, exp [eAi,][ exp [-2A.,T]
(27)

j,k

T 2

<-g2 , n,a exp [--k,kt] dt

for any set of coefficients {ai,} for which the right hand side is finite.
If one sets

W El--n p En--l q kE-2
on [r, r], then the differential equation (25) has the form (8), while after the
substitution

(28) t= t(r)=[(r) -r-"]/(n 1),

it takes the form (6) on [0, (T t(rO) with

S S(r) (, q)p/w 1 ,r’- 1,,k.r :zn-4.

Note that $’=2[(n-1),r-(n-2)u]r"- can change sign at most once in
[r, r]---i.e., at

r,= -1 <r

if r, >r (note that r, 0 <r if n 2)---so the Corollary to Theorem 6 applies
with m 1. We also apply the lemma to bound ISI by CA, for A Ai, 1, noting
that C is independent of f, k (specifically, of u) since

q1/qo [u (rd)-z]/[u,r-2] (rl/r).
The complementary boundary data we will wish to observe for gj. at r*o will be
(note that the outward normal on F gives 0/0u =-O/Or)

,
rt i,k -gi, (r*o)

and, allowing for the substitution (30) and noting (16), we now have

< c2(Ci, a) e
n,l (r’)"-

for , 1, from which it follows tfiat, for any e > 0,

(29) Iw,/n,*.,l <_- c(e) exp [ex,] for allL k
with C(e) independent of/’, k (for large enough Ai. this is immediate----e.g., with
C(e) 1--and there are only finitely many eigenvalues with Ai. <Mfor any given
M).
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Let z [2, Z, (a, B)z] with z (0, T) 1x, (0, T) x F, and (a, fl)2
such that a z 1 on LJZ and matching (a, fl) on Zo (note that this makes
(a, fl)z constant on E, extending (a, fl)l). To prove observability for z, we need
an estimate [[u (T,.)1[--< Kzl]Ol[, corresponding to (22), where, of course, is the
complementary boundary data Ou/Ou to be observed on Z. We again use the
expansion (24), now on 2 and writing the coefficients as {bj,k} rather than {aj,k},
permitting us to set

for substitution into (27). Then

Ilu Z,. )11= E exp
],k

-<- E [C(e) exp [e,,,]a,, exp [-2Ai,T]

(30) C2(E)K2 k loT* Y rh.,aj,k exp [-,ti.t]
2

12?i,,bi,, exp [-,tj,,t] dt

This gives observability for z and so, reversing the duality argument used above
for 1, 2 is controllable. We observe that the setting ;2 is an extension of ; and
so, by Theorem 5, is controllable.

To obtain controllability for * one would first apply the result proved
so far to (tt [,, tt, 1, (a, )tt] (with tt (0, T.) x -tt, -tt
{rto: ro < r*, o fo}, a*t 1 on E*o* U Era3* and (a,/3)t* constant, matching (a,/3)t,
on Et* = Eta) and then use the same argument as was used in going from to
above, to obtain controllability on the outer face (r r’, 0-<t_-< T) with the
condition given by (a,/3)* on the inner face, after which application of Theorem 5
gives controllability for t.

Remark 6. The requirement that a/3 -> 0 on the passive face was needed, in
the proof, only to obtain the positivity of the right hand side of (20). On the other
hand it seems entirely natural--"physically" it has the interpretation that heat is
radiated away from a warm body--and is quite possibly a genuine requirement
rather than a mere artifact of the proof. Indeed, it seems plausible that boundary
conditions restricted in this fashion might appear in scattering theory to give the
controllability for the wave equation with such a boundary condition (more
generally, one might have a variable, albeit autonomous, dissipative boundary
condition on the passive portion of F) and so provide the controllability for ;t via
Theorem 3.

Remark 7. Strictly speaking, controllability for o in the proof above does
not follow from Russell’s result [14] since F has "corners" (at r r*o, r* for to in
0Oo--unless l) is the entire annulus so 0fo is empty) and so does not satisfy the C
smoothness condition imposed in [14]. That condition, however, appears in [13],
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[14] to permit exploitation of results in [4], [5] and the condition can be weakened
considerably: in particular, it seems clear (especially in view of the separability of
the geometry) that the results used remain valid for domains such as fl, provided
012o is smooth enough.

Remark 8. While the statement of the theorem concludes with controllability
on a spherical face, application of the extension principle shows that one may
control from a more irregular (even time-dependent) boundary surface, if we
consider, as fl, a ball with an internal cavity and wish to control (observe) at the
interior surface, the "wall" of the cavity, with the outer sphere passive, we see
from the above that this is possibleprovided the center of the ball lies in the
interior of the cavity so Theorem 4 can be applied after using Theorem 6 to obtain
controllability from a small internal spherical surface. It remains open, then, as to
whether such control would be possible if the cavity were placed elsewhere in the
ball.

Remark 9. Similar considerations apply to various other geometries in which
the Laplacian is separable (cf., e.g., [8]) and those could presumably be handled by
essentially the same method (only the argument, following (28), to show a uniform
bound on the number of possible sign changes of $’ seems special) but we shall not
pursue this.

4. Continuous dependence. We consider, now, the effect on the optimal
control of varying the boundary patch employed. Letting the region fl, the
boundary conditions (a,/3), and the initial state u0 be fixed, we consider a
sequence of nested boundary patches Fj(F1 = F2 shrinking to a boundary
patch F f’) Fj. Assume that for each [0, T] x F there exists a null-control,
hence an optimal null-control q, in L2(E); we show that qj--> qoo.

TI-IEOREM 8. Let =[., Y,i, (a, )] for] 1, 2,. ., oo as above and assume
there exist optimal null-controls associated with each ofthese andafixed Uo. Then

--> qoo in L2(E).
Proof. Each qi is in L2(E) c L2(E) so, for j* > j, we have E. c Ei so q. is an

admissible null-control for the setting . Hence, by minimality, I1  ,11->11  11
(indeed, by the uniqueness of the optimal control, I1  ,11>11  11 unless
which would mean qy 0 on E\E.). Similarly, II  ll <- I1  11 for 2,... so the
sequence {qi} is bounded; extract any weakly convergent subsequence qi(k) q..
Let A be the bounded linear map from boundary data p in (2) to terminal state
u(T, .) for solutions of (1) with zero initial state so q is a null-control for the state
Uo if and only if A =-uT- where uT- is the terminal state reached from Uo with
homogeneous boundary conditions. For any v in L2(fl),

(q<k), A*v)-->(q,, A*v)= (Aq,, v)
so Acp, -uT- and p, is a null-control. If is any element ofL() with support in
the interior of \o, we have (p<), if) 0 for k large enough that .<) is disjoint
from the support of ; thus, (q,, ) 0 for each such so p, has support in(p,
in L2()). This shows that q, is an admissible null-control for and, as []p,[] _-<
lim infll<)ll-< IIll, we have, by the definition of p, that q,=q and
I1  11 so (see, e.g., [19, p. 124]) q<k)-->qo in L2(5:). Since this holds for some
sub-subsequence of every subsequence of {pj}, we have q-->. 71
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A quite similar argument can be used to investigate the dependence of the
optimal null-control on the length of the time interval [0, T]. Here, to make
comparisons possible, we embed each of the spaces Lz([0, T]x F) for varying
T> 0 in L2([0, o0) X l"). For a fixed boundary patch F and fixed initial state Uo, it
is convenient to introduce N(T)=N(T; Uo)= IIo(T)ll where o(T) is the optimal
null-control in L2([0, T] x F)= L2([0, c)x F) carrying u0 to zero at time T.

THEOREM 9. Let {T [T, I,T, (Ol, )T], where (a, [)T is the restriction to

ET [0, T] x F of (a, t) on E (0, 00) x F and where T [0, T] X l, EX.T
[0, T]XF E =[0, 00)x F. As above, let (T) in L2(.r)c L2(0 be the opti-
mal null-control, assuming this exists]’oreach T> O, associated with thefixed initial
state Uo and N(T) II (T)II. Then N(. is monotone decreasing (hence continuous
except at possibly a countable number of values ot T) and right continuous, with
(0+) oo if uo O. The null-control (T) depends continuously on Tat continuity
points ofNand is right continuous everywhere.

Proof. As embedded in L2(Ex), each (T) is defined for x in F and all t,
vanishing for t > T. Clearly, the solution (on [0, c)x l) determined by (T) is
identically zero for t _-> T so (T) is also an admissible null-control for ST* with
T* > T; thus lifo T)11--> (T*)II by the optimality of o (T*). (Indeed, T)11--

(T*)II would imply q (T) q (T*) so q (T*) would vanish for t > T; see Remark
11, below.) This shows N is decreasing. Now let T. T and set 0i p (T.). By the
monotonicity of N, II ;ll is bounded by N(T) for all but finitely many/’; extract a
weakly convergent subsequence Oi(k---" q,. Clearly q, vanishes for t > Tsince, for
any T> Tone has 0i(k vanishing for t > T for almost all k. Now choose any T> T
and let A be the bounded linear map from boundary data 0, defined for 0 -< -<_ T
(note that almost all q’(k vanish for t => ’--with no loss of generality, we assume
this is true for all kand so may be considered as elements of L2(EI,f)), to
"terminal" state u(2, for solutions of (1) with zero initial state; let t be the state
at t " reached from Uo with homogeneous boundary conditions so A,q(k =--t
for each k. For any v in L2(f).

(0ik, A’v) (q,, A’v) (Aq,, v)

so the solution u, of (1) with q. used in (2) and initial state Uo will vanish at t 7.
Considering u. on IT, T] x f, we note that it satisfies homogeneous boundary
conditions on IT, T] x F so, by uniqueness for the backward heat equation, u, -- 0on IT, 7]x fL In particular, u. vanishes at t T so o. is a null-control for the
setting {T. We have [[,[[<--liminfllOi<k)[[=liminfN(T.<k)). If T.T+ then
lim sup N( T,.<,)) _-< N(T) II T)II and if T is a continuity point of N(. then
lim N(T.<k)) N(T) (T)II; in either case II ,ll--< (T)11 which, by the definition
of q (T), implies II’.[I lifo (T)II and q. q (T). Since (T)II we have, as
before, Oik,(T) in L2(E). Since this holds for a sub-subsequence of every
subsequence of {o}, one has q(T)(T) as T T+ or as T. T with T a
continuity point of N. It is clear from this that N is right continuous. Taking
T= 0(T. 0+), we see that if a bounded sequence N(T) were to exist then the
same argument would provide a null-control . vanishing for t >0 which is
impossible if u0 0.
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Remark 10. The uniqueness for the backward (homogeneous) problem on
T=< t =< T is used in the proof. For (a, fl) autonomous, this is easy to obtain: letting
{(ei, -Ai)} be the eigenpairs for the Laplacian on fl with homogeneous conditions
(2), solutions of (1) with homogeneous boundary conditions have the representa-
tion

u(t, x) ,ci exp [-A/t] ei(x), T<-_t<-_ T, x

Since {ei} may be assumed orthonormal, u(,. )= 0 implies that each coefficient
ci 0 so also u(T,.)= 0. For nonautonomous (a, fl) this backward uniqueness
must be obtained by another argument (or assumed).

Remark 11. As noted in the proof above, Nwill be strictly decreasing if it can
be shown that the optimal control p (T*) cannot vanish on any nontrivial interval
(T, T*). Using the characterization given by Theorem 3, that an optimal control
q q(T*) is an element of the subspace( (T*)) in L2(,I,T*), we see in the
autonomous one-dimensional case (fl an interval in so F is, e.g., a single
endpoint) that is a real analytic function of t on [0, T*) (elements of are here
representable as Dirichlet seriescf., e.g., [16]and we may apply results of
[15]). In n-dimensional situations, however, we see that for (a, fl) autonomous
the solution semigroup for (1) is analytic (see [2]) so elements of are analytic in t
but it is not certain that this property holds for the closure . One would like to
know that if q isthe limit in L2(2I,T) of complementary boundary data (given by
(3)) of solutions in [0, T] x fl of the adjoint equation

(31) -ti =Au,

then there is a solution u of (31) on[0, T)f (i.e., on[0, 7] x El for every 7< T)
whose complementary boundary data is just q; this would, of course, imply the
real analyticity in t of controls, guaranteeing that (T*) could not vanish for
T< < T* unless it were identically zero (impossible unless Uo 0) so that N
would have to be strictly decreasing.

Remark 12. For an autonomous problem, let $(. be the solution semigroup
associated with homogeneous boundary conditions (2). It is well known that S is a
contraction semigroup with Ils(t)ll--< e-" (some c > 0) if a# 0 (i.e., other than the
Neumann problem). Suppose the setting is null-controllable for every T> 0, so
for any fixed T there is a constant CT such that the norm of the null-control ,
carrying a state u, at time T to zero at time (T + T) is bounded by c llu,II (as the
problem is autonomous, CT may depend on T but not on Ta). Given any initial
state u0, we may let the problem proceed uncontrolled to time T1 (i.e., 0 0 for
0 < t < T) obtaining the state u. S(Ta)uo and then control optimally to zero for
T < t _-< T + T by q.; thus, the null-control q (for 0 _-< t -< T1 + T) is given by

and

0, O<=t < t,q(t,.)= qg.(t-T1,’), T<=t<-TI+T,

I1 11: Ik0,11 CTIIS( T )uoll CT e- T IIUoII.
Since the optimal control on [0, T + T] has norm less than that of this q, we see
that in this case the norm of the optimal null-control must decay (at least)
exponentially as the control interval increases.
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STATIONARY PROBABILITY DISTRIBUTIONS
FOR LINEAR TIME-INVARIANT SYSTEMS*

JAKOV SNYDERS"

Abstract. Existence and properties of stationary probability distributions for the output vector of
linear time-invariant systems perturbed by white noise are examined. It is shown that a necessary and
sufficient condition for existence of such probability distribution is unobservability of the noise
controlled unstable modes of the system. In particular, there exists a Gaussian stationary distribution
for the output process under the above condition. This is the unique stationary probability distribution
if and only if, in addition to the previous condition, all modes corresponding to zero or an imaginary
characteristic value are unobservable. Convergence in distribution of the output process is examined,
and equivalence of a given system and its dual (transposed system) with respect to existence of
stationary probability distributions for their output processes is demonstrated.

1. Introduction. Consider the state vector x, taking values in an n-space
and an output m-vector y satisfying

dx(t)=Ax(t)dt+Bdw(t), x(0) =Xo,
(1)

y(t)= Cx(t),

where w is the standard q-dimensional Brownian motion, and x0 is independent
of {w(t); t _-> 0}. Thus, the output process y is determined by the matrices C,A and
B that represent a linear time-invariant system, and by the probability measure
Pxo(" induced on o,, by the initial state value x0. This paper deals with station-
arity of the probability measure induced on the m-space ,,, by y, i.e. a probability
measure satisfying Py,(dy)= Pyo(dy) for all t >0, where Py,(. is the measure
induced on ,, by y(t). Necessary and sufficient conditions for existence of such
measure are derived and its properties are investigated.

Stationary probability distributions for a state process were extensively
ihvestigated; their existence is often regarded as a kind of stability for the system
considered [1], [2], [3], [10]. Results pertinent to the linear system [1] and
particularly to the presentation here appeared in [4], [5], and [6], where stationary
probability distributions for x or, equivalently, for y under the restriction that C is
a nonsingular square matrix, were explored. Dym [4] actually attacked the case of
an nth order scalar valued differential equation using state representation, and his
results were utilized in [6] for treating the problem that corresponds to any pair
(A, B) of matrices. Here we deal with the general case represented by (1).

It is proved in 3 that a stationary probability distribution for y exists if and
only if the noise-perturbed unstable modes of the system are unobservable, and
several other equivalent conditions are given. The covariance matrix of such
distribution, provided it is finite, is shown to satisfy certain equations that can be
reduced, by appropriate transformation of coordinates, to an algebraic Lyapunov
equation. In 4 The structure of possible stationary measures is examined, and in
particular conditions for uniqueness are obtained. It is also shown that the system
(C, A, B) and its dual (B’, A’, C’), where a prime denotes transposition, are either

* Received by the editors February 12, 1976, and in revised form July 21, 1976.
f School of Engineering, Tel-Aviv University, Tel-Aviv, Israel.
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both stable or both unstable in the sense of existence of a stationary probability
distribution for their output processes.

2. Preliminaries. Let F be a map (linear transformation) or any of its matrix
representations. The image of F is written imF, and ker F= {x;Fx 0}. The
restriction of F to an F-invariant subspace St’ is denoted FlY. If St’ is some
subspace, 6e- will stand for its orthogonal compliment. Consider now the maps A,
B and C in (1). The controllable subspace (A [B) and the unobservable subspace
W’(C, A) of ,,, associated with (A, B) and (C, A), respectively, are defined by
(AIB> Y’.j=I AJ-’(im B) and W’(C, A) f’l= ker (CAi-). Let &+, o and be
factors of the minimal polynomial ofA having roots exclusively with positive, zero
and negative real part, respectively. Thenn is decomposable into the direct sum,, /(A)’(A)-(A), where X(A)= ker X(A) with standing for any
superscript. We write /(A) for ,T(A)+(A). Note that in the notations
introduced above for various subspaces of , there is no need to indicate
explicitly (e.g. by a subscript n) the dimension of the space being considered.
Re ()t) and Im (A) stand, respectively, for the real and imaginary parts of a
number A.

Direct application of ItO’s formula to (1) verifies that

(2) y(t) Ceatxo + CeA(t-s)n dw(s).

The two terms on the right hand side of (2) are independent, and the second one is
Gaussian with zero mean and covariance function K(. given by

(3) K(t) CeASBB eA’sC ds,

where a prime denotes transposition. Let f(.) be the characteristic function of
Pxo(" defined by

f(v) E{exp (iv’x)}= f exp (iv’x)Pxo(dx).

Then by (2),

(4) E{exp (iu’y(t))} E(exp (iu’Ceatxo)} exp {-1/2u’K(t)u}

fo.r.any u ,. Assuming that the probability measure induced on ,, by y is

stationary, we have

E{exp (iu’y (t))} E{exp (iu’Cxo)} l(C’u),

and consequently,

1 aBB’ea’C(5) [(C’u) f(ea’C’u) exp -- u Ce ds u t >-0,

for all u ,,. Stated otherwise, the characteristic function g(. of any stationary
probability measure induced on ,, by y may be represented in the form
g(u)=f(C’u), where f(. is some characteristic function in n variables that
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satisfies

{ [I0 ] }1
v’ BB’e’(6) [(v) (e’v) exp - e ds v >-_ 0,

for all v im C’.
Assuming further that xo has a (finite) covariance matrix Do, we see that it

follows from (2), that

E{[y (t)-Ey(t)][y(t)-Ey(t)]’}= CeatDoea"C’+ K(t);.

hence

(7) CDoC’ CeatDoea’C + CeaBB’ea’’C ds, >- 0.

By differentiation we obtain

(8) CeA(ADo+DoA’+BB)eA’c’=o, t>=O,

and, conversely, (8) implies (7). Consequently, (7) is equivalent to the familiar
Lyapunov equation

(9) ADo+DoA +BB’ 0

if and only if W’(C,A)=0. Thus (9) is applicable for obtaining any possible
covariance matrix of a.stationary probability distribution for x, and in turn for y,
whenever W’(C, A)= 0. There exists a nonnegative definite solution Do to (9) if
and only if T-(A) (A[B), and uniqueness of this solution is assured if and only if,
in addition to the previous condition, A has no characteristic value with
zero real part [7]. As a general approach for handling (7), one perhaps tends to
replace (9) by

C(ADo+DoA +BB’)C’ O.

However, this equation is not equivalent to (7) unless ker C 0 and, moreover, it
may possess a nonnegative definite solution even if there is no nonnegative
definite solution to (7), as seen by Lemma 1 of the next section and the example
C= (1 1), A diag (-1, 1), B (1 1)’, Do diag (2, 0).

It follows that for the general case a time-independent counterpart of (9),
stated explicitly in terms of A, B and C is not available, excluding, of course, some
set of n equations derived from (8). An alternative that may be useful is the
following: if D(. is a function satisfying

(10) -fftD(t)=AD(t)+D(t)A’+BB D(0) Do,

(11) d-d-cD(t)C’ O,
dt

then Do solves (7) and, conversely, for any solution Do to (7) there exists a
function D(. satisfying (10) and (11). Indeed, by (10),

_s{ A(t_s)O(s)eA’(,-s)} ea(t-S)BB,eA,(,-s)
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integration yields

(12) D(t) eAtDoeA’t + eA(t-S)BB eA’(t-s) ds,

and (7) follows according to (11). Conversely, if Do solves (7) then D(. defined
by (12) satisfies (10) and (11). Obviously, if in (12) Do stands for the covariance
matrix of Xo, then D(t) is the covariance matrix of x(t), t > O.

3. Existence of a stationary measure. It is straightforward to check that if Do
is a nonnegative definite solution to (7), then a Gaussian random vector Xo with
zero mean and covariance Do induces, through the resulting output process y, a
stationary probability measure on ,. Also, existence of a nonnegative definite
Do is obviously necessary for existence of a finite-covariance stationary probabil-
ity measure that is induced on , by y. The last statement is strengthened by
Lemma 1 and Theorem 1 below, namely, the condition applies to all stationary
probability measures for y. Hence, as anticipated by linearity of the system and the
Gaussian nature of the input, existence of any stationary probability distribution
for y implies the existence of a Gaussian one. It is appropriate to mention that, in
general, there is no need to set EXo 0 for obtaining a constant-mean (e.g.
Gaussian) process: Ey(t) is constant if and only if EXo Ac(CA, A) i.e. if and only
ifA (EXo) At(C, A ). In particular this condition is satisfied if EXo is unobservable.

LEMMA 1. The following conditions are equivalent:
(a) There exists a nonnegative definite matrix Do satisfying (7).
(b) limt_, CeASBB’A’sC’ds exists.
(c) limt_, CeAB=O.
(d) ker C =,+(A) f’l (A IB).
Proof. Trivially (a) implies (b) and (b) implies (c). Now suppose that (d) does

not hold. Since +(A)tq(AIB) is an A invariant subspace of ,, there exists
x s (A [B) such that Ax Ax where Re(A) => 0 and Cx O. Thus CxAtx eAtCx

j-1oes not converge to zero as t--, oo. However, we also have x ’/---1A BZj or
some z ,, j 1, 2," , n, yielding

’ dCeAtx CeAtB)Z]+
i=0

Assuming that (c) is satisfied, each entry of a time derivative of CeAtB is a linear
combination of decreasing exponentials with polynomial coefficients, and conse-
quently limt_o CeAtx "-O. For completing the proof it remains to show that (d)
implies (a). Selecting a basis for such that

(13) C=(0 C2) A= (A011 A12) B= (Bt)A22 BE

where A11 A [,+(A) f’l (A IB), and setting

(14) Do=
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into (7) we see that

(15) CzD22C’2 C.eA22tD2.eAtC’2 + C2eA22SB2B’2eA2sC’2 ds,

This equation is solved by D22 0 eA22SB2BzA2s ds, where the integral con-
verges since Azz[(Azz[B2) is stable according to (d). Dll and O12 in (14) are set
equal to zero.

As demonstrated by the proof, in general (7) possesses many nonnegative
definite solutions: Dx and D12 may be arbitrarily selected as long as nonnegative
definiteness of Do is maintained, and (15) may possess many solutions, partly
because ker C22 may be different from zero. For a given Do equations (10) and
(11) have a solution, obviously unique, if and only if (d) holds. Moreover, it is
easily seen that under this condition (10) and (11) can be reduced, by appropriate
selection of coordinates, to a time-independent Lyapunov equation that is
applicable for Obtaining any possible covariance matrix of a stationary probability
measure for y.

THEOREM 1. The process defined by (1) possesses a stationary probability
measure if and only if
(16) kerC+(A)
or, equivalently, if and only if
(17) imBc-(A)+W(C,A).

Proof. Assume that the measure induced by y on o,, is stationary and (16) is
violated. Then by Lemma 1 there exists z ,,, such that z’(to ceasBn’ea’C ds)z
does not remain bounded as t-oo. Setting u =az into (5) where a is a real
nonzero number we thus conclude [(aC’z)= 0. Hence by continuity of charac-
teristic functions in the real variable [8, p. 194] it follows that [(0)=0, in
contradiction of ]’(0)= 1. Thus, the necessity of (16) is proved. Sufficiency of (16)
follows by Lemma 1 and the discussion preceding it. For showing the equivalence
of (16) and (17), we observe first that ker C and im B may be replaced, respec-
tively, by W(C, A) and (AIB). Assuming (16) we obtain the modified version of
(17) as follows:

(18) (A IB) -(A) 1"3 (A IB)+(A) {A IB) -(A) +W(C, A),

whereas if (17) holds then

+(A) (A IB) c +(A) (q [-(A) +W(C, A)] +(A) (3 ,A/’(C, A),

and consequently

(19) A+.(A 1"3 (A IB) = w(c, A).

Interpretation of Theorem 1 is straightforward, and may be stated in view of
(18) and (19) as follows: there exists a,stationary probability distribution for the
output process of a linear system if and only if every controllable vector is the sum
of a stable vector and an unobservable vector or, equivalently, every vector that is
both controllable and unstable is unobservable. It should be noted that these
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conditions are also necessary and sufficient for existence of a second-order
stationary output process [9].

4. Some lrOlerties. Since limt_,o CeAtB 0 if and only if limt_,o B’eA"c
0 it follows by Lemma 1 that the system (C, A, B) and its "dual", i.e. transposed
system (B’, A’, C’) have the following common stability property.

TI-mOg 2. Let the process be given by

d(t) A’Yc(t) dt + C’ dff(t), Yc(O) o,
(20)

(t)=B’(t),

where A, B, Care as in (1) and ff is the standard q-dimensional Brownian motion
such thato is independentof {ff(t); t >-O}.Eitherboth y of (1) and of (20) ornone
of these processes possess a stationary probability measure.

Note that.equivalence of (16) and (17) is related to the above result. By
Lemma 1, (16) is satisfied if and only if

ker B’ =+(A’) f’) (A’[C’),
and since

(ker B’) im B, [+(A’)f3(A’[C’)]+/-=-(A)+W(C,A),

the conclusion follows.
Let S W(CA, A +Yx>0 W(C(A +, 1), A where I is the identity matrix.

Then 6e is an A-invariant subspace of ,, and 5f (A)f)5+W(C, A). Hence
C() C((A f’) ) c C(c(A)).

THEOREM 3. Let g be the characteristic function of a stationary probability
measure for y of (1). Then g(u) g(u)gz(u), where

(21) _1 u(I CeA,BB,eA,,c dt)u}gx(u)=exp {
and g2 is the characteristic function ofa stationary probability measure ]:or y of (1)
with B O. Conversely, if gl and g2 are as above, then their product glg2 is the
characteristic function ofa stationary probability measurefor y of (1). Furthermore,
the support of the measure corresponding to g is C((A [B)), and the support of the
measure corresponding to g2 is included in C(Y).

Proof. Assuming existence of a stationary probability measure, write g(u)=
f(C’u) where f is a suitable characteristic function. According to Lemma 1 and
Theorem 1 the integralin (21) converges, and by (5),

f(C’u) g(u) lim f(eA’tC’u).
oo

Set g2(u)=f2(C’u) where f2(C’u)= lim,_,oo f(eA’tC’u). Then g2 is a characteristic
function in view of the continuity theorem [8, p. 191], andf2 obviously satisfies the
following version of (6)"

(22) f2(v)=f2(eA’tv), t>--0,

for all v im C’. Turning to prove the converse statement let g2(u)=f2(C’u)
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where f2 is a suitably selected characteristic function satisfying (22,). Then
g(u) =f(C’u) where f is a characteristic function, and

1 ABB’eA’c’ ds)u}f(eA"C’u)= g2(u) .exp{-u’(i Ce

g2(u)g(u) exp {u’(Io CeABB’eA’c ds)u}.
Consequently/ satisfies (6).

We shall examine the support of the measure corresponding to gl by selecting
a basis for n such that

c=(0 c c),

where

A A22 Az3], B=
0 A33,I

AI A I’+(A fq (A IB), A:2 A I-(A f) (A IB).

Then g(u)=exp{-1/2u’C2LC.u} where L=0 eA22tn2BeA(z2tdt is positive
definite. The characteristic function O(v)= exp {-1/2v’Lv} corresponds to a zero
mean Gaussian measure with support -(A) f3 (A IB); hence the conclusion
follows according to

C((A IB)) C(-(A CI (A IB),+(A t"I (A IB))
C(-(A) 71 (A IB)).

Assume now B 0 and observe that (22) implies

(23) f2(v) f2(eA"v)
for every real t and v(A’IC’). Setting v-(A’)f3(A’IC’) and v e
+(A’)CI(A’IC’) and evaluating the limit as t00 and t -00, respectively, it
follows in both cases that f2(v)=/2(0)= 1. Hence the support of the measure
corresponding to gz is included in

C({[-(A ’) U(A ’)] (] (A ’1C’)}-) C(T(A +W(C, A)) C($T(A )).

For proving the stronger statement claimed in the theorem, consider a chain of
generalized characteristic vectors pi; ] 1, 2,. , s, of A’, i.e.,

A ’px iAp,

A ’pi iApi +Pi-, ] 2, 3,. , s,

where A is real. For a member Pk of this chain

t2 tk-2 tk-aeA"e-iX’pk =Pk +tpk-X+Pk-2+ +(k’LziJiP2+(’ i)’!pl,
and if Re (Pk), Im (Pk) (A’IC’) then Re (pj), Im (pj) (A’IA’C’) provided A 0,
whereas otherwise Re (p.), Im (pi) e (A’I (A 2 +A 2/)’C’), for ]= 1, 2,..., k 1.
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According to (23),

f2\ "tk- "Re {e
(k- 1)! (k- 1)! k-t 1

and by letting t- o this equation yields

(24) /2(Re (P0)= rE(0)= 1.

Similarly

tk_2 ",Re{e (k-2)! ( -2)!

Pk .1. k-3’ Pk-1 q-" q’P2
t

where the second equality is due to (24), and by letting t eo it follows that
/2(Re(p2)) 1. This procedure shows that f2(Re (pi))= 1,/" 1, 2,. ., k- 1, and
the same technique yields fE(Im(pi))=l, ]=1,2,...,k-1. Now
{A’l(A2+AEI)’C’)+/-=a4f(C(A2+A2I),A)+kerqb(A;A) if A 0, and a similar
equality holds for {A’IA’C’)+/-, where b(A; is the minimal polynomial of A
divided by its factors having roots + iA hence the conclusion follows.

For obtaining further details about the support of the measure corresponding
to g2 we use a representation

C--(0 C2) A=(A0 AI2
A22]’

whereA A I/’(C, A). The measure’s covariance matrix, provided it exists, is
given by C2DC&, where D is a nonnegative definite solution to the equation

(25) A22D +DA ’22 O,

and the support of the’measure is contained in a hyperplane of ,, with dimension
rank (C2DC&). Investigation of (25) reveals [7] that

rank (C2DC’2) rank (D) t + 2/,

where t and/ are integers satisfying

0 _-< t _-< dim (ker A22),

0<2/ <dim ( > ker (A222 +A2/))
A 0

and evidently

dim (ker A22)= dim (.,V(CA, A))-dim ((C, A)),

dim ( ker (A2+A2I)/= dim (Se) -dim ((CA, a)).
\A>0 /

We also have the following result, obtainable by considering Gaussian measures
with covariance matrices that satisfy (25).
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THEOREM 4. Let y be given by (1) with B 0, let and .9.(A), A > 0 be
subspaces of W(CA, A) and W(C(A 2 +A 213, A ), respectively, and let z
C(W(CA, A)). There exists a stationary probability measure ,1 for y such that the
support o[1 shifted by z is C(+Y.A>o (A)). in particular, there exists a stationary
probability measure for y with support C(S’).

By Theorem 3 and Theorem 4, there exists a unique stationary probability
distribution for y of (1) if and only if, in addition to (16), C(Se)= 0.

COROLLARY 1. There exists a unique stationary probability distribution for y of
(1) if and only g

ker C=e(A)[+(A) tq(AIB)].

Furthermore, this distribution is Gaussian with zero mean and covariance K(c),
where K is given by (3).

Let gt,xo(" be the characteristic function of the transition probability for y,
i.e., gt.xo(U) E{exp iu’y(t)lx(O) x0}. Then

g,o(U) exp (iu’CeAxo-1/2u’K(t)u),
where K(t) is given by (3). Hence the probability distribution of y(t) converges as
t for all Xo n if and only if both (CA, A) +(A) and (16) are satisfied.
This yields the following result.

TI-IEORE 5. y(t) given by (1) converges in distribution as ta3 ]’or any
y (0) im C ifand only if
(26)

and

(27)

ker C=+(A))[(A) fq <A IB>]

ker CA A
COROLLARY 2. There exists a probability distribution tz such that y (t) given by

(1), starting at any y(0) im C, converges in distribution to Iz as to ifand only if
ker C=+(A).

Note that (A) and +(A) in (26) and (27) may be replaced, respectively,
by kerA and (A), where ] is the order of the zero factor in the minimal
polynomial of A, and +(A)=(A))kerAj. Of course, (26) and (27) are not
necessary for convergence in distribution of y(t) as t - for all x(0) /,/, where
is a set of initial state values such that im C C(/). Instead, it is necessary and
sufficient to have (16) and

(28) im C C(-(A +W(CA, A)).

Obviously, (28) is a considerably milder requirement than C(6e)= 0.
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MONOTONE MAPPINGS WITH APPLICATION IN
DYNAMIC PROGRAMMING*

DIMITRI P. BERTSEKAS"

Abstract. The structure of many sequential optimization problems over a finite or infinite horizon
can be summarized in the mapping that defines the related dynamic programming algorithm. In this
paper we take as a starting point this mapping and obtain results that are applicable to a broad class of
problems. This approach has also been taken earlier by Denardo under contraction assumptions. The
analysis here is carried out without contraction assumptions and thus the results obtained can be
applied, for example, to the positive and negative dynamic programming models of Blackwell and
Strauch. Most of the existing results for these models are generalized and several new results are
obtained relating mostly to the convergence of the dynamic programming algorithm and the existence
of optimal stationary policies.

1. Introduction. It is well known that dynamic programming (D.P. for short)
is the principal method for analysis of sequential optimization problems. It is also
known that it is possible to describe each iteration of a D.P. algorithm by means of
a certain mapping which maps the set of extended real-valued functions defined
on the state space into itself. In problems with a finite, say N, number of stages,
after N successive applications of this mapping (i.e. after N steps of the D.P.
algorithm) one obtains the optimal value function of the problem. In problems
with an infinite number of stages one hopes that the sequence of functions
generated by successive application of the D.P. iteration converges in some sense
to the optimal value function of the problem. Furthermore it is possible to define
the optimization problem itself in terms of the underlying mapping.

To illustrate this viewpoint let us consider formally the deterministic optimal
control problem of finding a control law, i.e. a finite sequence of control functions,
ff {0, /dl," ’, dN--1} which minimizes

N--1

() J(xo)= g[x,z,,(x)]
k=0

subject to the system equation constraint

(2) Xk+l f[Xk, IZk(Xk)], k O, 1,’" ", N- 1.

The states x belong to a state space S and the controls #(x) are elements of a
control space C. The initial state Xo is known and f, g are given functions. The D.P.
algorithm for this problem is given by
(3) o(X)=0,

(4) Jk+(x)=inf{g(x,u)+Jk[](X,U)]}, k=0,’" ,N-l,

and the optimal value of the problem J*(xo) is obtained at the Nth step of the D.P.
algorithm

J*(xo) inf J,(Xo) Jr(Xo).

* Received by the editors December 3, 1974, and in revised form July 1, 1976.
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Illinois, Urbana, Illinois 61801. This work was carried out at the Coordinated Science Laboratory and
was supported by the National Science Foundation under Grant ENG 74-19332.
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One may also obtain the value J=(xo)
{/A0, 1," ff,N--1} by means of the algorithm

(5)

corresponding to any

(6)

]o,=(x)=0,

Jk+a,=(x)=g[x, k(X)]+Jk,,[f(X,/-k(X))], k =0,’’’ ,N-l,

:(Xo) :l,,(Xo).

Now it is possible to formulate the problem above as well as to describe the
D.P. algorithm (.3), (4) by means of the mapping H given by

(7) n(x, u, J)= g(x, u)+J[f(x, u)].

Let us define the mapping T by

(8) T(J)(x) inf H(x, u, J),

and for any function x" S C the mapping T, by

(9) T, (J)(x) H[x,/z (x), J].

Both T and T, map the set of real-valued (or perhaps extended real-valued)
functions on S into itself. Then in view of (5), (6) we may write the cost functional
J=(x0) of (1) as

(1 O) J= (Xo) (T,oT, T.,,,_)(Jo)(Xo),

where Jo is the zero function on S(Jo(x)=O, /x S), and (T,oT,I...T,N_I)
denotes the composition of the mappings T,o, T,1, , T,,_. Similarly the D.P.
algorithm (3), (4) may be described by

(11)

and we have

(12)

Jk+l(x)= T(Jk)(X), k =0, 1,". ,N-I,

J*(xo) inf J,(Xo) Tr(Jo)(Xo),

where TN is the composition of T with itself N times.
One may consider also an infinite horizon version of the deterministic

problem above whereby we seek a sequence r {/x0,/x 1," "} that minimizes

N--1

(1"3) J,.,.(Xo) luim,,,, Y. g[Xk, IXk(Xk)]
k=0

subject to the system equation constraint (2). In this case one needs, of course, to
make assumptions which ensure that the limit in (13) is well defined for each r and
x0. A primary question of interest is whether the optimal value function J*
satisfies Bellman’s functional equation

J*(x) inf {g(x, u) +J*[f(x, u)]}

or equivalently whether

Y*(x) T(J*)(x) tx e S,



440 DIMITRI P. BERTSEKAS

and J* is a fixed point of the mapping T. This question has been answered in the
affirmative for broad classes of problems [1], [3], [6], [11]. Other questions relate
to the existence and characterization of optimal policies. It is also of both
computational and analytical interest to know whether

(14) J*(x) lim TN(jo)(X) Vx S.
N---

When (14) holds, the D.P. algorithm yields in the limit the optimal value function
of the problem. While (14) holds in discounted and positive dynamic program-
ming models [1], [11], it has been proved only under restrictive finiteness
assumptions for the negative model of Strauch (see [11, Thm. 9.1]). In fact for
such models (14) may easily fail to hold as the following example shows:

Example. Let S [0, o), C (0, ) be the state and control spaces respec-
tively. Let the system equation be

Xk+l 2Xk + Uk, k O, 1, ,
and let the cost per stage be defined by

g(x, u)=x.

Then it can be easily verified that

J*(x) inf J,(x) +oo /x S

while

TN(Jo)(O)=O VN= 1, 2,"’.

The deterministic optimization problem described above is representative of
a plethora of sequential optimization problems of practical interest which may be
formulated in terms of mappings similar to the mappingH of (7). A class of such
problems has been formulated and analyzed by Denardo [4]. His framework
however is restricted by contraction and boundedness assumptions which pre-
clude the use of his results in many types of problems.including the positive and
negative models of Blackwell [3] and Strauch [11]. The purpose of this paper is to
provide a broader framework than the one of Denardo which includes in
particular positive and negative models. Questions such as those described above
for the deterministic problem are analyzed in this broader setting. Most of the
existing results On positive and negative models are generalized. Some entirely
new results are also obtained, most notably a necessary and sufficient condition for
convergence of the D.P. algorithm (Proposition 11). This result yields in turn
powerful a priori verifiable sufficient conditions for convergence of the D.P.
algorithm as well as for existence of an optimal stationary policy (Proposition 12).
Since under our assumptions we cannot rely on contraction properties, the line of
analysis is entirely different from the one of Denardo and utilizes primarily the
monotonicity of the mappings involved.

2. Notation and assumptions. The following notational conventions will be
used throughout the paper:
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1. S and C are two given nonempty sets referred to as the state space and
control space respectively.

2. For each x S there is given a nonempty subset U(x) of C referred to as
the control constraint set at x.

3. We denote byMthe set of all functions/z: $ Csuch that tz (x) U(x) for
all x S. We denote by II the set of all sequences 7r ={o,/zl,"" "} such that
/Xk M for all k. Elements of II are referred to as policies. Elements of II of the
form zr {/z, , .} where/z M are referred to as stationary policies.

4. We denote

F: The set of all extended real valued functions J: S [-o, ].
B: The Banach space of all bounded real-valued functions J: S (-oo, oo) with

the sup norm "11 defined by

IIJ’ll IJ,(x)l w B.

The unit function in F will be denoted e [e(x) 1, Vx S].
5. For all J, J’ F we write

J J’ if J(x) J’(x) Vx $,

J<-J’ ifJ(x)<-_J’(x) YxS.

6. For any sequence {Jk} with Jk F for all k we denote by limk-, Jk the
pointwise limit of {Jk} (assuming it is well defined as an extended real-valued
function), and by lim infk-,oo Jk the pointwise limit inferior of {Jk}. Throughout the
paper the convergence analysis is carried out within the set of extended real
numbers, i.e. +c or -oo are allowed as limits of sequences of extended real
numbers. For any collection {Ja la A } cFparameterized by the elements of a set
A we denote infa Ja the function taking value inf,,A J(x) at each x S.

7. We are given a mapping H: S x CxF [-, +oo] and we define for each
/z M the mapping T,: F-F by

(15) T. ()(x) H[x, z (x), ] Vx S.

We define also the mapping T: F F by

(16) T(J)(x) inf H(x, u, J) Vx S.
U(x)

We denote by Tk, k 1, 2,. , the composition of T with itself k times. For
convenience we also define T(J) J for all J F. For any 7r {/Zo, 1," "} II we
denote by (T,oT,I...T,k) the composition of the mappings T,o,..., T,k,
k=0,1,....

The following assumption will be in effect throughout the paper.
Monotonicity assumption. There holds for every x S, u U(x), J, J’ F,

H(x, u, J) <= H(x, u, J’) if J <= J’.
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Notice that the monotonicity assumption implies the following relations:

_-<Y’ T(J) -< T(’) W, ’ F,

J<=J’T.(J)<-_T.(J’) VJ, J’F, tzM.
We shall make frequent use of these relations.

3. Problem formulation. We are given a function J F satisfying

J(x >-oo Yx S

and we consider for every 7r {go,/x, .} II the function J F defined by

(17) J,(x) luimoo (T,o.T, T,,,_)(J)(x) Vx S.

We refer to J as the value function of zr. Under the assumptions that we will
introduce shortly J is well defined. Throughout the paper we will be concerned
with the optimization problem

(18) minimizeJ,(x) subject to ,r II.

The optimal value of this problem for a fixed x S is denoted by J*(x),

(19) J*(x) inf J(x).

We refer to the function J* F as the optimal valuefunction. We say that a policy
r* II is optimal at x S if J,.(x)= J*(x) and we say that a policy zr* II is
optimal if J,. J*. For any stationary policy zr (/z,/z,. .} II we write J, J,.
Thus a stationary policy ,r* {/x*,/x*, .} is optimal if J* J,..

For every result to be shown one of the following three assumptions will be in
effect.

Assumption C (Contraction assumption). The functions J, T(J), and T, (J)
belong to B for all/z sMand Js B, and for every ,r {/Xo, , "} s H the limit

lim (T,oT,,... T,_)(J)(x)
Noo

exists and is a real number for each x S. Furthermore there exist a positive
integer m, and scalars p, a with 0 <p < 1, 0 < a such that for all J, J’ B there
holds

(20)

(21)

(22)

(23)

IIT.( -

II(T.o, (T.o
--<all.r-.rll m-M.

Assumption I (Uniform increase assumption). There holds

J(x <- H(x, u, J) Vx S, u U(x).

Assumption D (Uniform decrease assumption). There holds

J(x >- H(x, u, J) Vx S, u U(x).
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It is easy to see that under each of these assumptions the limit in (17) is well
defined as a real number or +oo. Indeed in the case of Assumption I we have
using (22)

(24) J <= T,o(J) <= (T, T,,)(J) <=... <= (T,o Ttzl TuN_I)(J) =<

while in the case of Assumption D we have using (23)

(25) J>-_ ro(J)>=(rorgl)(J)>= ->(r.or.l" T.N_I)(J) ->

In both cases the limit in (17) clearly exists for each x S.
A large number of sequential optimization problems which are of interest in

practice may be viewed as special cases of the abstract problem formulated above.
We provide below some examples. Several other examplescan be found in the
author’s textbook [1], and in the paper by Denardo [4] who considered a
somewhat different problem under assumptions similar to Assumption C.

1. Deterministic optimal control problems with additive cost functional.
N--1

(26) minimize lim Z akg[xk, tXk(Xk)]

subject to

x+a =f[Xk, (x)], /x M, k--0, 1," ".

If we define

(27) H(x, u, J) g(x, u) + aJ[f(x, u)],

then problem (26) is equivalent to our abstract problem (18) for J(x) O, Vx S.
Assumption C is satisfied if 0 < a < 1 and g is uniformly bounded, i:e., there exists
a scalar b > 0 such that

(28) Ig(x, u)l <- b Vx S, u s U(x).

This case corresponds to a discounted problem and is examined in [ 1, 6.1-6.3].
Assumption I is satisfied if 0 < a and

(29) g(x, u) >=O Vx e S, u s U(x)

while Assumption D is satisfied if 0 < a and

(30) g(x, u)<--0 Vx S, u U(x).

These cases are covered in [1, 6.4, 7.1]. If g is extended real valued some care
must be exercised in the definition of the mappingH in (27) so that the forbidden
sum (+o, -o) does not arise. This can be done by defining under Assumption I
[c.f. (29)] H(x, .u, J)-oo if J(x)=-oo for some x S, and by defining under
Assumption D [c.f. (30)] H(x, u, J)= +oo if J(x)= +oo for some x e $. We mention
that state constraints of the form Xk e X, /k =0,1," "’, can be incorporated
under I in the cost functional by defining g(x, u)= +oo whenever xX. Note that
the deterministic versions of Blackwell’s positive D.P. model [3] and Strauch’s
negative D.P. model [11] are covered under Assumption D and Assumption I
respectively.
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Deterministic optimal control problems with nonstationary cost per stage
and system equation (including finite horizon problems) may be reformulated into
the form of problem (26) (see [1, 6.7]). A generalization of problem (26) is
obtained if the scalar a is replaced by a function a(x, u) in (27) and the discount
factor depends on the state x and the control u. Then Assumption C is satisfied if
the assumption 0 < a < 1 is replaced by

O=<inf {a(x, u)lx S, u U(x)}<=sup{a(x, u)lx eS, u e U(x)}< 1

and (28) holds. If 0_<-a(x, u) for all x eS, u U(x), then Assumption I or D is
satisfied if (29) or (30) holds respectively.

2. Stochastic optimal control with additive cost functional. This problem is
obtained from problem (18) when J 0 and

H(x, u, J) E {g(x, u, w) + oJ[f(x, u, w)]lx, u},

where w is an uncertain parameter element of a countable set W with given
probability distribution depending on x and u. Such problems are examined in [ 1,
Chaps. 6 and 7] and include a large variety of Markovian decision problems with
countable state space. Assumption C holds if 0<a < 1 and Ig(x, u, w)l-<b for
some b > 0 and all x S, u U(x), w W. Assumptions I and D hold if a > 0 and
g(x, u, w) >- 0 or g(x, u, w) <= 0 respectively for all x, u, w. A generalized version is
obtained when a is replaced by a function a(x, u, w) satisfying similar assump-
tions as the corresponding functions in the previous example. This case covers
certain discounted semi-Markov decision problems.

When the set W is not countable then matters are complicated by the need to
impose a measurable space structure on $, C, and W and to require that the
functions eMbe measurable (in the works of Blackwell, Strauch, and Hinderer
[3], [11], [6], S, C, and W are Borel subsets of complete separable metric spaces
and/z is required to be Borel measurable). Because of these restrictions the
reformulation of the stochastic control problem into the form of the abstract
problem (18) is not straightforward. Recent work of S. Shreve and the author [10]
has demonstrated however that the framework of this paper is applicable in its
entirety as well as convenient once the stochastic control problem is converted to a
deterministic control problem (such as the one of the previous example) for which
the state space is the set of all probability measures on S. For a detailed treatment
we refer to the thesis of Shreve [12].

3. Minimax control problem with additive cost functional. This problem is
obtained from problem (18) when J =-0 and

H(x, u, J)= sup {g(x, u, w)+ aJ[f(x, u, w)]}.
W(x,u)

Here again w is an uncertain parameter belonging to a set W, and W(x, u) is a
given subset of Wfor each x S, u U(x). Under assumptions analogous to those
of the previous two examples, Assumptions C, I, or D can be shown to hold. The
problem of reachability over an infinite horizon examined by the author in [2] can
be shown to be a special case of this problem.
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4. Stochastic optimal controlproblems with exponential costfunctional. Under
similar assumptions for w as in Example 2 consider

H(x, u, J) E {J[f(x, u, w)] e’’W)lx, u}.

This problem corresponds to minimization of the exponential cost functional

J.(x) lim E exp g[Xk, la,k (Xk), Wk
Noo Wk k=O

subject to the system equation Xk+l =f[xk, [Ubk(Xk), Wk], An example of a finite
horizon version of this problem has been considered in [7]. Here we take J(x) 1,
’q’x S. If g(x, u, w)>-0 for all (x, u, w) then Assumption I is satisfied, while if
g(x, u, w)<-_ 0 for all (x, u, w) then Assumption D is satisfied.

4. Results under Assumption C. As mentioned earlier, a variation of our
problem under Assumption C has been analyzed by Denardo. We shall restrict
ourselves to providing some results which yield the connection between
Denardo’s framework and the one considered here.

PROPOSITION 1. Let Assumption C hold. Then:
(a) For every J B, r H and x S there holds

J=(x)= lim (ToT... T_)(J)(x)= lim (T,o.T,... T,,_)(J)(x).
Noo

(b) Thefunction J* belongs to B and is the uniquefixedpointof Twithin B, i.e.,
J* T(J*) and if J’ B, J’ T(J’), then J’= J*. Furthermore if J’ B is such that
T(J’) <-_ J’ then J* <-_ J’ while if J’ <- T(J’) then J’ <- J*.

(c) For every Ix MthefunctionJ belongs to B and is the uniquefixedpoint of
T within B.

(d) There holds

lim r J*ll o vJ B,
N-x

lim TN(J) -Jr 0 VJ B, tx M.

(e) A stationary policy rr* {/x*,/x*,. .} 11 is optimal if and only if
T,.(J*) T(J*).

Equivalently r* b optimal if and only if
Tg.(J,.) T(J,.).

(f) If there exbts an optimal policy, there exbts an optimal stationary policy.
(g) For any e > 0 there exists a stationary policy 7r {Ix, tx, "} such that

Proof. Since the proof uses similar arguments as those in [4] (see also [1,
Chap. 6, Prob. 4]) it will be abbreviated.
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(a) For any integer k _->0 write k nm +q where q, n are nonnegative
integers and 0 -< q < m. Then for any J, J’ e B using (20), (21) we obtain

II(T,,o’" T,,_3(J)-(T,,o... T,_)(J’)II<-_,,","IIJ-J’II
from which

lim (T, T,,_,)(J) lim (T,,o... T,,_,)(J) VJ B.
k- koo

(b), (c), (d) Relation (20) can be used to show (compare with the proof of
Proposition 3) that

TN()(X) inf (T.o. T, ,)(ff)(x) Vx S, N= 1, 2
YI

and it follows from (21) that T and T,,/z M are m-stage contraction mappings,
i.e., IIT"(J)-T"(J’)II<- IIJ-J’II and IIT’ (J)-TW(J’)II<-_ ,,IIJ-J’II eor some fie
(0, 1), tS (0, 1) and all J, J’ B. Hence T and T, have unique fixed points in B.
The fixed point of T, is clearly J, and hence part (c) is proved. Let * be the
unique fixed point of T. We have* T(.*). For any g > 0 take/2 Msuch that

T(ff*) _-< ]* + ee.
Using (20) it follows that T(ff*)_-< Tc(f*)+oge -<3"* +( 1 +cr)e. Continuing in
the same manner we obtain

T(Y*)_-<ff* +(l+a +...

Using (21) we obtain

T’(ff*) =< T(J*)+p(1 +
-<* +(1 +p)(1 +ce +... +a’-)ge.

Proceeding similarly we obtain for all k _-> 1,

T(J*) _-< Y* + (1 +p +... +pk-)(1 +
Taking the limit as k --> oo and using the fact Ja limk_,o T’(ff*) we obtain

1Ja_<.*+. (l+a+...+a’-l)ee"
1-p

Taking (1 p)(1 + a +. + a ’-)-te we obtain

(31) Jc, <-_ .* + ee.

Since J* _-<J and e > 0 is arbitrary we obtain J* _-< *. We also have

J* inf lim (T,o T,,_)(.*) -> lim T(.*) *.
II Noo N-oo

Hence J* * and J* is the unique fixed point of T. Thus part (b) is proved. Part
(d) follows immediately from the contraction property of T and T,.

(e) If 7r* is optimal then J,, J* and the result follows from part (b) and (c).
If T,.(J*)= T(J*) then T,.(J*)= J* and hence J.* J* by part (c). If T..(J,.)=
T(J,.) then J,. T(J,.) and J,,. J* by part (b).
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(f) Let 7r* {tz,/z *,. .} be an optimal policy. Then using parts (a) and (b)

J* J=. lim (T,,7, T,,,)(])
k-eo

lim (T,,7,. T,,,)(J*) => lim (T,*oTk)(J*) T,,g(J*) >= T(J*) J*.

Hence T,*o(J*)= T(J*) and by part (e) the stationary policy (/x,/z,...} is
optimal.

(g) This part was proved earlier in the proof of part (b), [cf. (31)]. Q.E.D.
For additional results and computational methods the reader is referred to

Denardo’s paper [4] and the author’s textbook [1, Chap. 6]. Notice that part (a)
shows that J may be replaced by any function J B. Thus it is often possible to
select J in a way that Assumption I or D is satisfied and obtain alternative proofs of
parts of Proposition 1 by using the results of the next section.

5. Results under Assumptions I or D. In our analysis under Assumptions I
or D we will occasionally need to assume one or more of the following continuity
properties for the mapping H. Assumptions I. 1 and 1.2 will be used in conjunction
with Assumption I, while Assumptions D.1 and D.2 will be used in conjunction
with Assumption D.

Assumption I. 1. If {Jk} c F is a sequence satisfying J <= Jk < Jk+l for all k,
then

(32) lim H(x, u, Jk)= H(x, u, lim Jk) /x $, u U(x).

Assumption 1.2. There exists a scalar a > 0 such that for all scalars r > 0 and
functions J F with J =<J there holds

(33) H(x, u,J)<-H(x, u,J+re)<-H(x, u,J)+ar Vx eS, u U(x),

where e denotes the unit function [e(x)= 1, gx e S].
Assumption D. 1. If {Jk} c F is a sequence satisfying Jk/1 <= Jk <= J for all k,

then

(34) lim H(x, u, Jk)= H(x, u, lim Jk) VX S, u U(x).
k k,

Assumption D.2. There exists a scalar a > 0 such that for all scalars r > 0 and
ffinctions J F with J =< J there holds

(35) H(x, u, J) ar <- H(x, u, J- re) <= H(x, u, J) Vx S, u U(x),

where e denotes the unit function [e(x)= 1, ’q’x e S].
Notice that both the deterministic and the stochastic optimal control prob-

lems of 3 satisfy 1.1, 1.2, D.1, D.2. The minimax control problem of 3 satisfies
1.1, 1.2, D.2 while additional assumptions are needed in order that D.1 is satisfied
as well. The mapping of Example 4 in 3 satisfies 1.1, D.1, and D.2 while if it is
assumed that Ig(x, u, w)l <- b for some scalar b and all (x, u, w), then 1.2 holds as
well.
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Dynamic programming and the finite horizon version of the problem. It is
both interesting and helpful in the analysis that follows to consider the finite
horizon version of our problem which involves finding for any positive integer N

(36) JN(X)= inf (r,o... r,,_)(J)(x)

as well as a policy attaining the infimum above (if one exists). We refer to this
problem as the N-stage problem. We have the following results:

PROPOSITION 2. Let I and 1.2 hold. Then JN TN() for all N= 1, 2,. ..
Proof. For any e > 0 let fi s M, k 0, 1, , N- 1, be such that

Tc[TU-’-(ff)J<=TN-’(Y)+ee, k=0,1, ,N-1.

Such functions exist since J-(x) > --O0 for all x s S and TN- (f) -> ff by I. We have
using 1.2,

JN inf T,o T,_)(J) <= Tc, Tc_)(J)

-< (Tao Ta,_)[T(J) + ee]

<= (Tc, Tc,,,_)[(Tc,,,r_T)(J) + aee]

<- Tao Tc,_ T)(j) + ai-’ee

<= (Tc, T.N_3T2)(:) +(N-2 +ceN-1)ee

_-< T(f) + a ’ ee.
k 0

Since e is arbitrary we obtain JN <- TN(f). On the other hand we have, by the
definition of T and JN, TN(f) <=JN. Hence JN TN(f). Q.E.D.

Proposition 2 may fail to hold in the absence of 1.2 even if 1.1 holds as the
following counterexample shows.

Counterexample 1. Take S {0}, C U(0) (0, 1], J(0) 0, H(0, u, J) 1 if
J(0) > 0, H(0, u, J) U if J(0) _--< 0. Then (T,o. T,,,_)(J)(0) 1 for every 7r s II
and N_-> 2 and hence JN(O) 1 for N-> 2. On the other hand we have TN(f)(O) 0
for all N. Here I and 1.1 are satisfied but 1.2 is violated.

PROPOSITION 3. Let D hold. Assume that either D. 1 holds or else D.2 holds
and TN(y)(X) >--o0 ]’or all x S. Then JN TN(j).

Proof. Let D.1 hold. For each k =0, 1,... ,N-1 consider a sequence
{/x } M such that

lim T., TN-’-(f)] TN-’ (), k=0,... ,N-1.

[ (y)] >_ T,.Z+.[ (I)].
k =0,... ,N-l, i=0,1,...
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We have by using D.1,

JN < lira T, T,u J
iooO

iN_ l--.>O0

lim (T.o... T. iN-2)[ lim T._I (J)]
N-o-

iN_2--oO

lim (Tdg... T/,_-)[T(J)]
io--)oo

2-.-

On the other hand we have clearly TU(a) -< Ju and hence JN TN(aY).
Let D.2 hold and assume TU(:)(x)>-oo Vx S. For any e > 0 let tZ M,

k =0, 1,...,N-1, be such that

TN_l(J) <= T(J) + ee,

1) --< 7I + ee,

(T:o Tg,N_I)(J <= T(T, T,N_I)(J)] + ee.

The assumption TU(:)(x)> -oo, /x S guarantees that such functions,
exist. We have using D.2,

TN() >- TN-[Ta_l(f) ee >= TN-Tu_)(f) aN-lee

>= T [(T_T_)(f)-ee]-aN-ee
>-_ +

>= T.o TN_I)(J) e. k ee
k 0

->Ju- a k ee.
k 0

Since e is arbitrary it follows that TN() >= Ju. On the other hand we have clearly
Tu(a) _< Ju and hence Ju Tu(f). Q.E.D.

Proposition 3 may fail to hold if its assumptions are slightly relaxed.
Counterexample 2. Take S {0}, C U(0) (- 1, 0], J(0) 0, H(0, u, J) u

if 1 < J(0), H(0, u, J) J(0) + u if J(0) _-< 1. Then (T,,o T,,,,_)(J)(0) =/Xo(0)
and Ju(0)=-1, while TU(f)(0)=-N for every N. Here D and the assumption
TU(])(O) >-oo are satisfied, but D.1 and D.2 are both violated.

Counterexample 3. Take S {0, 1}, C U(0) U(1) (-oo, 0], J(0)
J-(1) 0, H(0, u, J) u if J(1) -oo, H(0, u, J) 0 if J(1) >-oo, and H(1, u, J)
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u. Then (T,o... TgN_I)(J)(O 0, (Tgo TgN_I)(J)(1) go(l) for all N => 1.
Hence JN(O) 0, JN(1) --o. On the other hand we have TN(f)(O) TN(f)(1)
--o for all N=> 2. Here D and D.2 are satisfied, but D.1 and the assumption
TN(f)(x) >--o, lx S are both violated.

Characterization o[ the optimal value function. We now consider the ques-
tion whether Bellman’s equation, [i.e. J*= T(J*)[ holds within our generalized
setting. We first prove a preliminary result which is of independent interest.

PROPOSITION 4. Let I, 1.1, and 1.2 hold. Then given any >0 there exists a
policy 7r H such that

(37) J* -<J -< J* + ee.

Furthermore ifthe scalar ct in 1.2 satisfies ct < 1 the policy 7r can be taken stationary.
Proof. Let {ek} be a sequence such that ek >0 for all k, and

(38) Y’. ae e.
k=O

For each x e S consider a sequence of policies {r[x]} c I1 of the form

such that for k =0, 1,...,

(39) Jktx](X) <=J*(x) +e /x S.

Such a sequence exists since we have J*(x)>-oo under our assumptions.
The (admittedly confusing) notation used above and later in the proof should

be interpreted as follows. The policy ,r[x] {/x ok[x],/X lk[x], "} is associated with
x. Thus /zk[x] denotes, for each x s S and k, a function in M, while /xk[x](z)
denotes the value of/x k[x at an element z S. In particular/x k[x ](X) denotes the
value of/x k[x] at x.

Consider the functions/2k M defined by

(40) [Zk(X) =/x0k[x](x) VX S,

and the functions Jk defined by

(41) fk(X)=H[x,Xk(X), lim (T,tx3"" T,.,)(])] Vx S, k =0, 1,....

By using (39), (40), I, and 1.1 we obtain

(42) Jk(X)= lim (T,ox3 T,,x3)(J)(x)=Jx3(X)<-J*(x)+ek
’xS, k=0,1,...

We have using (41), (42), and 1.2 for all k 1, 2,.. and x S,

Tc Jk X H[x Xk X Jk

<-H[x, [x-l(x), (J* + ee)] <-n[x, [X_l(X), d*]+ aek

<=H[x,/,k-l(X), lim (Tt,lk-l[x] Tg-l[x])(J)]+Oek

J_(x) + ae,
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and finally

(43) Tak_l(Jk) <--Jk-l d"tXeke lk 1, 2,"’.

Using this inequality and 1.2 we obtain

rc_Err_(Jk)]<= rr_(Jk- +aeke)

<---- T_(k-) +a2ege ffk-2 + (aek-1 + a2ek)e.
Continuing in the same manner we obtain for k 1, 2,. ,

(To"" T_)(J)NJo+(e+" "+e)eNJ*+ ’ e.

Since JNJ it follows that

(To T_)(JJ*+(i=aiei)e"

Denote {0, ,’" "}. Then by taking limit above and using (38) we obtain

J. J*+ ee. If a < 1 take e e(1 a) and [x] {o[X], [x], .} for all k.
Then the policy {0, ,’" "} is stationary. Q.E.D.

By using Proposition 4 we can prove the following.
PROPOSTO 5. Let !, 1.1, and 1.2 hoM. en

J*= T(J*).

Furthermore gJ’ F is such that J’ and J’ T(J’), then J’ J*.
Proof. For every {0, ," "} H and x S we have using 1.1

J(x) lim (T,oT,... T,,)()(x)
k

T,o [lim (T,... T,,)(J)](x)
k

T.o(*)(x) T(*)(x).

By taking the infimum of the left hand side over U

J* T(J*).

To prove the reverse inequality let e, ea be any positive scalars and let
{o, ," "} be such that

T.o(*) T(*)+ e,

J J* +eae,

where {, ,...}. Such a policy exists by Proposition 4. We have

J lim ToT Ta, (J)
k

To(J*) + aeze T(J*) + (e + ae)e.
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Since J* _-<J and e 1, e2 can be taken arbitrarily small it follows that

J* <- T(J*).

Hence J*= T(J*).
Assume that J’F satisfies J’->J and J’>-_ T(J’). Let {ek} be any sequence

with ek >0 and consider a policy # {/2o, t21,"" .}II such that

We have using 1.2,

Tc. (J’) <= T(J’) + eke, k=0,1,...

J* inf lim (T.o. T,,.)(])
7rH k-x

-_< inf lim inf (T,o T,,k)(J’)
7rII koo

_-< lim inf (To T,.)(J’)

_-<liminf (To. Tc,_l)[T(J’)+eke
koo

_-< lim inf To T,,,_:)[ T,x,,_ (J’ + tke)]

_-< lim inf (To Ta_2)[ Tak_,(J’) + teeke

=lim inf [(Tao Tc,,_)(J’)+akeke]
k-oo

< [ (o iei)] (lim T(J’) + e < J’ + Ol iF_,
k-oo =0

Since we may choose Yi=oaiei as small as desired it follows that
J* _-< J’. Q.E.D.

The following counterexamples show that I. 1 and 1.2 are essential in order for
Proposition 5 to hold.

Counterexample 4. Take S {0, 1}, C U(0) U(1) (- 1, 0], J(0) J(1)
1, H(0, u, J) u if J(1) -<_ 1, H(0, u, J) 0 if J(1) > 1, and H(1, u, J) u.

Then (T,o T,,,_)(J)(0) 0 and (T,o... T,,_)(J)(1) =/Xo(1) for N_>- 1. Thus
J*(0) 0, J*(1) =-1 while T(J*)(0)=-1, T(J*)(1) =-1 and hence J*# T(J*).
Notice also that ] is a fixed point of T while ]-<J* and a # J*. Here I and I. 1 are
satisfied but 1.2 is violated.

Counterexample 5. Take $ {0, 1}, C U(0) U(1) {0}, J(0) J(1) 0,
H(0, 0, J) 0 if J(1)< oo, H(0, 0, J) oo if J(1) oo, H(1, 0, J) =J(1)+ 1. Then
(T,o T,,,_I)(J)(0) 0 and (T,o T,,,_I)(J)(1) N. Thus J*(0) 0, J*(1)
On the other hand we have T(J*)(0) T(J*)(1) oo and J* # T(J*). Here I and
1.2 are satisfied but 1.1 is violated.

As a corollary to Proposition 5 we obtain the following:
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COROLLARY 5.1. Let I, 1.1 and 1.2 hold. Then ]’or every stationary policy
r {Iz, tx," } there holds

J. r.(J.).
Furthermore if J’ e F is such that J’ >- J, J’ >-_ T. (J’), then J’ >- J..

Pro@ Consider the variation of our problem where the control constraint set
is U. (x) {/x (x)} Vx Xrather than U(x). Application of Proposition 5 yields the
result. Q.E.D.

We now provide the counterpart of Proposition 5 under Assumption D.
PaOPOSlTION 6. Let D and D.1 hoM. Then

J*= T(J*).

Furthermore if J’ F is such that J’ <-J, J’ <-_ T(J’), then J’ <-_ J*.
Pro@ We first show the following lemma"
LZM 1. Let D hoM. Then

(44) J* lim JN,
Neo

where JN is the optimal value ]’unction of the N-stage problem defined by (36).
Proof. Clearly we have J* <= JN for all N and hence J* -< limN-.o JN. Also for

all 7r {/Zo, 1, ") e II we have

(T,o T,_)(J) >----JN,

and by taking limit of both sides we obtain J,---->limN-,oo JN, and hence J*_->
limN-,o JN. Q.E.D.

We return to the proof of Proposition 6. An entirely similar argument as the
one of the proof of Lemma 1 shows that under D we have for all x S,

(45) lim inf H(x, u, Jr) inf lim H(x, u, JN).
Noo uU(x) usU(x) Ncx

Using D.1 the above equation yields

(46) -.oolim T(J)= T( lirn JN).
By Proposition 3 we haveJ TN(f) and hence T(J) T+l(f). Combining this
relation with (44) and (46) we obtain J* T(J*).

To complete the proof, let J’ e Fbe such that J’ <= J, J’ <= T(J’). Then we have

J*= inf lim (T,o... T,_)(f)

_-> lira inf (T,o... Tv,x_l)(J
Nc II

>-lim inf (T,,o... T,,_)(J’)

_-> lim TN(J’) >= J’.
N--oo

Hence J* _>- J’. Q.E.D.
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In Counterexamples 2 and 3, Assumption D. 1 does not hold. In both cases we
have J* T(J*) as the reader can easily verify.

A cursory examination of the proof of Proposition 6 reveals that the only
point where we used D.1 was in establishing the relation limN_oo T(JN)=
T(lim_.oo J) [cf. (46)]. Hence if this relation can be established independently
then the result of Proposition 6 follows. In this manner we obtain the following
corollary.

COROLLARY 6.1. Let D hold and assume that D.2 holds, S is a finite set, and
J*(x) > -c for all x S. en J* T(J*). Furthermore ifJ’ F is such that J’
J’ T(J’), then J’ J*.

Proof. We will show that

lira H(x, u, J)= H(x, u, lira J) Vx S, u U(x).
N No

Then using (45) we obtain (46) and the result follows as in the proof of Proposition
6. Assume the contrary, i.e., that for some S, U(), and e > 0 there holds

H(, , J)-e >H(, , lim Jn) Vk 1, 2,. ..
N

Using the finiteness of S and the fact J*(x)= limnJn(x)>- for all x we
obtain that for some positive integer k we have

E
J--e lim J k k.

By using D.2 we obtain for all k k,

H(, ,Jk) e <, ,Jk
e )--e H(,ff, lira JN)

which contradicts the earlier inequality. Q.E.D.
Similarly as under I we have the following corollary:
COROLLARY 6.2. Let D and D.1 hold. en for every stationary policy
{, ,...} there holds

J= T,(J,).
Furthermore gJ’ F is such that J’ L J’ T, (J’) then J’ J,.

It is worth noting that Propositions 5 and 6 may form the basis for computa-
tion of J* when the state space S is a finite set with n elements denoted
x,xz,... ,x,. It follows from Proposition 5 that, under I, 1.1, and 1.2,
J*(x),..., J*(x,) solve the problem

minize A
i=1

subject to

/i inf H(xi, u, Jx
U(xi)

i=l,...,n,

where Jx is the function taking values Jx (xi) Ai, 1, , n. Under D and D.1,

li >J(xi), 1, , n,
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or D, D.2 and J*(x) :>-oo x S the corresponding problem is

maximize A
i--1

subject to

A -< inf H(xi, u, Jx), i=l,...,n,
U(xi)

Ai <--J(xi), 1," ", n.

When U(xi) is also a finite set for all i, then the problems above become
finite-dimensional nonlinear programming problems.

Characterization of optimal stationary policies. We have the following
necessary and sufficient conditions for optimality of a stationary policy.

PROPOSITION 7. Let I, 1.1, and 1.2 hoM. Then a stationary policy zr*=
{Ix*, tz *, "} is optimal if and only if

(47) T,.(J*) T(J*).

Furthermore ifthere exists an optimalpolicy there exists an optimalstationarypolicy.
Proof. If 7r* is optimal then J,. J* and the result follows from Proposition 5

and Corollary 5.1. Conversely if T,.(J*)= T(J*) then J* T(J*) (by Proposition
5) and it follows that T,.(J*) J*. Hence by Corollary 5.1, J,. -< J* and it follows
that 7r* is optimal. If - {/20,/21, "} is optimal then we have by using 1.1

J* J, lim (T, T T,)(J)
kcx3

To..[li_,rn (T,, T)](J-) ->_ Tr,o(J*)>= T(J*)= J*.

It follows that Tr,o(J*) T(J*) and, by the result just proved, the stationary policy
{o, igo,’’ "} is optimal. Q.E.D.

PROPOSITION 8. Let D and D.1 hold. Then a stationary policy rr*=
{1 *, tx *,’" ") is optimal if and only if
(48) T,.(J,.) T(J,.).

Proof. If rr* is optimal then J,. J* and, using Proposition 6, and Corollary
6.2, we have T,.(J,.)= J,. J*= T(J*)= T(J,.). Conversely if T,.(J,.)= T(J,.)
then we obtain from Corollary 6.2, J,. T(J,.), and Proposition 6 yields J,** -< J*.
Hence r* is optimal. Q.E.D.

Examples where rr* satisfies (47) or (48) but is not optimal under D or I
respectively are given in [1, 6.4]. It is also easy to modify the proof of Proposition
7 and show the stronger result that if there exists an optimal policy at each x S
then there exists an optimal stationary policy.

Convergence of the dynamic algorithm--existence o| optimal stationary
policies. The D.P. algorithm consists of successive generation of the function
T(]), T2(]), .. Under either Assumption I or D the function Joo Fdefined by

(49) J(x) lim TN(f)(X) /X S
Noo
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is well defined. We would like to investigate the question whether Joo J*. When
Assumption D holds, the following proposition shows that we have Joo J* under
mild assumptions.

PROPOSITION 9. Let D hold and assume that either D.1 holds or else
JN T() for allN where Jzv is the optimal value function of the N-stage problem
defined by (36). Then

J j*.

Proof. By Lemma 1 we have that D implies J*= limN-, JN. Proposition 3
shows also that under our assumptions JN TN(). Hence J* limv_, TN(.)
J. Q.E.D.

Under Assumptions I, I. 1, and 1.2 the equalityJ J* may easily fail to hold
even in very simple deterministic optimal control problems as shown in the
example of 1. This fact has been known since Strauch’s work (see [11, p. 880]).
Reference [2, p. 608] provides an example whereJ J* even though there exists
an optimal stationary policy. The following preliminary result shows that in order
to have J J* it is necessary and sufficient to have J T(J).

PROPOSITION t0. Let I, 1.1, and 1.2 hold. Then

(50) Joo -<- T(Joo) <-_ T(J*) J*.

Furthermore the relation

(51) Joo T(Jo) T(J*) J*

holds if and only if
(52) Y= T(Yoo).

Proof. Clearly we have Joo<-J for all zr II and it follows that Joo<-_J*.
Furthermore by Proposition 5 we have T(J*)= J*. Also we have for all k => 1,

T(Joo) inf H(x, u, Joo) >- inf nix, u, Tk (f)] Tk+l(f).
U(x) U(x)

Taking limit of the right side we obtain T(Jo) >-Joo which combined with Joo =< J*
and T(J*)= J* proves (50). If (51) holds then (52) also holds. Conversely let (52)
hold. Then, since we have J->-. we obtain by Proposition 5, Jo>=J* which
combined with (50) proves (51). Q.E.D.

In what follows we provide a necessary and sufficient condition for Joo
T(Joo) (and hence also (51)) to hold under Assumptions I, 1.1, and 1.2. We
subsequently obtain a useful sufficient condition for J T(Jo) to hold which at
the same time guarantees the existence of an optimal stationary policy.

For any JsF we denote by E(J) the epigraph of J,,i.e. the subset of
S (-, ) given by

(53) ((x, _-< }.

Under I we have T () _-< T / () for all k, Joo lim_ooT (), and it follows easily
that

(54) E(Joo) E[T(Y)].
k=0
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Consider for each k >_- 1 the subset Ck of S x C (-oo, eo) given by

(55) C ={(x, u, )lH[x, u, rk-l()]=A, x GS, u U(x)}.

Denote P(C) the projection of C on S x (-oo, o),

(56) P(C) {(x, )lu e U(x) s.t. (x, u, ) C}.

In the above relation and later the symbol =l denotes "there exists" and the initials
"s.t." stand for "such that". Consider also the following set:

(57) P(C) ((x, A)[::iIA,} s.t. , -, (x, ,) e P(C), n 0, 1,...}.

The set P(C) is obtained from P(C) by adding for each x the point Ix, 2(x)]
where 2(x) is the perhaps missing end point of the half line {h ](x, h)e P(C)}. We
have the following lemma"

LEMMA 2. Let I hold. Then for all k >-.1,

(58) P(C) c P(C) E[rk (Y)].
Furthermore we have

(59) P(Ck P(C E[r (f)]

if and only if the infimum is attained for each x S in the relation

(60) T(Y)(x) inf H[x, u, T-(Y)].
uU(x)

Proof. If (x, A e E[T (f)] we have

Tk(f)(x) inf H[x, u,
U(x)

Let {e,} be a sequence such that e > 0, e, -. 0 and let {u,,} be a sequence such that

H[x, u., T-(:)]-_< Tk(y)(x)+e,, <--A +e,,.

Then (x, u., A + e..) e C and (x, A + e,,) P(Ck) for all n. Since {A + e.}--) Z by (57)
we obtain (x, A) P(Ck). Hence

(61) E[T(Y)] p(c).

Conversely let (x, A) P(Ck). Then by (55)-(57) there exists a sequence {A,} with
A, -> A and a corresponding sequence {u,} such that

T(J)(x) <- H[x, u,, Tk-l(f)] N An.

Taking limit as n --) oo we obtain T (f)(x) -<h and (x, A) e E[T (f)]. Hence

P(C) cE[T(J)]
and using (61), we obtain (58).

To prove that (59) is equivalent to the attainment of the infimum in (60)
assume first that the infimum is attained by/z *_l(x) for each x S. Then for each
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(x, ) E[T (])]
H[x,

implying by (56) that (x, A) P(C). Hence E[T(])] = P(C) and in view of (58)
we obtain (59). Conversely if (59) holds we.have [x, T (])(x)] P(C,) for every x
for which T (f)(x)< oo Then by (55), (56) there exists a (x) U(x) such that

H[x, lz’-(x), T-I()] < T ()(x) inf H[x, u, T/C-l(])].
U(x)

Hence the infimum in (56) is attained for all x such that Tk (])(x)< oo. It is also
trivially attained by all u U(x) whenever Tk(])(x)=c and the proof is
complete. Q.E.D.

Consider now the set fqkl Ck and define similarly as in (56), (57) the sets

(62) p C (x, A)]:lu e U(x) s.t. (x, u, A) e f3 C
k=l k=l

Using (54) and Lemma 2 it is easy to see that we have

(64) P = CI P I"1 P(C)= 1"3 E[T(Y)]=E(J),
\k=l k=l k=l k=l

(65) p Ck c (’1 P(Ck)= E[Tk()]=E(Joo).
k=l k=l k=l

We have the following proposition"
PROPOSITION 11. Let I, 1.1, and 1.2 hold. Then"
(a) There holds J T(J) (equivalently Joo J*) if and only if

(66)

(b) There holdsJ T(Jo) (equivalently Joo J*) and in addition the infimum
in

(67) J(x)= inf H(x,u,J)
U(x)

is attained ]’or each x S (equivalently there exists an optimal stationary policy) if
and only if

(68) P( C)= f3 P(C,).
k k=l

Proof. (a) Assume ]oo T(]) and let (x, A)e E(]o), i.e.

inf H(x, u, ]) ](x) <= .
U(x)
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Let {e,} be any sequence with e, > 0, en 0. Then there exists a sequence {u,,}
such that

and hence

H(x, u,, J) =<A + e, /n 1, 2,. .,

H[x, u,, Tk-l(a)]_--<A +e, Vk, n 1, 2,....

Hence (x, u,,, A + en) Ck for all k, n and (x, u,, A + e,) 71 k= Ck for all n. Hence
(X,A+e,)P(fqk=aCk) for all n and since A+e,A we obtain (x,A)
P(fqk Ck)-. Therefore

E(Joo) c P( Ck)
and by (65) we obtain (66).

Conversely let (66) hold. Then we have by (65) P(fqk=l Ck) E(Joo). Let
xS be such that Joo(x)<oo. Then [X,J(x)]P(f’qkI Ck) and there exists a
sequence {An} with h,, J(x) and a sequence {un} such that

H[x, Un, Tk-l(J-)]<=An Ik, n 1, 2,....

Taking limit with respect to k and using 1.1 we obtain

H(x, u,,, J) <=An Vn 1, 2,. .,
and since T(J)(x)<-H(x, Un, J) it follows that

T(J)(x)<=A,,.
Taking limit as n oo we obtain

T(Yo)(x)<-_Joo(x)

for all x $ such that J(x) <. Since the inequality above holds also for all x S
with Jo(x) we have

T(J) <=J.
On the other hand by Proposition 10 we have Jo <- T(J). Combining the two
inequalities we have J T(J).

(b) AssumeJ T(Jo) and that the infimum in (67) is attained for each x S.
Then there exists a function/z* M such that for all (x, A) E(J)

H[x, *(x ), Yo] <- A.

Hence H[x, lu.*(x), Tk-l(a)]_--< A for all k and Ix,/z*(x), A]6 f’qk=x Ck. As a result
(x, A) P(fqk=a Ck). Hence

E(Jo) cP(k Ck)
and, by (64), equation (68) follows.

Conversely let (68) hold. We have for all x S with J(x)<

[x, Joo(x)]E(J)=P(
k=l



460 DIMITRI P. BERTSEKAS

Hence there exists a/x*(x) U(x) such that

Ix, *(x), r(x)] C
k=l

from which

I-l[x, lx*(x), Tk-l(])]<--J(x) Vk=0, 1,....

Taking limit and using 1.1, we have

T(J)(x) <- H[x, Ix *(x), J,] <-_J(x).

It follows that T(J)<<-J, and since by Proposition 10, J<= T(J) we finally
obtainJ T(J). Furthermore the inequality above shows that/x*(x) attains the
infimum in (67) when J(x)<. When J(x)= 3 every u U(x) attains the
infimum and the proof is complete. Q.E.D.

The proposition above states that the equality J T(J), which in view of
Proposition 10 is equivalent to the validity of interchanging infimum and limit as
shown below"

J lim inf (To. T)(]) inf lim (T,o. Tt,)(]) J*,
k-oo reII rH

is in fact equivalent to the validity of interchanging projection and intersection in
the manner of (66) or (68).

The following proposition provides a compactness assumption which guaran-
tees that (68) holds. If C is a topological space (see e.g. [5]) we say that a subset U
of C is compact if every collection of open sets that covers U has a finite
subcollection that covers U. The empty set in particular is considered to be
compact. Any sequence {u,} belonging to a compact set U C has at least one
accumulation point 2 U, i.e., a point U every (open) neighborhood of which
contains an infinite number of elements of {u,}. Furthermore all accumulation
points of {u,} belong to U. If {U,} is a sequence of nonempty compact sets of C
and U, U,+ for all n, then the intersection Un is nonempty and compact.
This yields the following lemma which will be useful in what follows.

LEMMA 3. Let Cbe a topologicalspace, f: C [-c, +o] be afunction, and U
be a subset of C. Assume that the set U(A) defined by

u( {u uIf(u) <-

is compact for each A (-oo, oo). Then f attains a minimum over U.
Proof. If f(u)= +o for all u e U then every u e U attains the minimum. If

f* =inf {f(u)lu U}< +oo let {An} be a scalar sequence such that An >A,+I for all
n and A, -f*. Then the sets U(A,) are nonempty, compact, and satisfy U(An)
U(A,+x) for all n. Hence the intersection , U(A,) is nonempty and compact.
Let u* be any point in the intersection. Then u* U andf(u*) _-<,, for all n, and it
follows that f(u*)<-f*. Hence u* attains the minimum of f over U. O.E.D.

PROPOSiTiON 12. Let I, 1.1 and 1.2 hold and let the control space C be a
topological space. Assume that them exists a nonnegative integer k such thatforeach
x S, A (-o, c) and k >= k the set

(69) U(x, {u e V(x)lH[x, u, T (Y)] _-< , }
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is compact. Then

(70) P Ck f3 P(Ck)
k=l k=l

and (by Propositions 10 and 11) there holds

Y T(J)= T(J*)= Y*.

Furthermore there exists an optimal stationary policy.
Proof. By (64) it will be sufficient to show that

(71) P Ck = P(Ck), f’l P(Ck) f3 P(Ck).
k k=l k=l

Let (x, A) e Ok= P(Ck). Then there exists a sequence {u,} such that

nix, u, Tk(f)]Nn[x, u, T"(f)]NA Vn k,

or equivalently

u Uk(X,A) Vn Nk.

Since Uk(X, A) is compact for k N k.it follows that the sequence {u,} has an
accumulation point and

aeUk(X,A) Vkk.

Hence

H[x, a, Tk (]) <-- A

and (x, t7, A) e f’lk= Ck. It follows that (x, A) P(f’lk-_ Ck) and

P f) P(Ck).
k=l

Also by the compactness of Uk (X, A) and the result of Lemma 3 it follows that the
infimum in (60) is attained for every x e S and k > k. Hence, by Lemma 2,
e(Ck) e(Ck) for k > k and

CI P(C)= f3 P(Ck).
k=l k=l

Thus (71) is proved. Q.E.D.
The following proposition shows also that a stationary optimal policy may be

obtained in the limit by means of the D.P. algorithm.
PROPOSrTION 13. Let the assumptions ofProposition 12 hoM. Then"
(a) There exists a policy r* {tx, tz , "} II attaining the minimum in the

D.P. algorithm ]’or all k >-k, i.e.

(72)

(b) For every policy r* satisiying (72) the sequence {/z (x)} has at least one
accumulation point for each x S with J*(x) <
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(c) If lz *" S C is such that t *(x) is an accumulation point of {/z ’(x)} ]’or all
x $ with J*(x) < oo, and tz*(x) U(x) for all x S with J*(x) oo, then the
stationary policy {tx *, I *, "} is optimal.

Proof. (a) For an x $ such that Tk/l()(x)< az consider a sequence
with h,, > h,,+, for all n and A,, --> Tk+l(f)(x). Then the sets Uk (x, An) are
nonempty and compact and hence their intersection is also nonempty and
compact. Any point/z (x) in the intersection satisfies (T,Tk)(f)(x) Tk+a(])(x).
For an x S such that rk+l()(X) O0 any element of U(x), call it/. (x), satisfies
(T,Te’)(f)(x)= T’+(f)(x).

(b) For any 7r* {/Zo*, tz *,’" "} satisfying (72) and x S such that J*(x) <
we have

H[x,/z*(x), Tk(.)]_-<H[x,/z*(x), Tn()]<-J*(x) /k >-k-, n >=k.

Hence we have

lz*(x)6 Uk[x,J*(x)] Ik >-k-, n >=k.

Since U[x,J*(x)] is compact, {/z*(x)} has at least one accumulation point.
Furthermore each accumulation point/z*(x) of {tz,*(x)} belongs to U(x) and
satisfies

(73) H[x, t*(x), T(Y)]<=J*(x) /k >=k-.
(c) By taking the limit in (73) and using 1.1 we obtain

H[x, *(x ), :oo] n[x, *(x ), :*] <- :*(x
for allx S with J*(x) < oo. The relation above holds also trivially for allx S with
J*(x) oo. Hence T,.(J*) <-J* T(J*) which implies T,.(J*) T(J*). It follows,
by Proposition 7, that {/z*,/x*, .} is optimal. Q.E.D.

The compactness of the sets U(x, A) of (69) may be verified in a number of
important special cases. One such case is when Ug (x, A) is a finite set for all k, x, h.
Simply consider the discrete topology on C, i.e. the topology consisting of all
subsets of U. In this topology a set is compact if and only if it is finite. For this case
the relation Jo J* for the negative model of Strauch has been shown earlier [11].
There are many other important cases where the compactness of U (x, A) can be
verified. Several examples have been given in [1, (Chap. 6 and 7)]. It is not our
intention to provide an extensive list. Instead we state as an illustration two sets of
assumptions which guarantee compactness of U(x, A) in the case of the mapping

H(x, u, J) g(x, u) + a (x, u)Y[f(x, u)]

corresponding to a deterministic optimal control problem.
Assume that g(x, u) _-> 0, a (x, u) _-> 0 for all x S, u U(x) and take J(x) O,

’x S. Then compactness of U, (x, A) is guaranteed if"
(a) S R" (n-dimensional Euclidean space), C R’, U(x) =- C, f, g, a are

continuous in (x, u) and g satisfies lim,_.o g(x,, u,)= for every bounded
sequence {x,,} and every sequence {u,,} for which lu,,[ oo (1. is a norm onR’).

(b) S =R", C=R’, f, g, and a are continuous, U(x) is compact and
nonempty for each x R", and U(. is a continuous point-to-set mapping from
R" to the set of all compact subsets of R".
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Aside from the result of Strauch mentioned earlier, other general sufficient
conditions which guarantee that an optimal stationary policy exists for special
cases of our problem are those of Maitra for discounted problems (see [9] and [6,
Thm. 5.11]), and Kushner for free end time problems [8]. In these cases Assump-
tion C is satisfied. In both cases the sufficient conditions or existence of an optimal
stationary policy can be shown to follow from Proposition 12.

We finally show that the compactness of the sets Uk (X, A) of (69) guarantees
existence of an optimal stationary policy under Assumption C which can be
obtained in the limit by means of the D.P. algorithm.

PROPOSITION 14. The conclusions of Proposition 13 hold if Assumptions I.
1.1, and 1.2 are replaced by the Contraction Assumption C.

Proof. (a) The proof of this part is identical to the corresponding proof in
Proposition 13.

(b) Let 7r*= {/x,/x,...} satisfy (72) and define

e --sup {llr’(/)-J*ll li _->k}, k --0, , .
We have from (20), (72) and the fact T(J*)= J*,

II(T.,*,* T")(f) 1"11-- T"+(f) T"+ (J*)l]
-< a T" (f) T" (J*)]] cr T" (f) J*[] Vn ->_ k-,

I1( T,...T=)(L (T,...T)()11-< ,.11T () T

=<,IIT (L-J*II /,IIT(y)-J*ll
Vn_->k, k=O, 1,....

From the above two relations we obtain

H[x, Ix *.(x), Tk()]<--H[x, tx *,(x), T"(f)]+2aek
<=J*(x)+3Ceek Vn >-k, k >-k’-.

It follows that/x *(x) e Uk[X, J*(x) + 3aek] for all n -> k and k ->_ k; and {/x *(x)} has
an accumulation point by the compactness of Uk[X, J*(x)+ 3aek].

(c) If tz*(x) is an accumulation point of {/z*(x)} then
Uk[X, J*(x)+ 3aek] for .all k _>-k or equivalently

(T,.Tk)(f)(x)<--_J*(x)+3aek Vx S, k >-_k-’.

By using (20) we have for all k

II(T,* Tk)(]) T,*(J*)I[ <-- allT* (f) -J*ll .
Combining the two inequalities above we obtain

Tu.(J*)(x)<-J*(x)+4aek fx S,

Since ek 0 [cf. Prop. 1, part (d)] we obtain T,.(J*) <= J*. Using the fact J*=
T(J*) <= T,.(J*), we obtain T,.(J*) J* which implies, by Proposition 1, that the
stationary policy {/.*, *,. .} is optimal. Q.E.D.
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FILTER STABILITY FOR STOCHASTIC EVOLUTION
EQUATIONS*

RICHARD B. VINTERf

Abstract. It is established that the Kalman filter associated with signal and observation processes
defined through stochastic evolution equations is stable under very weak hypotheses; namely when
appropriate stabilizability/detectability criteria hold. Thus in this general setting we obtain results as
sharp as are available for processes taking values in finite dimensional linear spaces. The conditions are
shown to be directly verifiable in certain important situations.

1. Introduction. This paper treats stability of the error process associated
with the filtering of signals defined through linear stochastic evolution equations.

The viewpoint taken is as follows. A filter is judged to have desirable
asymptotic properties if the error process, that is the difference between the signal
and the signal conditioned on the observations up to the present time, is stable.
Further, since in applications choice of theinitial distribution, Xo, of the signal
process is often nominal, we require that the asymptotic behavior of the filter be
insensitive to modeling of Xo. Accordingly, we term a filter which gives rise to a
stable error process, even in the presence of mismodeling of Xo, a stable filter and
seek conditions assuring this property.

Stability of the error process et will be understood in the sense of con-
vergence of the distributions induced on the range spaceXof the signal process by
et as t tends to infinity. When X is a finite dimensional linear space, developing
sufficient conditions for filter stability is little more than an adjunct to the study of
the asymptotic behavior of solutions to the differential Riccati equation. WithX a
separable Hilbert space however, the probabilistic aspects of the problem are not
quite so trivial, for in this case there are a number of possible choices of topologies
on the space of distributions on X and some thought needs to be given to the
precise manner in which we stipulate that the distributions converge. The core of
the paper is 4 where conditions are given for filter stability analogous to the
known results for the case that X is finite dimensional; the results are then
interpreted for signals defined through stochastic differential delay equations.

For X finite dimensional, the earliest available sufficient conditions for filter
stability [13] are given in terms of controllability/observability hypotheses for
time-invariant systems (uniform controllability/uniform observability hypotheses
for time varying systems). These were subsequently weakened (in the time
invariant case) to stabilizability/detectability hypotheses [25].

In this paper, attention is limited to time-invariant systems. For by so doing,
even whenX is a separable Hilbert space, we can give conditions for filter stability
under merely stabilizability/detectability hypotheses. We stress that these condi-
tions are no mere technical refinements of more tractable conditions. Indeed the
significance of the results reported here rests on the fact that, in certain important
cases, the hypotheses of stabilizability/detectability may be directly tested (in the
sense that verification involves examining the properties of a collection of

* Received by the editors April 2, 1975, and in revised form June 29, 1976.

" Imperial College of Science and Technology, London SW7 2BZ, England.
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matrices). We argue in fact that conditions for filter stability involving
controllability/observability notions are not natural to the present setting. It is not
difficult to construct counter-examples illustrating that approximate controllabil-
ity does not assure existence of a limiting solution to the mild differential Riccati
equation; on the other hand, although conditions for filter stability can be given in
terms of exact controllability/exact observability, these hypotheses are not met
with for most infinite dimensional systems of interest and are, in any case, stronger
than the conditions given here [26].

Inevitably a considerable part of the paper is given to properties of the mild
differential Riccati equation. Readers may be surprised at the absence of technical
conditions in the statement of results here; for time-varying systems, introduction
of a morass of technical conditions to justify setting up analogues of different
aspects of the finite dimensional results seems inevitable [4], but under our
assumptions of time-invariance, almost all of these fall away. The only technical
condition that remains is a finite dimensionality assumption on the range of a
certain operator to assure asymptotic convergence of the weak differential Riccati
equation with respect to the uniform, not merely the strong, operator topology.
But this finite dimensionality assumption has to be made anyway for the estimated
signal to have representation as the output of a Kalman filter and therefore, in
relation to the filtering problem, no loss of generality is involved (this is judged to
be a crucial observation of the paper).

Investigation of the detailed structure of infinite dimensional Kalman filters
and of the numerical aspects of their construction is still a largely unexplored area.
The paper shows however that, even with present knowledge, it is possible to give
tight, and in some cases easily tested, conditions that one important qualitative
property holds, that of filter stability.

2. Notations and conventions. Linear spaces are assumed real throughout.
We refer the reader to the appendices for usage and basic results relating to

perturbed evolution operators and separable Hilbert space valued random vari-
ables.

For brevity, when the meaning is clear from context, Pt will denote either the
function t->Pt or the value of the function at t, etc.

3. The weak differential Riccati equation. Take X, Y, U (real) Hilbert
spaces, {T (X)lt -> 0} a CO semigroup with infinitesimal generator A,

Geo(X), B e(U, X), Ce.(X, Y), R eo(U).

It is assumed that G, R are self-adjoint, nonnegative operators, and that there
exists some e > 0 such that

[IRxll llxll, all x U.

THEOREM 3.1. There exists a unique Pt: (-o, 0]--> (X) in the class ofstrongly
continuousfunctions such that (i) Pt is self-adjoint t <- O, and (ii) for each h {A},
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t-*(Ph, h) is locally absolutely continuous with

(Ph, h)+ 2(ah, Ph) +([C*C-PBR-1B*P]h, h)= O,

(3.1)

all <-_ 0

For a condensed proof the reader is referred to 11.
We remark that the theorem may be given an alternative statement, where (i)

is dropped and (ii) is replaced by

(3.2) (Pth, )+(Ah, Pth")+(Pth, Ah-) +([C*C-P,BR-1B*Pt]h, /;)= 0,

all t -<_ 0, each h, h {A}. The unique solution to (3.2) is everywhere self-adjoint
and coincides with Pt of the theorem.

The theorem draws known results from a number of sources" existence and
uniqueness of solutions to the ’integral Riccati equation’,

(Pth, h)= (,th, [C*C+PrBR-1B*P]’,th) do-
(3.3)

+(o.,h, G0.,h), all t-<0, hX

(with ,., Tt perturbed by -BR-B*P,) in the class of weakly continuous func-
tions everywhere self-adjoint, was established in [2], where the interpretation

(P,h, h) inf {Julu L2(t, 0; u)},

(3.4) Ju

x, T,-th + T,_,Buodo’, r >

was given. (For definition of the perturbed evolution operator Tt.s we refer to 9.)
It was shown (for example) in (21) that when t--Pt is strongly continuous (as

here) then t--Pt satisfies the weak differential equation (3.1).
Finally, the result on uniqueness of the solution to (3.1) follows an idea in (4).

It improves on a number of results giving uniqueness under a variety of conditions
(irlvolving finite dimensionality of range {B}, inclusion of range {B} in {A} etc.)
[2], [21] all of which are dispensed with here.

The next theorem gives the best available conditions under which the
"algebraic Riccati equation" has a unique solution and its identification through
the limiting solution of the Riccati equation.

Recall the definitions:
DEFINITION 3.1. Take X, T, U real Hilbert spaces and B .(U, X),

C (X, Y). Let {T, (X)lt ->- 0} be a C semigroup with infinitesimal generator
A. Then

(i) (A,B) is stabilizable if there exists Ko(X, U) such that A +BK
generates an exponentially stable semigroup,
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(ii) (C, A) is detectable if there existsM (Y, X) such that A +MCgener-
ates an exponentially stable semigroup.

Of course in the above definition, by exponential stability of the semigroup T
we mean that the growth

lim
lg IIT[I

is negative.
THEOREM 3.2. Consider the equation in P,

(3.5)
2(Ah, Ph)+([C*C-PBR-XB*P]h, h)= 0,

P(X), P=P*, P>=O.

allh {A},

(i) ff (A, B) is stabilizable, then (3.5) has a solution.
(ii) I[ (C, A) is detectable, then (3.5) has at most one solution P, and (ifthe

solution exists) A -BR-1B*P generates an exponentially stable semigroup.
(iii) If (A, B) is stabilizable and (C, A) is detectable, then, ]’or any G e(X),

G>-_O, G=G*,

Pt poo (strongly) as t

where Pt is as given in Theorem 3.1 and pO is the unique solution to (3.5).
Theorem 3.2 is proved in Appendix C. Notice that in requiring merely

detectability of (C, A and stabilizability of (A, B) for existence and uniqueness of
a solution to (3.5), these results are as strong as those available in [25] for the case
that X is finite dimensional,

That stabilizability of (A, B) implies existence of a solution is well known [6],
[14], [7]. Uniqueness under the detectability hypothesis is a much more recent
result and has awaited a lemma of Zabczyk (Lemma 11.1 of Appendix C), which
replaces the crucial [25, Lem. 12.2, p. 299]. Finally, the convergence property (iii)
is well known forX finite dimensional. It has also been established in the present
setting [14], [6], [2] for G 0. The general result here which is needed in our study
of filter stability is apparently new.

The results given above are in a form convenient for the study of quadratic
control problems. Finally we provide a rephrasing of results and extensions which
will be useful in studying the filtering problem.

PROPOSITION 3.1. Take X, U (real) Hilbert spaces, {Tt (X)lt->0} a CO

semigroup with generatorA, N (Y), Po L(X), B (U, X), C .L(X, Y). We
assume that Po, Nare self-adfoint, nonnegative, and there exists some e > 0 with

Ilgyll  IlYlI, all y Y.

Then there exists a unique Pt: [0, c),(X) such that
(i) Pt P* each t >- 0 and -Pt is strongly continuous,

We observe however that (35) has a solution under the weaker, implicit, hypothesis that the
infimum of the corresponding ’infinite time’ problem, for arbitrary initial conditions, is less than
infinity.
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(ii) ]’or each h {A*}, t-(P,h, h) is locally absolutely continuous with

d
(3.6) -(P,h,h)=2(Pth, A*h) +(h,[BB*-P,C*N-1Cp,]h), allt>__O,

and Po is as given.
Now suppose that (A, B) is stabilizable and (C, A) is detectable. In this case

(i) Pt -) poO strongly as --) oo where po is the unique solution of
pOf(X), (pO),=poO, P_->O,

(3.7)
2(Ph, A*h +([BB* PC*N-CP]h, h ) O, all h {A*}.

(ii) A*-C*N-1CP generates an exponentially stable semigroup Tt
(iii) we have the estimate: for all t >_-. O, h X,

(eh, h <-(h, eoh + (h, [*-eC*N-CP]h as.

Finally, i[ in addition we assume that the range oCis finite dimensional, then
writing Tt, .for T perturbed by -PtC*N-1C,
(3.8) IILoll-,0, t-o.

The convergence property (3.8) is crucial for the results of succeeding
sections. To conclude (3.8) we need to assume that Chas finite dimensional range;
this will however result in no loss of generality as regards applications to the
filtering problem.

The proposition is proved in Appendix C.

4. The filtering problem. For usage relating to separable Hilbert space
valued random variables we refer to Appendix B.

Consider now the stochastic evolution equation

(4.1)

with observation process

dx, Ax, dt +B dw,,

Xo given,

dz Cx dt +Fdvt,
(4.2)

Zo=0.
Here, (, 6e, ) is a complete probability space; U, X, (real) separable Hilbert
spaces;

B .(U, X), C(X,

FF* > 0; {w,[t >-_ 0}, U-valued separable Wiener process (on (, 6e, )) with (con-
stant) incremental covariance W; {v, lt >-0}, k-valued separable Wiener process
with unit incremental covariance, A, the infinitesimal generator of a CO semigroup
(T, .(X)lt ->_ 0}; Xo, a Gaussian random variable taking values in X with zero
mean and covariance Po. We assume that wt, vt are independent and that Xo is
independent of future increments of wt,
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Equation (4.1) is interpreted as

(4.3) xt Ttxo + Tt_B dw,

with the last term a Wiener integral. There exists a measurable version of xt with
summable paths; such a version is used in evaluating z,, " -> 0, as

z Cx do" +Fv.

For fixed t > O, we find that {z,10 --< " --< t} takes values almost surely in L(O, t;
N) and defines a second order L(O, t; N)-valued random variable.

The filtering problem is that of characterizing the process 2, t _-> O, where

(4.4) at E{xtlz, 0 <= " <- t}.

Concerning the filtering problem we have the following results:
THEORE 4.1. :, has representation

(4.5) , ’,,,P,C*(FF*)-1 dz

where ]’,. is Tt perturbed by -P,C*(FF*)-Ic, P," [0, )-->(X) is the unique
strongly continuous [unction such that P, is self-adfoint [or all t >= O, and for
h {A*}, t-->(h, P,h). is locally absolutely continuous with

d
(4.6) -(h,P,h)= 2(A*h, Pth)+(h, [BWB*-PtC*(FF*)-CP,]h),

Po as given.

Proo]’. Take t.s to be T, perturbed by -PtC*(FF*)-C. It is known [15] that ,
has representation (4.5) where now P," [0, )-(X) is the unique strongly
continuous function such that Pt is self-adjoint, t ->_ 0, and for all h X, t >-0,

(Pth, h) ,.oh, Po’t,oh
(4.7) + (f’t,o.h, [BWB* +P,C*(FF*)-CP,]t,h) do-

(see also [3]).
Using the strong continuity of t Pt we may justify term-by-term differentia-

tion of (4.7) to obtain (4.6) as in the proof of Theorem 3.1.
That Pt is the unique solution in the specified class of the weak differential

equation (4.6) now follows from Theorem 3.1, on considering a change of variable

Let us recall that in order to have t represented as the output of a Kalman
filter it is necessary that the incremental covariance of vt be invertible. Since the
incremental covariance is necessarily a trace class operator [1], this in turn
constrains the process z, to take values in a finite dimensional linear space. In
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particular C has finite dimensional range (a technical condition introduced in
Proposition 3.1).2

5. Filter stability. Let us write

Lr ={k-valued processes on [0, oo), z, ldzt gtdt+d(t with gt an k-valued
measurable process with summable paths, s, an k-valued separable Wiener
process}.

We call the map ’/" carrying processes in into X-valued processes on [0, )
through the map (4.5) the Kalman filter.

Notice that in particular, the process {z’tlt >= 0} lies in the domain of the filter
where

X IOTtx + Tt_B dw,
(5.1)

z’, Cx ; d" + Fv,.

Equation (5.1) is identical with (4.1), (4.2) except that we now allow x/ to be an
arbitrary X-valued random variable. It is important to note that x/ is not assumed
Gaussian so that ^’x defined by

(5 2) x= (Y{z’)(t), > 0

will not in general be Gaussian or even second order.
We wish now to introduce the concept of filter stability in the present setting.

First we recall some definitions concerning weak convergence of measures"

DEFINITION 5.1. TakeX a topological space, and write x tr{open sets in
X}. A sequence of finite measures {/z/} on Nx converges weakly (with respect to
the X topology) to/z a finite measure on x written

/.t =>/x (w.r.t. X topology)

when for every bounded function f: X- N, continuous with respect to the X
topology,

We recall that weak convergence of a sequence of probability measures
/xi p, onx (X as defined above) is equivalent to convergence of the distribution
functions induced by the /xi’s on the range of f (in the sense of pointwise
convergence at continuity points of the limiting distribution) for every bounded
f" X- N continuous with respect to the topology under consideration.

Now a highly desirable property of the filter is that the error process xt-t
should be both ’stable’ and insensitive to errors in the modeling of Xo.

Note however, that when C does not have finite dimensional range, then the filter may still be
defined as the best linear estimator. Study of the asymptotic properties of the filter in this general
setting awaits investigation.
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This property is made precise in the definition of filter stability; here stability
of the error process is taken to mean that the measures induced on x by the
process converge to a limit, while insensitivity to modeling errors requires that this
limit be independent of Xo.

DEFINITION 5.2. TakeX as in 4 and writex tr {strongly open sets inX}.
Let be a topology on X which we assume to be not finer than the strong X
topology. Let x’,, :’t be processes as defined by (5.1), (5.2).

Then the Kalman filter is stable (w.r.t. 5r topology on X) if there exists some
measure/x on x such that given any X-valued random variable x0, then

(5.3) /., :ff/. (w.r.t. 5r topology onX),

where/x, is the measure on x induced by x,-x,.
The stipulation that the T topology on X be not finer than the strong

topology on X assures that the X-valued random variable x,A’-x; defines a
measurable map from the underlying pre-probability space (12, 6e) to (X, o-
{-open sets}), whence (5.3) is meaningful.

We now state the main result of the paper (here W1/2 is taken to be the
nonnegative, self-adjoint square root of W as defined for example in [18]):

THEOREM 5.1. Suppose that (A, BW1/2) is stabilizable, and that (C, A) is
detectable. Then the Kalmanfilter is stable with respect to the weak topology onX.

If Xo 0 and we modify the definition of filter stability to stipulate that X’o be
independent offuture increments of w,, v,, then the filter is stable with respect to the
strong topology.

In either case the limiting measure is a zero mean Gaussian measure onXwith
covariance P, P being the unique P .Z(X) such that P P*, P >- 0 and

2(A*h, Ph)+(h,[BWB*-PC*(FF*)-CP]h)=O allh {A*}.

6. Proo of Theorem 5.1. Take x an arbitrary X-valued random variable,
and define x’,, ’t as in (5.1), (5.2). Proof of the theorem will hinge on the following
representation of the error process e’t=’t-x,.’’

e’,= ’,.oX;+ ’,.[Bdw+PC*(FF*)-ICdv]

(see (15, Prop. 10.1)), where P, tr->0, is as in Theorem 4.1, and T.s is T
perturbed by -P,C*(FF*) C.

We shall express e’,as the sum of two processes

e’t--at+b,

where

(6.1) a, ’,.o(X)-Xo)

(6.2) bt f/’t.oXo + f/’t,,[B dw, +P,C*(FF*)-Cdv,]

and Xo is a zero mean Gaussian random variable with covariance Po, independent
of future increments of wt,
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DEFINITION 6.1. Take X a topological space, x tr { open sets in X}. We
say that a family of finite measures onx is weakly sequentiallyprecompact (w.r.t.
X topology), when every sequence in the family contains a subsequence weakly
convergent (w.r.t. X topology) to a finite measure on x.

LEMMA 6.1. Take X a topological space, and let {lt[t} be a family of
measures on x with sup,s {zt(X)}<oo. Suppose there exists an increasing
sequence K,, in x such that

(a) each K,, is compact,
(b) each K,, (with the topology induced by X) is separable, rnetrizable,
(c) I,(X K,,) 0 as rn oo, uniformly in t . Then {/z,} is weakly sequen-

tially precompact (w.r.t. X topology).
Proof.3 This result is well known for X a complete, separable metric space

[10]. But scrutiny of the sufficiency part of the proof of [10, Thm. 1, p. 441] reveals
that only separability and metrizability of the Km’s is required for the conclusions
of the lemma to hold.

Proof of Theorem 5.1. Under the hypotheses that (A, BW1/2) is stabilizable
and (C, A) is detectable we prove that the filter is stable (w.r.t. the weak X
topology).

The operator C has finite dimensional range. By Proposition 3.1 then,
117 ,,oll -, 0 as t oo. Note also that by standard theory II ,,oll is locally bounded,
whence I1 ,,oll is uniformly bounded on [0, oo).

Writing K,, {x xlllxll--< rn}, we have that (3,,=1,2....Km X so that from
the sigma-additivity of the measure induced on x by x-x

{llx-xoll<=m}-> 1 as m-->oo.

But for each t => 0, taking a, as in (6.1),

{lla,[I -< rn } ->_ {11 ,,oll" Ilx xoll -< m}.

The uniform bound on I1  ,oll then gives

(6.3)  {lla,II -< rn} 1

uniformly in >--0.
Now suppose that we can show that

(6.4)  ’{llb, -< rn } 1

It will follow that

(6.5)  {lle;ll =< rn } 1

Indeed

uniformly in t _-> 0.

uniformly in t => O.

{llel > m} _-< {lla,ll/llb,ll> m}
{lla,ll > rn/2} + {llb, > rn/2}

0 as rn oo uniformly in t => 0.

The reviewer has pointed out that the lemma also follows from Prokhorov’s criterion on U,,,K,
and the fact that the space of measures on tr,,:., with the weak topology is a Lusin space so that its
compact subspaces are metrizable (see [27, Thms. 3 and 7, Appendix paragraph 3]).
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The family {Kin m 1, 2,. } satisfies the conditions (a), (b) of Lemma 6.1
w.r.t, weak topology on X. Indeed for each m, Km is weakly compact by Alaoglu’s
theorem [8, p. 424]. Each Km is also metrizable [8, p. 426] and obviously
separable (being separable by assumption w.r.t, a stronger topology). Further-
more writing/-t for the measure induced on x by e’t, we have from (6.5)

/z(Km)- 1 as m-o uniformly in t => 0.

It follows from Lemma 6.1 that the family {/xlt->0} is weakly sequentially
pre-compact (w.r.t. weak topology on X). Take a sequence {ti} increasing to
infinity. We know that there exists a subsequence, also written {ti}, such that

/.% :/2 (w.r.t. weak topology onX)

for some measure /2 on 9x. In particular, since x--e i<x’’*> defines a weakly
continuous bounded functional on X for x*X we have, writing 2’ for the
characteristic function of the measure ,,

X,j(x*)-Xa(x*) asj-c, eachx*X.

b, is a zero mean Gaussian random variable with covariance Pt [15]. From
Proposition 3.1 P, -- P strongly, with P as given in Theorem 5.1. It follows that

E{e i(bt’x*)} e -(x*’P’x*)--> e -<x*’Px*) as t--> o, each x* s X.

Now IILoll-, 0 as t--> oo implies that

(6.6) at-> 0 almost surely, as t--> .
For each t-> 0 we have that

Xt,(X*) E{ei<b"x*)}d E{e i<at’x*)- 1) ei<b"x*>}.
But

E{e i<a,,x*>_ 1) e i<b,,x*>} 0 as t o

for each x* sX by (6.6) and dominated convergence. Taking the limit j o, we
have

Xa (x*) e -<x*’P**>, each x* X.

However the values of the characteristic function uniquely define a measure on

x [16, p. 152]. It follows that

ti /2 (w.r.t. the weakXtopology),

where/2 is zero mean Gaussian measure with covariance P. We have then that
every sequence {t} increasing to infinity contains a subsequence, also written
such that/zt converges to a unique measure/2. An elementary argument now gives

/zt : fi, as t oo.

To complete the proof of the first assertion of the theorem it remains to verify
(6.4).
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Write Tt for the semigroup generated by A-PC*(FF*)-Ic. Then by
Proposition 3.1,

(eth, h) <-_ (( TT)*h, Po(TT)*h )

+ {(T)*h, [BWB* +PC*(FF*)-ICP](T’)*h} do-.

But Po, W, (FF*) are trace class operators. Using well-known properties of such
operators [1], we show that P is trace class with

IIe, ll,r =< TTII=IIPolI,

/[llBllZllvlt/llfPII2" Ilff*lltr] IlTTII= d.

(I]" Iltr denotes the trace norm.) By Proposition 3.1, T is exponentially stable; it
follows that {Ptlt->O} is uniformly bounded in trace norm. Thus {btlt_>-O} is a
family of zero mean Gaussian random variables whose covariances are uniformly
bounded in trace norm.

However,

(6.7) E{llbtll > m} -< (1/m

We note though that by the special properties of bt,

E{llb, z} E{ lim X (x, e,)2}
i=1

lim E{ Y (x, e)z}
n-o i=1

(by monotone convergence)

Here {ei} is an orthonormal basis for X, comprising eigenvectors of Pt correspond-
ing to all nonzero eigenvalues together with a countable set which spans the null
space of Pt and A= IIee,.ll. In view of the uniform bound on IIe, ll*r, (6.4) now follows
from (6.6). Thus the first assertion is proved.

Under the further assumptions that Po 0 and that x is independent of
future increments of wt, vt we proceed to show that the filter is stable w.r.t, the
strong X topology.

Take e[, a, bt as above (x0 under the present assumptions is zero almost
surely). Write/xt,/xt,/z bt for the measures induced onx by el, at, bt respectively.
Consider at. We have a,-->0 (strongly) as t-->o, almost surely, whence for
arbitrary f: X--> , bounded and strongly continuous,

Ix fdlz’=E{f(at)}Ix fd(8(O)) as t-->

(8(0) probability measure concentrated on {0}).
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Consider now/x
b b is a zero mean Gaussian measure with covariance Pt.

As in the proof of Theorem 3.1 we show that

(6.8) (Pth, h)--)(Ph, h), all h X,

where

= ((7 )*h, [BWB*+eC*(FF*)-CP]()*h) dt

(recall is exponentially stable, so that is well-defined), and because o the
assumption Po O,

(6.9) (Ph, h) (h, h), all h X.

e same reasong as above establishes that ff is a trace class operator.
By a well-known result [11, p. 142], (6.8) and (6.9) imply that

tff weakly (w.r.t. thestrongXtopology),

where is zero mean Gaussian measure with covariance P.
By assumptionx is independent of future increments of w, v; it follows that

a,, b, are independent random variables. In consequence

(convolution)

But [16, p. 57] theoperation of convolution on measures defined on the Borel
sets of separable metric spaces is continuous (w.r.t. the weak measure topology); it
follows that

a bu,=, ,ff6(0),=

(w.r.t. the strong X topology) as required.

7. Verification o[ the stabilabi/deteetabili assumptions. In this sec-
tion we indicate how the hypotheses of stabilizability and detectability under
which filter stability is assured are in certain circumstances directly verifiable.e
development here will be in Banach spaces.

Take X, a (real) Banach space. e closed linear map A" X X with dense
domain is termed discrete in case for some A in the resolvent set of A (M-
A)-I:XX is compact (terminology of [9]).

Let {Tt (X)]t 0} be a C semigroup with generator A. In the case that A
is a discrete operator and T is compact for some > 0, the semigroup has very
special properties. In particular we find that the set

{A spectrum {A}IRe {A } 0}

is a discrete operators and T is compact for some [ > 0, the semigroup has very
fiMte-dimensional range.
e following theorem is proved in [24]. See also [17].
THEORE 7.1. Take X, U, Y (real) Banach spaces. Let be given B

(U,, C (X, and { (lt 0} a C semigroup with generator A.
Assume

(i) A is a discrete operator,
(ii) T is compact for some F> O.
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Taking P as above, we have that
(A, B) is stabilizable is and only if

dim {PgAPt. A(d-1)Pi} d.

(C, A) is detectable if and only if
d-1

null space {Clt+AJilt+} {0}.
j=O

Here denotes range {B}, C* denotes range {C*} and d is the dimension of the
range o[ P, l+.

The theorem gives conditions for stabilizability in terms of properties of the
restriction of A to a finite dimensional invariant subspace and of a projection of
the range of the operator B onto this subspace (likewise dual results characteriz-
ing detectability). Verification of the conditions amounts to checking algebraic
properties of certain matrices, on computing bases for the range of the projection
operator P, and its adjoint P* (see [24] for details).

We take up a class of semigroups to which the results of this section are
applicable in the next section.

8. Filtering |or linear stochastic differential delay equations. Consider the
stochastic differential delay equation

dxt L(t) dt +B dwt,
(8.1)

{Xt+oL(t) Ai
=0 ht+o

Xo given,

+ Ao Xt+o
t + Oi < b ht+o t+O<

dO,

<Ok--i <’’ "<00=0 forb>0,

with solution x,, an N"-valued process. Here w, is an m-dimensional separable
Wiener process with constant incremental covariance; Ao,"’, Ak, B are mat-
rices of appropriate dimension; O-+Ao is an essentially bounded, measurable,
matrix valued function; (x0; h) is an N" x L2(-b, 0; N")-valued Gaussian random
variable independent of future increments of w,.

Associated with this equation is a stochastic evolution equation

d.t At +B dwt
:o (Xo, h)

which defines an N"xL(-b, 0; N")-valued process 2,. Here A generates a CO

semigroup Tt and B is computed from B (see [23]). Writing t as (xt; x,(a), -b <-
a _>-0) we know [23] that xt is the solution of (8.1).

Taking an observation process

dzt C2t dt +Fdl)t

as in 4 (X is now understood as N" x L2(-b, 0; N")), we may define a filtering
problem as before. Thus we seek to characterize



478 RICHARD B. VINTER

In this application however, the random variable of primary interest is not so
much t as xt, the random variable obtained by projecting the range of xt on
R x{0); indeed, in view of the representation theorem 23] relating t, x,

E(I t}Xt Xt Z., 0 <
We make two important observations; on these observations, in fact, the

significance of the results of this paper is judged to rest.
Firstly, the semigroup satisfies the conditions of Theorem 7.1 [22]. Thus the

filter stability criteria of- 4 reduce to statements about properties of certain
matrices (though computation of sets of basis elements for the finite dimensional
subspaces involved is by no means a trivial task).

Secondly, the strongest results of the main stability theorem, Theorem 5.1, in
a sense apply here. We make this precise; it is natural in the context of this
application to define stability in relation to the n-valued process t-xt rather
than the x L2-valued process ’-t. That is to say, we take the Kalman filter to
be stable when the distributions on " induced by t- xt converge (pointwise at
continuity points of the limiting distribution) to a unique measure, whatever the
"initial condition".

But for f: R" R a continuous function, f S" " xL2 _. is weakly continu-
ous (for S the projection RnxL2"x {0}). It is not difficult to see that, in
consequence, the conditions in Theorem 5.1 which assure filter stability in relation
to t (w.r.t. the weak n xL2 topology) also assure filter stability in relation to xt in
the usual sense.

Appendix A. Perturbed evolution operators. Take X, (real) Hilbert space.
DEFINITION h. 1. rt,s" *’(X) is a miM evolution operator when
(a) Tt." (X) is strongly continuous, and
(b) T,,T. T,., Tt,, I (identity in (X)), t _-> r _-> s.

Here,

9a {(t, s) ]t _>- s _-> 0}.

We shall of course view a CO semigroup T as a mild evolution operator
defined through (t, s) T,_.

DEFINITION A.2. Let T,: -->(X) be a mild evolution operator. Suppose
that Bt: [0, oo)(X) is strongly.measurable and locally essentially bounded.
Then the mild evolution operator T,s is referred to as T,, perturbed by nt when, for
all t =>s _->0, x X,

(A.1)

It is known that for given T,s, Bt, (A.1) uniquely defines the perturbed
evolution operator t,s (see [21]).

Appendix B. Separable Hiibert space valued random variables. For defini-
tions relating to separable Hilbert space valued random variables we refer to [1].
Note that the separability assumption assures that we do not have to distinguish
between weak and strong measurability, independence, etc. Expectation is
written E{.}.
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We adopt the definition of a Wiener process taking values in a separable
Hilbert space given in [1, p. 168], limiting attention however to processes where
the incremental covariance is constant.

Take X, U (real) separable Hilbert spaces. In order that (4.3) be meaningful,
the definition of Wiener integral

B, dwo.

(wt a U-valued Wiener process on [0, t], o- --B, a weakly measurable, essentially
bounded (U, X)-valued function) here employed differs slightly from that in [1,
p. 180 et seq.], where attention is limited to integrands measurable with respect to
the uniform operator topology. For the rather obvious modification involved, we
refer to [23].

Conditioning of a first order separable Hilbert space valued random variable
on a sub-sigma field follows the definition of the (strong) conditional expectation
given, for example, in [20, p. 356]; definition of conditional expectation of one
first order separable Hilbert space valued random variable on another is clear.
Note that if x, y are random variables taking values in the separable Hilbert spaces
X, Y respectively, with x second order, then x conditioned on y, written

E{xly},

coincides with o --(y(o))), where is the unique element in LZ(, o-; X) such
that

E{((z(o))), g(y(w)))} E{(x(w), g(y(w)))}
for all g L(, cr; X).

Here, are the Borel sets of Y, and o., the probability measure induced on by y.

Appendix C. Proofs of results in 3.
Proof of Theorem 3.1. (i) Existence o]’ a solution. We readily deduce from

results in [2] that there exists a unique Pt: (-oo, 0](X) such that
(a) Pt P’t, all t <_- 0,
(b) t-Pt is weakly continuous, and

(e,h, h OT"o,,h

+ ,,th, [C*C+P,BR-1B,p,] ,,,h ) do"

(where 2t,s is Tt perturbed by -BR-1B*P,), all t -< 0, h e X.
Let us suppose that Pt is strongly continuous on (-oo, 0]. For h e N{A } we

may differentiate the right-hand side of (C. 1), as is justified for example in [21] to
give, for each h s fl0{A },

(C.2) -(P,h, h)=-2(Ah, Pth)-([C*C-PtBR-IB*Pt]h, h), all t--< 0.
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Now the right-hand side is locally integrable in view of the strong continuity
of Pt. Since (Pth, h) is everywhere differentiable it follows from [19, p. 168] that
(Pth, h) is locally absolutely continuous. Thus it remains to prove that Pt is strongly
continuous.

To this end we show first that T,.s.’*" - &e(X) is strongly continuous. Indeed
Tt is a CO semigroup with generator A* (this readily follows from [12, Thm.
10.6.3., p. 324]). Choose (t, s) and tl > t. Using this property and Fubini’s
theorem one may show that (’,tr)--t_#.,,_, is t perturbed by t-
-BR-IB*P,I_,. In view of the definition of mild evolution operators therefore, ,.s
is in particular strongly continuous at (t, s).

Next we note that for each h X,

tr- f,t(C*C+P,BR-1B*p,) ’,,th
is locally essentially bounded and (strongly) measurable. Since Pt P’t, (C.1) may
equivalently be written

P,h f’.,GTo,,h + I f.,(C*C+PBR-1B*p,) T,,th do’,

allt=<0, hX.

Using dominated convergence and the strong continuity of t., 7., one can now
easily deduce that P is strongly continuous.

(ii) Uniqueness of solutions. Let P, satisfy the hypotheses of the theorem.
For t _-< 0 define Q, ..(X) by Qt Q’t, and

<Q,h, h) ( f’o,,h, Go.,h)

I,+ (.,h, (W+P,BR-B*P,)f.,h) do-,

all h X, t_-<0, (where 2,. is Tt perturbed by -BR-B*P). Using the strong
continuity of Pt we may show as in the uniqueness part of the proof that Q, is
strongly continuous and that, for h {A}, t-->(Q,h, h) is everywhere differenti-
able with

-(Qth, h)=-2(Qth,(A BR-aB*P)h) ((C*C+PtBR-IB*P)h, h).

Let us writet Pt Qt. Thent is strongly continuous, *t ,, all t _-< 0 and, for
h @{A}, t(,h, h) is locally absolutely continuous on (-o, O] with

(C.3)
t
(,h, h) -2((A BR-B*P)h, ,h),

o=0.

all t _-< 0,

Now suppose that we can show that the only solution , to (C.3) is the trivial
solution (in the class of strongly continuous, self-adjoint functions such that
(th, h) is locally absolutely continuous for each h {A}); then it will follow that
P, Qt for all t. In other words P, satisfies (C.1). But (C.1) admits a unique weakly
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continuous solution, whence (3.1) admits at most one solution, which is what we
set out to prove.

So turning to (C.3), fix s < 0 and define ,= T*-stT-s on [s, 0]. Using the
strong continuity and ditterentiability properties of t together with the proper-
ties of the CO semigroup T, we easily verify that (Y’.th, h is everywhere ditterenti-
able on Is, 0] for h N{A } with

h) 2(,h, BR-1B*Pth ).

By [19, p. 168] then (recall that o 0)

(.sh, h ) (sh, h (,h, BR-IB*Pth)dt, all h e {A}.

But IIe, is bounded on bounded intervals, so that given < 0 there exists a
constant Kt depending on t such that

I1%11--<K, I1 ’ 11 ds on [t, 03

(we have used the density of N{A} in X). By Gronwall’s lemma then, the strongly
continuous function I1’  11 is.identically zero on the arbitrary interval It, 0] and the
theorem is proved.

We now turn to proof of Theorem 3.2, which will require the following
lemma due to Zabczyk:

LEMMA C. 1. Take A, B, C, R as in 3. Suppose that C, A) is detectable and
that there exist 0 (X) with 0 0", 0 >= 0 and some K .(X, U) such that

(C.4) ((O(A -BK)+C*C+K*RK)h, h) <=O, allx fl{A}.

Then (A-BK) generates an exponentially stable semigroup.

Proof (details in [26]). For clarity we write T for the C semigroup on X
with generator G, and in particular we write TAt for T. The detectability
assumption gives existence of S e (Y,X) such that Ta-scis exponentially stable.
The proof depends on noting that (A BK) can be written (A $C) + (SC-BK)
whence the perturbation formula gives

(c.5) Tta-ax Tta-SCx + T#SC(SC-BK)T-Bx ds.

We may deduce from (C.4) and the invertibility of R that for arbitrary x e X,

(C.6)
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Equations (C.5), (C.6) with some standard estimates give that

fo ll 2 <oo, xdt all

from which it may be deduced [5] that Tta-s: is exponentially stable.
Proof of Theorem 3.2. (i) Let pO be the solution to (3.1) for O 0. Then

optimality considerations (see (3.4)) and the stabilizability assumption give that
pO is monotone nonincreasing and bounded on (-oo, 0] in the class of self-adjoint,
bounded linear mapsX-X, with respect to the natural partial ordering. It follows
[18, p. 263] that pO has a strong limit/5 as t--)-m. For each h {A} then

) -2(Ah, )h Ph

-((CC*-PBR-B*Pt)h, h)
--) 2(Ah, Ph)-((CC*-PBR-B*P)h, h)

=k

for some constant k. We argue that k must take value zero. Indeed

k lim P,h, h) d"

lim ((P(t)-P(t-1))h,h)=O.
t---oO

We may therefore take pO as/3 and (i) is proved.
(ii) Suppose that P, O both satisfy (3.5). Under the detectability assump-

tion, as a special case of Lemma C.1, we have that (A-BK) generates an
exponentially stable semigroup Tt-swhereK R-B*Q. Write K0 R-B*P
and take note of the identity

((2P(A BKo) +K*oRKo+ C*C)h, h)

(20(A BK) +K*RK+ C*C)h, h) +2(P- O)(A BK)h, h)

+((K-Ko)*R(K-Ko)h, h), all h {A}.

But P, Q both satisfy (3.5) by assumption whence

(2(P- Q)(A BK)h, h) + ((K-Ko)*R(K-Ko)h, h) 0
(c.7)

all h {A}.

Recalling that TA-st is exponentially stable, for h {A}

((P- O)h, h)

T-m’:h, (P- Q)TA-Sh)} d-

(P- O (a
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which is nonnegative by (C.7) and the assumption on R. Since N{A } is dense, we
conclude that P _-> Q. Likewise we prove that Q ->P whence, by the properties of
partial orderings P Q.

(iii) Under the stabilizability and detectability assumptions, we have shown
that

POt P (strongly)

with poo the unique solution to (3.5) in the specified class, and A -BK (where
K=BR-aB*P) generates an exponentially stable semigroup, Tta-.

Define Et (X), ;t ;*, for each t -< 0, by

(E,h, h) (TA-SKh, (W+PBR-1B*P)TA-BKh).

It is not difficult to show (cf. [6]) that, for h X,

(C.8) ((;, e,)h, h) 0 as t .
Optimality considerations (see (3.4)) now give

(E,h, h ) + (Ta_-BKh, GTa_-t,K.h )
>- (Pth, h >= (P,h, h ), h S,

where Pt is the solution to (3..1). It follows, for h X,

0 -< ((e, e,)h, h)
_< ((;,-e,)h, h ) + Ta_-:h, GTtA-:h )"

Define APt Pt Pt. We see that APt (X), APt AP*,, APt -> 0 all _-< 0;
further that

(C.9) (APth, h)O as t-oo, h X,

by (C.8) and the exponential stability of T,a-n=. We now use a standard trick to
deduce that in fact

(C.10) APt 0 (strongly) as t

By the generalized Schwarz inequality [18, p. 262], for h X,

IIAP, = <-(APth h> <APh, APth>.
But IlaP, is uniformly bounded on (-oo, 0]; (C.10) now follows from (C.9). We
know that pO, p strongly. It follows that Pt P strongly, and the theorem is
proved.

Proof of Proposition 3.1. Recall that A generates a CO semigroup T, if and
only if A* generates a CO semigroup Tt. As an immediate consequence we have
that (A, B) is stabilizable if and only if (B*, A*) is detectable and that (C, A) is
detectable if and only if (A*, C*) is stabilizable. Bearing these properties in mind,
all except for the final assertion of the proposition follow from the previous
results, on consideration of a change of independent variable t ---t. We omit the
details.
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We now establish (3.8). Finite dimensionality of range {C} assures that
C*N-1C: X-->X has representation

k

(C*N-1C)x , (ci, x)bi, all x X,
i=1

for some integer k, some set {b, C}/k_- in X. It follows that

k

(C.11) II(P,C*N’C-PC*N-C)I[ <- Y, [l(e,-e)ci[[ Ilbill.
i=1

Under the stabilizability and detectability hypotheses, however, Pt.-->P
(strongly) as t--> . We conclude from (C.11) that

PtC*N-1C->PC*N-C (in the uniform topology).

Write Kt for PtC*N-C, K for PC*N-C. By a basic property of evolution
operators, the semigroup TtA-K generated by A-K can be expressed as
T,,s perturbed by Kt-K (T,,s as defined in the proposition statement). Thus

t+

’,+,t TA --K)x f’t+,,,,.(K,:,. K)T-t’A-Kx do-

t+8,,+8(K+,-K)T-K’x do’.

Standard estimates give existence of a nondecreasing function k such that

sup IIL+,,+ol < k, 0,
O--<o-__<8,t_O

We may also arrange that k > [IT-K[[. By the foregoing, A * (K)* generates
an exponentially stable semigroup, whence T-K’ is exponentially stable. There
exist therefore m, > 0 with IIr II--< m e- for -> O. It follows that

II,+,,ll k, .sup IIK-KII / m.c

Clearly we may choose , t > 0 so that

IIL+,.II </ < 1, all r => t.

But,

’.r,O"- (/".r,t+n.,.8)( n-[ "t+(1.+l)8,t+jS) /"t,O
i=O

where n is taken to be the largest nonnegative integer n such that r- t > n& In
consequence,

IIL,oll<-k"llZ(t, 0)ll-0 asz-->o.

This is the desired result.

Acknowledgments. The author wishes to thank J. M. C. Clark and
J. Zabczyk for helpful discussions.
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THE LINEAR MULTIVARIABLE REGULATOR PROBLEM*

BRUCE A. FRANCISt

Abstract. The problem is considered of regulating in the face of parameter uncertainty the output
of a linear time-invariant system subjected to disturbance and reference signals. This problem has
been solved by other researchers. In this paper a new and simpler algebraic solution is given.

1. Introduction. This paper deals with the regulation of the linear multivari-
able system modeled by the equations

(1) =AIX1 -t-A3x2+BlU,

(2) .2 A2X2,

(3) y Clxl + C2x2,

(4) z DIX1 +D2x2.
Here xl is the plant state vector, u the control input, x2 the vector of exogenous
signals, y the vector of measurements available for control., and z the output to be
regulated. The vectors u, x l, x2, y, and z belong to fixed finite-dimensional real
linear spaces

respectively, and the time-invariant linear maps in (1) to (4) are defined on the
appropriate spaces as follows"

The vector A3x2 in (1) represents a plant disturbance, and the vector D2X2 in
(4) represents a reference signal which the plant output -DIX is required to track.
Equation (2) then models the class of disturbance and reference signals (e.g.,
steps, ramps, sinusoids).

Control action is to be provided by a compensator processing the measure-
ments y(. ), generating the control u(. ), and modeled by

(6) c Acxc +By,
(7) u Fx + Gy.
Here the compensator state vector xc belongs to a finite-dimensional real linear
space, and the linear maps A, B, F, Gc are time-invariant. It is convenient to
consider a compensator formally as a 5-tuple

* Received by the editors November 26, 1975, and in revised form April 19, 1976.
f University Engineering Department, Control and Management Systems Division, Cambridge

University, Cambridge CB2 1RX, England. This research was conducted while the author held a
postdoctorate fellowship from the National Research Council of Canada.
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where

Ac: Tc -) c, Bc: --),
F: --) q/, G: aj--) q/.

There are two control objectives: closed loop stability and output regulation.
Consider a fixed compensator (2Tc, Ac, Bc, Fc, Gc), and define the closed loop state
vector, state space, and linear maps

(8a) XL 2FL
Xc

(8b) AL [A +B1GcC1 B1FcJ
BC A J LL’

(8c)

(8d) Dc [DIO]: L .
From (1), (3), (4), (6), and (7), the closed loop is described by

(9) L ALXL +BLX2,

(10) Z DLXL +D2x2.

Closed loop stability means that AL is stable, that is, cr(AL)c C-, and output
regulation means that z(t)- 0 as t --)oo for all XL (0) and x2(0). The compensator is
called a synthesis if it provides closed loop stability and output regulation.

The spaces (5) are assumed to have fixed bases, so we regard A 1, A3,. in
(1) to (4) as linear maps or as real matrices, depending on the context. Similarly, in
specifying a compensator, we shall suppose that a basis for is specified, so we
regard A, B, F, Gc also as real matrices.

Now consider a fixed synthesis (, Ac, B, F, Gc). An n-dimensional data
point/ R" is a list of n numbers selected from among the elements of the plant
matrices A1, A3, B1 together with the compensator matrices Ac, B., Fc, Gc. A
property of points in R" is said to be stable at I if it holds throughout some open
neighborhood of/. We say that the synthesis is structurally stable at I if closed
loop stability and output regulation are both properties which are stable at /.
Clearly closed loop stability is a stable property (if AL is stable it remains so under
small perturbation), so the synthesis is structurally stable at/ iff output regulation
is a stable property at/. The requirement of structural stability evidently reflects
an uncertainty of some system parameters or the desire to achieve a degree of
insensitivity to slow drift in certain parameters.

Our object in this paper is to solve two problems.
PROBLEM 1. Find computable necessary and sufficient conditions (in terms

of the given data A 1, A3, B, A2, C1, C2, D1, D2) for the existence of a synthesis.
Give an algorithm to compute a synthesis when these conditions hold.

By a computable condition we mean one for which a verifying algorithm
exists.
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PROBLEM 2. This is Problem 1 with "synthesis" replaced by "structurally
stable synthesis."

These or similar problems have been treated by many researchers, among
whom we mention Bhattacharyya et al. [1], [2], Davison [3], Davison and
Goldenberg [4], Grasselli [5], Johnson [6], [7], Miiller and Liickel [8], Pearson et
al. [9], Sebakhy and Wonham [10], Smith and Davison [11], Wonham and
Pearson [12], Wonham [13], and Young and Willems [14]. In our view the
algebraic solutions presented in this paper are simpler than previous solutions.
With the exception of some technical facts, the treatment given here is self-
contained.

2. Technical preliminaries. Notation (resp. C) denotes the field of real
(resp. complex) numbers. C+ (resp. C-) is the closed right-half (resp. open
left-half) complex plane. We use the standard notation of linear algebra: if
A: --> is a linear transformation (map, for short), ImA is its image, KerA its
kernel, tr(A) its complex spectrum, and A 7/" is the restriction of A to r. The
dimension of is denoted by d(). For linear spaces and 5, 5 means
and 5 are isomorphic and Horn (, 5) is the linear space of all maps --> 5. For
maps M and N, M-N means M and N are similar (M= T-NT for some
isomorphism T). While any linear space is initially real, we shall introduce
without comment its complexification. For example if A" --> and A
tr(A) C, then Ker (A.-A) is a complex subspace of the complexification of .
[s] (resp. C[s]) is the ring of polynomials in s with coefficients in (resp. C). For
polynomials a (s) and fl (s), a ]fl means tr divides ft. We abbreviate degree to deg
and greatest common divisor to gcd. Finally, for n => 1, _n is the set {1, , n}.

We now recall some characterizations of stabilizability and detectability.
For this consider a triple (C, A, B):

Let

AZ= Ker (CA i)
i__>0

be the unobservable subspace of (C, A),

(A IIm B) Y A Im B
i__>0

the controllable subspace of (A, B), and +(A) the unstable subspace of A. (See
[13].) Then the pair (C, A) is detectable iff

A/’f +(A) 0,

or equivalently,

Ker C f3 Ker (A A) 0, A e +;
the pair (A, B) is stabilizable iff

+(A)(AIImB),
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or equivalently,

Im (A A) +Im B, AC"/.

(11)

(2)

(13)

(14)

(5)

Throughout this paper the following are standing assumptions"

r(A.) C+

Im Ca + Im C2 ,
ImD1 =’,

(A, B1) is stabilizable,

(C1, A1) is detectable.

Assumption (11) involves no loss of generality, for any stable exogenous
modes can be included in the plant description as they affect neither closed loop
stability nor output regulation. Assumption (12) also involves no loss of general-
ity, for if (12) does not hold initially we may redefine to be Im C1 + Im C2.
Similarly we may assume that

(16) Im D1 +Im D2 .
But a necessary condition for output regulation is clearly

(17) Im D2 c Im D1;

so (13) follows from (16) and (17). Finally, we claim that (14) and (15) are
necessary for closed loop stability. Indeed, if AL is stable, then

,L=Im(AL--A), A EC+;
hence in particular, from (8b),

I=Im(AI+B1GC1-A)+Im(B1F), A EC+,
and

Ker(BCI)fqKer(AI+B1GC1-A)=O, A C+.
These conditions imply respectively

1 Im (A1-A)+ImBI (A C+),
Ker C1 fq Ker (A A) 0 (A a C+),

which are equivalent to (14) and (15). To summarize, then, (11) to (15) either
involve no loss of generality or are necessary for the existence of a synthesis.

We next introduce the mathematical setting in which we shall solve Problems
1 and 2. For any linear space Y, bring in the linear space_

Hom (c2, ),

For any map A" -*, define the linear map _A"

_
by

_AX AX-XA2, X _.
Finally, for any map C: Y , where and are distinct, define the linear map
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_cx cx, x _.
As an application of this notation we have the following very useful

characterization of output regulation due to W. M. Wonham.
LEMMA 1. Suppose AL is stable. Then the output z in the system

L ALXL +BLX2,

.2 A2X2,

Z DLXL +DEX2
is regulated iff

(18) _D/_A[B =D,

or equivalently,

(19)
D2

By (19) we mean of course that

B/_. _AX, D2 _DX/_.

for some XL _.
The closed loop transfer matrix in the above system is

D(s-A)-IB +D2.

If AL is stable, output regulation is therefore equivalent to the condition

(20) lim s[DL(s-A)-XB +D2](s -A2)-1= 0.
s-0

Thus conditions (18) and (20) are equivalent. The conciseness of (18) shows the
power of the present algebraic approach. Notice that for constant exogenous
signals, that is A2 0, (18) and (20) both become

DLAIB =D2.

Lemma 1 is a restatement of Lemma 1 of [15]. We reprove it here for
completeness.

Proof of Lemma 1. Since tr(A)f3 tr(A2)= , _AL is invertible. Hence we
may define

(21) Xt. _ATB
and

X"L XL q"XLX2
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Then an equivalent system description is

L AtxL +(B +XAE)X2
A;,

(22)
2 =AEx2,

z DL; + (Dz-DXz)xz.
In (22) we used (21). It is now apparent that output regulation is equivalent to the
condition D2-DX 0, which in turn is equivalent to (18).

Using (8) in (19) we obtain immediately:
Corollary. A compensator (, A, B, F, G) which provides closed loop

stability also provides output regulation iff

A3+BIGcCz fl+OlQcl Olffc]O
(23) BCz /Im cl c

We remark that if y z, which is to say

=, C=D, Cz=Dz,
then (23) reduces to

(24) Im _A
LDz L_D1 0

As our final technical preliminary we condense the system description (1) to

c=[G

(4) by defining

A3].0a,

C]:

1 (A +BF)x + (A3 +BF2)x2,

2 A2x2,

z Dxxl +O2x2.

(4) we obtain

(26a)

(26b)

(26c)

Then (1) to (4) become

Ax +Bu, y Cx, z Dx.

3. Solution o| Prolflem 1. Before solving Problem 1 we pose a simpler
problem; namely, we consider pure gain controllers of the form

(25) u Fxx +F2xE
instead of dynamic compensators. Substituting (25) into (1) and rewriting (2) and
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PROBLEM 0. Find necessary and sufficient conditions for the existence of
FI: 1 --> q/and F2:2 -> q/so that A +B1F is stable and the output z in (26) is
regulated.

We shall call such a pair (FI, F2) a pure gain synthesis. Problem 0 is easily
solved as follows.

PROPOSITION 1 (Solution of Problem 0). A pure gain synthesis exists iff

(27)
D2

Proof. Necessity. Let (F, F2) be a pure gain synthesis. Applying Lemma 1
with

(28)

we find that

(29)

AL=Ax+BIF1, BL=A3+BIF2, Dt=D,

and hence

which clearly implies (27).

[A3+BF2] [_A +_B_F1]D2 j
Im

_D

[A3+BF2] [AaD2 jeIm b
Sufficiency. We assume that (27) holds and shall construct suitable F1 and F2.

First, select F1 so that A1 q-BF is stable. From (27) then

and hence F2 exists such that (29) holds. Using (28) and (29) we conclude from
Lemma 1 that (F1, F2) provides output regulation.

We now proceed to solve Problem 1; however, we shall make an additional
assumption, namely,

(30) (C, A) is detectable.

This can be justified in the following manner. Let

V" f’) Ker (CA i)
i__>o

be the unobservable subspace of (C, A) and +(A) the unstable subspace of A.
Since (C1, A1) is detectable, the undetectable subspace Wfq/(A) of the pair
(C, A) is independent of x"

/" fq +(A) 71x O.

Hence we may decompose as

where 2 Ac f’) +(A) and2 is any complement of 2 in 2. Corresponding to
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this decomposition of , A, B, C, and D have representations of the form

A A

R , LOJ
[C, C2 0] [D1 D2 D2]

respectively. Here the pair

is detectable and

These representations correspond to the system

It is readily apparent from (31) that a necessary condition for output regulation is
/2 0; that is,

(32) (’1 +(A) c Ker D.

Conversely, if (32) is assumed, then in (31) 52 is a superfluous exogenous signal: it
is decoupled from the plant, the measurements y, and the output z.

To summarize, (32) is necessary for the existence of a synthesis, so we assume
(32). The undetectability of (C, A) corresponds to a redundant description of the
exogenous signal, so we assume (30). Since (30) trivially implies (32), we need only
assume (30).

TrEOREM 1 (Solution of Problem 1). Assume (30). A synthesis exists iff

(27his) [.:] Im [-A_D: "]"
We observe that a synthesis exists itt a pure gain synthesis exists. For the

system at hand, (27) apparently corresponds to the "steady-state invertibility
condition" of [3] and to the "decomposability condition" of [12]. The proof of
Theorem 1 is in three parts: first we prove necessity of (27), then present a
synthesis algorithm, and finally show that the algorithm does indeed yield a
synthesis.
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Proofof Theorem 1. Necessity. If (c, Ac, B, Fc, G) is a synthesis, then by the
Corollary to Lemma 1, (23) holds. Hence, in particular,

[Aa+B1GcC2]D2 eIm[-A "" jff-Gc-C101
This implies (27). U

In view of assumption (30), an obvious synthesis procedure is the following:

Use an observer to generate an estimate x ol the state x of the
LXc2J X2

system

Ax +Bu, y Cx.

Then apply the control u F,xc +FEXc2, where (F1, F2) is a pure gain synthesis.
This is accomplished by the

SYNTHESIS ALGORITHM (SA).
Step 1. Let and select Be: so that A -BC is stable.
Step 2. Select F: q/so that A +BF is stable.
Step 3. Select F2:2 q/so that

(29bis) A3 +B,Fa] Im [_A +02 J dl J"
Step 4. Set F =[F, F2], A =A -BC+BFc, G =0.
Sufficiency. Obviously Steps 1 and 2 of SA are possible, and if (27) holds we

can choose F2 to satisfy (29) just as we did in the proof of Proposition 1. So it
remains to show that (, A, B, F, F, 0) is a synthesis.

Writing

we have

(33) A [AI-BC+BF As
--Bc2C

Hence

B C2+BIF2]
A B:C J"

Az.=[Bc% BF]
AJ

AI +BIF1
0
0

BF
A1-BIC A3-BC2.[

A2--Bc2C2J

[A +
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thus AL is stable.
To show that output regulation holds, let

and

X1 (_A +_B_F0-(A3 +BF2)

_
(34) Xc [_X;] _c.
It is easily checked using (29) and (33) that

(35a) A3 _A 1Xl + n_l_FcXc,

(35b) BC2 B_ _C1X1 + _A,
(35c) D2= D_ IX.

Thus (23) holds. Output regulation now follows from the Corollary to Lemma
1. [3

A synthesis as computed by SA employs a full order dynamic observer of the
state x. Such a synthesis may be inefficient in the sense of employing more
integrators than is necessary. A reduced order synthesis may be obtained by using
either a minimal order observer of the state x or a minimal order observer of Fx,
where F [FIF2] is a pure gain synthesis.

A synthesis procedure of the latter type (see [16] and [17]) amounts to
choosing of minimal dimension such that there exist maps

with the properties

His stable,

TA HT KC,

FT+GcC=F.

It is routine to verify that a synthesis is then (,, A, B,, F,, Go), where

A H+ TBF, B K+ TBG.

4. The structure of a feedback synthesis. We shall say that a synthesis is of
feedback type if the compensator processes the regulated output z, that is, if y z.
Our object now is to point out a basic feature of a feedback synthesis as obtained
by SA.

PROPOSITION 2. Assume (27), (30), and y z, and consider a synthesis (,
A, B, F, G obtained by SA. There is a monomorphism V: T2- such that the.

A monomorphism is an injective morphism, i.e. a one-to-one linear transformation.
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following diagram commutes"

(36)

A2
a2 ’- 2

The interpretation of (36) is that Ac incorporates a copy of A2; precisely,

Ac IIm V-A2.
The use of a copy of A2 in A is explicit in the controllers of Johnson [7] and
Davison [3].

Proo]’ofProposition 2. Using the notation introduced in the proof of Theorem
1 (Sufficiency), if CI=D1 and C2=D2, we find from (35b) and (35c) that
_A 0. Since X is injective (see (34)) it suffices to take V=X. [3

The above controller feature is not a result of using SA. Indeed, every
feedback synthesis has this feature.

PROPOSnrION 3. Assume (27), (30), and y z. For any synthesis (c, A, Bc,
Fc, Gc) there is a monomorphism V: ff2 "c such that (36) commutes.

Proof. Let (, A, Be, F, Go) be any synthesis. From the Corollary to Lemma
1 we know that (24) holds; that is, there exist X1

_
and V

_
such that

(37a) A3 A1XI-XA2+BFcV,

(37b) 0 AV- VA2,

(37c) D2 =D1X.
It remains to show that V is injective.

For a proof by contradiction suppose that Ker V# 0. From (37b),

Ker VA) Ker V, _-> 0;

hence (V, A2) is not observable. Therefore there exist A e or(A2) and X2 2,
x2 # 0, such that

(38) VX2 0 A2x2--lx2.
Set x =-Xx2 1. Then from (37a) and (38),

(A A)x +A3x. (A A)x + (AXI XA2)x2 0,

and from (37c),

Dx+D2x2=O.
Consequently,

o [X ] Ker D f’) Ker (A A
X2

which contradicts (30). [1
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Proposition 3 is not true if the assumption y z is dropped, as the following
example shows.

Example. Consider a first order stable plant whose output is to follow a step
reference signal:

-1 --Xx + U,

=0,

Z --Xx +X2.

Suppose the reference signal is available for measurement:

y=X2.

It is easily checked that (27) and (30) hold. A synthesis is obtained by the
feedforward control u y" a dynamic compensator is not necessary. The closed
loop transfer function is s/(s + 1). Thus the feedforward connection has, without
dynamics, provided the necessary closed loop zero at s 0 to cancel the reference
signal pole at s 0. Synthesis by feedforward is considered more generally by
Davison [18].

5. Solution of Problem 2. Problem 2 is solved by Theorems 2a and 2b.
THEOREM 2a. A synthesis which is structurally stable at A3 exists only if

(39)

It is not difficult to show that (39) is equivalent to the condition

1 (A A) Ker D1 +Im B1, h r(A2),

which in turn is equivalent to

[A1-A x] I(N, , o’(a2).Im

This latter condition is the one which arises in the work of Davison and Golden-
berg [4] and Wonham [13].

Proofo" Theorem 2a. If (, A, B, F, G) is a synthesis which is structurally
stable at A3 then, by the Corollary to Lemma 1, (23) is a property which is stable at
A3. From (23) we have

D
(40)

Letting D*" o 1 be any right inverse of D, we find from (40) that

0

equivalently,

(41) A3+B1GcC2-_AI(DtaDv_)A_a Ker _Dl+Im _B1.
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Now clearly (41) is a property which is stable at A3 _1 only if (39) holds. [3
Our object now is to prove a converse of Theorem 2a; that is, to show that

(39) is a sufficient condition. For this, however, we need an additional assumption.
Recall from [15] the definition that z is readablefrom y if there is a map Q: 0
such that z Qy, which is to say D1 QC1 and D2 QC2. It was shown in [15]
(Theorem 1) that a necessary condition for structural stability (at a suitable data
point) is that z be readable from y. Hence we here assume this.

If such Q exists we can imbed in : write

for a suitable linear space . Then

Cx=-D D2
for suitable maps E: (i 1, 2), and

where w Nx+Exe . Here 0 is the natural projectionN N. Now for
a compensator (, A, B, F, G), define

Bw =Bcl, Bz =B I,

=1 6z=l.
Then the overall system equations are

=Ax+A3x+Bu,

2 =Ax2,

w=Ex+Ex,

z Dx+D2x2,

Ax +Bww +Bz,
u =Fx+Gw +Gzz.

The compensator is now formally a 7-tuple

(,A,B,Bz,F, G, Gz).

THEOREM 2b. Assume that z is readable from y and that (39) holds. Then
there is a synthesis in which Bow O, Gcw O, and Gz 0 and which is structurally
stable at (A 1, A3, B1, Bcz, F).

Notice that the data point (A 1, A3, B1, Bz, Fc) includes the plant data (A 1,

A3, B1) together with the nonzero compensator data excludingA: small arbitrary
perturbations in A cannot be permitted if output regulation is to be maintained.
Notice also that the compensator is of feedback type, processing only the output z
(Bw=O, Gw=O).

The format of the proof of Theorem 2b is the same as the proof of Theorem 1
(Sufficiency): first we give a synthesis procedure and then show that the resulting
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compensator has the required properties. For the synthesis procedure we need
some notation.

Let
k

i=1

be a rational canonical decomposition (rcd) of 2 relative to A2. Thus 2i is
A2-invariant (i _k), A2i A212 is cyclic (i e _k), the minimal polynomial (mp) of
A2.i+I divides that of A2 (i k- I), and the mp of A21 is the same as that of A2.
Let q d() and define

2e 21(’" "2 (q401d direct sum)

and

A2e 2e -- C2e, A2e ff21-- A21.

Thus AEe is the q-fold direct sum of the largest cyclic component of A2. Now if a is
any one of the subscripts 1, ., k, e and is any linear space, define

_a nom (2a, ).

Similarly if A: define _Aa a - _a by

A_ aXa AXa Xam2a, Xa -and if C: --> define _Ca: "> ,, by

_faX CXa, Xa . _c_
SRtCrURaLLV SaL SvNrnSlS At.orurI-I (SSSA).
Step 1. Define e XZ and select A3:z -> so that (D, A) is

detectable. Here

Ae I’[A10 A2eJ e "-> <e,

De=[O 0]: ’, --> ,.’.

The next four steps consist in obtaining a synthesis via SA for the system

(42a) Aix +AaeXEe + Blu,

(42b) 2e AEeXEe,

(42c) y =z =DlX.

Step 2. Let c e and select Bcz: - so that Ae -BzD is stable.
Step 3. Select F: 1- q/so that A +BF is stable.
Step 4. Select FEe 2e - q/ SO that

(43) [A3e +BlFZe]O elm[-Ale +BI_l,]_D:eJ"
Step 5. Set Fc=[F1F2e], Ac=A-BcDe+BeF, Bow =0, Gw=O, Gz=O.
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Here

Before proceeding we require some technical facts. We first recall the notion
of a generic property (see [13]). For any field K a property II of points in K" is
generic if the set of points where II fails lies in a proper algebraic variety in K".
Suppose II is generic on Cn, that is, II fails only on a proper variety in Cn. Then II is
generic when restricted to R". To see this let/ (Pl, , Pn) be a representative
point in C". If II is generic on C, there is a nonzero polynomial

such that II fails only at points ], C" where b(pl, ", p,) 0. Write b as

($1,"" ", Sn)=CI(Sl," ",Sn)-[’i2($1,"" ",Sn),

where bj R[sl, ,, s,] (] 1, 2). Now bl and2 are not both identically zero;
hence

is not identically zero. Now H fails at e " only if 0(Pl, ",P,) 0. Hence II is
generic on .

Next we require
LEMMA 2. Let A" -, A" -.2T be maps with invariant factors ere(s)

(i m_ ), 6(s) (i ) respectively. Define L" Horn (, )--> Horn (, ) by

LX AX-XA.

Then

(a) d(Ker L) Y,
ia deg gcd (ai,

(b) There exists a monomorphism V Ker L iffr <-_ m and

i[Ol.i,

_
Proof. (a) This is immediate from [19, Thin. 1, p. 219].
(b) Suppose there is a monomorphism V: --> such that AV VA. Then

7/" Im V is A-invariant andA 17/" A. Thus the invariant factors of A [7/" are the
same as those of . From [20, Lemma 1(i)] it now follows that n _-< m and i[Oi,
ir.

Conversely, suppose r =< m and ti[Oti, . Let

be a rcd of relative to A, and define
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Then is A-invariant and A]F has invariant factors
Thus there is an isomorphism T: 7/" such that

(A 17/’)T=
Hence it suffices to define V: --> by V T on .

As a simple application of Lemma 2b we find that if

i=1

is a rcd of relative to A, then for each e m- 1 there is a monomorphism
V"+--> such that the following diagram commutes"

ProofofTheorem 2b.We first show that when (39) holds, SSSA can be carried
out, and second that the resulting compensator provides the required structural
stability. As the proof is fairly long it is divided into four steps.

(i) We shall prove that Step 1 of SSSA is possible. Since (D1,A1) is
detectable,

(44) d[(A1-A) KerD1]=d(KerD1)=d(l)-q, h eo’(A2e).

Furthermore (De, Ae) is detectable iff

(45) (A3e) A:ze) is observable

and for each h e o’(Aae),

(46) A3e Ker (A2e --/ ’ (A ’ Ker D1 0.

Now by construction, A2e has q cyclic components in a rcd, and since D is
surjective, q <- d(l). These two facts show that (45) is a generic property of A3e.
Similarly, (44) together with the fact

diKer (A2e-A)]=q, A o’(A2e),

shows that (46) is a generic property of complex A3e and hence of real A3e for
each h e r(A2e). Since the conjunction of a finite number of generic properties is
generic, we find that

(Oe, Ae) detectable

is a generic property of A3e. Hence Step 1 of SSSA is accomplished by "almost
any" A3e 2e ’’> Cl"

(ii) Obviously Steps 2 and 3 are now possible, so we show that Step 4 is.
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From (39) we have

and hence

equivalently,

_ffll _A 11 Ker _DI +Im _B,

_le _Ale Ker _Die +Im _Ble

_le (_Ale d- _nle_le Ker _Die -.I- Im

Thus there exists F2e _2//e such that

A3e +B1F2e e (_Ale "l" _nle_Fle) Ker _Die

which is equivalent to (43).
We have now shown that SSSA can be carried out. Furthermore we know

from the proof of Theorem 1 that

BFc](47) AL BczD A J

is stable. So it remains to show that output regulation is a property which is stable
at (A, A3, B1, ncz, Fc).

(iii) We claim that

(48) Ker _Bze 0

and

(49) Im A_ l") Im B_ O.

To establish this, recall that (, A, O, Bz, F, O, O) is a synthesis for system
(42) and that (De, Ae) is detectable. Hence Proposition 2 implies the existence of a
monomorphism V: C2e "> c such that

(50) AVe VeA2e.
Since A2e has exactly q invariant factors each of which is the mp of A2, we
conclude from (50) and Lemma 2b that the mp of A2 divides at least q invariant
factors of A,

Since AL is stable,

(51) e Im A_e._
Im _A,:e + Im B_ ,:ze,

From (47) this implies that

which in turn implies

(52) Im _A +Im _Bz.

Now let {ai(s)} be the invariant factors of A and a2(s) the mp of A2.
Applying Lemma 2a we have

d(Ker _Ac) deg gcd (ai, a2).



LINEAR MULTIVARIABLE REGULATOR PROBLEM 503

Then, since a2 divides at least q a’s,

d(Ker _A)
_
q. deg a2 q" d(1).(53)

However

(54)

d(Im _Bczl) --< d(1)
d(g). d(2)

q" d(,’2).

So from (52), (53), and (54),

(55)

and

(56) Im _A: iq Im _Bcz 0.

Now (55) implies that Ker _Bczl 0, which implies (48), and (49) follows from (56).
This proves the claim.

(iv) Returning to (51), we know in view of (47) that for any R _, there
exist Xe _te and Xe e such that

R _A eXle .-[.- B_ e_ceXce,

0 n_czeDleXle "1- A_ceXce.

But from (48) and (49) this implies

li .Ale Ker _Die +n_le_ce Ker _Ace

from which there follows

(57) _Cl =_All Ker Pll "" _Bll_F11 Ker _Act"

Now for each e _k, A2i is imbedded in A2t in the sense that A2t V/= ViA2i for
some monomorphism V" 2 21. A brief computation using this fact and (57)
yields

_1i _A ti Ker _Dti + _BliFci Ker _Ai,

and hence,

(58) _. _A Ker _Dr + _Bt_F Ker _A.

We conclude the proof by showing that (24) is stable at (At, A3, Bt, Bcz, F).
Clearly (58) is stable at this data point, so it suffices to show that (24) follows from
(58).

If D: is any right inverse of D1, then (24) is equivalent to

O0 ]Im
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and this is equivalent to

Aa-_AI(DDE)_A1Ker _D1 + _B_Fc Ker _Ac.

But this follows from (58).

6. The structure of a structurally stable synthesis. We observed in 4 that a
feedback synthesis incorporates in Ac a copy of A2. For the structurally stable
feedback synthesis obtained by SSSA, a stronger statement is true" Ac incorpo-
rates a q-fold reduplication of the maximal cyclic component of. A2. More
precisely, from (50) we have

PROPOSITION 4. Assume that z is readable from y and that (39) holds, and
consider a structurally stable synthesis computed by SSSA. There is a monomor-
phism Ve: TEe c such that the following diagram commutes:

Bow 0 Ac

To complete the parallel of this section with 4, we state without proof the
following counterpart of Proposition 3. Assume z is readable from y and (39)
holds. Let (, Ac, Bcw, Bcz, Fc, Gcw, Gcz) be a structurally stable synthesis. Then
there is an Ac-invariant subspace c c and a monomorphism Ve" T2e --c/c such that the following diagram commutes"

Here Pc is the canonical projection and Ac the induced map in the factor space.
We have stated this result informally, omitting the data point at which the
synthesis is structurally stable. For a precise statement and proof the reader is
referred to [15, Prop. 3 and Thm. 2].

7. Concluding remark. The synthesis,theory presented in this paper deals
with systems in state-space form. Uncertainty about the system is then taken to be
uncertainty about parameters in the matrices in the state-space description. There
is an implicit assumption here that the state-space description is derived from
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physical laws rather than from a realization of an input-output impulse response.
This is because the function (suitably defined) which maps an impulse response to
its state-space realization is not continuous in the natural topologies, and hence
"slight uncertainty" about the impulse response need not correspond to "slight
uncertainty" about the state-space description. An important open problem
therefore is a synthesis theory for systems modeled by input-output maps.

Acknowledgments. The present algebraic approach was inspired by discus-
sions with W. M. Wonham. The criticism, expressed in the Concluding Remark,
against posing the regulator problem in the state-space setting was raised by G.
Zames.
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FEEDBACK CONTROL OF PARTLY UNKNOWN SYSTEMS*
R. F. DRENICK"

Abstract. Some mathematical aspects are treated of the problem of controlling plants that are
incompletely specified to the system designer. The view is taken that such plants are not defined by the
usual input-output characterization, or some equivalent, but by one which assigns to every input a set
of possible outputs. Their mathematical representation is then by set-valued rather than the
conventional point-valued operators. Some results are accordingly derived regarding the feedback
control of plants that are represented in that way. Indications are developed that a natural mode of
operation for feedback controllers under the circumstances is of a kind that might be called
"error-tolerant."

1. Introduction. This paper presents certain mathematical aspects of a
theory for the control of systems that are partly unknown. The theory is based on
the following point of view. The designer who is charged with the problem of
specifying a controller for a partly unknown plant frequently will not be able to, or
may not wish to, guarantee that the system will produce a certain desired response
to every possible input. Instead, he may be willing to guarantee merely that the
actual response lies in a certain set of possible responses, the size of the set being in
some sense related to the uncertainty that surrounds the plant in the first place.

The paper (in 2) develops the mathematical problem formulation to which
one is led by this point of view, and in the sequel to certain results that follow from
it. The formulation adopted here, however, is not the only one. Others based on
probability theory (e.g., [6]), fuzzy sets (e.g., [2]) and minimax decision theory
(e.g., [1]) have been proposed. They are surely well suited to certain situations but
it is also easy to conceive of others to which they are not. In some of those, the
point of view taken here may be more appropriate.

The approach to which it leads may be of interest because it draws on some
mathematics which is not normally used in control theory, namely contraction
mapping on spaces whose elements are subsets of other spaces. The approach may
be of interest also because it seems to point to some new design principles,
assuming of course, that it can be continued to the point of practicality. Indications
are, roughly speaking, that controllers for partly unknown plants are most
naturally designed as feedback controllers but in a way which might be called
"error-tolerant." They should not, in other words, respond to every discrepancy
between the actual and desired outputs but should remain inactive as long as both
lie in the same "tolerance set." The choice of these sets appears to be in the nature
of a design compromise in general: the smaller the set, the more involved and
nonlinear the operations which the controller may have to perform. This is the
upshot of 3, 4 and 5 of the paper which describe, in sequence, some simple
controllers with large tolerance sets, some complicated ones with tolerance sets
that are points, and finally a compromise between the two.

2. Problem formulation. The usual assumption in control theory and prac-
tice is that the plant is completely known and specified, for instance, by its

* Received by the editors June 27, 1974, and in revised form August 14, 1975.

" Polytechnic Institute of NewYork, Brooklyn, NewYork 11201. This work was supported by the
National Science Foundation under Grant GK-34179.
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input-output characteristic. This specification is then in terms of an operator F
which maps the control signal u into the output y according to

(2.1) y F(u).

The objective of the designer of the control system can then perhaps be stated as
follows. He is presented with a set X of signals x and a corresponding set of
desired responses y*(x), one for each x. He is to come up with a second operator
G,

(2.2) u G(x, y),

which is to be chosen, if at all possible, that y y*(x) is the unique response of the
complete control system (2.1) and (2.2), or in other words, that y*(x) is the unique
solution of (2.1) and (2.2), for every x aX. The device represented by G is the
"controller." It is called a "feedback" or "open-loop" controller depending on
whether or not u is a function of y as well as x.

In most formulations the problem is complicated by various restrictions
which are placed on the choice of the controller G and which preclude the
achievement of y*(x). Such complications are not considered in this paper,
however. The complication that is to be considered is the incomplete specification
of the plant.

A designer confronted with a partially unknown plant must in effect deal with
a set of possible plants simultaneously, each representing a possible realization of
the missing specifications. The members of the set can be visualized indexed by a
parameter a, the "uncertainty parameter," and (2.1) accordingly replaced with

(2.3) y =F(u; a),

where A is the range of a. An equivalent replacement is

(2.4) Y F(u; A)

in which F(" ;A) is a set-valued operator representing at once all possible plant
realizations, and Y the set of outputs y that could be generated by them from one
control signal u. Equation (2.4) can be considered the input-output specification
which is the counterpart to (2.1) for a partially unknown plant.

The objective of the designer is again the determination of an operator of the
form of G in (2.2) and, if possible, in fact one that generates the desired output
y y*(x) for given x and regardless of a fi,. In those cases in which this objective
is unachievable or impractical, the desired output might be expanded to a suitable
set Y*. That is, the criterion of desirability is changed to read that the control
system consisting of F and G performs satisfactorily if its output y lies in Y*, for
given x and regardless of a a A.

The question then is how the "target set" Y* can be chosen and further,
whether and how a controller G can be determined which assures satisfactory
performance in this sense. This paper deals with this question and, more specific-
ally, with certain somewhat unconventional mathematical aspects of it.

Such aspects are introduced by the fact that the operator in (2.4) representing
the plant is not point-valued, as it is usually assumed to be, but set-valued. In other
words, its domain is a function space U of signals u but its range is a space whose
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elements are certain sets Y of points in another function space Y. Along with
operators such as F in (2.4) which map points into sets it will be necessary to
consider others which carry sets into points, i.e., whose domains are spaces with
elements that are subsets of others.

Such spaces are sometimes called "hyperspaces" [5]. Michael [8] has studied
the hyperspace (Y) of the.nonempty closed compact subsets of a metric space Y,
and Radstroem [9] a hyperspace gt(Y) which is .constructed from the closed
compact convex subsets of a normed linear space Y. The results to be derived in
this paper are valid in both. However, although gt(Y) might be more suitable
because it is the smaller of the two and thus perhaps closer to control practice,
(I7) will be used in what follows because it leads,to slightly simpler proofs.

The underlying spaces X, Y, U, and A, will more specifically be assumed to be
complete metric spaces, and A in particular will be assumed compact. Whenever
product spaces are formed from these, the metrics on the latter will be assumed to
be suitably weighted sums of the distances on the component spaces. Thus they
will be convenient to use as distance on

(2.5)

UxA "d(ux, uz) +/zld(a,

UY’d(yl, y2)+/x2d(ul, u2),

Yx YxA" d(y, y2)+d(z,z2)+Xld(ot,

Yx Yx U’d(y, y2)+d(zl, z2)+a2d(ua, u2),

where the/zi and hi are appropriate positive metric weighting constants. The
choice of these constants is probably not very important in general. For the sake of
consistency between (2.5b) and (2.5d), however, one presumably should set

(2.6)

The hyperspace (. will be assumed metrized by the Hausdorff distance. It
is known [4, p. 94] that this distance is indeed a metric on the collection of all those
nonempty closed subsets of a metric space Ywhose Hausdorff distances are finite.
But since the sets of c(y) are also compact, the diStance d(Y, Y2) between any
pair is finite to begin with.

It is futher known [8] that the space c(I7) inherits many of the topological
properties of Y. In the sequel, completeness of (Y) will be important. It can be
shown that it inherits this property from Y as well [3, p. 61]. (Y) can,
incidentally, be interpreted as a linear space if Y is linear and if the operations
(YI + Y2) and AY are, as usual, defined by

(2.7)
YI+ Y2={y’y ylWy2, ylE Y1, y2E Y2},

/z Y1 {Y’Y =/*Yl, Y Y1}, (/Z real).

Evidently, (Yx + Y2) and/. Y1 lie in (Y) whenever Y and Y2 do.. Moreover, as
Radstroem [9] has pointed out, the Hausdorff distance is a norm on cd(I7").

The properties of operators, those mapping spaces into spaces, as well as
those mapping spaces into hyperspaces, or vice versa, can be defined in terms of
those metrics. This will be,done below as needed.
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3. Open-loop and linear feedback control. In the view taken in the preceding
section, the design objective for the controller for a partially unknown plant is the
production of a plant output y (x) that lies in a target set Y*, regardless of the value
of the uncertainty parameter a A. The first question that arises is how to choose
this set. One such choice which is particularly undemanding will be described in
this section. It will be shown that, with this choice, the controller can be designed
as an open-loop controller or, if that is undesirable, as a linear feedback control-
ler. In both cases, however, it should be designed as a device of the kind that has
been called "error tolerant" in the Introduction.

The assumption to be made here regarding the target set is that it should
always contain a subset Y which can be generated as in (2.4) from the partly
unknown plant by some control signal u u*(x); i.e.,

(3.1) Y*xx Y= F(u; ) for u u*(x).

This choice might be based on the argument that, according to (2.4), any control
signal u applied to such a plant will inevitably be mapped into a set Y and hence
that no more can possibly be guaranteed by any controller than the placement of y
into one of those sets. A target set should therefore always contain such a Y as a
subset. It can of course also coincide with Y.

The argument is incorrect, as will be shown in the next sections. In fact, the
choice (3.1) of the target set is quite undemanding: satisfactory control in the
sense that y(x) Yx for all a can in principle be achieved even by an
open-loop controller, namely

(3.2) G(x)= u*(x)=F-(; g),

as is immediately evident from (3.1). In this equation, F- is the inverse of F in
(3.1), i.e., an operator taking subsets of Yinto points. If it is single-valued, it maps
subsets Y* of I into points u*(x) Y. Otherwise, it maps them into sets Ux* .
The intuitive interpretation of (3.1) is that, since any y(x) Yx* is satisfactory, the
controller need merely generate the control signal which achieves this, and this is
u*(x). If there is more than one such signal, any one will do.

The controller (3.2) can be considered error-tolerant, in the sense that it
produces the same signal u*(x) for all y Y. This feature becomes more striking
if the same performance is achieved by a feedback controller. That this is in fact
possible in many cases, and even by a linear feedback controller, is shown in the
following theorem.

TI-IEOREM 3.1. Suppose that the plant operators F(. ;a) obey the following
boundedness conditions"

(i) They are bounded on A, uniformly with respect to u, i.e., there exists a
constant rn such that

(3.3) d(F(u; a),F(u; az))<-_md(al, a2);
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(ii) they are furthermore bounded on UxA in the sense that

(3.4)
sup inf d(F(Ul; ot),F(u2; a2))<-m’vd(u, u:).,

2

sup inf d(F(ux; ax), F(u2; a2))<=md(ut, u2)
1 x2

]’or all , a A.
Then there exist feedback controllers which insure that the complete control

system has a unique output y(x; a) for every x and a in the target set Y* of (3.1).
These controllers can in ]’act be linear in the feedback signal y.

Proof. The method of proof is by the contraction mapping theorem. To be
more specific, it is first pointed out that there exist controllers G(x, Y) for which
Y* is a fixed element of the control system defined by

(3.5) u G(x, Y), Y F(u A)

for any given x, and secondly that the system can be made contracting on (Y)
under the assumptions of the theorem.

For convenience, omit x and A notationally and assume Y* =F(u) for
u u*, rather than (3.1). Suppose first G to have the domain c(I7,) and to be so
chosen that when Y Y*, G(Y) reduces to

(3.6)

Then

(3.7)

G(y*) u* =F-(y*).

F(G(Y*)) Y*,

showing that Y* is a fixed element. It remains to be shown that, with suitable G,
the complete control system (3.5) is contracting on cO(y).

To this end, one notes first that F is continuous. This follows readily from
(3.3). The continuity of F, and the compactness of A assumed in 2, together
imply the_ compac_tness of the image under F of every u e [10, p. 63]. Hence, F
maps U into :(Y).

It will now be shown that any G defined on (Y) or, at any rate, on the range
of F, and such that

(3.8a) d(u, u2) d(G(Y1), G(Y2)) <-_mc,d(Yx, Y2)

will lead to the desired contraction, provided only that the constant m obeys

(3.8b) m -< p max (re’F, m ’) =-- pine, p < 1.

To see this, note that the Hausdorff distance between two elements Y, Y in the
range of F is, by (3.4),

d(Y’, Y’2)=d(F(uO, F(UE))<-d(u, u2) max (m, m]0.

But, since c(y) is the domain of G, ux and u2 are the images under G of two
elements Yx, Y2 (Y). Hence

d(Y, Y) <- mFmod(Y, Y2)
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which shows that the complete system is contracting if G obeys (3.8). As pointed
out in 2, c(y) is complete. It follows [7] that the system contracts on a unique
element of (Y) which is, of course, Y*.

Controllers which satisfy this condition, and (3.5) as well, do exist. In fact,

(3.9) G(Y)= P--L(Y)-[F-I(Y*)+ P--L(Y*)]mF mF

in which L is an arbitrary linear operator with norm IlZll= 1, satisfies both
conditions. (L is understood to be an operator from c(y) to U, with :(Y)
interpreted as a linear space.) The observation that (3.9) represents a linear
controller completes the proof.

Comment 1. Conventional linear controllers differ from (3.9) in chiefly two
respects. For one, they do not take sets Y into points u, as (3.9) does, but points y.
In other words, they are not error-tolerant, in the terminology of this paper. For
another, they do not usually include a term corresponding to F-I(Y*). This
omission is often defended by pointing out that the error due to it can be made
small if the controller "gain" (p/mF), or a similar factor, can be made large. The
line of reasoning followed here, i.e., the use of contraction maps, is similar to that
of Willems [12] and Zames [13] who employed such maps in conventional control
problems.

4. Adaptive control. The control scheme described in the preceding section
leads to a very broad class of controllers that perform satisfactorily, including even
linear and open-loop controllers. One can surmise that the criterion of satisfactory
operation adopted there is quite loose, and that consequently the target sets Y*
are unnecessarily large. This is indeed so. As will be shown in this section, these
sets can in many cases be specified as single elements, namely the desired
responses y*(x). The controllers which achieve this performance are of a kind that
have been called "adaptive" (or "plant-adaptive," "dual," "self-adjusting,"
"learning," etc. [ 11]).

The characteristic feature of most adaptive controllers is that they achieve the
desired control performance by identifying the plant at the same time. The block
diagram of an adaptive control system is shown in Fig. 1. In fact, it is of fairly
generic type which comprises as special cases many of those suggested at one time

G2 x,y,z,u,y. z

FIG 1. An adaptive control system, with complete plant identification
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or other in the literature, to the writer’s knowledge. The small block on the right,
marked F(u, ), is the actual plant and ff is the unknown value of the uncertainty
parameter for it. The controller G is the large block on the left. It consist of three
subsystems, G1, G2, F(.; t). The first of these produces the control signal u
proper. The last, namely F(. ;c), is often called the "model." It is a simulated
version of the plant but is characterized in place of ff by an adjustable parameter. The adjustments of c are executed by the third subsystem of the controller,
namely G2, which can be called the "identifier." The output of the model is
denoted with z in Fig. 1.

The intuitive idea for the operation of such a controller is to adjust t until
y z. One can expect that then also t c7 at which point the actual plant has been
identified. In fact, one can hope that, simultaneously with the adjustment of c, y
can be so adjusted that it coincides wi’th y*. This intuitive idea is correct, at least
under certain conditions, as will now be shown.

These remarks suggest that adaptive control might be feasible only when the
plant is identifiable in the first place. Although this is not necessarily true, as will
be explained later in this section, it will be good to avoid misunderstanding over
terminology here and to adopt the following.

DEFINITION 4.1. A plant will be called completely identifiable on (Ux Y) if
its operator F(. ;. has a unique inverse

(4.1) t =K(u, y)

or, in other words, if there exists a single-valued operator K from (Ux Y) into A
such that

y F(u, K(u, y))

there. If K is not single-valued, the plant will be called incompletely identifiable.
The operators GI, Gz, F(. ;a), and F(. 6) which represent the blocks in

the figure are now assumed to be of the conventional kind, namely mappings on
function spaces which take points into points. The domains are product spaces, as
the arguments shown in the figure imply. (However, x and ff can be considered
fixed indices in what follows, and y* y*(x) could be omitted altogether because
it is a function of x.)

THEOREM 4.1. Assume that the plant is completely identifiable and that
(i) the operator F is bounded on UxA) in the sense of

(4.2) d(F(ux, 31), F(u2, a2))<=mF[d(Ul, u2)d-tzld(Otl, 32)],

(ii) the inverse operator K is bounded on Ux Y) in the sense of
(4.3) d(K(u, yl), K(u2, y2))-< mc[d(y, y2)+/2d(ux, u2)].

Then there exists a controller G which achieves satisfactory system performance,
provided the bounds mF and mr also obey the condition

(4.4) mFmKI.t, 1/,2/2.

(The tz and ,2 are the metric weighting coecients o[ (2.5).)
Proo]’. The proof proceeds along the same lines as the one of Theorem 3.1. It

is first shown that the controller, or, in the present instance, the devices G and Gz
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can be so chosen that the point y y*, z z* is a fixed element of the complete
system, and then that they can in fact be so chosen that it is contracting. The
contraction mapping theorem then implies that (y*, y*) is the only fixed element.

Regarding the first, assume G1 and G2 to have the following properties"

(4.5) F(GI(y, y, c, y*), c) y for all c , y I7,
(4.6) G2(y, y, u, y*)= K(u, y*) for all y I7.
Both conditions can be met. For the first, one can require analogously to Theorem
3.1 that for y z,

GI(y, y, a, y*) F-l(y; ce)

and that G1 be linear in (y-z) otherwise. The second can be met simply by
choosing

(4.7) G2(y, z, u, y*) K(u, y*).

Suppose now that the equation y z has been established in the system by a
certain control signal u u*. Then

F(u*,a)=F(u*,.)
and because of the complete identifiability of the plant,

K(u*, y) a.

In words, when actual plant and model produce the same output they are
identical. But when y z and u u*, (4.6) takes the form

a G2(y, y, u*, y*)= K(u*, y*).

It follows that

z F(u*" a) F(u*" K(u*, y*)) y*

and hence that z y y*. The specification (4.5) for G1, with a if, y z y*,
now reads

F(G(y*, y*, t, y*); ci)= y*

and shows that y z y* is a fixed element of the system.
It remains to be demonstrated that the system can be made contracting by a

suitable choice of G1 and G2, without however violating the requirements (4.5)
and (4.6). It will in fact be shown that if G1 and G. obey

(4.8)
d(u 1, U2) =< ml[d(y 1, Y2) "" d(z 1, z2) +Ald(a 1, a2)],

d(al, tX2) ’ m2[d(yx, y2) + d(zx, z2) +A2d(Ul, U2)],

the bounds rn and m. can be selected in such a way that contraction is achieved.
(The weighting coefficient A is the same as in (2.5).) To see this, note first that
(4.8) is equivalent to

(4.9)
(1 mlrn2h 1h2)d(ul, u2) <- ml(1 + m2h 1)[d(yl, y2) + d(zl, z2)],

(1-mlm2hlh2)d(al, a2)-<_ m2(1 +mlA2)[d(yl, y2)+d(zl, z2)],
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which make sense only if

(4.10) mm.AA2< l.

This, therefore, is a first condition on ml, mE. Another comes from the require-
ment that the system must be contracting on Y Y. To arrive at it, note that

d(F(ul, a),F(u, a))+d(F(u, aO, F(u,
<-- mFd(U1, U2) -F" mF[d(u 1, U2) -F/d, ld(a 1, o2)]

2mFd(Ul, u2)+ mFtzld(tl, 2)

for any pair (u l, tl) and (u2, t2) of elements of UxA. Since each of these two
pairs in turn is the image under (G1, G2) of two elements (Yl, zl) and (Y2, 2’2) of
Y Y, one will further have, according to (4.8),

d(F(ul, if), F(u2, ))+d(F(ul, tl), F(u2, teE))-_< aid(y1, y2)+d(zl, z2)],

where

a =(1-mlmEA1hE)-lmF[2ml(1 + mEAl) + m2/xl(1 + mlh2)].

Now, the space Yx Y is obviously complete since Y is complete by assumption.
Contraction will therefore certainly prevail on it if

(4.11) a<l.

This is a second condition on ml and mE.
A third condition is induced by requirement (4.6) according to which G2

should coincide withK when y z. Condition (4.8b) must therefore be consistent
with (4.3) which will certainly be the case if

(4.12) m2AE mKl2.

This constitutes a third condition. (If A2 2/z2, as suggested in (2.6), (4.12) is
correspondingly simplified.)

It must next be shown that the conditions are consistent, i.e., that pairs of
positive numbers ml, mE exist which obey the three conditions (4.10), (4.11),
(4.12). The first can certainly be satisfied because mlmEA 1A2 "-mlmKA 1/./,2 can be
made as small as desired by choosing m sufficiently small, and (4.12) can of course
be satisfied by choosing m2 accordingly. However, no matter how small m1, one
will always have a > m:mFlzlla,2/A2. Therefore, in order to insure that (4.11) can
be observed, one must have mr.mFtx 1/x2 < A2. This however is the case, by (4.4).

The theorem is accordingly proved. Two corollaries may be useful.
The first deals with the question of whether the subsystem G2 of the

controller cannot always be assumed to be of the simpler form (4.7). The answer is
that it can. In fact, the assumptions of the theorem can be relaxed at the same time.

COROLLARY 4.1. If the identifier G2 of the controller is

GE(X, y, z, u, y*) K(u, y*),
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the model F(u ;a) in Fig. 1 and the signal z are superfluous. The boundedness
requirements (4.7) can be changed to

d(ul, u2)<--m[d(yl, y2)+hd(a, a2)],

d(a, a2) <-_m:tz2d(Ul, u2)

in which m must obey

mamKhl/X2 < 1, mlmF(1-mlmcAxl2)-<l.
Proof. The fact that the model and z become superfluous follows from the

observation that now

z F(u; a) F(u; K(u, y*)) y*.

The fact that the boundedness conditions, together with the two inequalities for
m imply the contraction property for the system is then shown as in the theorem.
The proof is completed by noting that those two inequalities can always be
satisfied by making m small enough.

The second corollary removes a restriction under which Theorem 4.1 was
derived, namely the assumption that the plant be completely identifiable. Con-
trary perhaps to what one might expect, adaptive control can be executed also
when the plant is incompletely identifiable and the desired system response y* can
be achieved. Some of the blocks in the controller of Fig. 1 must however be
reinterpreted as devices of roughly the kind that have been called error-tolerant in
the Introduction.

A plant that is incompletely identifiable in particular can be considered a
device of exactly that kind: given some control signal u, it produces the same
output y for all a in some set A (which will depend on t in general). In the
notational convention that has been adopted earlier, one can therefore write

(4.13) F(u;A)=y

and use the notation on the left also for the model in Fig. 1. The remaining two
devices in the controller, namely G1 and G2 are similarly modified by writingA in
place of a. The understanding regarding G1 is more particularly the same as in
(4.13). That is, G is a device that produces the same signal u, for given x, y, z, and
for all a A. G2, on the other hand, may produce any a A since the model
responds to all in the Same way. The output of G2 can therefore also be labeled
with A in place of a, as was just suggested. The same interpretation as on Gz can
be placed on the inverse of (4.13), namely the operation

K(u, y) A.

The modification of the figure essentially carries over to Theorem 4.1 as well
and leads to the following result.

COROLLARY 4.2. Assume that the operatorFis bounded in the sense of (4.2).
Concerning K, assume that it takes on values that are nonempty closed subsets ofA
and that it is bounded on (U Y) as in (4.3), i.e.,

(4.14) d(K(Ul, yl), K(u2, y2))-< mc[d(yl, y2)+/z2d(u, u2)],
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but with the distance on the left interpreted as the Hausdorffdistance between the two
sets represented by K(u, y) andK(u2, y2). Assumefinally that the bounds mFand
mr obey (4.4). Then there exist controllers G which achieve satisfactory system
performance, provided G1 and G2 are reinterpreted as operators on sets, or to sets, in
the manner described above.

The proof is analogous to that of Theorem 4.1.
Comment 1. The last result shows that in principle it is always possible to

construct a controller which identifies the plant as far as it needs to be identified in
the first place, and which at the same time produces the described system output
y*. The controller which achieves this is of the adaptive kind. It is perhaps of
interest that essentially only adaptive controllers can achieve this. This conclusion
is readily reached by the following line of reasoning. Suppose that a controller G
had been found which leads to the desired y*(x) for every xYand every a
This would mean that it could produce a control signal u*(x) for every x such that

F(u*; a) y*, all a.
The indexing of the plant by a would thus be superfluous in this case, and no
uncertainty of any kind would surround at least its desired operation. Suppose
accordi_ngly that, for some x, there exist at least two proper and distinct subsetsA 1,

Az of A such that the equation

F(u* A1)= F(u*z Az)= y*

holds only if u * # u z*. But then

K(u, y*) A 1, K(u*z, y*) =Az,

showing that an incomplete plant identification is possible from the two (u, y)-
pairs in these two equations.

Comment 2. For fixed u, F and K are each other’s inverses. As one can
readily establish, this implies a condition, namely

1 <= mFmKlZ < 2

on the boundedness parameters mF and mK which may often fail in practice. One
can however avoid it by choosing Gz according to (4.7). The conditions (4.9) for
contraction are then replaced by the simpler ones of Corollary 4.1.

$. "Partially" adaptive eontroh The control schemes described in the pre-
ceding two sections can be considered as two extremes. The specifications of the
target set Y** are so loose for the one of 3 that they can in principle be met by an
open-loop or a linear feedback system, while those in 4 contract Y** to single
element y*(x) and hence require an adaptive (hence typically very complicated)
controller for their execution. One can inquire whether or not compromises exist
in which some of the complication of the latter is traded off against the looseness of
the former. The object of this section is to show that this can be done. The control
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schemes by which such trade-offs can be realized will be called "partially
adaptive," for a reason which will become clear presently.

The objectionable operation in an adaptive controller in general is the one
represented by the identifier G2. G1, as was pointed out after (4.6), can be chosen
linear; G2 on the other hand must reduce to K(u, y*) when y z, and this is
typically a rather involved nonlinear operation, even when the plant is completely
identifiable. Suppose for the moment that it is in fact completely identifiable and
that, as in (4.1), the parameter a is uniquely determined by K(u, y). On the other
hand, suppose that the realization of the operator K is impractical. One can then
consider replacing it with another operation, K say, w_hich does not determine a
uniquely but only up to its membership in a set A A

It follows then that

F(u;A)= (.J F(u;a)c (.J F(u;a)=F(u;A).

One can now proceed as in 3 and designate, by anology to (3.1), a target set
Yx" in such a way that

(5.2) Y = F(u; fi)
for some u u*(x). One should however assume here that Yx = Yx*, with the
inclusion proper, for otherwise/ would achieve no effective reduction of the
plant uncertainty and the control schemes of 3 could be reverted to.

It will now be shown that controllers exist which place the system output into
the target sets Ix, no matter how the partial identification operators/ have been
chosen.

The controller is in fact of the same general kind as the one shown in Fig. 1,
i.e., with G, G2 and a model as subsystems. The latter, however, is now
represented by the operation

(5.3) F(u A) z

and is a device which responds, for given u, with the same z to every a A. G and
G2 perform according to the equations

(5.4) u G(x, Y, ,, A, Yx), A G2(x, Y, Z, u, Y).

"These operations are to be interpreted in a way similar to those for adaptive
control with incomplete plant identification. The subsystem G, for instance,
receives four signals namely, x, y, z, and a. It responds to them with^ a control
signal u and in fact with the same u to every y e Y, z eZ and a e A. G2 receives
four similar signals and responds to them with some cee A. Sitce G as well as the
model respond in the same way to all a e A; it does not matter which of these a G2
generates. As the following theorem shows a controller of this kind can frequently
be so chosen that the control system as a whole performs satisfactorily, i.e., that it
places the response y(x) into the smaller target set Yx

THEOREM 5.1. Suppose that the plant obeys the boundedness condition (4.2).
Suppose further that a partial identification operator I has been chosen in such a
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way that the sets A in (5.1) are elements of c(.) and furthermore that

(5.5) d(I(ul, yl),/(u2,
with

mFmKt.tl2< A2

on Ux Y. Suppose finally that a target set Y has been selected for every x in
accordance with (5.2). en there exists a controller of the for (5.3), (5.4) which
achieves satisfactory system performance in the sense that y for every x.

Proof. The proof of this theorem is a direct analogue in many respects to that
of Theorem 4.!. It will therefore be only sketched here. Otting, as usual,
notational reference to x, G and G2 are first required to obey

F(G,(Y, Y,A,
(5.6)

o (Y, Y, u, A,

which are analogous to (4.5) and (4.6). It follows then, as in the proof of Theorem
4.1, that Y is a fixed element of the system. In order to achieve contraction, one
now specifies by analogy to (4.7),

d(u, u2)m[d(Y, Y)+d(Z,Z2)+Ad(A1, A2)],

d(Al,2)m2[d(, )+d(l,2)+A2d(u, u2)].

These relations should now be accompanied by the counterparts to (4.2) and (4.3),
namely

d(F(u,A),F(u2, A:))mF[d(u, u)+d(,)],
(5.7)

d(R(u ,
which are in fact implied by the assumptions of the theorem. Consider for
instance, (5.7a). The distance on the left is the Hausdorff distance between two
sets e (, namely F(Ul,) and F(u2, 2). This is the quantity

d(F(u, ), F(u2, 2))
max {sup1 inf2 d(F(u, a), F(u2, a2)), sup2 inf d(F(u, al)F(uz, a2))},

where, e.g., sup indicates the supremum over ale. According to (5.5),
therefore,

d(F(u,

mF max {sup inf2 [d(u, u2)+d(a, a2)], sup2 inf [d(Ul, u2)
+

mF max {[d(u, u2)+ sup inf2 d(ax, a2)], [d(u, u2)
+ sup2 infl d(a, a2)]}

mF[d(u, u2)+ max {sup inf2 d(a, a2), sup2 inf d(a, a2)}]

mF[d(u, u2) +d(l, 2)]
which is (5.7a). Its counterpart, (5.7b), is proved analogously. e parallel with
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the proof of Theorem 4.1 is now complete, and so is therefore the conclusion that
contraction is assured on (Y) if

mFl’lKll2<A2, mlm2A1A2< 1, m2A2 2//K,

as was to be shown. Since c6’(Y) is com.plete the contraction converges on a unique
fixed element, in the present case i;’*. The theorem is accordingly proved.
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ON LOWER SEMICONTINUITY OF
INTEGRAL FUNCTIONALS. I*

A. D. IOFFE’["

Abstract. A necessary and sufficient condition for the integral functional I(x(. ), y(. ))=
f(t, x(t), y(t)) d/z to be sequentially lower semicontinuous with respect to some kinds of strong
convergence of x(. )-components and weak convergence of y(. )-components is proved. It is shown
how many known and new sufficient conditions can be easily derived from this result. Such properties
of the integrand as measurability, lower semicontinuity in (x, y) and convexity in y are also discussed. It
appears that if I(.,. is lower semicontinuous then some other integrand g(t, x, y) such that
g(t, x(t), y(t)) f(t, x(t), y(t)) a.e. for any measurable x(. ), y(. necessarily has these proiaerties even
if integrand f itself fails to satisfy some or any of them.

1. Introduction. Let G be a measure space with finite positive nonatomic
complete measure/x. Let f(t, x, y) be an extended-real-valued function on G x
R’xR such that f(t, x(t), y(t)) is measurable for any measurable x(. ), y(.
mapping G into R and R respectively. Such functions are usually called
integrands. Consider two linear topological spaces, L and M, of summable
mappings from G into R and R" respectively and define the following integral
functional on L M:

(1.1) I(x(. ), y(. ))= f f(t, x(t), y(t)) d/z.
d

(Generally speaking, this integral can make no sense for certain x(. ), y(. but
our further assumptions will exclude such a possibility.)

The purpose of this paper is to derive necessary and sufficient conditions for
I(., to be sequentially lower semicontinuous (sequentially 1.s.c.) on L xM.
This problem was motivated mainly by needs of the existence theory in calculus of
variations and optimal control. A detailed description of interrelations between
the problems can be found in a recent survey of Olech [10]. We only note that our
problem is not the absolutely exact reflection of the situation typical for calculus of
variations and optimal control. We consider x(. and y(. separately, with no
connections between them, whereas in typical situations x(. and y(. are
mutually dependent; as usual, y(. is a collection of derivatives of x(. ). The
reduction to the problem wit/a separated x(. ) and y(. in the framework of the
!ower semicontinuity and existence theory was undertaken long ago (it is hardly
possible to say in what particular paper) mainly to cope with serious technical
difficulties and it has proved to be very fruitful (see [2], [3], [9], [11], [13]). In each
of the above works, strong convergence of x(. )s in some Lp and weak con-
vergence of y (.) in some Lq was considered.

Here we shall study the problem in a more general setting but also with
respect to certain kinds of "strong" topology in L and "weak" topology in M. Our
assumptions cover in particular the case of Orlicz spaces with norm and weak
topologies respectively.

Received by the editors February 17, 1976.
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A lower semicontinuity theorem usually contains two groups of assumptions
on the integrand. The first consists of qualitative assumptions concerning func-
tional properties of the integrand, measurable linear and topological. The second
includes so-called boundedness conditions containing some minorants (rarely
majorants) for the integrand.

We prove here two theorems, the first containing what could be characterized
as a necessary and sufficient boundedness condition and the second dealing with
conditions of the first group. We show that many sufficient criteria, both known
and new, can easily be derived from the first theorem. In this theorem, the
integrand ]’ is assumed to be measurable, 1.s.c. in (x, y) and convex in y. These
assumptions are very general and, no doubt, sufficient for practical purposes. The
second theorem shows that they are also necessary in some sense. Thus both
theorems together give a description of integrands generating integral functionals
which are sequentially lower semicontinuous with respect to mixed strong-weak
convergence.

2. Statements of the main theorems. Let T be a subset of G. By Xr(t) we
denote the characteristic function of T:

1, if t T,
XT(t)

O, if tT.

Throughout the paper we assume that both L andM are decomposable, that is, if
z (.) belongs to one of them, then gr(" )z (’) belongs to the same space whenever
T is a measurable subset of G.

Recall that the integrand f(t, x, y) is called. (R) N-measurable if it is measur-
able with respect to the g-algebra generated by products of measurable subsets of
G and Borel subsets of R X R".

We shall say that integrand f(t, x, y) satisfies the lower compacmess property
on L xM if any sequence f-(t, Xk(t), yk(t)) is weakly precompact in L1 whenever
the Xk (") converge in L, Yk (") converge in M and I(Xk ("), Yk (")) -< a < oo for all
k 1, 2,.’.. Heref-=min (f, 0).

Consider the following hypotheses on topologies in L and M:
(H) If z(. ), k 1, 2, , belong to one of the spaces and converge there to

zero and if/xT 0, then Xr(")z(. also converge to zero.
(H) The topology in L is not weaker than the topology of convergence in

measure; the topology inM is not weaker than the topology induced in _M by the
weak topology of L 7.

(H3) L and M contain bounded measurable mappings and their topologies
are not stronger than the topology of almost everywhere uniform convergence.

(H4) If y(. )M and T, k 1, 2,. ., is a sequence of measurabie subsets
of G such that ak(’)=grk( converge weakly* in Loo to some a(. then
Ok(" )y(" converge in M to a(. )y(. ).

It is easy to see that spaces L, with norm or weak topologies satisfy all of these
hypotheses.

THEOREM 1 (Lower semicontinuity theorem). Let L andMsatisfy (H1) and
(He). Assume that ]:(t, x, y) is (R) 3-measurable, lower semicontinuous in (x, y)
and convex in y. In order that I(.,. be lower semicontinuous on L xM and
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everywhere on L xMmore than -oo, it is necessary and (ifI( .) is finite at least at
one point in L xM) sufficient that f satisfy the lower compacmess property.

The proof of the sufficiency part is more or less traditional (cf. [2], [11]); it is,
in fact, a modified version of the proof given in [2] for a less general situation. As
to necessity, it is quite elementary.

To state the second theorem, we need some additional notions. We shall say
that two integrands ]’(t,x,y) and g(t,x,y) are measurably equivalent if
f(t, x(t), y(t))= g(t, x(t), y(t)) a.e. for any measurable x(. and y(. ). If f satisfies
some property up to measurable equivalence, we say that f virtually satisfies this
property.

THEOREM 2 (Virtual measurability theorem). Let L and M satisfy (H3).
Assume thatI( is lowersemicontinuous onL xMandnoteverywhere onL xM
equal to +c. Then f(t, x, y) is measurably equivalent to some other integrand
g(t, x, y) which is (R) -measurable and lower semicontinuous in (x, y). If in
addition Msatisfies (H4) then g is convex in y.

Remark. Here and below, assumptions and statements are referred to sets
with measure-negligible projection on G. For instance, such words as ’7" is l.s.c, in
(x, y) and convex in y" mean that there is G’ Gwith/G’ =/.G and such that the
functions (x, y) [(t, x, y) are 1.s.c. for all G’ and the functions y f(t, x, y) are
convex for all t G’, x R".

Note that two measurably equivalent measurable integrands coincide up to a
set which has measure-negligible projection on G. This follows immediately from
Aumann’s selection theorem 1]. Hence the integrand g in Theorem 2 is uniquely
defined.

In the case whenf does not depend on x andMis L7 with weak topology this
theorem was actually proved by Olech [12]; this proof, however, cannot be
extended to the general case because it heavily depends on convexity.

It is interesting to note furthermore that in spite of Theorem 2, the integrand ]’
itself may fail to have any of the properties inherent in g. Probably, the most
striking example of this sort follows from a remarkable fact communicated to the
author by M. A. Krasnosel’skii and A. V. Pokrovskii"

under the continuum hypothesis, there exists a real-valued function h(t, x) defined on R x R
such that

(i) for any tR, the set {xlh(t, x)=0} is denumerable;
(ii) h(t, x(t))=0 a.e. for any measurable x(. ).

In this case

I h(t, x(t)) dt= 0

for any measurable x(. and G R whatever values h assumes outside the set on
which it is equal to zero. Hence h can be neither measurable nor 1.s.c. and convex
in x but the integral will remain continuous in any topology.

3. Some corollaries. In this section we shall prove, using the lower semicon-
tinuity theorem, some more usable sufficient criteria, both well known and new,
for I(.,. to be 1.s.c. To do this, we need a widely known characterization of
weakly precompact sets in L1 (see [4], [7]).
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PROPOSITION 1. LetA be a nonempty subset ofL. Then the following three
conditions are equivalent:

(i) A is weakly precompact;
(ii) A is equi-uniformly summable, that is,

that

sup I Ix(t)ld-O
x(’)A T

flxT-* O

(iii) there exists a nonnegative nondecreasing function h(. on [0, oo) such

limh(t---)=’ I h(lx(t)l)dt <-i Yx(.)A.
t-,oo t G

By I" and (. ,. we shall denote the Euclidean norm and the inner product
respectively; L7 (1 =<s-<oo) will denote the space of all measurable mappings
x(. ): G--> R such that Ix(" )1 belongs to Ls. We shall say that I(.,. is (s, q)-
1.s.c. if it is 1.s.c. with respect to the norm convergence of x (.)s inLand the weak
(weak* if q o) convergence of y(. )s in L.

In all of the following theorems, the integrand f is supposed . (R) -measurable, 1.s.c. in (x, y) and convex in y.
THEOREM 3. Assume in addition to the assumption of Theorem 1 that f is

nonnegative. Then I( ,. is lower semicontinuous on L x M.
Proof. Here f-(t, x, y)-=0.
For (s, q)-lower semicontinuity, this fact follows from many recent results

(see Theorems 4 and 5 below). Earlier versions may be found in [6], [9].
THEOREM 4 (Berkovitz [2]). Let

f(t,x, y)>-(a(t), y) +b(t)

]’or some a( ) L,, b( ) L1. Then I(.,. is (s, q)-l.s.c, for every s.
Here q’ is defined by 1/q + 1/q’ 1.
Proof. If the Yk(" converge weakly (weakly* if q m), then the (a(.), Yk(" )

converge weakly in L1.
THEOREM 5 (Olech [11]). Let

f(t, x, y) -c(Ixl/lyl)/b(t)

]:or some c R, b( ) L1. Then I(.,. is (1, 1)-l.s.c.
Proof. If Xk (") converge strongly in L’ and the Yk (") converge weakly in L ’then the IXk(" )[ converge strongly in L1 and the sequence of [Yk(" )1 is weakly

precompact in L1 by Proposition 1.
Remark 1. The conditions of Theorem 5 are also necessary for I(., to be

(1, 1)-l.s.c. This fact was proved by Poljak [13] for integrands satisfying the
Carath6odory condition. In our case, the proof needs almost no changes. On the
other hand, the inequality in Theorem 5 is equivalent to the fact that I(., does
not assume the value -az on L’ L]’. Hence I(.,. is (1, 1)-l.s.c. if and only if
it is well-defined on L L]’. However for q > 1, this nice result fails (see Remark
3 below). Note in this connection that Remark 1 in [2] is true only if all of qi are
equal to 1.
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THEOREM 6 (Cesari [3]). Assume that
(i) f(t, x, y) ->/3 > -o ]’or all t, x and y satisfying lY] <= 1;
(ii) there is a real cr >-B such that for any fixed t, x either a >-f(t, x, O) or

f(t, x, y)= ]:or all y R".
Then I(.,. is (1, 1)-l.s.c.
Proof. Since f is convex in y, assumptions (i), (ii) imply that

f(t, x, y)/ (a -/3)[yl.

Apply Theorem 5.
THEOREM 7. Let 1 < q < c and

(3.1) f(t, x, y)> -clxl-g(ly[)/b(t)

for some c R, b( L1 and nonnegative nondecreasing function g(t) on [0, oo]
satisfying

(3.2) lim g(t)/tq O.
t--cx3

Then I(.,. is (s, q)-l.s.c.
Proof. Let

h (r) inf {tlg(t) r}

(assuming as usual that inf 3 o). We have

(3.3) 0 <- h (g(t)) <- t tt >= O,
h (.) does not decrease and

(3.4) lim h(z)/r lim inf tq/g(t) .
If now the yk (") converge weakly in L then the norms of yk (.) are bounded by
some N and hence by (3.3)

fo h(g([y(t)l)) dz <= Io lY’(t)l d -<_N’.

In this case (3.4) shows, by virtue of Proposition 1, that the sequence of g([y (t)[) is
weakly precompact in L1.

Remark 2. To get a corresponding result for q , one should only replace
(3".2) by the assumption that g(. is nowhere on [0, o] equal to o. The proof is
equally simple. An analogous assertion is true for s : it suffices to place an
arbitrary continuous function of x in (3.1) instead of c[xls.

Remark 3. A well-known necessary and sufficient condition for I(., to be
well defined on L Lq is that

(3.5) (t, x, y) -c(Ix[ /lyl /b(t)).

We see that this condition differs from (3.1), (3.2) in one point: it permits the
integrand to decrease in y as -[y while (3.1), (3.2) demand that this decrease be
slower than -lyl. However neither (3.1), (3.2) are necessary for I(.,. to be
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(s, q)-l.s.c, nor is (3.5) sufficient. Consider two examples.
If

f(t,x,y)=xy, rn=n=l, s=q=2,

then f does not satisfy (3.1), (3.2) no matter which g satisfying (3.2) is taken.
However, I(.,. is (2, 2)-l.s.c.

On the other hand, let G (0, 1), rn n 1, q > 1 and

(3.6) f(t, x, y) q, -y.
We have

f(t, x, y)_>- ]yl"/q,
so thatf satisfies (3.5) for every s. Nonetheless, the corresponding integral I(., is
not (s, q)-l.s.c. To show this, consider two sequences

tk /’, if O<t.<-_l/k,
x(t)=

O, if 1/k<t<l;

y(t)={-k/q, if O<t<=l/k,
0, if 1/k<t<l.

Then Xk (") 0 uniformly and Yk (") 0 weakly in Lq. However, I(0, 0) 0
whereas l(Xk ("), Yk (")) 1/q.

THEOREM 8. Let q > 1, s < 00. Assume that there exists a (R) Yd-measurable
mappingp t, x): G xR R such thatforsome c > O, b L1 thefollowing two
inequalities hoM

(3.7) f(t, x, y) (p(t, x), y>-clxl + b(t);

(3.8) IP(t, x)l’clxl +b(t).

Then I(.,. is (s, q)-l.s.c.
Proof. If the xk(" converge strongly in L, then the functions Ixk(" )! are

equi-uniformly summable; hence so are Ip(t, x(t))]’. It follows that

/],t’7-(’)p(" ,x(.))llq,0 as /xT0.

If in addition y(. converge weakly (weakly* if q 00) in L, then their q-norms
are bounded by some N> 0. Therefore

Xk(t)), --< NIIx( )p(’, x(. ))11,- 0yk (t))

uniformly in k when/zT- 0. It remains to apply Proposition 1.
Two last theorems can be extended to Orlicz spaces. Recall some basic

notions and facts about these spaces (see [5], [8]).
Let p(t,x) be a (R)-measurable extended-real-valued function on

G x R which is nonnegative, convex and 1.s.c. in x and satisfying p(t, 0)= 0,
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o(t, -x)=-q(t, X). Let

*(t, u)=sup ((u, x)-o(t, x))

be the Fenchel conjugate to o(t, ). Then o* is also (R) N-measurable, nonnega-
tive, convex in u and satisfies o*(t, O) O, *(t, -u) -*(t, u). We shall say that

is a Young[unction if there exists an e >0 such that the functions t (t, x) and
t *(t, u) are summable whenever lxl < e, lul < e.

Let be a Young function and

J(x( ))= o (t, x(t)) d.

It is not difficult to show that x (.) s L if J(x (.)) <.e set

is called the Orlicz chss (generated by ). e conical hull of

k=l

is a linear space called an Orlicz space, which is converted into a Banach space
having been supplied with the norm

IIx(, )11 =inf {A > 0[J(h-x( )) 1}.

The space L, is defined in the same way. The connection between both spaces is
the following: each of them is total on the other with respect to the pairing

(u(t), x(t))

It is said that satisfies the A2-condition if there is an a > 0 such that

(t, 2x) a(t, x).

If satisfies the Ae-condition (and only in this case), =L,, L* g*.

PROPOSITION 2. Let (t, x) be a Young [unction on G xR. Consider a
sequence {x(. )}L, norm converging to some x(. ). Assume that Ilx(" )[I, <
1/2, Ilx,(. )1. < 1/2. en the [unctions (t, x(t)) are equi-uni[ormly summable.

Proof. Since is convex in x, we have

(3.9) O , (t, x (t)) (1/2)( (t, 2x (t)) + (t, 2(x (t) x (t))).

By the assumptions I[2x( )11 < 1 and hence (t, x(t)) is summable. On the other
hand, w(. 2(x( )-x(. )) tend to zero; in particular lw( )ll, < 1 if k is more
than some k0. For such k

(t, w (t)) dtz -<_ Ilw ("
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which follows from the definition of the norm and from the fact that Jr (") is a
convex function equal to zero at the origin. Thus o(., Wk(’))(k->k0) are
nonnegative functions with integrals tending to zero. Therefore they are equi-
uniformly summable. By virtue of (3.9), this proves that q(t, xk(t)) are equi-
uniformly summable for k _>-ko and hence for all k because J, (xk (’))--< 1 by the
assumptions.

PROPOSITION 3. Let 0(t, x) be a Young function on G xR" satisfying the
A2-condition. Let A be a subset of L’ such that the set {p(. ,x(. ))Ix(. )cA} is
equi-uniformly summable. Then

sup IIx ( )x(. )11 o, /fgT O.
x(.)eA

Proof. Fix a positive integer r. It is sufficient to show that for some e > 0,
II,t’T( )X(" )11, -< 2 if/T< e and x(. )e a. Choose e > 0 such that

IT o(t, x(t)) dtz Vx( )ca,<__a

if/zT< e (a being the constant in the Az-condition). If now/zT< e, x (.) e A, we
get

I q(t, 2r(t)x(t)) d I7- o(t, Tx(t))dbe

T q(t, x(t)) dtz <- 1,g

that is, [[XT(" )X(" )[1, ----< 2-"
We shall apply Theorem 1 in the following situation. Let o(t, x) and O(t, y) be

two Young functions defined on G xR and G xR" respectively. Consider the
spaces L and L, the first with the norm topology and the second with the
o-(L, L.)-topology. It is easy to see that L as L and L as M satisfy all of the
hypotheses (H)-(H4). For simplicity we shall say that I(.,. is (0, q0-1.s.c, if it is
sequentialy lower semicontinuous on L xL with respect to the above men-
tioned topologies.

THEOREM 9. Assume that for any c > 0 there are a summable function b (t)
and a (R) 9-measurable integrand g (t, ’) on G x [0, oo) which is nondecreasing
in - and satisfies

g,(t,
lim sups=0, Va>0;

f(t, x, y) e-(t, cx)-g(t, lyl)+b(t).

Then I(’," is (q, d/)-l.s.c.
Proof. Let Xk (") converge strongly in L, and Yk (") r(L,, L**)-converge in

L,. Then the norms of Xk (") are bounded by some No and the norms of Yk (") are
bounded by some N1. Take c < 1/(2N0). Then I[cxk(" )[[ < 1/2 and by Proposition
2 the functions 0(., CXk (")) are equi-uniformly summable.
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To prove the theorem, it suffices to show that the functions gc (’, [Yk (")1), k
1, 2, , are also equi-uniformly summable. Take a < 1IN1 and let

h(t, A) inf {(t, ay)lg(t, ly[) A },

h(h)= inf h(t, h).
tG

Since , is convex in y and nonnegative and ,(t, 0)=0, h(t, A) and h(A) are
nondecreasing and nonnegative. Furthermore

h(t, g(t, lYl)) O(t, y)

and

h(a) h(t,x)
lim lim inf

x-oolim tinf inf { p(t.ay___.__)
lim inf inf b(t, ay)

Finally

Io k(g(,, lY,(’)I))dtx <=Io h(,, g(t,

Io ,(t, aye(t)) a <_- ,
according to the choice of c. Applying Proposition !, we obtain what we need.

THEOREM 10. Let * satisfy the A-condition. Assume that them is a
(R) -measurable mappingp(t, x): G R -.R such thatfor any c > 0 them are

kc > 0 and bc (.) Lx satisfying

(3.10) f(t, x, y)_-> (p(t, x), y)- o(t, cx)-b(t);
*(t, p(t, x)) <-_ ko(t, cx) + b(t).

Then I(.,. is (o, d/)-l.s.c.
Proof. The proof is similar to the proof of Theorem 8. Let Xk(" converge

strongly in L. As in the proof of the preceding theorem, we can choose c > 0 to
make the functions o(t, CXk(t)) equi-uniformly summable. Then functions
*(t, p(t, Xk(t))) are also equi-uniformly summable and by proposition 3, so are
(p(t, Xk (t)), Yk (t)) if the Yk (") converge in the tr(L, L.)-topology.

4. Proot ot the lower semicontinuity theorem.
Necessity. Assume that I(.,. is everywhere greater than -00 and sequen-

tially l.s.c, on L xM. Consider a sequence {Xk(" ), Yk(" )} such that the Xk("
converge in L to some x (.), the Yk (") converge to some y (.) inM and I(Xk ("),
Yk(" ))-<a < 00 for all k. Then I(x(. ), y(. ))<=a and hence ]I(x(. ), y(. ))1 < 00.

We must prove that the functions f-(t, xk(t), yk(t)), k 1, 2,. , are equi-
uniformly summable. Assume the contrary. Then for any integer s 1, 2,...,
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there is a subscript ks >=s such that for some measurable set Ts c G with
zT, <-_ l/s,

(4.1)

Let

fr. f(t, xks (t), Yks (t)) dlz <-- 6 < O.

us(t) (1 -Xrs (t))x(t) +Xr, (t)x, (t),

vs (t) (1 a’r, (t))y (t) +Xr, (t)yt,, (t).

Due to (H0, u(. )x(. ), v(. ) y(. ). But (4.1) implies that

I(u,(. ), v,(. ))-I(x(. ), y(. ))

_
(f(t, Xk,(t), yk(t))--f(t, x(t), y(t))) dg -6/2,

for sufficiently large s which contradicts the fact that I(.,. is lower
semicontinuous.

Suciency. Assume that satisfies the lower compactness property on L x M.
Then obviously

f f-(t,x(t), y(t)) d -, x(. )L, y(. )M.

Consider again a sequence {x (.), y (.)} converging to (x (.), y (.)) inL xM
and such that

(4.2) I(x ), y )) N a <m Vk l, 2,

To prove the theorem, it suffices to show that

(4.3) I(x(. ), y(. ))Na.

First we shall demonstrate that no loss of generality will follow if we assume
that f is bounded from below. Indeed, let the theorem be true for integrands
bounded from below. Let

fu(t, x, y)= max (f(t, x, y),-N),

), y(. ))= fa &(t, x(t), y(t))d.Iu(x(

Since the functions f-(t, x (t), y (t)), k 1, 2,..., form a weakly precompact set
in L, we have in particular

[-(t, x (t), y (t)) -> , 2,...(4.4)

for some B > 0. Therefore Iu(x(. ), y(. ))N a +O for all k and N. Since the
theorem is true for fu, as we have just assumed, it follows that

(4.5) lim inf Iu(x(.), y(. ))Iu(x(. ), y(. ))NI(x(. ), y(. )).
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On the other hand, (4.4) implies that for any k

tz(te Glf(t, xk(t), yk(t))=<-N}0 ifNo.

But these are just the sets on which f(t, x(t), y(t)) differ from fN(t, x(t), y(t)).
Note that the functions f-(t, xk(t), y (t)) are equi-uniformly summable by Propo-
sition 1. Therefore for any e > 0, there is an N such that

z,,(x(. ), y(. ))<__ r(x(. ), y(. ))+ e

for all N->N6 and all k 1, 2,. .. This together with (4.5) implies (4.2).
Thus we may suppose thatf is bounded from below and even nonnegative. By

(H2), the Yk (") converge weakly in L’ to y (.). Proposition 1 shows that there is a
nonnegative nondecreasing function ho(’) on [0, 0o) such that

lim ho(’)/" 00;

I ho(ly(t)l) dx -< 1 ’q’k 1, 2,

Choose another nonnegative nondecreasing function h (’) on [0, 00) such that

(4.6) lim h(’)/" lim ho(z)/h(’)=00

(for instance h (r) (’ho(’))1/2). Let

h l(s) inf {ho(z)lh (z)
(4.7)

k(t) h (lY,(t)l).
We see (cf. proofs of Theorems 7 and 9) that h is nonnegative, nondecreas-

ing and

(4.8) lim

Furthermore,

(because hl(h(’))<--ho(") by definition). In view of (4.8) this means that the
sequence {k(" )} is weakly precompact in L1.

By Mazur’s theorem, some sequence of convex combinations of

(Yk ("), Sek (")) converge strongly in L7 x L. In other words, some functions of the

form

(4.9) vj(t)= Y’. aqYkj+i(t),
i=1

(4.10) r/j(t)= Y’, aq,+i(t)
i=1
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where k < k + s < ki+l, aq => 0, Y, aq 1, converge strongly when ] --> 00, the
first ones to a certain y (.) in L7 and the second to a certain rt (’) in L1. Extracting,
if necessary, a subsequenee, we may consider vi(. and r/i(. converging a.e.
on G.

Let

(4.11) hi(t Y’. aqf(t, Xk,+i(t), Yk,+i(t)).
i=1

Then obviously (since f is assumed nonnegative)

h.(t)=>0 a.e. and f hi(t) dl<=a j=l,....(4.12)

To prove (4.3), it is sufficient to verify that

(4.13) lim inf Ai(t) >=f(t, x(t), y(t)) a.e.

in which case (4.3) follows from Fatou’s lemma.
By (Hz), the Xk (") converge to x(. in measure. Therefore we may assume

that the Xk(’) also converge to x(’) a.e. Fix some tG such that Xk(t)
x(t), vi(t) y(t), b(t)-l(t). Let

ei max Ix(t)-x,+g(t)l.

Then ei ") 0 because k --) oo as ] --> oo. Consider the set

Ai {(v, r/, A) eR’+IA >=f(t,x, y), 7 h(Ivl)
for some x satisfying Ix -x(t)l

Then (4.7), (4.9)-(4.11) show that

(vi(t), b(t), Ai(t)) e convAi.

By Carath6odory’s theorem, for every/’, there exist three (n + 3)-tuples

such that

(4.14)

(4.15)

(fijl,"" ",]n+3), (Xjl,"" ",X]n+3), (Vjl," ", Din+3)

[3i]>--0, [3]l-[-" q-in+3 1 /j= 1,...,

]xi-x(t)l<-ei ’j=l,..., Vi=l,...,n+3,

n+3 n+3

(4.16) Y’. /3iivii vi(t), Y. icf(t, xii, vii) <-Ai(t),
i=1 i=1

n+3

(4.17) Y’, /3,h(lv,l)- n,(t).
i=1

Due to (4.6), vi cannot tend to oo as ] 00 for every 1, , n + 3; otherwise
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(4.17) would be violated. Therefore we may assume that there is 1 < s -< n + 3 such
that

vi tend to some v
(4.18)

as/" . It follows from (4.17) that

On the other hand,

if/= 1,...,s,

ifi=s+l,. , n+3,

n+3

=s+l

Two latter relations and (4.6), (4.18) show that

if/’-o Vi=s+l,...,n+3.

In particular/ji 0 for such i. We may suppose furthermore, in view of (4.14), that
for 1,..., s, the/ji converge to some/ and

(4.19) /=>0, i=l,...,s; /3=1; Bv=y(t),
i=1 i=1

which follows from (4.16), (4.18) because vi(t) y(t).
Finally, since f is nonnegative, 1.s.c. in (x, y) and convex in y, we get, using

(4.15), (4.16) and (4.19), that

lim inf A;(t) _-> lim inf . ;f(t, x;, v;)
j-c jc i=1

>-- fl(t, x(t), vi) >--_[(t, x(t), y(t)).
i=1

This proves (4.13) and thereby the theorem.

5. Proof of the virtual measurability theorem. The first part of Theorem 2
can be restated in the following quivalent form.

THEOREM 2’. Let S be a linear topological space o[measurable mappings[rom
G into R. Assume that S is decomposable, contains all bounded measurable
mappings and the topology in S is not stronger than the topology of almost
everywhere uni[orm convergence. Let q (t, z) be an integrand on G xR such that
IJ(( ))l <o for some (. S, where

I q(t, z(t)) dtx.J(z( ))

Assume that ]:or any z( S, J(z( )) makes sense (regardless, finite or not) and
that the [unction J(. is lower semicontinuous on S. Then q is measurably
equivalent to some other integrand g(t, z) which is . (R) 3-measurable and l.s.c.
in z.
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First we shall prove the following result.
LEMMA. Let S satisfy the assumptions of Theorem 2’. Let o(t, z) be an

integrand on (7 xR such thato(t, . (t)) < oo a.e. on Gforsome . ) S. Then there
is another integrand g(t, z) which is (R) 9-measurable, l.s.c, in z and satisfies the
following condition: for any z (.) S

(i) g(t, z(t))<=o(t, z(t)) a.e.;
(ii) there exists a sequence {Zk(" )} Of elements of S converging uniformly to

z (. and such that

lim sup (p(t,zk(t)) <- g(t, Z(t)) a.e.
k

Proof. Consider the set

A {(a(. ), w(. ))lw(" ) S, a(. ): G-R is measurable,

a(t) >=q(t, w(t)) a.e.}.

According to the assumptions, A # . Therefore we can choose a countable
collection B of elements if A which is dense inA with respect to the convergence
in measure. Let

B(t) {(a, w) R xRla t(t), w w(t) for some (a(.), w(. )) B},

and define g(t, z) as follows:

g(t, z) inf {al(a, z) s cl B(t)},

where cl B(t) denotes the closure of B(t) and inf is by convention equal to oo.
The multivalued mapping t-clB(t) is close-valued and contains a countable
dense collection of measurable selections. Therefore this multivalued mapping is
measurable (see Rockafellar [14]) and g(t, z) is w (R) N-measurable integrand.
Obviously, g is 1.s.c. in z.

Fix some z (.) S and let

T= {t e GIW (t, z (t)) < }.

Then (i) trivially holds if t T. If/zT>0, we consider

Zo(t) (1 xr(t))z (t) +Xr(t)z (t).

Then Zo(’)sS,(t, Zo(t))<c a.e. and there is a measurable function
a(. ): G R such that (a(.), Zo(" )) belongs to A. Fix such an ce(. and choose a
sequence {ak(" ), Wk(" )} of elements of B converging a.e. to a(. ), Zo(" )). By
definition,.

g(t, Zo(t))_--<liminf ak(t)=a(t) a.e.

This is true for any measurable a(. such that a(t)>-q(t, Zo(t)) a.e. Therefore
g(t, Zo(t))<=q(t, Zo(t)) a.e.; in particular g(t,z(t))<=(t,z(t)) a.e. on T which
proves (i).
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It follows from the definition of g that for any 8>0, t G such that
g(t,z(t))<c there is an (a, w)B(t) such that

(5.1)

< < [g(t, z(t)) + if g(t, z(t)) > -o,
q t, W) a [ 1/8 if g(t, z(t))= -oo,

or in other words

(5.2) q(t, w)_-< max {g(t, z(t))+&-1/}.

Denote by W the projection of B onto $. Let wl(" ), w2(" ),"’ be an
arbitrary numbering of elements of W. Consider the following sets:

T, {t G[ Iz(t)- we(t)l <- Ilk,

p(t, w,(t)) <-_max {g(t, z(t))+ Ilk,-k}}.
Let

wk/(t)

w(t) if

wk(t) if tT,\ U T,,
i=1

z(t) if tG\ U T.
i=1

According to (5.1), (5.2),

U T, {t . G[g(t, z (t)) < oo}
i=1

up to a set of measure zero. Choose i(k) to ensure

z teGIg(t,z(t))<oo, t U T <-l/k,
i=l

and let

z(t) w/(k)(t).
"It is easy to see that the z(.) satisfy (ii).

Proof of Theorem 2’. Define g(t, z) as in the Lemma. Let z(. ) $. Then by
lemma, g(t, z(t))<-_o(t, z(t)) a.e. Assume that

(5.3) /z{tGlg(t,z(t))<o(t,z(t))}>O.
For every t belonging to the above set, g(t, z(t)) < oo and o(t, z(t)) >-oo. There-
fore we can choose a set Tc G such that/zT>0,

(5.4) It, g(t, z(t)) d/z < Irf(t, z(t)) d/x VT’ c T, /xT’>0,

and both integrals make sense.
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Take a sequence {Zk (")} c S satisfying condition (ii) of the lemma. Then it is
possible (extracting if necessary, a subsequence) to find a set T’ c T with/zT’ > 0
such that

(5.5)

Let

liminffr_, (t, z(t)) dlz <- f7 g(t, z(t)) dtz.

w (t) (1 -,Vr,(t)) (t) +,Vr,(t)z (t),

w(t) (1 Xr,(t))(t) +,r,(t)z (t).

Then w(’) and w(. belong to S and Wk(") W(" uniformly and hence in $.

Since J(. is 1.s.c.,

(5.6) lim inf J(w( )) >=J(w( )).

But

J(Wk(" ))’- | q(t, (t))d/z+| q(t, Zk(t))d,
\T’ .IT’

[ /, z(t))
\T’ .IT’

The first terms in both sums are finite and equal. Hence (5.6) implies

liminf Irk.oo
p(t, Zk(t)) dtz >-- Ir, o(t, z(t)) dtz

which contradicts (5.4), (5.5).
Thus (5.3) is contradictory, and g(t, z(t)) o(t, z(t)) a.e. for any z(. s S. But

since S contains all bounded measurable mappings, the latter is true for any
measurable z (.). This proves Theorem 2’ and hence the first part of Theorem 2.

The proof of the second part of Theorem 2 follows a rather routine scheme
based on measurable selection techniques. If the assertion in the second part is
false, then (since g is (R) 3-measurable and 1.s.c. in y) Aumann’s selection
theorem [1] (see also Sainte-Beuve [15]) allows us to find a measurable set
Tc G,/xT> 0, and measurable mappings x (.): T--> R% u (.): T-> R" and
v (.): T--> R" such that

(5.7) g(t, x(t), y(t))<-oo, g(t, x(t), u(t))<

g(t, x(t), u(t))+g(t, x(t), v(t)) < g[t,, x(t) u(t)+v(t)(5.8)
2 2 ]

With no loss of generality we may assume that x (.), u (.) and v (.) are bounded.
Let {ak(" )} be a sequence of measurable functions on G assuming only two
values, 0 and 1, and converging weakly* in Loo to the function identically equal to
1/2. Take a set T’ Tof positive measure such that all functions in (5.7), (5.8) are
integrable, not necessarily finitely but with the same inequalities valid for their
integrals.
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Take (. ) L, )(. )M such that I((. ), )(. )) is finite (such a pair exists
according to the assumptions), and let

x’ t) 1 XT’,(t)) (t) +Xr,(t)x (t),

u’(t) 1 XT’(t))(t) +XT’(t)u (t),

v’(t) (1 --XT’(t))(t) +XT’(t)v(t).

Then as we have shown

r(x’(. ), u’(. ))+Z(x’(. ), v’(. ))
2

Let

<i(x,(. ),
u’(" )+v’(" ))2

yk(t) (1 ak(t))u’(t) + a(t)v’(t).

By (H4), the y(. converge to y(. )= (1/2)(u’(.)+v’(. )). Since I(.,. is l.s.c.
on L xM, it follows that

lim inf I(x’(.), Yk(" ))>I(x’(" ), U’(’)-i-V’(’).)2

On the other hand, according to the definition of ak()

g(t, x, Yk (t)) (1 ak (t))g(t, X, U (t)) + ak (t)g(t, X, v’(t))

and since the ak(" converge weakly* to 1/2 in L, we get

lim I(x’( ), Yk(" ))=(1/2)(I(X’(" ), U’(" ))+I(x’( ), V’(" )).
k oo

It is easy to see that three latter relations are contradictory.
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PROBABILITY THEORY METHODS IN ZERO-SUM
STOCHASTIC GAMES*

JEAN-MICHEL BISMUTf

Abslract. The purpose of this paper is to apply the methods of optimal stochastic control
introduced by the author to a class of zero-sum stochastic games.

1. Introduction. The purpose of this paper is to apply the methods used by
the author in his previous work on the optimal control of diffusions [1] to a wide
class of stochastic games.

Let us consider two compact metrizable spaces U and U’.
f is a bounded function defined onR+ Rd U U’ with values inR, Borel

on R+xRd for a given (u, u’) Ux U’, and continuous on Ux U’ for (t,x)
R+xR d. We consider the diffusion process

dx f(t, xt, u(t, x), u’(t, x,)) dt +tr(t, x) d
(1.1)

Xs =X,

where u and u’ are Borel functions defined onR/ xR’ with values in Uand U’.
A is a Borel set in R / xR d.
TA is the stopping time:

(1.2) TA =inf {t>s; (t, xt)A}.

p is a constant >0.
We consider the criterion

(1.3) eN e-K(t, x,, u(t, x), u’(t, x)) dt,

where K is a bounded function satisfying the same assumptions as f.
The purpose of this paper is to prove the existence of a minimax couple of

strategies where the minimum corresponds to u and the maximum to u’.
This problem has been considered by Friedman in [5], where partial differen-

tial equation techniques are used.
Friedman assumes that A may be written as Or ]0, T[ x 1 where f is an

open domain of R e, whose boundary is sufficiently regular. Differentiability
assumptions are also done in [5] on the matrix a o-o-*.

Then Friedman proves in Theorem 3 of [5] that if H, X,X are defined by

H(t, x, u, u’, p)=K(t, x, u, u’)+(p, f(t, x, u, u’)),

(1.4) Xl(t, x, p)= inf sup H(t, x, u, u’, p),
uU u’U’

XE(t, x, p)= sup inf H(t, x, u, u’, p),
u’U’ uU

* Received by the editors May 16, 1975, and in final revised form July 1, 1976.
t 191, rue d’Al6sia 75014 Paris, France.
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then under Isaac’s condition h =-X1 ---22, the partial differential equation

OV+lot.. (-x on-4
, a,(t, x) Vxm h t, x, V,

O

(1.5)

V=0 on (]0, T[xoII)Id({T}xf)

has one unique solution, which is the cost function of the game. Vis then proved to
be continuous on OT, and VxV is proved to be H61der continuous on OT.
Moreover, Theorem 4 of [5] shows that a solution of the game exists.

In this paper we consider the case where f and K may be written

(1.6)
f(t, x, u, u’) b(t, x, u) + b’(t, x, u’),

K(t, x, u, u’)=L(t, x, u)+L’(t, x, u’).

We do not have any differentiability assumptions on a, and we acceptA to be
any Borel set in R/xRa. The partial differential equation (1.5) is then not well
defined.

A solution of the game is proved to exist by using the results of [ 1]. The main
interest of the method is the use of the deep convex structure of some problems of
stochastic control. Moreover, the method is extendable to games on processes
other than diffusions [2].

Finally, we come back to the more general system (1.1)-(1.3), and derive
conditions for existence of solutions of this game. The reader is referred to [5] for a
precise comparison of theses results with the results of Friedman.

In a different framework, Duncan and Varaiya have examined in [3] the
problem of existence in the general nonanticipating case, where f and K depend
on the entire trajectory of x and where (u, u’) are taken as nonanticipating
functions of x. They also assume that K does not depend on (u, u’), and that the
first equality holds in (1.6) with bib O(i 1, , d). They also have a convexity
condition on {b(t, x, u)[u U} and {b’(t, x, u’)lu’ U’}. In [4] Elliott has extended
the results of Duncan and Varaiya and obtains an existence result under Isaac’s
condition. However, the techniques used in [3] and [4] are rather different from
the method used here which applies more directly to Markov processes.

2. Definition of the problem, a is a continuous function defined on R + xRd

with values in R d(R)R a such that:
a is bounded,
a is positive definite.
b is a Borel bounded function defined on R+xRd with values in R d.
Q(b, is the unique measure on the space of continuous functions defined on

R / with values in R, which is a solution of the martingale problem defined in [7],
with (s, x) as the starting point.

Eb
(s, is the expectation operator for Qb(s,x).

tr is the positive square root of a.
p is a strictly positive constant.
A is a Borel set in R+ xR d.
L is a real-valued bounded Borel function defined on R/xRd.



PROBABILITY THEORY METHODS 541

For c (b, L), we define the function Vc as

(2.1) V(s, x) .=b l
T*

rs.x e-PtL(t, x,) dt.

K and K’ are two bounded Borel set-valued mappings defined on R/xRd

with nonempty compact values in Rd x R.. (resp. ’) is the set of Lebesgue equivalence classes of the Borel selections
of K (resp. K’).

(resp. ’) has the topology cr(Lo(R + Rd),Lx(R + x Rd)), which is metriz-
able.

and

DEFINITION 2.1. Problem R is defined as the search of

Co= (bo, Lo).
such that for (c, c’) s ’,

(2.2)

C’o= b’o, L’o).
Vco+’ <= Vco+c <-- Vc+c

The relation between this formulation of problem R and the formulation
given in 1 is derived in the same way as in [1, Chap. IV, Part 1].

THEOREM 2.1. Problem R has a solution.
Proof. The next parts are devoted to the proof of the theorem.

3. The convex ease. We define first two measures and v on R+Rd.
/z is a probability measure on R/ R d mutually absolutely continuous with

the Lebesgue measure.
v is the measure on R+Ra defined by

(3.1) v(o) E,eps e-V’o(t, x,) dt.

v is then absolutely continuous relative to the Lebesgue measure of R+Rd, by
Theorem 8.1 of [7].

We assume in this part that K and K’ have convex values.
For c (resp. c’ ’), we define F’ (resp. Fc,) by

(resp.

(3.2’)

F’ {c’ ’; V(s, x) R + xRa, V+,(s, x) sup V,+e,(s, x)}
’.o’

rc,={c; V(s,x)R+xRa V+c,(s,x)= inf Ve+,(s,x)}).

PROPOSITION 3.1. F’ (resp. F,) has nonempty compact convex values.
Proof. The nonemptiness and the compactness of F’ (resp. F,) follow from [1,

Thin. V-l]. Moreover, Theorems IV-5 and IV-8 of [1] applied to Part V of [1],
prove that one can find a Borel functionH (resp. H,) such that a necessary and
sufficient condition for c’ (b’, L’) to be in F’ (resp. c (b, L) to be in F,) is that,
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(3.3)

(resp.

(3.4)

u-a.e., the following relation holds"

L’(t,x)+(Hc(t, xl, tr-l(t, xlb’(t,x)) $nax f_.’+(Hc(t,x),tr-(t,x)’)
(b’,L’)K’(t,x)

L(t, x)+(H,(t, x), o’-l(t, x)b(t, x))= jnin +(H,(t, x), r-x(t, x)))
(b,L)K(t,x)

K and K’ having convex values, the result follows.
PROPOSITION 3.2. The set-valued mapping defined on x’ with values in

x’

(3.5) (c, c’) r, x r’
is upper semicontinuous.

Proof. We have to prove that if

(c., c) (c, c’)

and if

then

(, e’) G, x F’.
We know that, for any y’ ’,

(3.6) V,+_-> Vc.+,.
By Theorem V-1 of [ 1], which proves the continuity of c - Vc, we find that,

for y’ ’,

(3.7) Vc+e, V+v,
and ’ F’. Similarly, we find that F,, and then

(, ?’)F,xF. U

We then have:
THEOREM 3.1. Problem R has a solution.
Proof. The set-valued mapping

(c, c’) G, x r
has nonempty compact convex values and is upper semicontinuous. By Kakutani’s
theorem, it has a fixed point (Co, c). This point has the property that

if y’ ’, Vo+b Vo+v,,
if y , Vo+b V+b.

It is then a solution of problem R.
If (Co, c) is a solution of problem R, it is easy to check that, for (s, x)

R+xRd,

(3.8) Vo+b(s, x) inf sup V+,(s, x)= sup inf V+,(s, x).
cc’’ c’’c
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The function Vo+b does not depend then on the particular solution of
problem R which is considered.

DEVNTON 3.1. q is the function defined by

(3.9) q(s, x) inf sup Vc+,(s, x) sup inf V/,(s, x).-c’.’ c’’
THEOREM 3.2. It is possible to find a Borel function Hsuch that ]’or

(Co, c)= ((bo, Lo), (b’o, L’o))

to be a solution of problem R, it is necessary and sufficient that, t,a.e., the
following relations hoM"

(3.10) Lo(t, x)+(.H(t, x), tr-(t, x)bo(t, x))= .rnin +(n(t, x), r-(t, x)),
(b,L)K(t,x)

(3.11) L’o(t, x)+(H(t, x), o.-(t, x)b’o(t, x))= max ’ +(H(t, x), cr-(t, x)b’).
(b’,L’)K’(t,x)

Moreover, a choice of (Co, C’o) verifying (3.10)-(3.11) ,-a.e., is possible.
Proof. The method is the same as in [1, Thm. IV-5, Cor. of Thm. IV-7 and

Thm. IV-8].
With the notations of [1], we know from [1, (5.28)], that for c=(b,L)

Lo(R / Rd), we can find a Borel function Hc and an additive functional A such
that:

(3.12) Vc(t, x,) V(s, x,)+ (pV-L)(u, x) du + H(u, x). dflb, + dA

(by using the results of Annex 1 in [ 1] we cancel the term Mt M in [ 1, (5.28)]).
If (Co, c) is a solution of Problem R,

Vo+ q.

We can then write

q(t, xt)=q(s,x)+ (pq-(Lo+L’o))(u,x) du

(3.
dlTtb+b’ -]- dAo+’o+ Ho+(u, x,) .-.u

By (3.13), Ho/c,o does not depend on a particular solution of the game
(.Co, c).

By reasoning as in [1, Cor. of Thm. IV-7], we take for H the fixed function
Ho/b, where (Co, c) is a solution of Problem R.

The result follows from [1, Thm. IV-5 and Thm. IV-8].

4. The general ease. We now prove Theorem 1.1.
Proof. Let t(t,x) and/’(t, x) be the closed convex hulls of K(t, x) and

K’(t,x).
/ and/’ are bounded Borel set-valued functions by Corollary 3.3 of [6].

They satisfy the assumptions of 2.
Problem/ associated to/ and/’ has a solution. Let H be the function

defined in .Theorem 3.2 associated with/.
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Then, as in [1, Chap. IV-5], it is possible to find Borel selections c ofK and c’
of K’ such that (3.10) and (3.11) hold u-a.e., because K(t, x) and/(t, x) (resp.
K’(t, x) and K’(t, x)) have the same extremal points.

By Theorem 3.2, (c, c’) is a solution to problem R. It is then seen immediately
that it is also a solution to problem R. [3

5. Extensions. By using the methods of [1], the previous results can be
extended to criteria of the type

(5 1) (s.x exp- (m+m’)(o-,x)dtr (L+L’)(t, xt)dt,

where:
we ask (b, L, m) and (b’, L’, m’) to be Borel selections of K and K’ which are
bounded Borel compact-valued functions from R / xRd in Rd xR xR /.
we can find p >0 such that if (b,L, m)K(t, x), m >p.
The results can be also extended to diffusions with boundary conditions [8]

with the same methods.
Finally, in the time-homogeneous case, the solutions can also be taken to be

time-homogeneous.
Another point of interest is to know if the previous methods apply to the

more general systems (1.1)-(1.3).
DEFINiTiON 5.1. If V is a bounded finely continuous Borel function on

R/xR d, and if h and H are Borel functions on R/Rd, we say that

V= h(t, x),
(5.2)

OV=H

if:
(a) V(s, x) 0 if (s, x) is regular for A (i.e., O(s.x(TA 0) 1).
(b) For any (s, x) R/ xR d,

(5.3) lt<T, V(t, x,)- ls<T, V(s, x)- (h +pV)(u, Xu) du
"S TA

is a local martingale for oQ(s,x).
(c) There is a predictable additive functional A such that

(5.4) v(t, x,)- V(s, x) (h +pV)(u, x,) du + dA, + H(u, x) dB.

Let q, , h be defined by

(t, x, v) inf {L(t, x, u)+(v, b(t, x, u))},
uU

(5.5) (t, x, v)= sup {L’(t, x, u’)+(v, b’(t, x, u’))},
U’ U’

h(t, x, v)= q(t, x, v)-d/(t, x, v).

Then Theorem 3.2 implies that for a bounded Borel finely continuous
function V to be the cost function associated to the problem (1.6), it is necessary



PROBABILITY THEORY METHODS 545

and sufficient that

(5.6) .’V= h(t, x, r-1 a V(t, x)).

Equation (5.6) is then obviously the weak extension of (1.5). For each (t, x)6
R / R a, h(t, x, v) is the difference of two bounded uniformly Lipschitz convex
functions’. As a function of v, h(t, x,. has a very general form, because the
difference of Lipschitz convex functions is dense in the space of continuous
functions for the uniform convergence on compact sets of R a.

Let us assume that in (1.4), h -X1 -X2. Then if h can be written as in
(5.5), equation (5.6) has one unique bounded Borel finely continuous solution, by
the results of 1-4.

By proceeding as Friedman in [5], we know then that for each (t, x) in
R+xRd

(u, u’)->L(t, x, u, u’) +(O V(t, x), r-(t, x)b(t, x, u, u’))
has a saddle point.

By using a measurable selection theorem, it is then possible to derive an
existence result for the nonseparable case.
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DUAL VARIABLE METRIC ALGORITHMS
FOR CONSTRAINED OPTIMIZATION*

SHIH-PING HAN?

Abstract. We present a class of algorithms for solving constrained optimization problems. In the
algorithm nonnegatively constrained quadratic programming subproblerias are iteratively solved to
obtain estimates of Lagrange multipliers and with these estimates a sequence of points which
converges to the solution is generated. To achieve a superlinear rate of convergence the matrix
appearing in the subproblem is required to be an approximate inverse of the Hessian of the
Lagrangian. Some well-known variable metric updates such as the BFGS update are employed to
generate the matrix and the resulting algorithm converges locally with a superlinear rate. When the
penalty Lagrangian developed by Hestenes, Powell and Rockafellar is incorporated in the algorithm it
turns out to be closely related to the recently developed method of multipliers. Unlike the method of
multipliers, our algorithm takes only one step in the unconstrained minimization of the penalty
Lagrangian. Besides, it possesses a superlinear rate of convergence even without requiring a penalty
parameter going to infinity and therefore avoids the numerical instability so caused.

1. Introduction. The techniques for solving quadratic programming prob-
lems have been developed so extensively that it becomes feasible to deal with the
general nonlinear programming problem by reducing it to a sequence of quadratic
programming subproblerns. Adopted by many authors [17], 18], [22], [23] and
shown very effective, this approach allows us to approximate the nonlinear
programming problem quadratically and affords an extension of Newton’s and
Newton-like methods to constrained optimization. Following this approach, we
present in this work a class of algorithms in which we iteratively solve nonnega-
tively constrained quadratic programming subproblems to obtain estimates of
Lagrange multipliers and with these estimates generate a sequence of points
which converges to the solution. To achieve a superlinear rate of convergence the
matrix appearing in the subproblem is required to be an approximate inverse of
the Hessian of the Lagragian. We suggest variable metric updates to generate
these matrices and justify our suggestion by showing that, when some well-known
updates such as the BFGS update are employed in this, context, the algorithm
converges locally with a superlinear rate. The penalty Lagrangian developed by
Hestenes [25], Powell [35] and Rockafellar [39] may also be incorporated into the
algorithm to replace the ordinary Lagragian; the resulting algorithm turns out to
be closely related to the recently developed multiplier method [8], [25], [35], [39],
[40]--a very promising method which has lately attracted a great deal of attention.
Unlike the multiplier method, our algorithm takes only one step in the uncon-
strained minimization of the penalty Lagrangian. Besides, it has a superlinear rate
of convergence even without requiring a penalty parameter going to infinity and
therefore avoids the numerical instability so caused.

* Received by the editors July 17, 1975, and in revised form August 30, 1976.
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was supported in part by the National Science Foundation under Grants ENG 75-10486 and GJ
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In 2 we state the algorithm and compare it with the related results in the
literature of nonlinear programming. Sufficient conditions for convergence of the
algorithm and for superlinear rates of convergence are presented in 3 and 4
respectively. In 5 we embed the BFGS and some other updates into the
algorithm and with the results obtained in 3 and 4 we show that the algorithm
converges locally with a superlinear rate. In 6 the algorithm is modified by
replacing the Lagrangian by a penalty Lagrangian in order to relax some assump-
tions in the convergence theorems. Some comments and computational results are
contained in 7.

We note here that all vectors are column vectors and a row vector will be
indicated by superscript T. For convenience a column vector in R"/’/q is
sometimes written as (x, u, v). We use x to denote different vectors; i.e., x and
x 2. To avoid some cumbersome constants we restrict ourselves to the 12 vector
norm and operator norm and denote it by [[. [[. An e-neighborhood N(x, e) of a
point x in R" is the set N(x, e)={y sR" :lly-xll< e}. We use L(R") to indicate
the set of n x n real matrices and write f e LC2[x] if function f has Lipschitz
continuous second-order derivatives in a neighborhood of x.

2. Algorithm. In this paper we consider the following nonlinear program-
ming problem min f(x)

(P) subject to g(x <= O,

h(x)=0

where f, g, and h are functions from R" into R, R", and Rq respectively. The
Lagrangian of problem (P) is the real-valued function L(x,u,v)=
f(x) + u rg(x) + v rh (x) defined on R n+m+q, and a Kuhn-Tucker triple is a vector
z*= (x*, u*, v*) in Rn+m+q which satisfies the first-order Kuhn-Tucker condi-
tions [30]. We define a quadratic programming problem DQ(x, A)

(2.1)

min
(u,v)

1/2(Vf(x) + Vg(x)u + Vh(x)v)rA (Vf(x) + Vg(x)u

+ Vh(x)v)- u g(x)-vh(x)
subject to u _->0

associated with any x in R" and any A in L(R ").
DEFINITION 2.1. A vector z (, , ) inR"+m+o is a z-solution of DO(x, A)

if’(a, 3) is a Kuhn-Tucker point of DQ(x, A) and

(2.2) . x -A (Vf(x) + Vg(x)t3 + Vh(x)3).

It is noted that DQ(x, A) has no constraint at all if (P) has no inequality
constraint. Now we can state the algorithm as follows.

ALGORITHM.
Step 1. Start with an estimate of a Kuhn-Tucker triple z= (x, u, v) of

problem (P) and an estimate of Ao of the inverse of the Hessian of the Lagrangian.
Step 2. Set k 0.
Step 3. Find a z-solution of DQ(xk, Ak) and call this z-solution zk+=

(x k+l, u k+, vk+). If there is more than one such z-solution, choose one which is
closest to z k.
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Step 4. If Z k+l--- (X k+l, U k+l, V k+l) satisfies a prescribed convergence criter-
ion, stop; otherwise, update Ak/1 by some scheme, set k k + 1 and go to Step 3.

In the algorithm, with an estimate (u k+l, v k/l) of the Lagrange multipliers
obtained from solving DQ(xk, Ak), we find a new point x k/l by taking one step of
a gradient method to minimize the Lagrangian L(x, u k/l, vk/l). When Ak
VxxL(x k, u k/l, vk/l)-1, a Newton step is carried out. In this paper we are more
interested in the variable metric way to generate the matrix Ak; for example, the
very successful BFGS update in unconstrained optimization can be so employed
here. It is perhaps worth mentioning that the updated matrix Ak is used to find not
only x k+l but also the multipliers (U k+l, vk+l).

By Dorn’s duality theorem [30] and under the assumption that A is symmet-
ric and positive definite, the quadratic program DQ(x, A) is dual to the quadratic
program

min Vf(x)rs + 1/2s rA -1s

(2.3) subject to g(x)+Vg(x)rs<--O,
h(x)+Vh(x)rs =0,

which can be viewed as a quadratic approximation to problem (P) if A -1 is the
Hessian of the Lagrangian. Some efficient algorithms [ 17], [ 18], [21], [22] based
on (2.3) have been developed. However, our algorithm seems more promising
since the subproblem (2.1) has only nonnegative constraints and no constraints
at all if problem (P) has only equality constraints. Moreover, some unconstrained
optimization updating schemes are more naturally incorporated in (2.1) than in
(2.3).

The algorithm is related to the dual, feasible direction algorithm developed
by Mangasarian [31]. But unlike it we do not require the generated points to be
feasible for the original problem (P) and therefore never need an anti-zigzag
procedure to avoid the jamming situation.

For solving DQ(xk, Ak) there are a number of effective methods in the
extensive literature of quadratic programming. These include Beale’s method [2],
Wolfe’s method [42], Ritter’s method [38], Lemke’s method [27] and the princi-
pal pivoting method [10], [11].

3. Convergence theorems. In this section we shall show that under suitable
conditions the algorithm will generate a sequence of vectors in R"/’/ which
converge to a Kuhn-Tucker triple of problem (P). First, we define the following
function G(, A, )’ R "+"+" --> R "+"+",

(3.1) G(,A,z)=

-A(Vf(2)+Vg(2)u +Vh(2)v)+(x-2)-

u (gl() + Vgl()T(X ))

U(g (C) + Vg, (,)r(x ,11

h () +Vh (.,)T(X ,)

_hq () +Vhq()T(X )
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which is associated with any in R and anyA in L(Rn). The function G(, A,
is related to the equalities of the Kuhn-Tucker conditions of problem DQ(, A)
by the following lemma.

LEMMA 3.1. If A in L(R) is symmetric and . (, , ) in R+’+q is a
z-solution ofDQ(, A then G(, A, ,) O.

Proof. If (Z, t, 3) is a z-solution of DO(Z, A), then by Definition 2.1 (t, 3)
is a Kuhn-Tueker point of DO(Z, A). Hence there exists a vector w in R" such
that w -> 0 and

(3.2) Vg(7)TA (Vf(7) +Vg(7)t + 7h (:)3)-g()- w 0,

(3.3) Vh(Z)TA (V/(:) + Vg($)t +Vh (7)3) h(Z) 0,

and for 1,..., m, we have

(3.4) Wia "--0.

It also follows from Definition 2.1 that

(3.5) A(W()+Vg()a +Vh ()7) + (-Z) 0.

Thus
w -(g() +Vg()w( )),

which in conjunction with ,(3.4) implies that for 1,..., tn

(3.6) ai(gi() + Vg, (7)T(: )) 0.

From (3.3) and (3.5) we have

(3.7) h() +Vh ()T(: --) 0

which combines with (3.5) and (3.6) to lead to the desired result. 1-]

COROLLARY 3.2. Let A in L(R") be symmetric and nonsingular and
(, a, be a z -solution o] DQ(, A ). If then (, a, is a Kuhn-Tucker
triple o)problem (P).

Let z* (x*, u*, v*) be a Kuhn-Tucker triple of problem (P); the nonsingu-
larity of VzG(x*, A, z*) with A VxxL(x*, u*, v*)-1 is essential for establishing
our convergence theorems. To ensure such nonsingularity we need the following
condition, which was first studied by Fiacco and McCormick [14] and has been
called "the Jacobian uniqueness condition" [29]. However, we note that it is the
nonsingularity of VzG(x, A, z*) that is really needed.

DEFINITION 3.3. A Kuhn-Tucker triple z* =(x*, u*, v*) of problem (P)
satisfies the Jacobian uniqueness condition if the following three conditions are
simultaneously satisfied"

(a) u* > 0 if I(x*) {/" gj(x*) 0};
(b) the gradients {’gi(x*)} (all I(x*)), {7hj (x *)}, /" 1,..., q are linearly

independent;
(c) for every nonzero vector y satisfying y T7gi(x*) 0 for all I(x*) and

y T7hi(x*)= O, f 1,..., q, it follows that yT7x,L(z*)y > O.
We note here that conditions (a) and (c) have also been called the strict

complementarity condition and the second order sufficiency condition respec-
tively.
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Our convergence theorems also need the following two lemmas. The proof of
the first one follows from the mean value theorem and appears in [21].

LZMMA 3.4. Ifz* (X*, U*, V*) R "+"+q andf, gand h LC2[x*], then there
exists a neighborhoodN(x *, e) and two positive numbers andKsuch thatfor any
and in N(x*, e) and any (a, ) in g m+q we have

IlVxZ(, a, ,)- Vxt(, a, )-Vxxt(X*, u*,
(3.8)

-< (g max ll x*[I, II x*ll} //ll(a, ) (u *, v*)ll)ll 11.
COROLLAgV 3.5. I[ all the assumptions ofLemma 3.4 hoM and VxxL(z*) is

nonsingular then there exist positive numbers e, 1 and such that whenever 2,
N(x *, e and (, ) N((u *, v *), e then

, I1 -,11--< IlVxL (, a, ) VxL(, a, )11--< 11 11.
LEMMA 3.6. Iff, g and h LC2[x *] and VxxL(z*) is nonsingular, then for any

a > 0 there exist two positive numbers e and 8 such that]or any x in R" and anyA in
L(R) satisfying IIx x*ll -< and Ilm VxxL (z*)-111-< it follows that

IIA VxL (x, u *, v *) + (x * x)ll -< IIx * x

Proof. Let a > 0 be given and let

(3.9) A max {[IVxxt(Z*)-lll, IlVxxt(z*)ll}.
Choose e and 8 such that

(3.10) ,3<1/2,

(3.11) (6 +

where g is the constant defined in Lemma 3.4. Since [[A VxxL (z *)-ll[ <- 6, it
follows from (3.9), (3.10) and the perturbation Lemma [26] that A is nonsingular
and

A26
(3 12)

l-A6"
Then

)[AVL(x, u*, v*)+(x*-x)l[

Ilm [IVL (x, u*, v*)

--<IIA]I IlVxt(x, u*, v*)-Vxxt(z*)(x*-x)[[

+HAll IIV,,xL(z*)-A-1[I

( A28 ][[x*-xll (by Lemma 3.4 and 3 12)(6+A) ge+l_AS/
llx*-xll. (by 3.11).

The following theorem guarantees that under suitable conditions the
algorithm generates a better estimate of a Kuhn-Tucker point of problem (P) in
each iteration.
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THEOREM 3.7 Let]’, g and h LCE[x*]. ffa Kuhn-Tucker triple z* (x*, u*,
v*) of problem (P) satisfies the Jacobian uniqueness condition and VL(z*) is
nonsingular, then for any r (0, 1) there exist two positive numbers e(r) and 8(r)
such that if II-z*[l<-_e(r) and A is a symmetric n x n matrix with IIA-
VxL(z*)-l[[<-t(r) then a closest z-solution . of DQ(,A) to exists and

Proof. For any A in L(R") let CA in L(R n+m+q) be defined as

CA VzG(x*, A, z*)
where G is defined in (3.1). Let C* denote CA when A Vx,L(x*)-1. Under the
Jacobian uniqueness condition it can be shown that C* is nonsingular.

Let r e (0, 1) be given; define

(3.13) max {llc*- ll, IlVg(x*)ll+llVh(x*)ll, II%t(x*)ll, IlVx t(x*)- ll}
and

(3.14)

We first choose f > 0 such that the following conditions are satisfied"

(a) for any z and z7 in N(z*, ) and anyA in L(R) with IIAII--< r/a + A we
(3.15) havellVzG(,A,z)-CAIl<-l/(2),andforalli=l, .,m

(b) g; (x*) < 0 implies g() /g()r(X ) < 0,
(C) U * > 0 implies ui > O.

Then choose e (r) and 8 (r) to satisfy the following conditions, where for simplicity
we write henceforth e and 8 for e(r) and 8(r) respectively.

(a) max {AS, A Eta} N r,

(b) e _-< e/3,
(3.16) (c) for any in g"+’+ and any A in L(R) with and

IIA -VxL(z*)-ll <- we have that IIG(2, A, z*)]l_-< (r/(E’))ll-x*ll.
The existence of such e and follows from Lemma 3.6 and by observing that
ugi(x*)- O, (i 1,..., m) and h(x*)= O.

Assume that a vector (2, t, t;) in R "+’+q and a symmetric A in L(R)
satisfy II-z*ll=<e and IlA -V=L(x*)-’I[<-; then we have

[[CA C*[[ _-< [[A Vx,L (z*)-[[([[Vg(x*)[[ + [[Vh (x*)][) _-< 6A -_< r < 1

(by 3.13 and 3.15(a)).

Hence by the nonsingularity of C* and the perturbation Lemma [26], CA is also
nonsingular and

(3 17) [[C.111 < ’ _-< ’ <_- (by3 16and3.14)1-A28 1-r

Define the functions SZ,A "R + +’ --> R "+’’+q, associated with and A as
follows"

S,A (Z) z -CIG(g, A, z).
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For any z in N(z*, g) we have that

]]VzS,A (z)[[-- ][I- clVzG(, A, z)]]

1 1
--2 (by 3.15(a) and 3.17),

which implies that S.A is a contraction mapping in N(z*, ). Since from (3.16(b)),
(3.16(c)) and (3.17) we also have

[[Z* SA (Z*)[ < 71[G(, A, z*)ll<=2’
thus, the contraction mapping theorem [28] implies that S,A has a unique fixed
point, say , in N(z*, ) which satisfies

(3.18) II -z*ll n llG(,A,z*)ll rll-x*ll rll -z*ll.
We now show that $ is a z-solution of DQ(, A). Since is the unique fixed

point of S.A in N(x*, ), is the unique zero of G(, A in N(z*, ). Thus

(3.19) A(W()+Vg() +Vh()6)+(-) 0,

and for i= 1,..., m,

(3.20) uq (g() +Vg()( )) 0,

and forf= 1,. .,q,

(3.2 +V 0.

By (3.15(b)) and (3.15(c)) in the choice of and also by (3.20) we have

(3.22)

and

(3.23) g() +g()T(_) 0.

If W in R is defined by

(3.24) w -(g() +Vg()T(_))
then clearly,

(3.25) w 0.

Premultiplying (3.19) by Vg()T and taking (3.24) into account, we then have

(3.26) Vg()TA(W()+Vg()ff+Vh()6)-g()-w =0.

Similarly, from (3.19) and (3.21) we can get

(3.27) Vh()TA(W() +Vg()a +Vh ()f)- h() 0.

From (3.20) and (3.24) it is also clear that for 1,..., m
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which in conjunction with (3.26), (3.27), (3.22) and (3.25) imply that (tT, t) is a
Kuhn-Tucker point of DQ(, A) with Lagrange multiplier vector w. Therefore, it
follows from (3.19) that is a z-solution of DQ(, A).

We next show that is the closest z-solution of DQ(, A) to . Suppose that
is another z-solution of DQ(, A). Then by Lemma 3.1 we have that is a zero of
G(, A, ). The uniqueness of the zero of G(:, A, in N(z*, ) implies that
I1 z*ll -> ; hence

I1 11--> I1 z*ll-lie* 11 > e /3 2/3 (by 3.16(b)).
However,

lie- 11--< lie- z *ll / II z *ll <- (r / 1)11. z *11 <= 2g/3.
Therefore z7 is the closest z-solution of DO(,A) to z7 and the proof is
complete.

Since the quadratic programs DO(, A) and DO(, 1/2(A +A 7-)) have identi-
cal Kuhn-Tucker points, Theorem 3.7 and Theorem 3.10 below are also true for a
nonsymmetricA if is generated by -1/2(A +A r)(Vf() +Vg()t +Vh ()ff)
rather than by (2.2).

We note here that a sequence {z k} converges O-linearly to a point z* if
IIz +x z*ll -< rllz z*ll for some r in (0, 1); and it converges O-superlinearly if
IIz + z*ll <-- 0 Ilz z*ll with limk_.oo0 0. Therefore, it follows from Theorem
3.7 that if the starting point is close to a solution and the sequence {A} of matrices
remains close to the inverse of the Hessian of the Lagrangian, then our algorithm
will generate a sequence of points which converges to the solution with at least
O-linear rate. The following result is an immediate consequence of Theorem 3.7
and of the above remarks.

COROLLARY 3.8. Let the assumptions of Theorem 3.7 hoM and let {]} be a
subsequence of positive integers with ] <-k. If z is sufficiently close to z* and
IIA- VxZ(z)-ll <-- where {a} is a sequence of nonnegative numbers bounded
by a sufficiently small number, then the sequence {z} generated by the algorithm
exists and converges to z* with at least a O-linear rate. Furthermore, if]k oo and
a O, then {z} converges to z* with at least a O-superlinear rate.

A straightforward way to generate the matrices {A} in the algorithm is by
settingA VxxL(zjk)-I +aI and ]k k. When a 0 we obtain a Newton-type
method which can be shown to possess a quadratic rate of convergence; for the
equality constraint problem this method turns out to be similar to a method
studied by Polyak [34].

Inequality (3.18) in the proof of Theorem 3.7 shows that we actually can get
the sharper result I1- z*ll--< rll-x*ll, and thus the following corollary.

COROLLARY 3.9. Let all the assumptions of Theorem 3.7 hold. Then for any
r (0, 1) there exist two positive numbers e (r) and i (r) such that if II x*ll <= e (r)
and IIA VL(*)11 _-< (r) then a unique Kuhn-Tuckerpoint (, ) ofDO(, A) in
N((u*,v*), e(r)) exists and II(a,)-(u*,v*)ll<-_rll-x*ll. Moreover, tTi=0 if
u,.* 0.

The result of Corollary 3.9 has nothing to do with the way we generate , and
hence can be applied to establish the convergence theorem for some other
methods in which x/ is generated by another way. Indeed, this corollary has
been so used in [23].
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To achieve convergence, according to Theorem 3.7 the matrices {Ak} in the
algorithm are required to remain close to VxxL(z*)-1. In the theorem below we
give a sufficient condition which ensures such closeness and at the same time can
be satisfied by some variable metric updates. This condition was first studied by
Broyden, Dennis and Mor6 [7] for nonlinear system of equations and some
techniques of their proof will be employed here. Throughout this work I1" I1’
denotes any fixed matrix norm which may be different from I1" II,

TrmOREM 3.10. Let z* (x*, u*, v*) be a Kuhn-Tucker triple ofproblem (P)
and let f, g and h LC[x*] and VxL(z*) be nonsingular. Let the Jacobian
uniqueness condition hold at z* and let there exist two nonnegative numbers and
a2 such that for an update which generates symmetric matrices the following
condition holds:

Ila+- VxL(z*)-’ll’<- (1 / ,llz z*ll)llA VL(z*)-"ll’
(3.28)

Then for any r (0, 1) them exist two positive numbers e(r) and 8(r) suck that if
IIzo_ z *ll <-- (r) and IIAo- VxL(z )-11--< (r) then the sequence {z} generated by
the algorithm is well defined and converges O-linearly to z *. Furthermore, e (r) and
8(r) can be chosen small enough to ensure the nonsingularity of all the updated
matrices {A} and the uniform boundedness of {A-I}.

Proof. By the equivalence of matrix norms, there exist two positive numbers d
and d’ such that for any A in L(R) we have

(3.29) dllA I1’>= IIA and d’llAII >- IIA I1’.
Let r e (0, 1) be given. By Theorem 3.7 there exist two positive numbers

and gsuch that if I15- z*ll-<- and IIA VL(z*)-xlI <- gthen the closest z-solution
of DO($, A) exists and I1-z*ll <- rll$-z*ll. We choose two positive numbers e

and 8 such that the following conditions hold"

(a) e -< e,
(3.30) (b) 2dd’8<-8,

E
(c) (2a,6d’-a2)

1-r

If we can show that for each k

(3.31) Ilz z*ll--<r
and

(3.32) [IA %t(z *)- 111’ _-< 2d’,

then IIz z*ll and IIA -%L(z*)-ll g, and the theorem follows
immediately from Theorem 3.7.

We prove (3.31) and (3.32) by induction. They are obviously true for k 0.
Assume that they are true for ], 0-<] _-< k; then it follows from (3.28) that

IlA+- VL(z*)-III’-IIA VxL(z*)-xll <-- 2 d’eSr + ot28rI,
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and by taking the sum from j 0 to/" k,

[[Ak+l- VxxL (z*)-l[I’-< [[Ao-VL(z*)-l[’ + (2ald’6 +a2)

<_d’6+d’6<__2d’6.

Therefore, (3.32) is true for j=k+l. Moreover, we have
IIm/-VL(z*)-ll<-_N and by the induction hypothesis and (3.30(c)) we have
IIz-z*ll<-_r% <-_. Thus, it follows from Theorem 3.7 that Z

k+l exists and

IIz + z*ll-<- rllz z *11 -< rk+le.
The second part of the theorem follows directly from (3.32) and the perturba-

tion lemma.

4. Superlinear rate of convergence. In this section sufficient conditions are
given which guarantee a superlinear rate of convergence for the sequence of
points generated by the algorithm. We first introduce a lemma which is due to
Mangasarian [32] and is closely related to a result of Dennis and Mot6 [13]; its
proof can be found in [22].

LEMMA 4.1. Let z* be a Kuhn-Tucker triple of problem (P) satisfying the
Jacobian uniqueness condition and f, g and h LC2[x*]. A sequence {z k} con-
verges O-superlinearly to z* if {z k} converges to z* and

(4.1) lim
II(z/)ll

where E" Rn+m+q --> R

E(z)=[Vxt(Z)T, Ulgl(x), Umgm(X), h(x), hq (x)].
In Lemma 4.1 above there is no specification on how the sequence {z k} is

generated. Nevertheless, if the sequence is generated by our algorithm then we
can derive from Lemma 4.1 some other criteria, which are contained in the
following two theorems.

THEOREM 4.2. Let all the assumptions ofLemma 4.1 hoM. Ira sequence {z k}
constructed by the algorithm converges to z* and

(4.2)
IIVL(z/)II

lim O,

then {z k} converges O-superlinearly to z*.
Proof. By Lemma 4.1 we need only to establish (4.1). By virtue of (3.6) and

(3.7) in the proof of Lemma 3.1 we have

i--1

<=llVxL(x+, u+, v+l)ll+llh(x+l)-h(x)-Vh(x)r(x+-x)l

+ ’. [uk+(gi(xk+X)--gi(xk)--Vgi(xk)T(xk+a--xk))
i=1

__%llVxL(x+ u/, v+l)l /o(llx/-xll
Hence (4.1) follows. 71
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THEOREM 4.3. Let all the assumptions of Lemma 4.1 hoM; furthermore, let
VxL(z*) be nonsingular and let {z k} be a sequence of points generated by the
algorithm with respect to a sequence of nonsingular symmetric matrices {Ak} with
{A} uniformly bounded. If {Zk} converges to z*, and

lim
[l(Ak -X7x.L(z*)-)y*[I

0(4.3)

where y =VL(xTM, u TM, v+)-VL(x, u+, v+), then {z} converges
O-superlinearly to z*.

Proof. By the assumptions x + is a z-solution and

AkVxL(x k, u k+l,
which yields

(Ak VL(z*)-)y k AkVxL(z k+) + (x k+ x k) VxL(zk)-y k

and in turn implies

VL(zk+)=A(Ak-VL(z*)-)yk +A(VL(z*)-yk--(xk+X--xk)).
By the uniform boundedness of {A} there exists A > 0 such that

IIVL (z +

(4.4)
Ily VxIL (z*)(x k+ x )11.

On the other hand, since f, g and h e LCZ[x*] and z * z*, there exists some a > 0
such that

(4.5) Ilyllllx+-xllllz+-zll.
By (4.3), (4.4) and Lemma 3.4, taking (4.5) into account, we get (4.2) and
complete the proof.

5. Updates. The updates which we consider for generating matrices in the
algorithm are of the following form

(s-Ay)dr + d(s-Ay)r y r(s -Ay)ddr
(5.1) A=A+ dry (dry)2

where =Ak., A =Ak, s=xX*--xk and y =VL(xTM, u k+x, k+X)-VxL(Xk,
U k., k-X) and d is any vector in R with y rd 0. A particular algorithm is
determined once d is specified. The algorithm will be called Algorithm D1 when
d s and Algorithm D2 when d y. Thus, we have the following updates:

(s-Ay)sr+s(s-Ay)r yr(s-Ay)ssr
(s.2) A A sty (sty)2

(s -Ay)y
(.3) A =A + yy yy
These updates are well known in unconstrained optimization where y is defined as
y f(x+t)-f(x). In this context update (5.2) has been studied by Broyden
[6], Fletcher [16], Goldfarb [19] and Shanno [41], and is often referred to as the
BFGS update. Update (5.3) is one of Greenstadt’s methods [20].
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In the sequel we establish superlinear convergence theorems for Algor-
ithms D1 and D2 by utilizing the techniques developed by Broyden, Dennis and
Mor6 [7] and Dennis and Mor6 [13]. It is noted here that for any nonsingular
n n matrix M the matrix norm I1’ I1 , is defined in such a way that for any n x n
matrix A

IIA I1 , trace [(MAM)T(MAM)].
We state two lemmas below; their proofs are in [13] and [7] respectively.

LEMMA 5.1. Let {ak} and {bk} be sequences of nonnegative numbers and
a >= O, a2 >- 0 such that

ak+ <= (1 + abk)ak + a2bk
and

Y. b<;
k=l

then {ak} converges.
LEMMA 5.2. LetA be any n x n symmetric matrix and s, d and y be vectors in

R with dry 0 and define by (5.1). IfMis a nonsingularsymmetric n x n matrix
with

(5.4) IIMd M-ly =<
]:or some B e [0, 1/3], then ]’or any symmetric n n matrix B with B A we have

( IIMd-M-YI])IIA -BII +A IIs -ByII(5.5) II -BII ,_-<
iiM_ Yll

where A (0, 1), andA andA 2 are constants which only dependonMandn, and

IIM(A -B)yll
(5.6) 0 IIa -BII ,IIM- Yll
ifA B and 0 0 otherwise.

The following theorem gives a sufficient condition for the superlinear con-
vergence of the algorithm with an update of form (5.1).

THEOREM 5.3. Let z* (x *, u *, v *) be a KuhnTucker triple of problem (P)
satisfying the Jacobian uniqueness condition andf, g and h LC2[x*]. Suppose that
VxxL(x*) is nonsingular and in the algorithm the matrices {Ak} are updated by
formula (5.1) with any dk such that]or yk 30,

(5.7)
IIMd*-M- y*II < -z*ll, IIzIIM-yII =/ max {11z

for a constant I and an arbitrary but fixed nonsingular symmetric matrix M. If z o

and Ao are sufficiently close to z* and VxxL(z*)- respectively then the sequence
{z ,} generated by the algorithm is well defined andconverges O-superfinearly to z*.

Proof. For any r (0, 1) let e(r) and 8(r) be defined as in Theorem 3.10 with
matrix norm [. 11’ as II" I1 ,. Now set eel=A1,
where K and K are the constants defined in Lemma 3.4 and A and A2 are as in
Lemma 5.2 and r/is as in Corollary 3.5. We further require e (r) to satisfy

(5.8) e (r) <= 1/2tz.



558 SHIH-PING HAN

We first show by induction that if Ilz-z*lle(r) and Ilmo-VxL(z*)-[[<=
8(r) then the generated sequence {z k} exists and converges Q-linearly to z*; that
is,

(5.9) IIz/-z*ll_<-rllz-z*ll.
When/" 0 the existence of zi/1 and (5.9) follows directly from Theorem 3.7 and
the choice of eft) and 8(r). Assume zi/1 exists for all/" =< k and that (5.9) holds. We
show that z k/2 exists and that (5.9) is also true for/" k + 1. Assume yk 0, for if
y k 0 then Corollary 3.5 implies that s k 0 which by Corollary 3.2 in turn implies
that zk/= (x k/x, u TM, v TM) is a Kuhn-Tucker triple of (P). On the other hand
the Jacobian uniqueness condition yields that z* is the unique Kuhn-Tucker triple
in N(z*, e (r)) and hence we have zk/ Z*. Therefore, in case y k 0 the
sequence {z k} converges to z* in a finite number of steps. When y k 0 it follows
from (5.7) and (5.8) that

IIM-yII -_/x max {[Iz g +1

1
</xe (r) <=3"

Let B V,xL(z*)-1", then by Lemma 5.2 we have

[[Ak +1--BII -<-((1 A0)1/2 q_ , lj, IIZ k z*ll)llA -BII
(5.10)

where

IIM(A, -B)yII

Lemma 3.4 yields

Ils ByII--< IlBll(g / R)llz z*ll IIs
and Corollary 3.5 implies that for some r/> 0, ,llsll_-< Ilyll. Therefore,

Ils k -By 11<__ lllBll(g / R)IIz z*ll,

which in conjunction with (5.10) and the fact that (1-A02)l/2_--<l-(A/2)02
implies

(5.11) ( )IIA,,+,-BII,_-< 1--50+ ,llz " z *ll IIA, BIl, + =llz " z *ll.

Hence the existence of z k+2 and Ilz k/2- z’l[--< rllz +- z*ll follow from Theorem
3.10 and (5.11) immediately.

So far we have shown that the sequence {z k } exists and converges to z* with
at least a Q-linear rate; we are going to prove that the rate of convergence is
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actually O-superlinear. By Lemma 5.1 and (5.11) the sequence {IIA-BII} has
a limit, say p. If p 0 then the desired result follows directly from Theorem 4.3.
Assume p # 0. It follows from (5.11) that

AO2kPk <=Pk--Pk+l +(CtlPk "" O2)I]Z k -7"112

where Pk IIAk-BII. By taking the sum of both sides over k 0, 1, 2,... and
taking the Q-linear convergence of {llz k- z*ll} and the boundedness of {Pk} into
consideration we have Y.o 02kPk < m. Since 0 e (0, 1) and Pk -P with p 0, we
must have limk_oo0k 0 which implies

lim
II(Ak -VxL(z*)-I)Y kll O.Ilyll

Hence the result also follows from Theorem 4.3,.
Our main results are contained in the following theorem which shows that

Algorithms D1 and D2 possess local superlinear convergence properties.
THEOREM 5.4. Let z* (x*, u*, v*) be a Kuhn-Tucker triple of (P) satisfying

the Jacobian uniqueness condition and f, g and h LC2[x*]. If VxxL(z*) is
nonsingular and the startingpointz o and the starting matrixAo are sufficiently close
to z* and VL(z*)-x respectively then the sequence {z k} generated by Algorithm
D2 exists and converges Q-superlinearly to z*. If VL(z*) is further assumed to be
positive definite then the conclusion is also true for Algorithm D2.

Proof. By Theorem 5.3 it is sufficient to establish (5.7) for some suitable
matrix M and constant/x. Since it is obviously true for Algorithm D2, we only
need to verify it for Algorithm D1. With VxL(z*) positive definite we can set
M (VxxL(z*)) 1/2. By Lemma 3.4 we have

IIMs M-y IIM-11 IlY X7L(z*)s

IIM-II(+) max (llz

and by Corollary 3.5 we have that for some s > 0, IIs 11 llr II. Therefore,

IIMs" M-y11 -< IIM-1II(g +/’) max {llz- z*ll, IIzTM z*li}tAIIMII IIM-y[I.

Thus (5.7)is true with/z IIMII IIM-II(R +/). c?
We note here that local superlinear convergence can also be achieved for the

algorithm if the following updates are used [21]"

(5.12) =A AyyrA ss r

yrAy s yr’

(5.13) .=A+(s-Ay)sr+s(s-Ay)r

(5.14) A=A+
(s-Ay)yr+y(s-Ay)r

2yry
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The nonsymmetric updates such as

(S -Ay)sT
(5.15) A A + Tsy

T(s -Ay)y
(5.16) A=A+

can also be shown to possess Q-linear rates of convergence; however, we have not
succeeded in establishing O-superlinear rates for them, though such results are
predicted. In unconstrained optimization (5.12) is the famous Daviden-Fletcher-
Powell update and (5.15) and (5.16) have been studied by Broyden [5] and
McCormick [33] respectively.

6. Modification via a penalty Lagrangian. Considerable attention has been
given recently to a penalty Lagrangian developed by Hestenes [25], Powell [35]
and Rockafellar [39]. This function, F" R"+"+o+- R, is defined by

F(x, u, v, a)

(6.1)
=f(xl+"da E ((ag(x)+ulZ+-u2l+vrh(x)+-h(xlh(x)

i=1

where (agi(x)+ ui)+ =.max{0, ag(x)+ u}. A very attractive feature of this func-
tion is that a local convexification procedure can be carried out by choosing a
sufficiently large penalty parameter a. We state this result in the following lemma
which is due to Arrow, Gould and Howe [1].

LEMMA 6.1. Letf g and h LC2[x *] andz* (x *, u *, v *) be a Kuhn-Tucker
triple which satisfies the Jacobian uniqueness condition. Then there exists an > 0
such that if a >= then VxxF(x *, u *, v *, a) is positive definite.

With this result the assumptions on the Lagrangian L in Theorems 5.3 and
5.4 can be relaxed if the function F replaces the Lagrangian L. Moreover, with a
large a the function F has the property of penalizing infeasible points, so the
domain of convergence is likely to be enlarged.

For reasons which will become clear later on we consider separately the
equality constraint problem

(6.2)

min f(x)

subject to h (x) 0

and the inequality constraint problem

min f(x)
(6.3)

subject to g(x) <= 0;
the functions F and the Jacobian uniqueness condition are also defined accord-
ingly. We note that the modified algorithms are applicable to the general problem
with constraints of mixed type.

For problem (6.2), Algorithms D1 and D2 can be modified as follows.
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ALGORITHM M.
Step 1. Start with a penalty parameter a, an estimate z= (x, v) of a

Kuhn-Tucker pair z* (x*, v*) of (6.2) and an estimate Ao of VxF(x*, v*, )-.
Step 2. Set k 0.
Step 3. Solve the system of linear equations

(6.4) By =b

where
B Vh(xk)7"AkVh(xk),
b h(x*)-Vh(x*)7"A,(Tf(x*)+aVh(x*)h(x*)),

and let the solution be v+. Set

(6.5) x *+1 x* -A,VxF(x*, vTM, a).

Step 4. Check convergence; if not, generate A,+1 from A,, s* x*+ x* and
y* =7xF(xTM, vTM, a)-xF(x*, v*+, a) either by (5.2) or by (5.3). Set k
k + 1 and go to Step 3.

To show the superlinear convergence of Algorithm M, we consider the
following auxiliary problem:

(6.6) minx f(x)+-h(x)Th(x)

subject to h (x) 0.

It is evident that problems (6.2) and (6.6) have the same Kuhn-Tueker pairs and
furthermore, the function F(x, v, a) is the Lagrangian of problem (6.6). When
Algorithm D1 or D2 is adopted to solve (6.6), the resulting algorithm is just
Algorithm M. Therefore, taking Lemma 6.1 into consideration, the following
results follows from Theorem 5.4.

THEOREM 6.2. Letz* (x*, v*) be a Kuhn-Tuckerpair of (6.2) satisfying the
Jacobian uniqueness condition and let[, g and h LC[x*]. I]’the penaltyparameter
a is suciently large and ifthe startingpointzo (x o, v o) and the starting matrixAo
are sufficiently close to z* and 7F(x*, v*, a)- respectively then the sequence {z}
generated by Algorithm M exists and converges O-superlinearly to z*.

For the inequality constraint problem (6.3) the modification is the following.
ALGORITHM M’.
Step 1. Start with a positive number a and an estimate z= (x o, u o) of a

Kuhn-Tucker pair z* (x*, u*) of (6.3) and an estimate Ao of 7F(x*, u*, a)-.
Step 2. Set k =0.
Step 3. Solve the following quadratic programming subproblem

(6.7)

min (u) u g(x

subject to u >- 0

where 4,(u) =Vf(x*)+a Y’.i_t{ g,(x*)Vg,(x*)+Vg(x*)u-u/a}: let its solution be u* and set

(6.8) x *+1 x*-A,V,F(x*, u *+, a).

and Ik {i" g,(x k) >--
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Step 4. Check convergence; if not, generate matrix Ak+l from Ak, S k--

xk+a--X k and yk =VF(xk+, uk+, a)_VF(x k, yk+X, a) either by (5.2) or by
(5.3). Set k k + 1 and go to Step 3.

THEOREM 6.3. Letz* (x*, u*) be a Kuhn-Tuckerpairof (6.3) satisfying the
Jacobian uniqueness condition andf, g and h LCE[x*]. Ifthe penalty parameter
is sufficiently large and the startingpointz o (x o, u o) and the starting matrix Ao are
sufficiently close to z* and VxF(x*, u*, a)- respectively, then the sequence {z k}
generated by Algorithm M’ exists and converges Q-superlinearly to z*.

Proof. Consider the following auxiliary problem

a )2(6.9)
min f(x)+- g(x

iI*

subject to (x) <- 0

where I* {i "(x*) 0. If z (x, u) and z (x, u) ac sucicntly close to z*
and is sufficiently large, then it is easy to check that I I*. If wc futhc assume
that ui 0 fo all I*, then F(x, u, a) turns out to bc the Lagangian of (6.9).
Thccfoc, with the second pat of Corollary 3.9 taken into account, Algorithm M’
is equivalent to Algorithm D1 o D2 applied to problem (6.9). Since z* is also a
Khn-Tuckc pai of (6.9), the theorem follows immediately from Theorem
and Lcmma 6.1.

Wc note that poblcm (6.9) is only used in the proof of convergence fo
Algorithm M’. Actually, it is not obtainable because the set I* is not known a
priori. Wc also point out that the assumptions of nonsinguladty and positive
definiteness on the Hessian of the Lagangian L ac not nccdcd in Theorem 6.3
because of the local convexification popety o the function F.

Wc would like to compare ou modified algorithms with the cccntly
developed multiplic method in which wc gcncatc z+ (x+, uTM, v+) fom
z (x, u, v) by

(6.10) u/k+l=max {0, ukid-olgi(xk)} for 1,’’ ", m,

(6.11) v+= v+ahi(xk) for/’= 1,..., q,

and

(6.12) F(x k+l, u TM, vk+, a)=minF(x, uk+ v k+l, or)

This method has been shown superlinearly convergent if a is replaced by a
sequence {ak} required to go to infinity [3]. However, this usually causes numeri-
cal instability. It has been shown [4] that (6.10) and (6.11) are a steepest ascent
step for finding a maximum point of the function p,(u, v)=min,,F(x, u, v,
With bounded the multiplier method has only a linear rate of convergence. To
avoid the numerical instability caused by large and at the same time to achieve
a superlinear rate we need a more accurate scheme for updating (u k, v k) than
(6.10) and (6.11). An appropriate candidate is (6.4) and (6.7). This approach
results in our modified algorithms. Moreover, to find xk/ we need only take one
step of a variable metric method to minimize F(., u k- , v k/l, o) with an updated
matrix Ak which has already been obtained in the stage of finding multiplier
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vector (u k+l, vk+l); however, in the multiplier method we need to do a whole
unconstrained minimization process. It is noted that a similar approach can be
found in [23].

7. Comments and computational experiences.
1. The algorithm based on the subproblem

min 7f(xk)r(X --xk)+1/2(X --xk)’Hk(X --X k)

subject to g(xk)+Vg(xk)7‘(x--xk)<=O,
h(x k) + Vh(xk)7‘(X --X k) 0

can be viewed as primal to the algorithm discussed in this paper because this
subproblem is primal to subproblem (2.1). To achieve local superlinear con-
vergence for the primal algorithm the matrices {Hk} need to be good estimates to
the Hessian of the Lagrangian rather than to the inverse of the Hessian. In [22]
local superlinear convergence has been established for the primal algorithm with
{Hk} updated by the following schemes

(y -Hs)y 7" + y(y -Hs)7" s 7"(y -Hs)yy 7"

(7.1) H=H+ yT’s (y 7‘s)

(unconstrained case: Davidon-Fletcher-Powell 12], [15])

y Hs s T" + S y Hs 7" s T" y Hs ss T"

(7.2) H=H+ ss (s s)
(unconstrained case" Powell [36], [37])

where s and y are defined as in (5.1). It is noted that updates (7.1) and (7.2) are
dual to updates (5.2) and (5.3) respectively in the sense of Fletcher [16]. The
duality of updating schemes and the duality of mathematical programming have
been defined and used in two different contexts. It is very interesting that in our
approach they are coincidentally connected to each other. We also note that
though some theorems in this paper are analogous to those in [22], there is no
direct implication among them.

2. Our algorithm is in a sense a natural extension of variable metric
algorithms to general nonlinear programming and this extension provides a
fruitful field of future research. A lot of results in the extensive literattre of
variable metric algorithms need to be investigated and developed for nonlinear
programming and the whole theory can be treated in a unified way in both
constrained and unconstrained optimization.

3. All the results in this paper are local. One approach studied by this author
for achieving global convergence is to determine a stepsize in each iteration which
maintains a monotone decrease of an exact penalty function or the penalty
Lagrangian defined in (6.1). Some global convergence results have already been
established [21], [24].

Computational tests of the algorithms in this paper have been performed and
are still going on. A report on the tests results is expected to be published in the
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near future. However, it would be unfair to finish without at least giving some idea
of the power of these algorithms in practice. We state in the table below the test
results of Algorithm D1 and D2 for Colville’s test problems 1 and 2. The
computations were done on the UNIVAC 1110 system at the University of
Wisconsin--Madison. The principal pivoting method [10], [11] was used in
solving the quadratic programming subproblems.

Prob.

2t

TABLE

Algorithm

D1

D2

D1

D2

Obj. Fct. value

--32.3487

--32.3486

--32.3488

--32.3488

Standard time ratio

.00448*

.00906

.2133

.6311

This result is better than any reported in Colville’s report [9].
Infeasible starting point.
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AN ABSTRACT THEORY FOR UNBOUNDED CONTROL
ACTION FOR DISTRIBUTED PARAMETER SYSTEMS*

RUTH F. CURTAIN AND A. J. PRITCHARDt

Abstract. In The infinite dimensional Riccati equations for systems defined by evolution operators
[Ruth F. Curtain and A. J. Pritchard, this Journal, 14 (1976), pp. 951-983], we have examined the
linear quadratic control problem for systems described by abstract input-output relationships on
Hilbert spaces, but the application of our results to distributed systems governed by partial differential
equations requires that the control operators are bounded. This is a severe restriction, since for most
systems of practical interest the controls will act on the boundary or on submanifolds of the system
region arid so unbounded operators are involved. In this paper we generalize the above work to include
such control action.

Introduction. The linear, quadratic control problem for distributed sys-
tems has been studied by Lions [7] for operators satisfying a coercivity condition,
and by Curtain and Pritchard !2] using a semigroup or evolution operator
approach. Most of the work in these references is concerned with bounded control
action. However, in practice it is very difficult to implement bounded control
action because of the severe limitations that are inherent in distributed systems.
For example control action is usually confined to regions on the boundary of the
system or to a manifold of lower dimension and interior to the system region.
Another way that unbounded control action can arise is if the implementation of
the control on the system involves an unbounded operator. For example, in a heat
conduction process the control may be related to the temperature; however, the
only way of effecting the system may be by heat flow considerations, and this will
require the gradient of the control, which could be an unbounded operator. While
it is sometimes possible to formulate these problems in the bounded control
theory of [2], [7], by changing the state and control spaces, usually this is
unsatisfactory and it is necessary to consider unbounded control action.

In [7], [8], Lions has developed a very general theory for boundary control
action for distributed systems, where the operators satisfy a coercivity condition.
Balakrishnan has used a semigroup approach in [1] to study the special case of
boundary control problems for the diffusion equation. However, our approach
differs from both these authors and we develop a unified approach to the quadratic
cost control problem for a wider class of distributed systems with unbounded
control action using the semigroup or evolution operator approach introduced
in [23.

There is of course a strong duality between the filtering and control problems,
and this is often exploited in solving the filtering problem (see [3]). Our approach
also enables us to consider the filtering problem for the cases where the observa-
tions are limited to regions of the boundary or manifolds of lower dimension
interior to the system, or indeed points. For example, the dual of boundary control
action is boundary observations for the filtering problem, and in fact in order to
formulate the boundary problem we first formulate the filtering problem with

* Received by the editors July 8, 1976:
t Control Theory Centre, University of Warwick, Coventry, Warwickshire CV4 7AL, England.
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boundary observations, and examine its mathematical dual. So for this case the
duality between the filtering and control problems is particularly important.

As our approach to the unbounded control problem is abstract, in 1 we
discuss the motivation for our analysis in some detail with reference to specific
examples. Paralleling the treatment in [2], in 2 we develop an unbounded
perturbation theory for mild evolution operators q/(t, s) on a Hilbert space H, and
in 3 we develop the abstract theory for the quadratic cost unbounded control
problem, obtaining the optimal control in feedback form. The feedback operator
is again the unique solution for an integral Riccati equation, but this time with
unbounded operators. As in the bounded case we show that if ll(t, s)x is
ditterentiable with respect to s almost everywhere for x in a dense set inH (that is
q/(t, s) is a quasi-evolution operator), then the integral Riccati equation may be
differentiated to obtain a differential version. If further ll (t, s)x can be differen-
tiated with respect to t for x in a dense set inH (that is, q/(t, s) is a strong evolution
operator) we can show that the differential Riccati equation has a unique solution.
As the application of these abstract results is not straightforward, and depends on
duality concepts, this aspect is examined in some detail in 5. Finally in 6 the
theory is applied to several classes of distributed systems, including the parabolic
and hyperbolic systems with different types of unbounded control action.

1. Motivation. Our aim is to consider the control system

(1.1) 2(t)=A(t)z(t)+B(t)u(t), z(0) z0,

where A (t), B(t) are linear unbounded operators. However, before we give the
precise conditions imposed on these operators we will motivate our considera-
tions by some examples of autonomous systems of the form

(1.2) 2 =Az +Bu, z(0) Zo.

We assume that A is the infinitesimal generator of a strongly continuous semi-
group 3-t on a Hilbert space H and we will consider two different assumptions on
the operator B. First it is necessary to give some interpretation of a solution of
(1.2). One way is to consider the integral equation

z(t) 3-tZo + 3-t_,Bu(s) ds.

If B e .(U, H), where U is a Hilbert space, and u e L2(0, T; U) such a solution is
known as a "mild solution" and we know z e C[0, T; HI (see [2]), although we are
not in general able to differentiate (1.3) to obtain (1.2). We want to generalize the
concept of a mild solution to the case where B is an unbounded operator. In order
to see how this may be achieved let us consider the simple example

Example 1.1. Let

Az Zxxxx, z (A ),

(A) {z: z e L2(0, 1), Az L2(O, 1); z(0) 0 z(1), Zxx(O) 0 Zx (1)},

Bu=ux, u(B),

(B) {u: u L2(0, 1), Bu L2(0, 1)}.
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Then (1.2) is an evolution equation which results from abstracting the partial
ditterential equation

(1.4) zt zxxxx + ux, z (0, t) z (1, t) Zxx (0, t) Zx (1, t) O.

Now A generates the semigroup -t, where

’z 2c-’sin nx sin nyx(y) dy

and it is easy to show that
M

u (B), t>0.

Lz(0,1),fftBhasaus for each > 0, fftB ((B) Lz(0, 1)) andsincB
unique extension, which we will denote by fftB, and fftB (Lz(0, 1)), t > 0. We
have

tBu lim 5?-tBu,,, u,, (B), u,, --> u in L2(O, 1).

Furthermore for all > O, s => O, u e L2(O, 1),

+Bu lim -+Bu,,

ff- lim .YtBu,

-’Bu.
We define a solution of (1.4) by

t-

z(t) 3-tZo + lim fft-sBu(s) ds.
O

It is a simple matter to show that z(. given by (1.5) is well defined for
u L2(0, T; L2(0, 1)) and z e C[0, T; L2(0, 1)] (we will prove this in a more
general setting in 2).

From Example 1.1 we see that the kinds of conditions it is necessary to
impose are

(1.6) (B) U,

M
(1.7) II ,Bu  llull ,
The a < 1/2 arises from the estimate

3-t_sBu(s) ds <- II-Bu(s)ll ds
H

ue(B), a<1/2.

<  llu(s)lld 

(t- s)
ds
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We will also consider the filtering problem

(1.8) z(t) =.fftZo + .8-_sD dw(s),

(1.9) y(t) Cz(s) ds + Fdv(s),

where w(t), v(t) are noise processes which will be specified precisely in 5. It turns
out that the filtering and control problems can be developed in parallel so that
unbounded operators C may be considered if for example we make the identifica-
tion B* C. We note that this implies C: H U* is a closed linear operator 11],
and if we further assume B is closed, we have C* B and C is densely defined.

The above considerations do not enable us to consider control or observa-
tions from boundaries or from lower dimensional manifolds. For these problems
C will not be closed, although it will be densely defined, whereas in general B will
not be densely defined and so we do not have condition (1.6). In order to see how
we can treat such operators let us consider the following simple example.

Example 1.2.

Zt Zxx
(1.10)

zx(O, t) u, Zx(1, t) O, z(x, O) Zo(X).

We examine this problem by first determining an operator B such that the
mild solution of

(1.11) zt Zxx +Bu,

z(0, t)= 0, z(1, t)= 0; z(x, O)= Zo(X)

is a weak solution of (1.10). Abstracting the problem (1.11) we obtain

2 Az +Bu; z (0) Zo,

where A generates the following semigroup ,,t on Lz(0, 1):

(ff,h)(x)= 2e --r2"tr2t cos 7rx h(y) cos nTry dy.

We will show in 5 that this approach leads to an operator B C*, where

(Cz)(t) =-z(O, t).

Now C is densely defined on L2(0, 1), but is not closed; so, B will be a closed
operator but its domain is trivial (i.e., B has domain 0). In fact Bu -$(x)u, the
delta function, so Bu L2(O, 1) for any u # 0. However we note that for >0,
ff’tBu E L2(0, 1) and
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Thus we are able to define a mild solution

z(t) :YtZo -t-sBu(s) ds

for all u L2(0, T).
This second example indicates that in order to incorporate this type of

problem into our general theory we will need to assume that t can be extended
to act on rays of a larger space than H (a typical element being Bu), in such a way
that for > 0,

.ll-,Bull  llull ; u U, t > 0, a < 1/2.

In order to present a unified theory for the types of problems associated with
Examples 1.1, 1.2, we introduce an operator -(t; B) which satisfies

(1.12) (t;B)6(U,H) for t>0,

(1.13) $-sO-(t; B)= -(t+s; B) for >0, s >_-0,

M
(1.14) []-(t; B)ll<_-t c <1/2, t>0

In fact in the next section we generalize the operator -(t; B) to an evolu-
tion type operator a//(t, s; B) in order to include nonautonomous evolution
equations.

2. Unbounded perturbations of evolution operators. We recall the definition
of a mild evolution operator.

DEFINITION 2.1. LetHbe a real Hilbert space, T [0, T] a real time interval,
and A(T)={(t, s): O<=s<t<=’T}. Then q/(t, s): A(T)-->(H) is a miM evolution
operator if

(2.1) ll(t,r)ll(r,s)=all(t,s) forO<=s<-r<=t<-T, ql(t,t)=I.

(t,.)
(2.2)

0u(. ,s)

is weakly continuous on [0, t)

is weakly continuous on (s, T].

and

In this paper all mild evolution operators will satisfy the stronger hypotheses

(2.2)’ (’," is jointly strongly continuous on A(T).

This is a mathematical convenience to simplify some of the proofs, and is not a
crucial assumption. (All the results remain true under (2.2).)

We take our system model to be

(2.3) z(t) oll(t, 0)Zo+ ll(t, r; B)u(r) dr,
0
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where u L2(T; U) and we make the following assumptions on q/( , B):

(2.4) II(t,s;B)ullg(t-s)llul[, O<=s<t<-T, gLz(T).

(2.5) all (t, r)ll (r, s B) ll (t, s B), O <- s < r <-_ t <- T.

We note that (2.5) implies

I1 (/, s; B)ull Mg(r s)Ilull; O<=s<r<=t<-_T,

where M supa(7- I1(/, s)ll and so without loss of generality we may assume

(2.6) g(t + s) <-_ Mg(t), s >= O, t > O.

The interpretation to be given to (2.4) is

II(t,s;B)u(s)llHds g(t-s)llu(s)lluds for u L2(T; U).

By using (2.4) it is easy to show that z(t) is a well defined H-valued function
for each t T and in fact using (2.5) we can show that z(. ) C[to, T; HI. If h >0,
we have

z(t + h)-z(t)= (all (t + h, to)-all (t, to))Zo

+ [all(t+h,r;B)-all(t,r;B)]u(r)dr
o

t+h

+ all(t + h, r; B)u(r) dr.

Thus

IIz(t + h)-z(t)ll<-II((t + h, to) q/(t, to))Zoll

+ ((t + h, t)-I) (t, r; B)u(r) dr
o

t+h

+ Iloll(t + h, r; B)u(r)ll dr.

Hence by (2.2)’ and (2.4) we are able to conclude continuity on the right. For
h < 0, we have

z(t)-z(t-h)= (ll(t, to)-ll(t-h, to))Zo

+ [q/(t, r; B)-all(t-h, r; B)]u(r) dr
o

+ ’ll(t, r; B)u(r) dr.
-h
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Thus

Jlz (t) z (t h )ll <= ll( (t, to) all (t h, to))Zoll

+ ((t, t-h)-I) (t-h,r;B)u(r) dr

+ II(t, r; B)u(r)ll dr
-h

II((t, to)-all(t-h, to))Zoll
+ll(ag(t, t-e)-all(t-h, t-e))z(t + e)ll

+ II(t-h, r; B)u(r)ll dr

+ Ilag (t, r; B)u(r)ll dr

for any t > e > h. And so z(. C(to, T; H) by using (2.4).
Since we wish to consider feedback controls of the form u(t)= F(t)z(t), we

are led to considering perturbations of ag (t, s) defined by

(2.7) allBF(t, s)x ell(t, s)x + ll(t, r; B)F(r)allBF(r, s)x dr, x

for a special case of feedback gain operators F(t) satisfying

(2.8) IIF(t)hllv <=
for any t2 (t, T] and some ]’ L2(T), which satisfies (2.6).

Our main perturbation result is the following.
THEOREM 2.1. Let all(t, s) be a miM evolution operator satisfying (2.1), (2.2)’,

It(t, s; B) satisfying (2.4)-(2.6) and F(t) satisfying (2.8). Then (2.7) has a unique
solution aline(t, s) which is a mild evolution operator on H, satis]’ying (2.1) and
(2.2).

Proof. (a) Existence and uniqueness. The proof is the usual constructive
approach or Volterra integral equations, where we consider V,(t, s).(H)
given by

Vo(t, s)= ag(t, s),

V.(t,s)x=I.’ ll(t, r; B)F(r) V,-l(r, s)x dr, xH.

Note that (2.4), (2.8) imply

(2.9)
II0u (t, r; n)F(r)hll <- Cg(t- r)[(t- r) Ilhll

G(t- r)Ilh I1,
for all (r, 7"] and almost all r e [0, t). By induction we prove that

(2.10) IIw(t, s)xllM .(t-) d Ilxll
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for n _>--1, where

and

We have

Gl(t)=G(t),

G,, (t) G(t-r)G,_(r) dr

IIu(t, s)llM.

IIw(t, s)xll G(t-r)[lVo(r, s)xll dr (by (2.9))

<=M G(t- r) dr llxl[.

If we assume (2.10) holds for n k- 1, we have

Ilv(t,s)xl[<-_ a(t-r)l[Vg_(r,s)xlldr

<=M G(t-r) G_(r-c) d dr

=M G(t-r)G_(r-) drd

(interchanging the order of integration)

= a(-le Ix.

Thus (2.10) is established.
From Appendix A, we see that the equation

(2.11) v(t-s)=M+ G(t-)v(-s) d

can be transformed to the form (A.1), where G satisfies (A.2) by virtue of (2.6)
and (2.9). So (2.11) has a unique continuous solution

v(t-s)=M+M= G(t-) d

and thus

X IIw(t, s)II<-M+M E Gn(t-a) da
n=0 n=l

< oo (by Corollary (A.4)).

Thus q/Be(t, s) Yno V, (t, s) converges absolutely in the uniform topology, and
the convergence is uniform in s and t. Clearly this expression satisfies (2.7) with
B(t, t) L
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Then

and

For the uniqueness we suppose that a//2(t, s) is another solution, and let

V(t, s)= allBF(t, S)- ll2(t, s).

V(t, s)x ql(t, r; B)F(r) V(r, s)x dr

liE(t, s)xll  (t-r)llW(r, s)xll dr.

So V(t, s)x 0 by the generalized Gronwall’s inequality (Appendix A, (A.5)).
(b) Semigroup property.

OllBF(t, r)llnF(r, s)x R(t, r)R (r, s)x

+ all(t, r)ell(r, a; B)F(a)llv(a, s)x da

+ (t, ; B)F()(, r)?l(r, s)x d.

Therefore

(ll(t, r)ll(r, s)-e(t, s))= (t, ; B)F(a)

[//(, r)(r, s)-(a, s)]x da.

Denoting the left-hand side by V(t, r, s)x we have

liE(t, r, s)xll<= (t-)llw(, r, s)xll da.

So V(t, r, s)x 0 by the generalized Gronwall’s inequality (Appendix A, (A.5)).
(c) Continuity. Since the convergence of Y V, (t, s)x is uniform in s and on T

it suffices to prove that each V, (t, s) is jointly continuous for each n and x H. In
fact since supa(T)IIBF(t, S)II <, we need only prove continuity in each variable
separately (see 10]). The proof is by induction starting with the fact that 0?/(.,.
is jointly continuous on A(T).

Suppose Vk-l(’," is jointly continuous; we have

Vk(t, s)x R(t, r; B)f(r) Vk_(r, s)x dr.

The continuity of Vk (t, S) in t is proved in exactly the same way as the continuity of
z(t) in t for (2.3). For h >0, we have

Vk(t,s+h)x-Vk(t,s)x= l(t,r;B)F(r)Vk_(r,s+h)-V_(r,s)xdr
+h

+h

ql(t, r; B)F(r) Vk-l(r, s)x dr.
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Hence

IIV(t,s+h)x- v(t,s)xll <- (t-r)llg_(r,s+h)x- g_(r,s)xlldr
+h

+ G(t-r)[[Vk_l(r, s)xll dr.

Since IIv-(r, s)ll is uniformly bounded and Vk_l(r, s)x is jointly continuous we
see that

IlV(t,s+h)x-V(t,s)xll+O ash +0.

A similar argument holds for h < 0.
In order to give meaning to a sequence of feedback controllers in 3 we need

to define terms like

h(t) allBF(t, S; B)U(S) ds

where nv(t, s; B) satisfies

(2.12)

for u e L2(T; U),

qlnv(t, s; B)u(s)= ql(t, s; B)u(s)

+ (t, r; B)F(r)(r, s; B)u(s) dr

The above equation is to be interpreted in LI(0, t; H) for each [0, T], and
U L2(T; U).

TI-IZORn 2.2. Let ql(t, s; B) satisfy assumptions (2.4)-(2.6) and [ satisfy
(2.8); then for each u Lz(T; U), (2.12) has a unique solution

such that

OIBF(t ; B)6(L2(T; U), LI(O, t; H))

h(t) O’llBF(t, s; B)u(s) ds C(T; H).

Proof. We construct a sequence of operators V, (t, s;B),

Vo(t, s; B)u(s)= ll(t, s; B)u(s),

V(t, s; B)u(s)= (t, r; B)F(r) V_(r, s; B)u(s) dr.

We have

IIVo(t, s; B)u(s)ll < g(t-s)llu(s)ll by (2.5).

We prove by induction that

IO(2.13) liVe(t, s; B)u(s)ll <- G,(t-r)g(r-s) & Ilu(s)ll for n ->_1,
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where

Gn(t-r)= G(t-a)Gn_l(a-r) da for n_->2,

Gl(t-a) Cg(t-a)f(t-ce).

For n 1, we have

v(t, s; B)u(s)ll= (t, r; B)F(r) No(r, s; B)u(s) dr

IS<- G(t-r)g(r-s) dr Ilu(s)ll by(2.9).

If we assume (2.13) holds for n k- 1, we have

liNk(t, s; B)u(s)ll<= G(t--r)llVk-(r, s; B)u(s)]l dr

G(t-r)Gk_a(r-a) drg(a -r) dee Ilu(s)ll

G(t-r)g(r-s) d

Hence

G(t-r) Gk-l(r--a)g( --s) da Ilu(s)ll dr

IlVn(t, s; B)u(s)l[ ds <= G,(t-r)g(r-s) dr Ilu(s)ll as

IO IO<- G(t-r) a(r-s)llu(s)ll ds dr

_<- sup g(r s) ds
rT

G. (t- r) dr Ilull<T;) by (2.5).

Now since Z.__a ’o G. (t- c) dc< (Appendix A, (A.4)) we see that

Bv(t, s; B)u(s)= Z V,,(t, s; B)u(s)

converges absolutely in L1(0, t; H) for each t [0, T] and

//tv(t, B)s (L2(T; U), L(0, t; H)).
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Moreover

where

or

IIv(t, s; B)u(s)ll (t-s)llu(s)ll,

(t s) g(t s) + =1 Gn (t r)g(r s) dr

(t- s) g(t- s) G(t- s r)(r) dr

from Appendix A and L2(T).
For the uniqueness let all2(t, s;B) be another solution and

V(t, s) Bv(t, s; B)-all2(t, s; B);
then

Hence

V(t, s)u(s) all(t, r; B)F(r) V(r, s)u(s) dr.

IIw(t, s)u(s){I < G(t-r)llW(r, s)u(s)l] dr.

So V(t, s)u(s) 0 by the generalized Gronwall’s inequality (Appendix A, (A.3)).
For the semigroup property we consider

allBv(t, r)allB(r, s; B)v ql(t, s; B)v

+ ll(t, a; B)F(a)OllF(a, s; B)v da

+ ?l(t,o;B)F(o)(o,r)(r,s;B)vda.

Thus

[O[BF(t r)’llF(r, s B)- llBF(t,

oll(t,a;B)F(a)[ollnv(a,r)ellBv(r,s;B)-Ollsv(a,s;B)]vda.

Denoting the left-hand side by V(t, r, s;B)v, we find

V(t,r,s;B)v= ql(t,a;B)F(a)V(a,r,s;B)vda.

Hence V(t, r, s;B)v 0 by the generalized Gronwall’s inequality (Appendix A,
(A.5)).

Thus qlnv(t, s;B) satisfies the same assumptions (2.4)-(2.5) as ll(t, s;B)
with g(t-s) being replaced by ,(t-s) and satisfies (2.6).

We recall the concept of a quasi-evolution operator introduced in [2].
DEFINITION 2.2. Let H be a Hilbert space, T a real time interval. A

quasi-evolution operator is a mild evolution operator q/(t, s) such that there exists
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a nonzero x H and a closed linear operator A (s) on H for 0 -< s =< T satisfying

(2.14) (y, ell(t, s)x -x)= (y, ll(t, a)A (a)x) dee

for all y H. The set of x H for which (2.14) is valid is denoted bya and A (.)
is called the generator o[ It (.,.).

In line with assumption (2.2)’, we assume the stronger condition

(2.14)’ all(t, s)x -x (t, a)A (t)x da

although it is in no way essential. We now show that if q/(t, s) is a quasi-evolution
operator satisfying (2.14)’, then the perturbed evolution operator qlnF(t, S) is also
a quasi-evolution operator.

TIaEORZM 2.3. If" (t, S) is a quasi-evolution operator with generator A (t),
all(t, s; B) satisfies (2.4), (2.6), and F(t) satisfies (2.8), then IIBF(t, S) defined by
(2.7) is a quasi-evolution operator, with

I$(2.15) allBF(t, s)x -x ((t, a)A ()x +?l(t, ; B)F(a)x) d

for x e and e(t, s; B) defined by (2.12). (2.15) implies that

(2.15)’ -s (ll(t, s)x) -g(t, s)A (s)x llB.(t, s B)F(s)x

or almost all s e [0, t) and x
Proof. For x s Na, from (2.7), (2.14)’ we have

llnv(t, ct)A (a) sa ql(t, s)x-x + ql(t, r; B)F(r)

qlnv(r, a)A (a)x dr da

ll(t, s)x -x + ll(t, r; B)F(r)

(r, a)A (a)x da dr.

From (2.12)

OlF(t Or; B)F(a)x da ?/(t, a; B)F(ct)x da

+ (t, ; B)F(a)llF(o, ; B)F(a)x da d

?l(t, a; B)F()x do

+ (t, ; B)F() liB,(a, B;B)F(a)x d da.



AN ABSTRACT THEORY FOR UNBOUNDED CONTROL ACTION 579

Let

:f(t, s)x (allv(t, a)A (a)x + lGv(t, a B)F(a)x) da.

Then

[(t, s)x all(t, s)x-x + all(t, ; B)F(a)x da+ ql(t, r; B)F(r)f(r, s)x dr

allv(t, s)x -x- ql(t, r; B)F(r)?lv(r, s)x dr

+ all(t, a;B)F(a)x da + ql(t, r; B)F(r)f(r, s)x dr.

Hence

[(t, s)x-qlv(t, s)x +x all(t, r; B)F(r)[[(r, s)x-qlv(t, s)x -x] dr;

letting

we have

R (l" s)x f(t s)x BF(t S)X -1- X,

]lR(t, s)xll G(t-r)llR(t, s)xll dr.

Thus R (t, s)x 0 by the generalized Gronwall’s inequality (Appendix A, (A.3))
and (2.15) is established.

3. The infinite dimensional Riccati equation. We consider the following
generalized control problem:

(3.1) z(t)=ql(t, to)Zo+ (t,s;B)u(s)ds, O<=to<-t<-T,
o

where U, H are real Hilbert spaces and the admissible controls u L2(to, T; U).
(t, s) is a mild evolution operator satisfying (2.1), (2.2) and (t, s; B) satisfies
(2.4)-(2.6).

For the cost functional, we take

(u; to, Zo)=(z(T), Gz(T))z-i+ (z(s), W(s)z(s))nds
o

(3.2)
+ (u(s), R(s}u(s))z ds,

o

where G (H), We N(T; .’(H)), R, R -1 s N(T; .t’(U)) and G, W and R
are self adjoint and nonnegative definite with

<u, R(t)u)u ->-t llull for almost all e T

and all u U.
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The quadratic cost control problem is then to find the optimal control
u e L2(T; U) which minimizes (u; to, Zo). We proceed along similar lines to [2]
allowing for a wider class of controls which in some sense may be considered
unbounded (cf. 1).

Consider a sequence of controls {Uk } given by

Uk(t) Fk(t)z(t),

where Fk (t) is defined recursively by

(3.3) Fk(t) =-R-l(t)O’_l(t; B),

Ok (t)x ll(T, t)Gallk (T, t)x
(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

T

+ ll(s, t)(W(s)+F(s)R(s)Fk(S))llk(S, t)x ds,

Ok(t; B)u(t)= all(T, t)Gllk(T, t; B)u(t)

+ ll’(s, t)(W(s)+F(s)R(s)Fk(S))llk(S, t; B)u(t) ds,

Q(t; B)h(t)= a//’(T, t; B)Gqlk(T, t)h(t)

+ *(s, t; B)(W(s)+F’(s)R(s)F(s))all(s, t)h(t) ds,

Ok(t; B, B*)u(t) ll’(T, t; B)Gqlk(T, t; B)u(t)

+ (s, t; B)(W(s)+F(s)R(s)Fk(s))

allk(s, t; B)u(t) ds,

k(t,s)x=(t,s)x+ (t,o;B)Fk(o)k(a,s)xda,

?lk (t, s; B)u(s) ll(t, s; B)u(s)

+ all(t, a; B)Fk(a)allk(a, s; B)u(s) da,

where x e H, h e L)_(T; H) or C(T; H) and u e L2(T; U) or C(T; U).
To establish that this sequence is well defined, and to interpret (3.5), (3.6) we

need the following lemmas.
LEMMA 3.1.

(3.10)

Ok(" B)e)(C(T; U),L:(T; H))(L)_(T; U),LI(T; H)),

0( B) eo.(C(T; H), L:(T; U)) f’I(L:(T; H), LI(T; U)),

Ok(" B,B*)e(C(T; U),L(T; H)).

Fk (t) satisfies an estimate of the form
(3.11) IlFk(t)hll<=fk(t2-t)llhl[, wherefk eL2(T) and tee(t, T].
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k(t, S) is well defined by (3.8) satisfying an estimate of the form
(3.12) II-llk (t, s)l[ <--Mk.
llk (t, S; B) is well defined by (3.9) in the sense of (2.12) and has the same properties
as (t, s; B) (2.4)-(2.6), satisfying an estimate of the form
(3.13) Ilq/k (t, s; n)ull <=g (t- s)llull,
where gk L2(T).

Proof. See Appendix B.
LEMMA 3.2. Qk (t) is a linear, self ad]oint, boknded operator on H, which is

strongly measurable. Qk (t)x is weakly continuous on Tunder the stronger assump-
tion (2.2)’.

Proof. See Appendix C.
By Lemma 3.1 and Theorems 2.1, 2.2 we see that the sequence of control

problems

(3.14) Zk(t)=k(t, to)Zo+ llk(t,s;B)ft(s)ds

is well defined for t7 L2(T; U), and zk C(T; H).
Just as in [2], the following lemmas are easily established by replacing

Ok(t)B(t) by Ok(t; B).
LEMMA 3.3.

(Zk(t), Ok(t)Zk(t))=(zk(T), Gzk(T))

+ (Zk(S), (W(s)+Fk(s)R(s)Fk(S))Z(S)) ds

-2 (zk(s), Ok(s; B)a(s)) ds.

LEMMA 3.4. With the feedback control uk(t)=-R-l(t)O*_a(t; B)zk(t), the
cost is given by

J(Uk) (Zo, Qk(to)Zo).

Furthermore, (Zo, Qk (to)Zo) is monotonically decreasing in k for each T, Zo H,
with

(3.1-5) sup IIo (t)ll <- gl.
tT

LEMMA 3.5. Ok(t) defined by (3.4)-(3.8) converges strongly as k-. to a
self-ad]oint nonnegative definite bounded linear operator O(t) on H with
suptT[[O(t)[[<=K.

In order to prove the convergence of allk(t, s), allk(t, S; B) and hence Qk(t; B)
we need the following lemmas.

LEMMA 3.6. (a) qlk(t, S +e)ql(s +e, s; B) converges to Ogk(t, S; B) in

(C(to, t; U), L2(to, t;H)) (3 (L2(to, t; U), (L2(to, t; H))

aseO.
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(b) a//*(t + e, t; B)Qk(t + e) converges to Q’(t; B) in

(C(T; H), Lz(T; U)) f’) (Lz(T; H), L1(T; U))

aseO.

(c) a//*(t + e, t; B)Ok(t + e)all(t + e, t; B) converges to Ok(t; B, B*) in

(C(T; U),LI(T; U))

aseO.
Proof. See Appendix D.
LZMMA 3.7. (Ok(t; B, B*)uo, Uo) is a positive decreasing sequence in k for

almost all T, and all Uo U, and so is uniformly bounded for almost all t T.
Proof. See Appendix E.
LEMMA 3.8. 0//k(t, S), /k(t S; B), Ok(t; B), O*k(t; B), Ok(t; B, B*) are

uniformly bounded in k by estimates of the same form and the convergence in
Lemma 3 is uniform in k.

Proof. See Appendix F.
THEOREM 3.1. Uk(t, S) converges strongly in H to a mild evolution operator

-//oo(t, s); llk(t, s; B) converges strongly in (C(to, t; U), L2(to, t; H))(3
(L2(to, t; U),Ll(to, t; H)) to qlo(t, s; B) and Ok(t; B) converges strongly to
Qo(t; B) in(C(T; U), Lz(T; H)) f"l (LE(T; U), L(T; H)). Furthermore Qo(t)
and Qoo(t; B) satisfy the integral equations

(3.16)
Oo(t)x all*oo(T, t)Gall(T, t)x

+ *(s,t)(W(s)+O(s;B)R-(s)O*(s;B))(s,t)xds,

(3.17)

Qo(t; B)u(t)= all*(T, t)Gqlo(T, t; B)u(t)

+ ll*(s, t)[W(s)+O(s; B)R-(s)O*(s; B)]

o(s, t; B)x ds,

where ll(t, s) and allo(t, s; B) are the unique solutions of

(3.18)
qlo(t, s)x ll(t, s)x

q/(t, a; B)R-(a)O*oo(a; B)goo(a, s)x da,

(3.19)
lion(t, s; B)u(s)= all(t, s; B)u(s)

all(r, a; B)R-(a)O*(a; B)(a, s; B)u(s) da.

(Of course (3.17) and (3.19) must be interpreted in the appropriate spaces.)



AN ABSTRACT THEORY FOR UNBOUNDED CONTROL ACTION

Proof. (a) Now from (3.4)

(Ok(t)x, X)= (allk(T, t)x, Crallk(T, t)x)

+ (’//k (S, t)x, W(s)?lk(S, t)x) ds

+ (?lk(S t)x,F’(s)R(s)Fk(S)?lk(S, t)x) ds

_-<Kllxll.
Hence ince (, R(t),>>=llull, we have

(3.2o) IIf(s)%(s, t)xll ds <-_ Cllxll.
Then from (3.7),

11% (t, s)xll<--MIIxll+ g(t-)]]f()llk(a, s)xl] dee

<--MIIxll/ g2(t-a) d IIf(,)%(,, s)xll d

--<gllxll by (2,5) and (3.16).

From Lemma 3.3 with ti(s)=-(F+(s)-Fk(S))Z(S), z(t)= zo, we obtain

(Zo, O(t)Zo)=(Zo, O+(t)Zo)

+ ((F+(s)-F(s))%+(s, t)Zo,

R(s)(F+)(s)-F (s))%+(s, t)Zo) ds.

(3.21)

Now

Hence using the positivity ofR and the convergence of Ok (t), we find

rll(Fk+(s)--Fk(S))-IAk+(S t)zo[[2 asds ->0 k

11%+(, t)Zo-%(c, t)z0[I

Hence
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(’ll(o, s; B)Fk+I(S)OIIk+I(S, t)Zo--fk(S)allk(s, t)Zo) ds

II%+l(Ce, t)Zo-allk(a, t)zoll g(--S)llFk+l(S)Ollk+l(S, t)Zo

-F,(s)%(s, t)Zoll ds
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ira ) 1/2

const. [[(F+(s)-F(s))lg+x(S, t)Zo[[ ds

+ g(o --S)IIFk(s)(allk+I(S, t)---llk(S, t))Zol[ as

< const, t)Zol[2 ds

+ g(a -s)h(a --S)JIk+I(S, t)--O?lk(S, t)z0[[ ds.

For some h EL2(T) by Lemma 3.8 and using (3.21) and the generalized Gron-
wall’s inequality (Appendix A, (A.3)) we see that k(t., S)Zo converges in H as
k -> o.

(b) Next we show thatk (t, S B) has a strong limit by proving that for u U,

ak,(t)= [lallk(t,s;B)u-ql,(t,s;B)ul[2dsO ask,n.

Now

a,(t)_-< 3 I[(t,s;B)u-t(t,s+e)(s+e,s" B)ull ds

+3 []ql(t,s+e)-ll.(t,s+e)(s+e,s;B)ul[Zds
0

+3 I[,(t,s+)(s+,s;B)u-,(t,s;B)ul[ ds

0 as k, n

by (a), Lemma 3.6, and since (2.4) justifies the use of the Lebesgue dominated
convergence theorem on the middle term.

Hence a//k(t,s;B) is Cauchy in both (C(to, t; U), L2(to, t;H)) and
(L2(to, t; U), Ll(to, t; H)) and since these are complete q/oo(t, s; B) exists. Simi-
larly Ok (t;B) has a strong limit since

T

II(O(t;B)-O,(t;B))ull dt<-3 IlO(t;B)u-O(t+e)ll(t+e,t;B)ull dt

T

+3 II(Qk(t+e)-Q,(t+e))ll(t+e,t;B)ull2dt

T

+3 II(Q,(t+e)ql(t+e,t;B)-Qn(t;B))ull2dt

-->0 as k, n ---> o

by Lemmas 3.5 and 3.6.
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(c) By Theorem 2.1, and (b), (3.18) has a unique solution which is a mild
evolution operator. Denoting this solution by V(t, s), we have

[IV(t, S)X--?lk(t, S)XlI<--_fl g(t-a)llO(a; B)-O(a; B))V(a, s)xll da

+13 g(t-a)l[O(a;B)(V(a,s)-k(a,s))xllda

)
1/2

N( g2(t-) da

I1(o(; )-o(; B)) V(, s)xl d

+ const, g(t-)h(t-)llV(, s)x -(, s)xd

for some h e L(T) by Lemma 3.8. Now the first term on the right-hand side 0 as
km by the convergence of O(t; B) in (C(T; H), L(T; U)). So for k
suciently large

v(t, s)x -(t, s)xll,llxl[+ g(t-a)g(t-a)[lV(a, s)x --k(a, s)xll da

where e is arbitrarily small. Hence by the generalized Gronwall’s inequality
(Appendix A, (A.3))

[[v(t,x-%(t,sx[[o sk.
So k(t, S) converges strongly to the unique solution of (3.18).

(d) By Theorem 2.2 and (b), (3.19) has a unique solution which we denote by
V(t, s; B), so

O*(a B)) V(a, s; B)ul[ da

+/ g(t-c)]lO*(,; B)

(v(,, s;/)u -o-u,, (,, s;/)u)ll d,.

Hence

[Iv(t, s; B)u -ql(t, s; B)ull as

itfs fsN2fl 2 g2(t-a)da ]l(O*(;B)-O(;B))V(,s;B)ullZ dds
o

+2 g(t-)llO(’,B)(g(,s;B)-%(,s;B)ulld) ds



586 RUTH F. CURTAIN AND A. J. PRITCHARD

=< const. II(O(; B)-O(; B))V(,, s; B)ull= ds
0

+ const, h2(t-a) g(, s; B)u --k(a, S; B)u[I2 ds da.
0 0

If we can show that the first term 0 as k , then using the generalized
Gronwall’s lemma (A.3), we see that I,’oll(v(t, s; B)-g(t, s; B))ull ds0 as
k and g(t, s; B) converges to the unique solution of (3.19) (t, s; B) in
(C(to, t; U), L(to, t; H)) (L(to, t; U), La(to, t; H)),

’ ll(O:.(a; B)-O(a; B)) V(a, s; B)ull dsd
0 0

3 II(O(a;B)-*(a+e,a;B)O(a+e))V(a,s;B)ulldsda
0

+3 II*(+e,;B)O(+e)-O(;B)V(,s;B)ul[ dsd
0 0

+3 II*(a+e,a;B)O(a+e)-O(a;B)V(a,s;B)ul dsda
0 0

N3 II(O(;B)-*(+,;)O(+))g(,s;B)ull dd
0 0

+3 g2(e) II(O(a+e)-O(a+e))V(a,s;B)ulldsda
0 0

+3 II(*(+,;)o(+)-o(;))v(,s;8)ull dsd,
0 0

Since O(a converges by Theorem 3.1 and g(, s; B)ll h (, s with h e L(,
we have I;oI,g()h(-s)dsa <m; and the Lebesgue dominated conver-
gence theorem shows that the middle term 0 as k .e other terms 0 as
e 0 by Lemma 3.7.

(e) From (3.4), we have

O(t)x (T, t)G( t)x

+ (s, t)[W(s)+O(s; n)-(s)O(s;* n)]%(s, t)xas,

and we may take limits to obtain (3.16) from the convergence of (t,s),
O(s; B) using the Lebesgue dominated convergence theorem. A typical term to
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be estimated is

TII  (S B)R-(s *t)O*(s )(0 (s B)-O(s n))oo(s, t)xll dsk

_-< const, fk (T-s)II(Os; B)-O(s; B))oo(s, t)xll ds

<-_ const. II(O(s; B)-O*(s; B))(s, t)xll ds)/

as k - eo since (s, t)x is continuous in s.
(f) From (3.5),

Qk(t; B)u all(T, t)Gqlk(T, t; B)u

(by Lemma 3.8)

T

+ ql(s,t)(W(s)+Ok(s;B)R-l(s)O(s;B))llk(S,t;B)uds.

From (b)

IoTljQk (t; B)u Ooo(t; B)uJ[2 dt -->0

and we can show

Also

ask oo

Io’llq/(T, t)Gallk (T, t)u (T, t)Goo(T, t; B)ull2 at -->o ask.
t’jo
r

lit’l]jt
r

o.//(s, t)(W(s) + Qk (s B)R-I(s)Q(s B))0"k (S, t; B)u

oll*(s,t)(W(s)+O,(s;B)R-(s)O*(s;B)),(s,t;B)u dtO

as k -->oo using our convergence results for Ilk(t, s), allk(t, S; B), Qk(t, s; B); and
the uniform estimates of Appendix D ensure the applicability of the Lebesgue
dominated convergence theorem. So Qoo(t; B) satisfies (3.19) in the space

(C(T; U), L2(T; H))fq(L2(T; U), LI(T; H)).

As in [2] the following result is proved by a simple application of Lemma 3.3.
COROLLARY 3.1. The optimal control which minimizes (u; to, Zo) is the

feedback control

uoo(t) =-R-l(t)Q*oo(t; B)z(t).

It is possible to convert (3.16), (3.17) into simpler equivalent forms which we
will find useful.

THEOREM 3.2. The equations (3.16), (3.17) are equivalent to

(3.22) O(t)x ag*oo(T, t)Gll(T, t)x + ll*oo(s, t) W(s)ll(s, t)x ds,
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T

(3.23) Q(t; B)u all*oo(T, t)Gall(T, t; B)u + g(s, t) W(s)all(s, t; B)u ds,

where lion(t, s) is the unique solution of (3.22).
Proof. Let

(3.24) P(t; B)u all*(T, t)Gql(T, t’, B)u + all*(s, t) W(s)ll(s, t; B)u ds,

where

,3.25)?l(t,s;B)u =ql(t,s;B)u ql(t,a;B)R-(a)P*(a;B)ll(a,s;B)uda

and

%(t, s)x Zt (t, s)x I all(t, re; B)R-I(a)P*(a; B)ql(a, s)x da.(3.26)

Then

P(t; B)u ll*p(T, t)Gallp(T, t; B)

+*(T,t)G ll(T,o;B)R-(o)P*(a;B)ll,(a,t;B)udo

+ all*(s, t) W(s)llp(s, t; B)u ds

+ 11"(s, t) W(s)ll(s, a ;B)R-(a)P*(a; B)ql(a, t; B)u ds da.

Hence using (3.24),

P(t; B)u *(T, t)G,(T, t; B)u + *(s, t) W(s)g(s, t; B)u ds

+ ql*(a, t)P(a; B)R-(a)P*(a; B)q/(a, t; B)u da.

Similarly

P(t)x ll*(T, t)Gll(T, t)x + ll*(s, t) W(s)(s, t)x ds

(3.27) ,(T, t)Gll(T, t)x + ll t) W(s),(s, t)x ds

Tql*(a, t)P(a;B)R-(a)P*(a;B)ll(a, t)x da.

So the systems (3.16), (3.17) are equivalent to (3.22), (3.23) if either system yields
a unique solution. But as in Theorem 2.3 [2], you can prove that (3.18)-(3.21)
yields_a unique solution O(t) for (3.18) in the class of self adjoint bounded linear
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operator: in o(T; (H)), and from Lemma 3.2 we obtain O(t) is weakly
continu on T. As in Lemma 3.6 it follows that Q(t+e)ql(t+s,t;B)converges
to (2(t in (C(T; U), L2(T; H)) (3 (L2(T; U), LI(T; H)) ass -0.and this
yields t aiqueness of solutions of (3.19).

COgOLLhg 3.2. O(t), Ooo(t; B) are the unique solutions of the equivalent
systems (3.18)-(3.19) or (3.22), (3.23), (3.17), (3.19), in the class of bounded self
adfoint weakly continuous operators on Hand the class (C(T; U), L(T; H))
(L(T; U), L T; H)) respectively.

In [2] we obtained a differential Riccati equation by differentiating (3.16)
when (t, s) was a quasi-evolution operator, and here we obtain a similar result
using the following lemma from [2].

LEMMA 3.9. 1 gi(t), i= 1, 2, are weakly absolutely continuous H-valued
functions, such that (gi(t), x)= (gi(O), x)+o O/Os(gi(s), x) ds for x H, i= 1, 2,
then f(t) (Wg(t), g(t)) is absolutely continuous with

(Wg(s), g2(t))= (Wg(O), gz(0))+ Io’ O gz(s)) ds

THEOREM 3.3. Under the additional assumption that ql(t, s) is a quasi-
evolution operator with generator A (t), O(t) also satisfies the differential Riccati
equation

d
-(O(t)x, y)+{O(t)x,A(t)y)+(A(t)x, O(t)y)

(3.28) -(R-a(t)O*(t; B)x, O*(t; B)y)+(W(t)x, y)=0 a.e.,

O T) G for x, y a.
Furthermore if ql,(t, s) is a strong evolution operawr and A r(A(s)) is
dense in H, O(t) is the unique solution of (3.28) in thefollowing class ofoperators on
(H)"

(3.29) (a) O(t) is weakly continuous on T,

(b) (O(t)x, y) is absolutely continuous for x, y a,
(C) ll*(t+e,t;B)O(t+e) has the strong limit O*(t;B) as eO in

(C(T; H), L2( T; U)) 0 (L2(T; H), L T; U)) with

I[O*(t;n)xll<--(t-t)llxll, L(T), t2(t, T].

Proof. (a) From Theorem 2.3, we have

--alloo(t, s)x =-eliot(t, s)A (s)x alloo(t, s; B)R-(s)Q*oo(s B)x
Os

a.eo

for x A. Using this expression it is readily verified that the formal differentia-
tion of (3.16) yields (3.28) and this formal differentiation "under the integral
procedure" is justified by appealing to Lemma 3.9.

(b) Uniqueness. Initially this follows along similar lines to the proof in [2]
(Theorem 2.5) so we outline this briefly.
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Let Pi(t), Pi(t; B), 1, 2, be solutions of (3.28) in the specified class and let
O(t) P1(t)- P2(t), O*(t; B) P(t; B) -P(t; B). Then it is easily verified that

d
d-(O(t)x, x)= -2(A(t)x, O(t)x)+ 2(R-l(t)P(t; B)x, O*(t; B)x)

(3.30) -(Q(t; B)R-I(t)Q*(t; B)x, x) a.e.

d
-(Q(t)x, x)= -2(A(t)x, Q(t)x)+ 2(R-(t)P(t; B)x, Q*(t; B)x)

(3.31) +Q(t; B)R-(t)Q*(t; B)x, x) a.e.

Let

and

T

F(t)x all(s, t)Q(s; B)R-I(s)Q*(s; B)ql(s, t)x ds

T

F(t; B)x ql*l (S, t)O(s; B)R-t(s)Q*(s; B)q/l(S, t; B)x ds,

where q/(t, s), q/(t, s; B) are the perturbations corresponding to P(t; B) (cf.
(3.18), (3.19)). Then we note that F(t) has properties (3.29) (a), (b), (c), and by
Lemma 3.9, we may differentiate (F(t)x, x) for x s NA and subtracting this from
(3.30) yields

d
Q-( (t)-F(t))x, x)- 2(Q(t)-F(t))x, A (t)x)

(3.32) + 2((Q(t; B)-F(t; B))x, R-(t)P(t; B)x) 0 a.e.,

Q(T) F(T).

In (c) we shall prove that (3.32) has the unique solution zero and so Q(t)= F(t),
with

(Q(t)x, x)= (ql* (s, t)Q(s; B)R-(s)Q*(s; B)a//l(S, t)x, x) ds

>-0.

Using the same arguments for P2 perturbations, we find (Q(t)x, x)<-_0 and so
Q(t)x 0 for x A. Since A is dense in H, Q(t) 0 and so (3.30) has a unique
solution in the specified class.

(c) We consider the equation

d
(p(t)x, y) -(P(t)x, A (t)y)- (A (t)x, P(t)y)

dt
+ (P*(t; B)x, R-(t)P(t; B)*y)(3.33)

+(P*(t; B)x,R-(t)P*(t; B)y) a.e.,

P(T) 0,
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where Pl(t), P(t; B) is any solution of (3.28) in the specified class. We show that
(3.33) has the unique solution in the class of operators with properties (3.29) (a),
(b) and (c).

Let $(t)=ql*(t,s)P(t)ag(t,s). Then since ag(t,s) is a strong evolution
operator, we may apply Lemma 3.9 to show that (S(t)x, y) is absolutely continu-
ous for x, y A with

d
4--(S(t)x, y)= (P*(t; B)ql(t, s)x, R-l(t)P*l (t; B)ql(t, s)y)

So

+(P*(t; B)all(t, s)x, R-(t)P*(t; B)ll(t, s)y) a.e.

T

(S(t)x, y)=- (P*(a;B)all(a,s)x,R-(a)P(a;B)ll(a,s)y)

+ (Vx*(a B)all(a, s)x, R-a(a)P*(a; B)all(a, s)y);

letting s -* t, we obtain

(P(t)x, y)=- [(P*(a B)ll(a, t)x,R-(a)P(a; B)all(a, t)y)

(3.34) + (P*(a; B)ql (a, t)x, R-(a)P*(a; B)q/(a, t)y)] da.

Since P*(t; B) exists by property (3.29) (c), we see that

(P*(t; B)x, u}=- [(P*(; B)(, t)x,R-(a)P’(a; B)(a, t; B)u}

+(P(a; B)all(a, t)x, R-l(a)P*(a; B)ql(a, t; B)u)] da.

Let u P*(t; B)x; then

IlP*(t; B)xll --< const. IIP*(; B)[[ fi(t- a)g(ct t)[[P*(t; B)xll Ilxll

Hence

[Ie*(t;n)xll<--const. f-(t-)g(-t)llP*(;n)illlxlld.

So
T

[IP*(t;B)[l=<const. f-(t-a)g(a-t)llP*(a; B)][ da.

From the generalized Gronwall’s inequality (Appendix A, (A.3)) and from (3.34),
P(/) 0.

4. Extensions to more general cost functionais. The motivation for extending
the results of 3 to a more general cost functional is that one may wish to allow
for penalties of the state values on a particular lower dimensional manifold F of
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the region fl by including a term

ICz(T)[ + ICz(s)l ds,
0

where C: L(f) --> R represents the evaluation map on F. (The dual for this in the
filtering problem is boundary noise in the state equation, an important practical
problem.) To allow for this, we suppose there exists a map //(C; t,s):H->K
defined on A(T), where K is another Hilbert space and

(4.1) IIq/(C; r, s)hll,, -f(t-s)llhll, for t > s,

where

(4.2) q/(C; t, s)ll(r, s)= ?/(C; t, s) for O<=s <r<=t <- T.

This means we may assume

(4.3) f(t+s)<=Mf(t), t>0, s>-0 (cf.(2.6)).

Now we define a map (C; t, s; B): U-->K by

(4.4) g(C;t,s;B)=ql(C;t,r)all(r,s;B), O<--s<r<t<=T,

which implies that

[l//(C; t, s; n)ull <=f(t-r)g(r-s)llullt, (O<-s <r <t<= T)
(4.5)

f(tx (t- s))g((1 -/z)(t- s))Ilu I1 ,
where 0 </x < 1,/z is arbitrary.

We now consider the more general cost function

(u; to, Zo)=(z(T), Gz(T))K+ (Cz(s), Cz(s))Kds
(4.6)

+ (u(s),R(s)u(s))tds,
0

where

(Cz)(t)= ?/(C; t, to)Zo+ ?/(C; t, s; B)u(s) ds

and //(C; t, s), a//(C; t, s; B) satisfies (4.1)-(4.5). Now it is possible to form a
reeursive scheme analogous to (3.3)-(3.9), but replacing ll(s, t) W(s)ll(s, t) by
//(C; s, t)allk(C; s, t) and ll(s, t) W(S)O’k(S, t; B) by //(C; s, t)-tlk(C; s, t; B)
and so on. If we make the additional assumption

(4.7) f( )g( L.(T),

then it is readily verified that by modifying the fk estimates, the whole argument of
3 goes through as before and so we state the final result.
THEOREM 4.1. Consider the controlled system

(4.8) z(t) ql(t, to)Zo+ ql(t, s; B)u(s) ds
0
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under the cost (4.6) where H, K are real Hilbert spaces, zoH, ql(t, s) is a mtM
evolution operator on H, ll(t, s; B) satisfies (2.4)-(2.6), q/(C; t, s), q/(C; t, s; B)
and (4.7), and R, R- 3(T: (U)) satis[y (4.1)-(4.5). Then there exists a
unique optimal control u* Lz(T; U) given by

(4.9)

(4.10)

(4.11)

u*(t) =-R-l(t)O(t; B)z(t),

Q(t; B)u ql*oo(T, t)G’llo(T, t; B)u

+ //(C; s, t)?/(C; s, t; B)u ds,

//(C; t, s)x a//(C; t, s)x

q/(C; t, ce; B)R-X(a)oc(oe; B)all(a, s)x dee.

The minimum cost is (OC(T)zo, Zo), where

(4.12)
T

oc(t)x ql*(T, t)Gall(T, t)x + q/*(C; s, t)q/(C; s, t)x ds.

There are also analogUes to (3.16)-(3.17), but there is no analogue to the
differential form of O(t), as in Theorem 3.3.

5. The filtering and control problems and their duality. In this section we
show how the filtering problem with unbounded observations, and the control
problem with unbounded control action can be formulated, and explore the
duality introduced by the infinite dimensional Riccati equation.

For the general formulation of the filtering problem for infinite dimensional
linear systems with Gaussian white noise disturbance we follow [3], and consider

(5.1) z(t) V(t, O)zo + V(t, s)D(s) dw(s),

(5.2) y(t) C(s)z(s) ds + F(s) dv(s),

vhere V(t, s) is a mild evolution operator on a real separable Hilbert space H,
(12, ,/x) is a complete probability space, Zo is a Gaussian random variable

L2(fl; H) with zero expectation and covariance Po, w(t) is an H-valued Wiener
process with covariance matrix R1 (H), D o(T; .(H)), F, F-1

Loo(T; (Rk)), v is an Rk-valued Wiener process with covariance R2, and R
exists, w, v and z0 are mutually independent. The filtering problem is to find the
best global estimate (t) of the signal process z(t) based on the observation
process y(s); O<=s<=t. In [3] it is shown that

(5.3) (t) 2/(t, s)P(s)C*(s)(F(s)R2F*(s))- dy (s),
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where (t, s) is the perturbation of ag(t, s) by-P(t)C*(t)(F(t)R2F*(t))-IC(t)
satisfying

(5.4)
(t, s)x V(t, s)x I,’ (t, r)(C(r)P(r))*(F(r)RzF*(r))-C(r)V(r, s)x dr

V(t, s)x V(t, r)(C(r)P(r))*(F(r)RzF*(r))-1C(r)(r, s)x dr

(see [2]). P(t) is the unique solution of the integral Riccati equation

(5.5) P(t)x g(t, O)Po*(t, O)x + V(t, s)D(s)RD*(s)*(t, s)x ds.

Existence and uniqueness for (5.5) are obtained by transforming it to the dual
Riccati equation (5.6) and appealing to known results for the quadratic cost
control problem of [2].

(5.6) O(t)x all*oo(T, t)Po V(T, t)x + ll*oo(s, t) W(s)ql(s, t)x ds,

where

P(t)= O(T-t), lloo(t, s)= qJ*(T-s, T-t), W(s)=D(T-s)RD*(T-s).

So qZoo(t, s) is the perturbation of the dual mild evolution operator q/(t, s)
V*(T-s, T- t) by -C*(T- t)(F(T- t)R2F*(T- t))-xC(T t)O(t)= G(t) satis-
fying

(5.7)

qloo(t, s)x ll(t, s)x ll(t, r)G(r)lloo(r, s)x ds

ll(t, s)x (t, r)G(r)all(r, s)x ds.

If the observation is of the value of the state at certain points or manifolds, C will
be linear, but unbounded with dense domain. So assuming that C(t) V(t, s) exists
as a bounded extension, (5.3), (5.4) and (5.5) will still make sense. To establish
existence and uniqueness of the integral Riccati equation (5.6) with unbounded C,
we are led to considering the following generalization of the dual Riccati system
(5.6), (5.7):

(5.9)

T

O(t)x all*oo( T, t)Po all T, t)x + ll(s, t) Wl(s)ql (s, t)x ds,

Q(t; C)x all*oo(T, t)Poll(T, t; C)x + ll*oo(s, t) Wa(s)ll(s, t; C)x ds,

(5.10)
lo(t, s)x (t, s)X ls’ (t, O; C)(F(T-p)R2F*(T-P))-

O*(; C)eU.(a, s)x do,
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where we have introduced the duality

(5.11) q/(t, s)= V*(T-s, T-t),

all(t, s; C)=[C(T-s)V(T-s, T- t)]*

(assuming this can be well-defined).
If q/(t, s), q/(t, s; C) satisfy the assumptions (2.1), (2.2)’, (2.4), (2.5), (2.6),

then from the theory of 3, we know that (5.9)-(5.10) has a unique solution.
Consequently for both the filtering and control problems we need to show

how it is possible to impose conditions on the operators V(t, s), C(t), or q/(t, s),
B(t) which enable us to construct an operator V(t,s; C) or all(t,s;B) which
satisfies the assumptions (2.4), (2.5), (2.6). There will be two types of conditions
corresponding to the Examples 1.1 and 1.2 introduced in 1.

Assumption (5.13). (a) For each el0, T], C(t) is a closed densely defined
linear operator C(t) H--> K, where H, K are Hilbert spaces. (b) For almost all t, s,
::ig L2(T) and a set Xt.s dense in H such that

IIc(t) v(t, s)xll g(t s)[]xllH ’x

We note (see [11]) that C*(t) is a closed, densely defined linear operator on K*
and since ,ft, H, there is an extension C(t) V(t, s) Sf(H, K). This extension will
depend on the particular version taken for g from the equivalence classes of
g L2(T). However all such extensions will give the same value for

and we have

y(t) I0 C(t) V(t, s)h(s) ds,

[[y(t)lJc=< g(t-s)llh(s)ll ds

for y L(T; H). So we will not distinguish between the extensions, and take

Ilc(t) w(t, s)lle(,,,)--< g(t- s).

If we identify H with its dual, since g(t, s)(H), we have (see [11])

C(t) V(t, s)* [C(t) V(t, s)]*
and

So

with

V*(t, s)C*(t) c [C(t) V(t, s)]*.

C(t) V(t, s)* V*(t, s)C*(t)

v*(t, s)C*(t)ll <= g(t s)

and

V*(t, s)C*(t) V*(r, s) V*(t, r)C*(t).
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If we set

(5.14)

and

(5.5)

with

0?/(t, s) V*(T-s, T-t)

ql(t,s; C)= V*(T-s, T-t)C*(T-s)

and

(t, s; B)= (t, s)B(s)

The above analysis is .not relevant for the case of control or observation from
boundaries or lower dimension manifolds, since although in general C(t) will be
densely defined it will not be closed, and C*(t), B(t) will not have dense domain
(Example 1.2). For these cases we need to consider a different approach and
assume

Assumption (5.17). Let Wbe a Banach space such that W H, and assume

(a) H= (C(t)) W, t T,

(b) C Loo(T; (W, K)),

(c) V(t,s)o(H, W), t>s,

(d) ]lv(t,s)xllw<-_g(t-s)llxll forallxH.

The above assumptions imply

Ilc(t) V(t, s)x I1,, -< g(t-s)IlCll(,(., Ilx II,.
Also for f L2(T; H), V(t, s)f(s) is in Wand is Bochner integrable with respect to
W. Moreover since C Lo(T; (W, K)),

c(t v(t, s)(s s c(tl v(t, sl’(s ds.

ll*(t, s; B) B*(s)ll*(t, s).

Now for t > s,

and

V*(t, s) .(W*, H)

C*(t)e(U, W*).

(5.16)

Then

K*=U

we see that q/(t, s; C) satisfies the assumptions (2.4), (2.5), (2.6). Conversely for
the control problem we assume B(t):U-->H is a closed, densely defined linear
operator, such that

II*t (t, s)n(s)ull <-_ g(t- s)llullt.
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Hence

and

Thus if we set

V*(t, s)C*(t)= (C(t) V(t, s))*

v*(t, s)C*(t)ll <= g(t- s).

(5.18) //(t, s) V*(T-s, T-t),

(5.19) q/(t, s; C)= V*(T-s, T-t)C*(T-s), K*= U,

we see that q/(t, s; C) satisfies the assumptions (2.4), (2.5), (2.6), and the infinite
dimensional Riccati equation associated with the filtering problem is well defined.
Alternatively the dual conditions for the control problem take the form

(a) ql(t,s)(W*,H), t>s,

(b) lieu (t, s)xll,_-< g(t- s)Ilxllw,, x w*,
(5.20)

(c) B L(T; (U, W*)),

(d) ll(t, s; B)= ll(t, s)B(s).

Then q/(t, s; B) satisfies the assumptions (2.4), (2.5), (2.6) and the control
problem is well defined. Assumption (a) implies that the evolution operator.is
smoothing as is the case for analytic semigroups, for example. If this is not the
case, it is necessary to identify W with H and then to choose spaces U and H so
that (b) holds (see 6). In some control problems finding a suitable abstract
formulation satisfying (5.20) is rather indirect, namely one finds first a suitable
"dual" operator C(t) and then B(t) is defined as its transpose with respect to
certain spaces (see 6).

6. Applications. In the preceding theory we have assumed that the dynamics
are given as input-output relations in terms of an evolution operator //(t, s):

(6.1) z(t)=all(t, to)Zo+ ll(t,s; B)u(s) ds
0

with u L.(T; U), zoH. More usually in applications the system will be
described in terms of abstract evolution equations and so first we must examine
the connection between these two formulations.

If the control is distributed, but unbounded, the appropriate abstract evolu-
tion equation is . (t) A (t)z(t) + B(t)u(t)
(6.2) Z(to) Zo, u(t) (B(t)).

Then if all(t, s), B(t) satisfy assumption (5.16) we define (6.1) to be a mild
solution of (6.2) and there is no difficulty in interpreting the operator B(t).
However if the control is constrained to a submanifold, the boundary or even
points then it is not clear how we should choose B(t), and what is the exact
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relationship of (6.1) to the evolution equation. In order to show how this can be
done let us consider the following.

:(t)=A(t)z(t), Z(to)=Zo inf,,
(6.3)

[y(t)z(t)]r u(t) onF,

where f is an open bounded region in R" with boundary 0fl and F is a
submanifold of f or of the boundary 0f. The symbol [. ]r denotes the change in
"y(t)z(t) across F. Assume that U is a Hilbert space based on F, and there is a
Green’s formula of the form

(A (t)Zx, Z2)H--(Z1, A $(t)Z2)H
(6.4)

([’Y(t)Zl]r, $(t)z2)u,u*--([$,(g)zl]r, Y,(t)Z2)u,u*.

For z2 e (A *(t)) in 1, zl e (A (t)) on fi\F and almost all e T, where .,. )u.u*
denotes the duality pairing between U and U*.

This Green’s formula (6.4) is somewhat unusual although versions for F c 0f
have been established by Lions (see [7] and [8]). Further assume there are Hilbert
spaces El, E2, F1, F2 with continuous and dense injections into H, such that

y(t) (E, U), y.(t) .(E2, U*), 6(t) (F, U*),
(6.5)

6.(t) (Fz, U) for almost all T.

If we choose W=Fa and let B(t)= 6(t) r, the transpose of 8, then B(t)
(U, F*), and is given by

(6.6) (B(t)z, Zz)w.w (z, 6(t)zz)v,u..

Now assume A (t) generates an evolution operator //(t, s) onHwith q/(t, s)
(F*, H), > s,

II(t,s)zll<-g(t-s)llzll Vz eH, geL.(T).

The conditions (5.20) are satisfied so that

(6.7) z(t) ’ll(t, to)zo + all(t, s)B(s)u(s) ds
0

is well defined for uL2(T; U). If V(t,s)=g*(T-s,T-t) is given with
generator A*(T-t), then z given by (6.7) is a weak solution of

:(t)=A(t)z(t)+B(t)u(t), Z(to)=Zo,(6.8)

and

2(t) A (t)z(t), Z(to) Zo,
(6.9)

[y(t)z(t)]r u, [6,(t)z(t)]r O.

Here by a weak solution we mean there exists

(C[T;W], H, ((s)(A*(s)),
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(z(s),6(s)+A*(s)((s))nds+ (B(s)u(s),(S))w.wds
o o

(6.10) +(Zo, (tol)H O.

To see this we compute for z satisfying (6.7),
r
(z(s), (s)+A *(s):(s))/_/ds

o

(ll(s, to)Zo, (s)+A*(s)(S))HdS
o

+ (all(s, a)B(a)u(a), d(s)+A*(s)(s))nds da
o o

(Zo, g*(s, to)d(s) + ll*(s, to)A *(s)sX(s))n ds
o

+ (B(a)u(a), all*(s, a)d(s)+ql*(s, a)A*(s)(S))w.wda ds
o

(interchanging the order of integration and using (5.20))
T d

o
-s(z’ (s, tol((s)) ds

+ -s(B(a)u(a), ql*(s, a)(a))w.wds da
o

599

T

=-(Zo, (to)),- (B(a)u(a),
o

Clearly the weak solution of (6.8) satisfies (6.10), and since by Green’s
formula (6.4)

([y(t)z(t)]r, 6(t)Z)uu,= (u, 6(t)Z)uu.

(B(t)u, Z)ww.,

then by (6.6) we see that the weak solution of (6.9) also satisfies (6.10).
We remark that a sufficient condition for V(t, s) to be quasi is that 0g (t, s) is a

strong evolution operator and A (t)ql(t, s)z is Bochner integrable on (s, T] for all
z @(a (s)) (see [2]).

We now apply the theory to some examples introduced in 1.
Example 6.1 (Example 1.2). A A* O2/Ox and we take H L2(0, 1),

U= U*=R ,
(a)=(A*)={zH:zxH, zx(1)=O=z(O)}, ,z z(0).

(since V(t, s) is quasi)
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The Green’s formula for A is

(6.11) (zz-zlz2) dx =-[Zl(O)]oz(O)+[zl(O)]oZ(O)

for zl, z2(A) on (0, 1]. So

[,z]=[zx(O)], ,,z zx(O),
,z -z (O), ,,z -z (O),

and

E1 E:z n3/:z(0, 1); F F2 H/Z(0, 1) W.

Hence -B 6, the Dirac delta function, and B (R, W*).
To verify that t e(W*, H) is straightforward and yields

M

So assumption (5.20) is satisfied and the boundary control problem is well-
defined. Since the evolution operator is a semigroup, we know that the differential
Riccati equation has a unique solution.

Example 6.2 (Example 1.1).

A =A*=0- and H=L2(0, 1), U= U*=R.

(A (A*) {z e H: Z,x e H, z(1) 0 z (0)}, yz z(0).

We have the Green’s formula similar to (6.11) and so

fO (ZlxxZ2--ZlZ2xx)dx--[Zl(O)]Z2x(O)--[Zlx(O)]z2(O for Zl, Z2e)(A on (0, 1].

,z z(0), /,z z(0), ,z z(0), ,,z z(0)

with E E:z H/(0, 1), F1 F H3/:z(0, 1). As before we let W F:z
H3/(0, 1) and -B =’, the negative derivative of the Dirac delta function.
However, this time we have

MII-x ll,., <- t-- llx ,
and so assumption (5.20) does not hold with this choice of spaces. However, if
instead we choose H H(-/z)-e (0, 1), U R and F H(x/2)-ze (0, 1), we obtain
the estimate

M

and assumption (5.20) will be satisfied.
So we see that the control and filtering problems are well posed for this

control and state space pairing. In general if we calculate g Lp(T) with 1 -<p < 2
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for a particular pairing (U, H), it may be possible to enlarge the state space or
smooth the control space U to obtain a new g L, (T) withp >= 2. Alternatively if it
is decided to work with the spaces (U, H) which yield 1 _-< p < 2, we will not have z
given by (3.1) in C(T; H) but in L2p/(2-p)(T; H). Thus the control problem is well
defined if there is no penalty on the final state, i.e., G 0 in (3.2).

From time-dependent parabolic partial differential equations a similar
analysis must be made for each particular problem; however, we can make the
following general remarks concerning these systems.

For the Kato and Tanabe class for each t, the operator A (t) generates an
analytic semigroup and so the evolution operator q/(t, s) maps H into (A (t)) for
each t > s (see [5], [6]). So one of the essential assumptions of (5.17) that q/(t, s) be
smoothing is satisfied. For assumption (5.13) we can deduce some information
from the following perturbation result in [6]. If C(t) is a closed linear operator
whose domain contains that of A (t) and

M
[IC(t)(M-A(t)-II<-IA[t_, M>0, y>0

for each h in a closed sector of the resolvent set ofA (t), thenA (t) + C(t) generates
a strong evolution operator and

C
IIc(t) (t, s)ll (t-s)"

So for y < 1/2, assumption (5.13) is satisfied and the first type of unbounded control
problem has a unique solution. Moreover, under the extra assumption
sup, tim (t)xl[ < oo for each x (A (t)), A (t) generates a strong evolution
operator and so the differential Riccati equation has a unique solution (see [2]).

In Lions’ theory [7], the operator A(t) is associated with a bilinear form
a (t; p, ) on a Hilbert space Vwhich has continuous injection into H, and is dense
in H. Identifying H with its dual, we have

VH V*

and under coercivity, boundedness and measurability conditions on the bilinear
form, Lions shows that there is a unique solution in W(O, T) of

:(t) A (t)z,

z(O)=zoH.

Here W(0, T) is the Hilbert space

W(0, T) {z z Lz(T; V), z" L2(T; V*)}.
In [2] we have shown that the evolution operator is a quasi-evolution operator,
and we note that

(t, S)zoll as <

This indicates that for assumption (5.20) to be satisfied we should take V W. If
the conditions of assumption (5.20) for a particular boundary control problem or
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control from manifold problem can be satisfied then we know that we are able to
differentiate the Riccati equation. If furthermore the coefficients of A(t) are
sufficiently smooth then from Kato and Tanabe [6], we know thatA (t) generates a
strong evolution operator and so the differential Riccati equation will have a
unique solution. However, this is not necessarily the case under the weaker
assumptions of Lions [7].

It is useful to note that if we have already established that q/(t, s) and B(s)
satisfy (5.16) or (5.20), then we know that any bounded perturbation q/9 (t, s) of
q/(t, s) also satisfies (5.16) or (5.20) for /o(t, s) is the unique solution of

’liD(t, S)X l(t, S)X + ’ll(t, p)D(p)allD(p, s)x dp.

This is particularly useful if q/(t, s)= Wt-s, a semigroup with generator A in
which case qlD(t, S) is a quasi evolution operator with generator A +D(t).
Moreover the control problem for z(t)= liD(t, to)Zo + [.tto qlD(t, S; B)u(s) ds has a
unique solution and the differential Riccati equation has a unique solution.

Finally we consider boundary control for a class of hyperbolic systems studied
in [9], [10], for which the foregoing approach is not applicable. In [10], Vinter
considers both boundary and distributed control obtaining a unique optimal
control in feedback form, although he needs to impose extra assumptions for the
boundary control case, In [2] we treated the distributed case using an evolution
operator approach, so here we just consider the following boundary control
problems:

(6.12)
A

OzOz=ot (t)z ,1= -x + gz,

Mz [oa u, z (0) Zo,

on the spatial domain 12 {x s R "; Xl 0}, 0 t -< T, m > 1, where Ai, K, M are
C matrix valued functions on O [0, T]x fl and : [0, T]x 12, respectively;
each of which may be expressed by a constant function plus a function of compact
support. Denote by C()(Q) the restriction of C(R"/1) to the closure of
[0, T] x II. Then we define a strong solution to (6.12) if given f s L2(O), u L2(Z)
and z0 L2(12), there exists a sequence {z,} with z, C(0)(O) such that

Then under technical assumptions on Ai, which ensure that the system is
strictly hyperbolic with noncharacteristic boundary, (6.12) has a unique strong
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solution z L2(Q). Furthermore, the map t--> z(t) is strongly continuous from
T--> L2(fl) and the estimate

(6.13) ][z t 2 _-< U
2

Z
2

holds for all t T, where C is a constant independent of t.
The technical assumptions on and M of interest to us here are

Al(t)=(A-(t) 0 )0 A /(t)

where A- is a diagonal r x r matrix with negative entries and A / is a diagonal
(n r) x (n r) matrix with positive entries.

M(t) (I: M+(t)), where I is the r x r identity matrix andM/ is r (n r) (see
[9] for details).

In [2], 4.4, we showed that (6.5) with u 0 can be rewritten

,(t)=(t)z(t),
(6.14)

Z(to)=Zo,

where Zo H L2(1]) and (t) is the linear operator on H given by

with domain

Oh+(g(t)h)(x) A(t, x) -x K(t, x)h(x)
i=1

((t)) {h eH:sg(t)h eHandMhloa=O}.
Furthermore, g(t) is the generator of a quasi-evolution operator q/(t, s) on H,
and the dual operator q/*(T-s, T-t) is also quasi.

In order to satisfy assumption (5.20), we need to establish some smoothness
properties of q/(t, s), but unfortunately the strongest regularity property from
Rauch [9] for u 0 is that if z0 e H(fD, then z eH (Q), and an estimate of the
form (6.12) holds replacing the L2 norms by $obolev norms of order s. So in this
case we cannot hope to satisfy (5.20). However, by takingH L2(f) and choosing
a smooth control space U H/2(012), we can reformulate (6.12) as a bounded
control problem of the type considered in [2]. As in 5, we choose B(t) using the
Green’s formula for (t), namely,

(6".15) ((t)u, V)H--(U, *(t)V)H (M(t)u, D(t)v)r.(o)-(E(t)u, M*(t)v)t(oa),
where M*(t)=(-(A+)-(M+)rA-:I); D(t)=(-A--D(A+)-M+A-:D),
E(t)=[D(:D(M+ +A +] and D1 is an arbitrary rx(n-r) matrix. 4*(t) is the
formal adjoint of ’(t) (see [9]). But the weak solution of (6.12) must satisfy

(Z(t),sg*(t)c(t)+(t))Hdt+ (u(t),D(t)e(t))L(oa)dt+(Zo, :(tO))H 0
o o

where C(T;H), (t)(C*(t)), *(t)(t) is integrab!e, :(T)=O and
M*(t)e(t)[on O. Hence we must choose B according to

(B(y)u, )H (U, (t))uu*
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where U H1/2(OII) and (t) D(t)loa, since

(t)e(H(I),H-I/2(OII), B(t)e(U,H(II)),
(6.16)

z(t) ll(t, 0)zo+ (t, s)B(s) ds

is the weak solution to (6.12).
We now consider the control problem for (6.9) with the cost function

(u) (z(T), Gz(T)),

(6.17) + [(z(s), W(s)z(S))l-i+(u(s),R(s)u(s)}c] ds,

where G, W and R satisfy the usual assumptions as in 2. With U H/(O),
(6.16), (6.17) defines a bounded control problem and from [2], there exists a
unique optimal control

where

a t) -R-l(t)B(t)O(t)z t),

T

Q(t)x ll*(T, t)Gqloo(T, t)x + ll*(s, t) W(s)ag(s, t)x ds

and q/(t, s) is the perturbation of //(t, s) by-B(t)R-(t)B*(t)Q(t). Here we
have formulated the problem as a bounded control action problem by restricting
the control space. Alternatively we could restrict G and Wso that ti(t) is always in
H/2(O). This is so if G and W(t)..(L2(O), H(f)), for then since q/(t, s) (and
q/*(t, s)) maps Ho/Z(fl) to Ha/(I"I), we have Q(t) maps L2(I) to H(). But
B*(t)(H(I), HI/(Ofl)) and so all feedback controls remain in Ha/2(O’),
provided R-l(t) (Ha/Z(Ofl)).

Essentially this is what Vinter and Johnson have done in [10] by assuming
W=0, R the identity on L2(0), and G (L2(I)), H(fl)). However, their
approach is quite different from ours.

Appendix A.

(A.1) ]’(t) h(t)+ G(t-s)1(s) ds.

We prove existence and uniqueness of solution for (A.1) for (a) h e C(T) and (b)
h L(T) under the following assumptions on G:

G is locally integrable, positive and is subadditive:
(A.2)

G(t + s) <-MG(t) for t, s > 0.

Proolofexistence for h C( T). Now (A.2) implies that e-G(t) dt M <
o for to, T> 0 and so

(1.3) G(t-s)h(s) ds Mllhll e’.
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Hencethe Volterra integral operator G is well defined where

(Gh)(t)= G(t-s)h(s) ds.

The iterates G of G are given by

(Gnh)(t)= Gn(t-s)h(s) ds,

where

G(t) G(t-r)G_l(r) dr, n 2,...

Gl(t)=G(t).
Now

(G"h)(t) <= Y Mllh[loe
n=l

by iterating (A.3).
From (A.2), by choosing w sufficiently large, we can make M,o < 1 and so

n=l (G"h)(.) C(T). It. is then easily verified that h +Y,o Gnh is the unique
solution to (A.1) in C(T).

COROLLARY A.4.

.Ya= G. (t-s) ds < const, e ’’.

Proof of existence for hLz(T). Since (G.h)(t)=o G.(t-s)h(s)ds is a
convolution, we have I]G.hllz-< IIG.llllhllz and so

0
T

Z llG.hl[ Ilhll E G, (s) ds
n=l n=l

< const. Ilhll= (by Corollary A.4).

So h +, G,h is the unique solution of (A. 1) in L(.
Cooagx A.5 (Generalized Gronwall’s inequality). Suppose

g(t)Nh(t)+ G(t-s)g(s) ds,

where G satisfies (A.2) and h s L;(; then

g(t) <- h (t) + Z G,h (t).
n=l

So if h=O, g=O.

Appendix B. Prooi ot Lemma 3.1. We prove the results by induction on k.
From (2.4)

}l*(t, s; B)hllu <= g(t- s)llhllH.
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Hence O*o(t; B) is well defined, and

liOn(t; B)hJlou <- g(r- t)llGllMllhll+ g(s t) WMllhll ds,

where W= ess. supsr W(s)ll, M- sup( lieU(t, s)ll by (2.4)-(2.6), so that

[IFl(t)hllu -<fl(Z- t)[Ihlln,
where

fl(t2-t)- g(t-t)[IGI[M+MW g(a) da L2(T)

since g s L(T) and is subadditive since g is. Also

liOn(t; B)h(t)lludt<=MllGl[ g(T-t)llh(t)ll dt
0 0

for h e La(T; H). Hence
T T

)
1/2

[[O(t;B)h(t)[dt[MlG( g(T-t)dt
0 0

f.+(r-t)= g.(r-t)llOllM. + WM, g,(a) da

Io+MB g()(r-t-)

and

Then

I}O*(t; B)h(t)ll dt<-B f+(T-t)llh(t)}l at
0 0

IT t)
1/2

<--8 f.+l(T-t) d Ilh("
0
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and

IIO*(t; B)h(t){Iz dt<--B fz,+(T- t) dt IlhllccT;m.
0 0

Therefore

O* B) (C(T; H), L2(T; U)) fqo(L2(T; H), LI(T; U)).

Similarly we can show the same results for On(" B). By Theorem 2.1, q/,,/l(t, s)
is a well defined mild evolution operator, and by Theorem 2.2, q/n/(t, s; B) has
the properties (2.4)-(2.6) and the estimates (3.12) and (3.13) hold.

Now

Thus

IIO (t; B, B*)ull < g(T-- t)llGllg(r- t)llullc(r;u

+ w g(s tllUllcr u d

+B g2.(s-t)f2.(Z-s) ds Ilullc(;g.

Hence

0,,,(" ;B,B*)(C(T; U),L(T; U)).

Appendix C. Proof of Lemma 3.2. Since F (C(T; H), Le(T; U)) and
F* (L2(T; U), L(T; H)) we see that the integral in (3.4) is a well defined
Bochner integral. Moreover

T

IlO(t)xllMllllllxll+ M(W+H(T-s)) as Ilxll

so that Ok (t) is bounded. Clearly Ok (t) is self adjoint, and the weak continuity of
Ok (t)x is a consequence of the strong continuity of k (t, s)x. The weak continuity
implies the strong measurability and so the lemma is proved.

Appendix D. Proof of Lemma 3.6. (a) Set

I1% (t, s + )0(s + , s; n)u -%(t, s; n)u[I h(t, s).
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Then from (3.8),

h t, s all t, o B F o s + e all s + e s B u ll a s B u do

+ (t, a.; B)F(a)(a, s B)t da

Hence

h(t, s) g(t-).(T-)h(, s) d

s+e

+ g(t-a)(T-a)g(a-s) d Ilull

g2(t-a) da
+

[(r-a)h(a, s)da

+ g2(t-a) da f(r-a)g(a-s)d Ilull.

Let fl(t)=[ h(t, s) ds, then

(t) N const. (T-)()d

+const, g() d (r-)d

So by Gronwall’s inequality (A.3) we see that (t)0 as e 0.
The proofs of (b) and (c) are direct consequences of (a), and the bounds on

(t, s), (t, s; B) and the semigroup properties (2.1) on (t, s). For example
to prove (c) one of the terms is

*(t + e, t; B)(T, +e)(T, +e)(t + e, t; B)u

*(t + e, t; B)(T, t + e)G((T, + e)(t + e, t; B)-(T, t; B))u

+[*(t +e, t; B)(T, +e)-(T, t; B)(T, t; B)]u.

For u C(T; U),(T; B)u(. )e L(T; H) and so the second term tends to zero
in L(T; U) as e 0 by (a). Now from the convergence in (a) we know that

*(t+e,t;B)(T, t+e)e(L(O, T-e;H),L(O, T-e; U))

and is uniformly bounded in e. Hence

o

T-

[l*(t + e, t; B)( t+ e)G(g(Z, t +e)-(t + e, t; B)

(T, t; B))ull dt

const. I[ll j I1( (Z, t+e)(t+e, t; B)-( t; B))ull dt.
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But we know from (a) that Ilk(T, t + e)ll(t + e, t; B)-allk(T, t; B) converges as
e 0 in(C(T; U), L2( T; H)). Similar arguments can be used for the other terms
to prove (b) and (c).

Appendix E. Proof of Lemma 3.7. By Theorem 3.1 (Qk(t+e)(t+e,
t; B)wo, is decreasing in k for all t, t + e e T, e > 0 and u0 U and

liOn(t; B)h(t)llv dt <=- M211GII2 g2(T- t) dt
0 0

+ W2M2 g(s -t) ds d Ilhll(;m.
0

Therefore by (2.5),

Od B s(C(T; H), L:( T; U))tq(L:(r; H), L(r; U)),

and similarly we can show

0o(" B)e(C(T; U),L2(T; H)) f’I(La(T; U),LI(T; H)).

Also

IlOo(t; B,B*)ull<-g(T-t)llOllg(T-t)llullc(r;t/ W g=(s-t) llullc(r;t ds

and so

IlOo(t;n,B*)ulldt<-_ I111 g(T-t)dt+ W g(s-t)ds IlulI(T;
0 0 0

and

0o(. ;B,B*)e(C(T; U),L(T; U)).

By Theorem 2.1, q/l(t, s) is well defined and is a mild evolution operator with

II0u (t, s)ll =< M1.
ByTheorem 2.2, 1/1 (t, s; B) is Well defined and satisfies an estimate of the form

IIu(t, s; n)ull_-< g(t-s)llull,

where g e L(73 and is subadditive.
This establishes the lemma for k 1. Now assume the lemma holds for

k _-<n 1; then Theorems 2.1, 2.2 ensure the existence of ?/n (t, s) and %,(t, s; B)
with the required properties (3.11), (3.12). Also

[[O*,(t;B)hll<-_(g,(r-t)l[G[lM,+ g,(s-t)(W+f,(T-s)[,(T-s))M, ds

where ess sups 7- lie (s)ll--< t. Thus

IlF+a(t)hllf+l(T- t)llhll.
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But (Qk(t+e)ll(t+e, t; B)uo, all(t+e, t; B)uo) converges to (Qk(t; B,B*)uo,
Uo) as e 0 in LI(T) by Lemma 3.6 (c). So (Qk(t; 13, B*)Uo, Uo) is decreasing in k
for almost all t T, and all u0 U and so is uniformly bounded in k for almost all t.
In particular we can find an L(T) function such that

(Ok(t; B, B*)uo, Uo) <- q(t)Jluol[2 for almost all T.

Appendix F. Proof of Lemma 3.8. From (3.7) and Lemma 3.7, since G, Ware
positive operators,

f,T]IR /2(s)F(s)ql(s, B)uoll2 ds <-q(t)lluoll2.t;

But R is strictly positive, so

TIIF(s) (S, t; B),oll= _<-const. q(t)lluoll2.ds

Hence from (3.9),

II(t, s; B)uoll<=g(t-s)llUoll+ g(t-a)llFk(a)allk(a, s; B)uoll da

t--s 1/2

<=g(t-s)llUoll+const.(I g2(ct)dor)
r(t, s)Iluoll

and r L2(T T) is a uniform bound. This implies that there exists an ra L2(T),
such that gk(t)<-_r(t) for all k and almost all T. So from (3.5), Ok(t; B) has a
uniform bound of the form IlOk (t; B)II -< (Z-t), where1 L2(T). Similarly since
(Zo, Ok (t)Zo) is decreasing in k for each T, we have

I,llf, (s)% (s, t)Zol[= ds <= const. Ilzoll2.

Then from (3.8)

[l%(t, S)Zoll<-Mllzol]+ g2(t-a) da const.

Hence ?/k(t, s) is uniformly bounded. Using these uniform bounds it is easy to
show that the convergence as s 0 in Lemma 3.6 is uniform in k.
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THE NONLINEAR COMPLEMENTARITY PROBLEM:
EXISTENCE AND DETERMINATION OF SOLUTIONS*

M. L. FISHERf AND J. W. TOLLE

Abstract. A general simplicial approximation algorithm with a variable initial point is presented
for solving the nonlinear complementarity problem. The algorithm leads to a proof of a new existence
theorem which unifies and extends previous results. Several previously known existence results are
obtained as corollaries of this theorem.

1. Introduction. This paper concerns the nonlinear complementarity prob-
lem (hereafter referred to as NLCP)" Find an x R which satisfies

x >- o, f(x) >- o, (x, f(x)> o,
where f is a continuous map of the nonnegative orthant, R _, into R n. Among the
applications of this problem are included convex programming, computation of
economic equilibria, N-person games, saddle point computation, and problems in
structural mechanics. The problem of finding the fixed point of some g" R/R/
may also be solved as an NLCP problem by takingf(x) x g(x). Conversely, the
NLCP problem can be formulated as a fixed point problem for g" R"/R/" defined
by g.(x)=max (x/-f.(x). 0), j= 1,..., n, and also as the problem of finding
solutions to the system of nonlinear equations h(x)= 0 where, for instance,
h(x) min (x., f. (x)),/’ 1, , n.

It appears that the study of NLCP was initiated in 1966 by Cottle [1]. This
first paper has been followed by a spate of results formulating conditions on the
function f which assure that a solution to NLCP exists. Included among these
papers are those of Karamardian [10], [11], Eaves [2], Mor6 [21], [22], Kojima
[12], [13], and Luna [17]. More recently, a number of authors have addressed the
question of formulating constructive techniques for finding solutions. These
works, including those of Fisher and Gould [4], Kojima [12], Garcia [7], Merrill
[20], and L/ithi [18], have all used a variant of a method used by Scarf [23] in
constructively proving the Brouwer fixed point theorem. This method of com-
plementary pivoting on a triangulation of R is also the basis for this paper. In
addition to the above papers, results such as those of Eaves and Saigal [3] and
Merrill [20] on fixed point algorithms in unbounded regions and Gould and Tolle
[9] and Wolsey [24] on zeros of nonlinear functions can be considered as
contributions to the theory of the NLCP problem.

The purpose of this paper is to present a general method for finding solutions
to the NLCP problem and to use this method to unify and extend previously
known existence theory. The method is based on the complementary pivoting

* Received by the editors September 17, 1975, and in final revised form August 10, 1976.

" Department of Decision Sciences, Wharton School, University of Pennsylvania, Philadelphia,
Pennsylvania 19174. The work of this author was supported in part by NSF Grant SOC-74-02516.

: Department of Mathematics and Curriculum in Operations Research, University of North
Carolina at Chapel Hill, Chapel Hill, North Carolina 27514.

For other equivalent formulations, see Mangasarian [19].
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principles which underlie most of the other algorithms developed for this prob-
lem. The method can be initiated from any point in R_7_ and can employ any of a
large family of possible labeling rules. Because the method operates over an
unbounded region, finite termination in not guaranteed without additional qual-
ification. It will be shown that finite termination is assured for any labeling rule
which satisfies certain conditions on a "band" which separates the starting point
from infinity in the nonnegative orthant. The existence of a labeling rule with the
specified properties implies the existence of an NLCP solution. The specified rule
required for the existence of a solution will be exhibited under a variety of
conditions on the function f, including most of those previously known to
guarantee that f has a solution.

In principle the existence theorems of this paper are constructive. That is, an
algorithm is provided for finding an approximate solution given the starting point
and the labeling rule. From a practical viewpoint, however, the prescription for
guaranteed convergence restricts the set of allowed starting points and the choice
of initial grid size. This restriction may result in a mode of operation which is
computationally inefficient. Those faced with solving the NLCP problem may
prefer to use a more efficient algorithm and hope for finite convergence.

Kojima [13] has recently given a theory for the NLCP problem which unifies
many of the known existence theorems and Lfithi 18] has provided an algorithm
which finds an approximate solution under the basic condition of Kojima. The
existence theorem presented here is more general than that of Kojima, but the
algorithm for finding the solution is less satisfactory in that arbitrary restarts are
not in general permissible.

The organization of the paper is as follows: 2 contains the fundamental
properties of complementary pivoting on pseudomanifolds and the terminology
and notation necessary for our applications; 3 contains the development and
proof of the fundamental existence theorem; in 4 various new and known
existence theorems are shown to follow from the theorem of 3; and in 5,
remarks concerning implications of the paper are added.

2. Complementary pivoting.
2.1. Notation. It will be assumed that the reader is familiar with the general

technique of complementary pivoting and simplicial approximation as described
in Scarf [23]. A detailed exposition of both the theory and its applications is also
presented in [8].

We employ the following notation. Points in R n/l will be denoted with
capital letters; points in R and scalars are denoted with small letters. Thus, we

write X= [zxl XR’+, zR. We construct the product space R_x[0, 1],

which will be triangulated in such a way that all vertices are in R-7-x {0} and
R_ {1}. The simplices of interest will be:

1. those of dimension n (n + 1 vertices) which lie either in

R_{0} or R_{1};

2. those of dimension n + 1 (n + 2 vertices) which lie in

R"[O,1].+
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The boundary of the triangulation is by definition composed of those
n-simplices which lie completely in one of the sets R_x{1}, R_x{0}, or
{x :xi 0} [0, 1], 1,..., n. Each vertex of the triangulation will be labeled
with an integer in {1, 2, , n + 1}. Each simplex generated by the algorithm will
have among its vertex labels all the labels {1,. , n + 1}. Such a simplex will be
called an (n + 2)-almost completely labeled (acl) simplex. The labeling will have
the following properties"

A1. There is a unique (n + 2)-acl boundary simplex in R_ {0}.
A2. There are no (n + 2)-acl b- _.d: ry simplices in {x :xi 0} [0, 1] for any

i= 1,...,n.
A3. Any (n +2)-acl n-si:aplex in R_ {1} contains an approximate NLCP

solution.
The algorithm will be initiated at the simplex described in A1. Complemen-

tary pivoting will produce a sequence of (n + 2)-acl simplices. Such a sequence is
either unbounded or, by A2, it terminates in Rx{1} with an (n +2)-acl n-
simplex. Such a simplex, according to m3, furnishes an approximate solution to the
problem of interest. Conditions for finite termination will be given.

We shall employ the triangulation of R x[0, 1] described in [8]. This
triangulation is a modification of Kuhn’s triangulation of a unit cube [14], [15].
The grid size of the triangulation will be denoted by 6 and hence, if X, Y are points
in an (n + 1)-dimensional simplex of the triangulation, IIx- yll <-4nt.

2.2. The labeling functions. A labeling function is any rule which assigns an
integer between 1 and n + 2 to eachXsR {0} D R_ {1}. In general, aiabeling
L will employ different rules for the vertices in R {0} and RT- {1}. Conse-
quently, it is convenient to let Lo denote the rule in R {0} and L the rule in
R

_
{1}. The entire labeling will be denoted by L (Lo, L).
The rule we use to label X in R x [0, 1] depends on a specified point w R

_
and on the particular pointX; that is, the rule for specifying the label will vary over

and let x denote a vector in R"the space R" [0, 1]. Let w be a given point in R ++

Let S(x, w),. ., S,,o(X, w) and S(x, w),. S(x, w) be two partitions of
N={1, 2,... ,n} and set h(x)=x-w and h(x)=f(x). For each xR these
partitions and functions induce two orderings on N, < k 0, 1, as follows. Let

S(x, w) and/" s S(x, w); then < f if one of the following holds"
(i) 1 < m,

(ii) l rn and h/(x) < h(x),
(iii) l m, h (x) h(x) and < ].

The labelsof [Xo] and [Xl], denoted by Lo(x) and La(x), are now defined by

n+l
Lo(x)

mino.x) {/: Xl- Wl <= 0}

n+l

L(x) min(, {/: x O}

Lmin(1.x) {1" fl(X)O}

if x-w>0,

otherwise,

ifx > 0,/(x) >0,

ifx0,

ifx>O,f(x)O,

where min(k.x) refers to the smallest integer with respect to the order
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It will be seen in 4 that different choices of the partitions of N will lead to
different existence theorems for the NLCP problem.

Given Lo, the simplex required by A1 is easily constructed as in [5]. This
initial simplex is near w, and hence w can be regarded as the starting point of the
algorithm. The definitions of L0 and L1 taken together establish immediately that
the label n + 1 cannot appear on a coordinate plane {x :xi 0}. Thus, property A2
is satisfied for these labelings. Now consider property A3. If C is a given compact

subset of R2 and X= [] is any vector in an (n + 2)-acl simplex in Cx {1}, then it

follows from the definition of the labeling L and the uniform continuity of f on C
that y is an approximate solution to the NLCP problem. A proof of this assertion is
included in Theorem 3.1. Note that propdrties A, A2, and A3 are enjoyed by any
labeling rules Lo (respectively L1) that assign the label n + 1 only when x > w
(respectively x > 0. and f(x) > 0) and the label l {1,. , n} only when Xl > w
(respectively Xl=O or fl(X)<=O). The sets S(x, w) and S(x, w) given above
provide for the selection of a unique label when more than one component of
x-w or f(x) is nonpositive.

3. Finite termination and the fundamental existence theorem. Given w in
R _, we employ the concept of a separating set and a band. The idea of a separating
set is purely topological. The concept of a band is labeling-dependent.

DEFINITION 1. Suppose w, A, and B are such that A is bounded and open in
R n, w A fq R n/, and B OA f3 R. Then B is said to separate w [rom infinity.
Whenever we refer to the pair (w, B), it is understood that B separates w from
infinity.

DEFINITION 2. Suppose (w, B) and L are such that for each x in B there is a
label I e {1, , n + 1}, depending upon x, such that this label cannot occur in
some neighborhood of x. Then the triple (w, B, L) is said to be a band.

Our methods for proving termination and existence are based upon the next
two results. Henceforth, the symbol A will always denote the bounded open set
such that B A f3 R_, and A will denote the closure of A.

TrEOREM 3.1. Suppose (w, B, L) is a band. Then if the grid size is
sufficiently small, the algorithm with the labeling L terminates in Rnx {1} and
A fqR / contains an NLCP solution.

Proo). B is compact. Cover B with a finite number of open balls of radius
about x B, such that for each ball there is an index ] which cannot appear as the
label of any point Y if y is in a ball of radius e about x . Choose 8 so that the first
simplex is entirely in the set A and so that <mini ei/(2/-n). If the algorithm
does not terminate in A x { 1}, there must be a simplex S e R" x [0, 1 which inter-

[x]sects B x [0, 1]. Consequently, there will be an in $ such that x e B, and
Xn+l

hence x is contained in the ei/2 ball about some x . By the choice of , the
proection of $ into R is entirely in the ball of radius e about x and consequently
the label ] cannot occur on any vertex of S. Thus, S cannot be (n + 2)-acl.
Therefore, the path of (n + 1)-dimensional simplices generated by the algorithm
initiated at w cannot cross B; it must remain .in a bounded region. Since it is a basic
property of the complementary pivoting algorithm that no simplex can occur
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twice, it follows that the algorithm must terminate with an (n + 2)-acl simplex in
A x{1}.

To prove that A R contains an NLCP solution, let be a sequence of
positive scalars with r/ 0. Then choose 6 to be a sequence of positive scalars

tending to 0 such that if [xlk] is a point of the (n + 2)-acl terminal simplex obtained

by initiating the algorithm at w with labeling L and mesh size 8k, then x k satisfies
fi(xk)--k for all and f,.(xk)<=rk if Xk>Sk. That this can be done is a
consequence of the definition of the labeling L and the uniform continuity off on
A. The point x k is contained in A R

_
and since r/k 0, any limit point of the

sequence x k is an NLCP solution. E]
The application of Theorem 3.1 to a particular NLCP problem relies upon

being able to show that" at each point ; on a set B there is a neighborhood of ;,
N(), and an index/’{1,...,n+ 1} such that Lo(x)j and Ll(x)j for all
x N (). In Theorem 3.2, we shall delineate the circumstances under which an
index does not occur in a neighborhood of a point . Then in 4 we shall provide
conditions on the function f which will guarantee the existence of a separating set
B and a labeling L such that one of the hypotheses of Theorem 3.2 will be satisfied
at each point in the set. The triple (w, B, L) will then be a band, and Theorem 3.1
will assure existence of a solution to the NLCP problem.

THEOREM 3.2. Let R, w R, and partitions S(x, w), j 1,..., too,
and S(x, w), j 1,. ,ml, be given. Then there is a neighborhoodN,() old and
an indexj {1,. ., n + 1} such thatLo(x) #j and Ll(x) #]for allx N() ifany
one of the following conditions is satisfied:

F1. ( w) 0 and f() O.
F2. There exists an index ] such that (i- wi)f() > O.
F3. There exist indices j, k such thatf() < O, x. wi > O, and k < jfor all x

in an open set containing .
F4. There exist indices ], k such that w < O, xi > O, f.() > O, and k < 0 ]

for all x in an open set containing .
Proof. If F1 holds, then there are indices and k such that f(x)<O and

(x w) < 0 for x in a neighborhood of . It is then apparent from the definitions
of Lo(x) and Ll(x) that the label n + 1 cannot occur in this neighborhood.

If F2 holds, then either (i wi) < 0 and]() < 0 or (i wi) > 0 and f.() > O.
In the former case, F1 holds. In the latter case, we also have x. > wi => O, and it is
easily seen that there is a neighborhood of in which the label j cannot occur.

If F3 holds then x.- wi > 0 implies Lo(x)# ] in a neighborhood of 2, and
x. > w _-> O, fa(d)< O, and k <lj in a neighborhood of x implies Ll(x)# ] in a
neighborhood of d.

The argument for F4 is made in a manner analogous to that for F3.
It should be observed that in a sense the conditions given in Theorem 3.2 are

necessary as well as sufficient for the a priori exclusion of a label in a neighborhood
of 2. Any further conditions would be dependent on the specific form of the
function f. For example, if there were a j such that (i wi) 0 and f(:) O, then
the label n + 1 would be excluded at . But it is possible that in any neighborhood
of : there would be an x such that x w > 0 orf(x) > 0 so that the label n + 1 could
occur.
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If the sets $.(x, w), 1,..., m, are independent of x or are o1 special
form, then the condition in F3 that "k <x] for all x in an open set containing’ can
be replaced by "k <x] A similar simplification hold for F4. In all the situations
which we encounter in 4, these simpler versions of 1"3 and 174 will be applicable.

Theorems 3.1 and 3.2 together with the definition of a band yield the
fundamental existence theorem of this paper.

THEOREM 3.3. LetA be an open bounded set in R and w A f’) R 7. Suppose
there existpartitions S(x, w), f 1,..., too, and S}(x, w), ] 1,..., m, such that
at each B OAf’)R at least one of the conditions F1-F4 of Theorem 3.2 hoM.
Then the set A f’) R / contains a solution to the NLCPproblem.

The algorithm we have given may be used to actually compute, in the limit,
the solution described in Theorem 3.3. provided that the vector w and a
satisfactory are known. That is, if the algorithm is successfully applied, starting
at w, with a sequence of sufficiently small grid sizes which tend to zero, then a point
may be selected in each terminal simplex to obtain a sequence x k which converges
to an NLCP solution. The proof of each existence result given in 4 specifies the
particular labeling one would use to compute a solution in this manner. Generally,
it would be advantageous to initiate the algorithm on iteration k + 1 using a
revised w x k if possible. Reference [6] describes computational experience
using this approach with some convex programming problems.

4. Existence theorems for the NLCP problem. In this section we state
conditions on f which allow us to display pairs (w, B) and labeling sets S(x, w)
and S(x, w) for which the hypotheses of Theorem 3.3 are satisfied. The theorems
proved below include as special cases many of the known theoretic existence
results.

THEOREM 4.1. Suppose there is a setB OA fq R 7 separating the origin from
infinity such that ]’or each x B the following system is inconsistent:

/](x)+t=O, Xi >>- O,

(4.1) f(x)+t>=O, X

Then NLCP has a solution x* with x* A.
Proof. We set w 0, S(x, w)= {1,..., n}, and S(x, w)= {1,..., n}. Then

for : B we set I {i’i > 0} and distinguish three cases.
Case (i). There exists a j s I such that ]() > 0. It is immediate that F2 holds

ate.
Case (ii). There exists a j s I such that 0=>f.(:)> mink (fk()). From the

definition of S(:, w), it follows that F3 holds at .
Case (iii). 0-->](:) =mink (fk()) for every j eL Setting =-mink (fk()),

we see that the system of the hypothesis is consistent which is a contradiction.
Thus, this case cannot occur.

Now since F2 or 1-’3 hold, Theorem 3.3 implies the existence of an NLCP
solution x* . The inconsistency of (4.1) precludes x*

As a consequence of Theorem 4.1, we can deduce the following existence
result.
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COROLLARY 4.2 (Karamardian [11]). Let G(x)=f(x)-f(O) be positively
homogeneous of degree d > 0 and suppose the system

(x + O, > O,

(4.2) G(x) + t => 0, x 0

t_>0,

is inconsistent ]’or all x >-_ 0, x O. Then NLCP has a solution.
Proof. The function F(x) G(x) + (1 -i xi)f(O) satisfies the assumption

of Theorem 4.1 with B [x _-> 0" i xi 1}. Hence the NLCP F(x) >- O, x >-_ O,
x)l/d The(F(x),x)=Ohasasolutionx’withY= x<l. Nowletg=x’/(1-,=

homogeneity of G implies directly that f,.(g)=F(x’)/(1-= x) so that is a
solution of the original NLCP. [3

The following theorem establishes the existence of a solution to the NLCP
problem in terms of the existence of solutions to a linear system on a separating
set, B. See Kojima [13], Liithi [18], and Fisher, Gould and Tolle [5].

THEOREM 4.3. Suppose a set B OA f’IR separates w >-0 from infinity.
Suppose that for each x B there is a y >-0 such that the system

E1
(x w y > O,

(X W y Te >= O when (x w >= O

has a solution. Then the setA contains a solution to the NLCPproblem.
Proof. Set S(x, w)= S(x, w) ={1,..., n}. Letx B. We distinguish several

cases. If f(x) >- O, then (x w)Tf(x) > y Tf(x) >= 0 and F2 holds at x. If f(x) 0 and
(x w) 0, then F1 holds atx. Iff(x) 0, (x w) >-0, and there exist integers I and
k such that (x-wl)>O, fk(X)<0, and fl(x)>fk(x), then it follows from the
definition of Sl(x, w) that F3 holds at x. In the remaining possibility we have
M=min (f,(x))>0 and Xl--Wl-"O for every l such that )(x)>M. Setting
I {/:/(x) M}, we have from the second inequality of El, Y4i (x/. w/. y/.) =>.y. Thus,

X
/’=1 /.I

=<0,

which contradicts the first inequality of El. Thus, this last possibility cannot occur
and we have that one of the conditions of Theorem 3.2 holds at each x B for
which Ex holds.
A modification of the inequalities E1 yields the following result, stated without

proof.
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THEOREM 4.4. For any x B the system E1 has a solution with y >-0 if and
only if the system E2 given below has a solution with y >-O.

(x w y >-_ o,
E2 (x w)rf(x) 0, when ]’(x) >-_ O,

(x w y)e > O, when (x w) >= O.

We can obtain a slightly different version of Theorems 4.3 and 4.4.
COROLLARY 4.5. Suppose B separates w >= 0 from infinity and there exists a

positive vector d such that ]’or every x B them is a y >- 0 satisfying one of the two
equivalent systems"

E’
(x w Y r](x > O’
(x w .- y) 7"d >= O, when (x w) >= 0;

E (x w) 7"]’(x O, whenf(x >= O,
(x w y 7"d > O, when (x w >= O.

Then the NLCPproblem has a solution.
Proof. Let C be the n n diagonal matrix with diagonal elements l/d1,

i/d2,’", 1/d,. --1 --1 --1Setz=C x, w=C w,y=Cy,B={z:z=C-Ix for some
x e B}, and g(z) C[(Cz). Then it is evident that B, r, and 9 satisfy E (or E2) for
the function g(z). Hence, the NLCP problem for g(z) has a solution z*. It follows
that x* Cz* is a solution of the NLCP problem for f(x).

Note that knowledge of d would be necessary in order to implement the
algorithm in the case of Corollary 4.5.

The next three corollaries are existence theorems found in the literature
Kojima [13] has also shown them to be corollaries of Theorem 4.3.

COROLLARY 4.6 (Karamardian [ 11]). If there is a nonempty compact set Cin
R + such that for each x R C there is a y C such that (x y)r/(x) > 0. then
NLCP has a solution.

Proof. Let w 0 and r >0 be any scalar such that B ={x e RT" e Tx r}
separates each y C from infinity. Then the system E in Theorem 4.3 is satisfied
for each x e B.

COROLLARY 4.7 (Karamardian [11]). Let H {x "Ix[ _-< r, r > 0} or H
{x" e 7"x < r, r > 0}. Then NLCP has a solution if Xrf(x) > 0 ]’or all x OH

Proof. If xrf(x)=O when f(x)>-_O on OHf’)RT then x is a solution. Other-
wise, the system E2 in Theorem 4.4 is satisfied by choosing w 0, y 0, and
B =OHfqR [3+o

COROLLARY 4.8 (Eaves [2]). NLCP has a solution if them exists a positive
n-vector d, a positive scalar r, and a set B separating C {y e R

_
y rd <- r) from

infinity such that for each x B them is a y Cfor which (x- y)Tf(x)>--_ O.
Proof. Set w 0. Since B separates C from infinity, x rd > r for each x e B.

Thus for each y e C, (x y) 7"d > 0. Now if x rf(x) 0 when f(x) >- O, x is a solution
to NLCP. Otherwise the systemE of Corollary 4.5 is satisfied for each x
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In the previous theorems the labeling sets $(x, w) and $(x, w) have been
independent of x and w. In this next theorem S}(x, w) will depend onx and w. Let
rn l(X) denote the number of different values assumed by the components of the
n-vector x- w. Then

S(x, w)= {i’x--wi=min (xk-Wk)},
k

S(x, w) { i" xi wi min (Xk Wk)}, j 2,’" ", m(x),
kUiZ lS} (x,w)

Sx(x, w) {1, n}.

THEOREM 4.9. Suppose B OAf’)R separates w >-0 from infinity and ]’or
every x B there is a y >- 0 such that the following system is satisfied:

E3

max [(xi wi yi)fi(x)] > O,

max(yi)<--max(xi-wi) if (x-w)>--O.

Then NLCP has a solution in A.
Proof. Let S(x, w) and the S(x, w) be as described below. Let , e B and set

I {i "fi(.) < 0}. We consider five possible cases.
(i) f() _-> 0. By E3 there is an index such that (i wi)] () > yiA (i) --> 0 so

that F2 holds at :.
(ii) ]’(:) 0 and (: w) 0. Then F1 holds at :.
(iii) f(:) 0, ( w) -> 0, and there exists an such that (i w)f,.() > 0.

Then F2 holds at :.
(iv) ]’() 0, ( w) -> 0, and there exists a/" such that .i wi >-w for

some e L Then for x in some open neighborhood of , <j. Since fi() < 0 and
j-wj > 0, it follows that ]"3 holds.

(v) f(x)0, (-w)>=O, ,i-wi=maxk (k--Wk) for all is/, and
(- w)fi()<= 0 for all ]. We demonstrate that the existence of a solution to E3
precludes this case. Suppose e I; then (- w) >- yi and f() < 0 imply
(-w-y)/(:)=<0. If ieI, then ](x)>=0 implies (xi-w-yi)fi(x) <-
(x- w)A(x)< 0. Thus for all i, E3 cannot hold. El

COROLLARY 4.10 (Mor6 [21], [22]). NLCP has a solution if there exists a
positive scalar r such thatfor every x R/ with max/xi r there is a y > 0 such that

E4
Yi <= r ]’or each i,

max [(xi yi)fi(x)] > O.

Proof. The corollary follows immediately from Theorem 4.9 by setting w 0
and B {x R" r}. 1-1+ max/xi
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Consider the nonlinear programming problem

min go(Z),

(4.3) g(z)<=O,

z>0

where go maps R k+ to R, g maps R k+ to R’, and go and g are convex and
continuously differentiable on an open set containing R k+. If u denotes an
m-component vector of dual variables, the Kuhn-Tucker conditions for this
problem are given by the NLCP with x (z, u) and

(4.4) /’(x) (Vzgo(Z) + uVzg(Z), -g(z)).

The numerous constraint qualification results of nonlinear programming are
concerned with existence conditions for this NLCP. The following theorem
develops one of these results from Theorem 3.3.

THEOREM 4.11. The NLCP defined by (4.4) has a solution if there exists a
point z>-O ]’or which g(z)< 0 and if the set of optimal solutions for (4.3) is
nonempty and bounded.

Proof. We will show that the conditions of Theorem 3.3 hold with S(x, w)
{k / 1,..., k +m}, S(x, w), S(x, w), S(x, w), ]>-_2 arbitrary, and w =(z, 0).
Let

and

F {x >- O" (x w)Tf(x) <--_ 0},

F2 {x _>- 0" g(x) -< 0}

F3={x >-O’xi-wi <-O, i;S(x, w)}.

We first establish the boundedness of F 0 (Fz [.J F3).
It will then be useful to have a lower bound on (x w)Tf(x). By definition,

(X--w)Tf(x)" (z--zO)TVzgo(Z)’Jc" ., Ui(z--zO)TVzgi(z)--uTg(z).

By convexity,

blence

gi(z o) >_ gi(z) -(z z o)TVzgi(z), =0, 1,... m.

(x w) T.f(x) >= gO(Z)-- gO(Z o) U Tg(z 0).

Since u rg(z) >-0, if go(z) > go(z) then (x w)rf(x) > 0.Because the opti-
mal set is bounded, the set of feasible z for which go(z) <- go(z o) is also bounded. If
x =(z, u)eF2, then z is feasible. If x F3, then Izl-< lzl. Hence, there exists
an r > 0 such that F fq (F2 [_J F3) {x R_7_ :lzl --< r}. Because go(z) go(z o) is
bounded on {x R_:lzl<-r} and g(z)<0, if lul is sufficiently large for any
x (x :lzl --< r} we have (x w)Tf(x) > 0. Hence, F (q (F2 t3F3) is bounded.

Now let B be any set separatingF(F2 t.J F3) from infinity and satisfying
B f’)F1)(F2t.jF3) . For x eB, either xFin which case (xj-wj)f(x)>O for
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some ] and F2 holds or x F2 LI F3 in which case ](x) < 0 for some S(x, w) and
xj wj > 0 for some ]S(x, w); so F3 holds. ]

5. Additional remarks. We note that the existence results of Karamardian,
Eaves, and Mor6 given in Corollaries 4.6, 4.7, 4.8, and 4.10 are obtained by
setting w 0 in more general theorems. The possibility of having w # 0 is an
important aspect of our results. It can be essential in proving the existence of a
solution since properties of f(x) defined relative to the origin need not have a
special significance in characterizing a solution which may not be near the origin.
For example, consider the two-dimensional problem with fl(x) (xl 2)2-1 and
f2(x) x 2. The example has a unique solution at x 3, x2 0. Any set which
separates the origin from infinity must include a point with 0 and $ > 0. At
$ we must have f1($) > 0 andf2(:) < 0. This prevents the hypotheses of Corollaries
4.6, 4.7, 4.8, and 4.10 from being satisfied. Letting G(x)=f(x)-f(O)=
xl(x1-4) and G2(x)=fz(x)-f2(O)=xl, we have G()= G2()= 0. Hence, t=0
solves system (4.2) and Corollary 4.2 also fails. On the other hand, if w (2.5, 0)
andA={x’-l<x<4,= -l<x2<l},= thenB=0Af"lR"/ is a band with any
specification of the sets ST(x, w) and S(x, w), and the hypotheses of Theorem 3.3,
Theorem 4.9, and Corollary 4.5 for arbitrary d > 0 are all satisfied.

In general, the algorithm used to prove Theorem 3.3 must be restarted from
the same w after each iteration. If the conditions for existence hold for some
vector } in the terminal simplex of an iteration, then the algortihm can be
reinitiated from this point. Such a procedure would have obvious computational
advantages. However, to make an a priori assumption that this situation occurs
would greatly weaken the generality of the existence theorems given in this paper.
The following observation suggests that once a neighborhood of the true solution
is reached, a special labeling will allow the algorithm to be restarted from the
terminal simplex of the preceding iteration.

Suppose that x* is a nondegenerate solution to NLCP and that the matrix
H (hii) is nonsingular, where

Oll(X) x* >0,
OXi x=x*

hq
&i], X--O,

Then, it can be shown that there exist sets S(x, x*), S(x, x*) and a separating set
B such that (x*, B, L) is a band for the function ]’. z Thus, the existence of a band is
both necessary and sufficient for the existence of a solution satisfying the above
condition. This suggests that the basic existence theorem of 3 is about as general
as one could expect for [ continuously differentiable.

The algorithm gven here is a nonlinear analogue of the algorithm developed
by Lemke [16] for solving the LCP problem. As in Lemke’s algorithm, an
"almost-complementary" path is followed along the contours at which (n 1) of
the variables (possibly including artificial variables) are zero, and switching from
one contour to another occurs near a "vertex" where n of the variables are zero.

For a proof of a similar result for the problem of finding zeros of a function, see [5] or [9].
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The path will not reach a neighborhood of a solution if an "infinite" almost-
complementary contour is followed. The major existence theorem of this paper,
Theorem 3.3, is achieved by postulating the existence of a "band" or "barrier" on
the almost-complementary contours which prohibits the algorithm from following
these infinite paths.

Finally, it should be noted that in many cases at least one of the conditions
F1-F4 will automatically be satisfied at all but a finite number of points on a
potential separating set B. For instance, if S(x, w)={/’} and S(x, w)={/’} for
/" 1, , n and all x, then for any B at which there exist two indices k, I such
that

0, j t,

at least one of the conditions F1-F4 hold. The points at which (5.1) does not hold
are on the intersection of at least n- 1 zero contours and such points will often
comprise only a finite number of points on B. For further results in this vein, the
reader is referred to [9].

Acknowledgments. This paper has benefited from numerous detailed sug-
gestions from the referees and from conversations with F. J. Gould.
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SOME ANALYTIC AND MEASURE THEORETIC
PROPERTIES OF SET-VALUED MAPPINGS*

MARY BRADLEY," AND RICHARD DATKOt

Abstract. A theory of differentiation for set-valued mappings in a separable reflexive Banach
space X is presented. The investigation is centered around the differentiability of the support
functionals and thus only computation of limits of real functions is required. Our results include a
Radon-Nikodym theorem for set-valued measures taking closed bounded convex values.

1. Introduction. In this paper a theory of differentiation for set-valued
mappings taking values in a separable reflexive Banach space is presented. The
basic idea is to consider mappings taking values in closed bounded convex sets and
to approach differentiation through consideration of the differentiability of the
support functionals of the sets. This approach is made possible by the fact that the
integrals of the support functionals of set-valued mappings and the support
functionals of the closures of the integrals are equal (see [12]). Hence any property
of integration which is common to every support functional is common to the
set-valued mapping if its values are taken in closed bounded convex sets.

Other notions of differentiability for set-valued mappings have been dis-
cussed by Artstein [1], Banks and Jacobs [4], Bridgland [5], Hermes [21] and
Hukuhara [23]. Banks and Jacobs use Radstr6m’s embedding result [28] and
reduce the investigation to differentiation in a normed linear space. Artstein and
Hermes both obtain results for set-valued functions in R" which are representable
as indefinite integrals. Hukuhara considers mappings with values in the compact
convex subsets of R" and defines differentiation in terms of the convex set
difference and the Hausdorff metric.

In 4 we consider a Radon-Nikodym theorem for weak set-valued measures
with values in a separable reflexive Banach space. This theorem is similar to the
work in [9], [10], [11], [26] and particularly [17]. However, although the space
considered in [17] is more general than ours, our result is stronger due to the fact
that we consider integrably bounded measures as opposed to uniformly bounded
measures. Furthermore we believe our proof is more direct in that it utilizes only
the standard Radon-Nikodym theorem for scalar measures and a variant of the
Hahn-Banach theorem.

In 5 we give some applications of our results.

2. Preliminaries. Let X denote a separable reflexive Banach space over the
real numbers R. The topological dual of X will be denoted by X’, and S’ will
denote the surface of the unit ball inX’. Ifx’ X’ andKc X, x’(K) is defined as

x’(K) sup {x’(k): k K}.

The norm in X and X’ will be denoted by I’ [. If x’ X’ then

Ix’l=sup{Ix’(x)[: x Xand Ixl 1}.

* Received by the editors December 18, 1975, and in revised form August 10, 1976.
5" Department of Mathematics, George Mason University, Fairfax, Virginia 22030.
Department of Mathematics, Georgetown University, Washington, D.C. 20057.
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U6ff/’(X) will denote the space of nonempty closed bounded and convex subsets of
X. IfA X then coA will denote the convex hull of A and E’6A the closed convex
hull of A.

Let V {x} be any countably dense subset of S’. The distance function d,
defined as

d(A, B)= y _1Ix(A)-x(B)l
i=1 2

for every pair A, B T6Y{(X), is a metric on -6Y/’(X). IfX R" it is not difficult to
show that d is equivalent to the more common Hausdorff metric.

T will denote a locally compact Polish space and/z a nonatomic positive
regular Borel measure on T such that/z(T)< co. When T=[a, b] we will use
Lebesgue measure. Integrals of Banach-valued functions which occur are to be
considered as Bochner integrals. The symbol L(T, R) will denote the equivalence
classes of functions from T into R which are/x-integrable.

A set-valued mapping P is said to be measurable (see [6]) if for each closed
subset A X the set P-A {t T: P(t)f’IA # } is measurable. P is said to be
integrably bounded if there exists g eL(T,R) such that sup{lxl:x P(t)}<=g(t)
a.e. on T}. For any measurable set A c T, the set-valued integral is defined as

P(t) dlz(t)= ! or(t) dlz(t)" or: TX is measurable

or(t) P(t) a.e. on A}.and

If P" T6-6Yf(X) is measurable and integrably bounded then ae(t)dtz(t)
-6rl’(X) for any measurable set A (see [13]).

3. Differentiation. We will begin this section with the definition of differen-
tiability given by Hukuhara [23].

DEFINITION 3.1. A set-valued mapping P of an interval [a, bier into
-6Yl’(R ") is said to be Hukuhara differentiable at to [a, b] if there exists DP(to)
-&7/’(R") such that both of the limits

P(to + h e(to) e(to) e(to- h)
lim lim
h--}0 h h0 h

exist and are equal to DP(to). Here the limit is taken in the Hausdorff sense and
the difference B C of two sets B, C ff6Y(X) is the set D -C-’6Yf(X), if it exists,
such that D + C B.

A comparison of Hukuhara’s work with other theories of set-valued differen-
tiation may be found in [4]. Through the use of the support functionals we now
extend the above definition.

DEFINI:rION 3.2. A set-valued mapping P: [a, b]"6Trc(X) is said to be
differentiable at to [a, b] if for each x’ S’, (d/dt)x’(P(t)) exists at to and equals
q(x’, to) where p(x’)= q(x’, to) is a continuous positively homogeneous sublinear
functional on S’. In this case we define De(to) as

De(to) f3 {x" x’(x) <= q(x’, to)}.
x’S’
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LEMMA 3.3. ffP: [a, b]--C-dY{(X) is differentiable at to [a, b] then DP(to) is a
nonempty closed bounded and convex set in X.

Proof. See Lemma 3 in [12].
It is now straightforward to verify that properties holding for differentiable

scalar-valued functions are also valid for differentiable set-valued mappings. We
illustrate with Theorem 3.5. Proposition 3.6 has already been proved in different
settings by Artstein [ 1], Banks and Jacobs [4], Bridgland [5] and Hermes [21]. It is
included here to demonstrate the convenience of the metric d defined earlier.

LEMMA 3.4.. If C, D h-dY{(X) then D-C exists if and only if p(x’)=
x’(D x’(C) is a continuous positively homogeneous sublinearfunctionalon X’. In
that case,

D-C= f3 {x: x’(x)<-x’(D)-.x’(C)}.
x’S’

Proof. (i) If D-C exists then clearly p(x’)=x’(D)-x’(C)=x’(D-C) is a
continuous positively homogeneous sublinear functional on X’.

(ii) Conversely by Lemma 3 in [12] and its corollary,

K= f’l {x: x’(x)<=x’(D)-x’(C)}
X"S’

is in -6-6Y((X) and x’(K)=x’(D)-x’(C) for all x’ S’. Since X is reflexive
x’(K) + x’(C) x’(K+ C). Thus we have D K+ C.

THEOREM 3.5./fP: [a, b]+ -6 /’(X) is differentiable on [a, b] and ifDP(t) is
Borel measurable and integrably bounded on [a, b] then ]’or t [a, b

De(s) P(t)-P(a).ds

Proof. From the definition of DP(t) we have for each x’ S’, x’(DP(t))=
(d/dt)x’(P(t)) on [a, b]. Let x’ S’ and t[a, b]. Since a(d/ds)x’(e(s))ds
x’(P(t))-x’(P(a)) it follows from the above lemma that P(t)-P(a) exists. The
theorem is now a consequence of Corollary 2 in [12, p. 234].

PROPOSITION 3.6. IfP: T [a, b]-+ -C-6Y((X) is Borelmeasurable and integra-
bly bounded by g L(T, R) then

d
S) ds, P(t) -+ 0 as h -+ 0+ a.e. in T.

Proof. Choose V ,rx,X S’iji=l dense in Let t T and h >0. Then for any
integer N-> 1 the following estimate can be obtained:

1 I’,+hp(s) ds 1
=v2 x h

-x(P(t)) <2_2g(t)
The result now follows by referring to the real-valued case.

4. A Radon-Nikodym theorem. As in [17], a weak set-valued measure lq on
T is defined to be a set-valued mapping defined on the Borel subsets of T and
taking values in -6’r(X) such that for each x’ X’, x’(f(. )) is a measure on T. If l
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is integrably bounded, that is, [l(E)ll=sup{[xl’x f(E)}<-g(t)dtz(t) for all
measurable subsetsE of T and some g L(T, R ), then it is shown that possesses
a set-valued Radon-Nikodym derivative.

Artstein [2] and Debreu and Schmeidler [15] investigated Radon-Nikodym
derivatives for set-valued measures in R". In [17] a related result is shown for
set-valued measures in a separably locally convex topological vector space. Cost6
[9] using the Hausdorff set metric to define a strong set-valued measure gives a
necessary and sufficient condition for the existence of Radon-Nikodym deriva-
tives. The technique used in the proof of the following theorem is the same as in
Lemma 3 of [12].

THEORE 4.1. I[f is an integrably bounded weak set-valued measure defined
on T with values in -6"6(X), then there is an integrably bounded measurable
set-valued mappingP taking values a.e. in -66{(X) such that fZ(E) P(t) dl(t)
]’or all measurable subsets E of T.

Proof. For each x’ X’, x’(I(. ))<</x and hence there exists f(x’, s) L(T, R)
such that for every measurable set E, x’(l(E))= f(x’, t) ritz(t). Also for each
x’ X’, x’(I(. )) has a Hahn decomposition; that is, there exist measurable sets A
and B such that

and

IE f+(x ’, t) dtx(t) x’(O(E A))= [x’(O(E f’) A))[

<-Ix’l IE g(t) dtz(t)

f f-(x’, t) dtx(t) -x’(f(E iqB))= }x’(l](E B))I

=<lx’l f g(t) dtx(t)
B

where E is any measurable set. Thus for each x’ X’,

f (x’, s) <-[(x’, s)l <= Ix’Jg(s) a.e. in T.

Because p:x’x’((E)) is a subadditive functional we have for x’, y’
X’, f (x’ + y’, s) -<f (x’, s) +f (y’, s) for s E, where/z (E) =/ (T). Since p is also
positively homogeneous it follows that for x’ X’ and a R /, f (ax’, s) a]’ (x’, s)
for s E,, where/x (E,,) =/x (T).

Choose V={x’ S’i}i-- dense in such that if x Vthen -xg V. Notice that by
the above there exists a set E c T where/z (E) =/x (T) and such that:

(i) Ira is apositive rationalthenf(ax, s)=af(x, s) forallsEandx V;
(ii) For any finite subset J of the natural numbers

f aixi, S O’(f(Xi,

for all s E, where x V and ag is a positive rational for each in J.
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Form the vector space X over the field Q of rationals of all finite linear
combinations of elements from V. It now follows that there exists a measurable set
Eo where (Eo) =/z (T) and such that if s e Eo then p(x’) f(x’, s) is sublinear and
positively homogeneous (Q+) on X;. Moreover we may assume that If(x’, s)l <=
g(s)lx’l for all s s Eo and x’e X;.

Let s Eo and choosex V. As in [12] define the subspaceM {aX’o: a Q}
and a continuous linear functional x on M by the relation x’(aX’o)= af(x’o, s).
Then x’(aX’o)<=f(ax’o, s) for a Q. By the Hahn-Banach theorem, xg can be
extended to a continuous linear functional x" onX such that x"(x’) <=f(x’, s) for
all x’ e X; and x"(X’o) f(X’o, s). Hence x"(x’) <= g(s)lx’l for each x’ X;, and we
can again by the Hahn-Banach theorem extend x" to all of X’ over Q, giving
x"(x’) <= g(s)lx’l for all x’ X’. Now x" has a unique extension to X’ over R and
since X is reflexive there exists Xo eX such that x"(x’) x’(xo) for all x’ X’. Thus
x(xo) <-f(x, s) for all x V and X’o(Xo) =f(X’o, s). Hence

P(s)= f3 {x: x(x)<-f(x,s)}# .
x[ V

Also, P(s) -6-63(X) for each s Eo and P is measurable and integrably bounded.
In addition, f(x, s) x(P(s)) for all x Vand s Eo. Integrating over a measur-
able set E.yields

f f(x, s)d/x(s) f x(P(s))d(s)=x((E))

and thus the proof is complete.

5. Applications. In this section some of the techniques developed concerning
differentiation are applied to certain set-valued mappings arising in control
theory.

Example 5.1. Consider the control of the undamped harmonic oscillator,

(5.)

Equivalently,

(5.2)

/x=u, lull1.

) --X -t- U,

[ 0 10] and B [01] we are considering the control systemThen irA=
_1

(5.3) A(t) Ax(t) +Bu(t), lu[ <- 1.

Direct computation yields that the fundamental matrix solution of the homogene-
ous equation i (t) Ax (t) equals

X(t)=eta =[--sinCStt cosSin tt]
and thus the reachable set of (5.3) (see [8]) is

Io’ Io’r ] [Ol.] Io"[ -sin ’r ]R(t)= X_l(s)BUds coss -sins
Uds Uds.

sin s cos s cos s
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Let x’R2 and x’ (cos t, sin t) where 0_-<fl _-<27r. Thus

x’f/ -sin s -sin s
u(s) ds x u(s) ds

COS S COS S

sin (fl-s)u(s) ds

for u(s)e U. Choose u*(s)= sgn (sin (t-s)). Then

(Io / Io Iox’ e ds sin (/-s)u*(s) ds ]sin (/-s)l ds

and

Hence,
-X e-SABU (fl-- I"

DR (t) (3 x cos fix + sin fix2 <- [sin (/3 t)l
t3 X2

When 0 the set-valued derivative of R (t) is the line segment in R 2 connecting

[ 01] and [ 01] As t increases the segment is rotated in a counterclockwise manner

through an angle t.
The following is an infinite dimensional version of a result obtained by

Chukwu [8] and by Hautus and Olsder [20] concerning identification problems for
autonomous linear control systems.

Let S(X, X) denote the space of bounded linear operators on X.
THEOREM 5.2. Suppose that for each [0, T], F/(t) and//l(t) (i 1, 2) are

one-to-one, in(X, X) and satisfy FI(0) F2(0) I. Further assume that both F(t)
and b-71(t) (i 1, 2) are strongly continuous on [0, T] and that [F(t)[, ]F=(t)l <_-M
on [0, T] for someM> O. If V/(i 1, 2) is a compact convex subset ofXhaving at
most countably many extreme points, V(i=l, 2), then Fl(s)Vlds=
to F2(s)V2 ds on [0, T]/f and only if V1 V2 and for each v span ve F(t)v
F2(t)v on [0, T].

Proof. Since V (i 1, 2) is compact andF (i 1, 2) is strongly continuous it is
not difficult to show that given e > 0 there is a 8 > 0 such that

if ]t-?l<8 then [F(t)v,-E()/)i] <e
for arbitrary vi V/(i 1, 2). Thus the function F,.(t) V (i 1, 2) is continuous
(Hausdorff metric) on [0, 7]. Now assume oFl(s) VI ds oF2(s) V2 ds on [0, T].
Taking set-valued derivatives of both sides we have that F(t) V F2(t) V2 a.e. in
[0, T]. But the continuity implies that this relation holds everywhere. Substituting

0 gives the equality of V1 and V2. Because of the one-to-one assumption we
have

FE1(t)F(t) Vex ve on[O, T],

and therefore given any point v V there exists v a(t) V for t [0, T] such that
va(t) F-((t)F2(t)v on [0, T]. Clearly v([0, T]) {Yi}i= Y is a connected space
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and {yi} is a closed set for each i. Applying the Baire category theorem we obtain
the existence of a positive integer io such that {Yio} is a nonempty open set. Thus
Y {Yio} {v} and since v was arbitrary the result follows.

The following is an example of an infinite dimensional set-valued mapping
arising in control theory.

Example 5.3. Consider the scalar partial differential equation

(5.4) utt uxx +f(x, t), O<=x <-_ 1, >-0,

with initial values

(5.5)

with

and boundary values

u(x, O) an sin nrx h(x), O<=x <= 1,
n=l

Ut(x, O) Z b, sin nrx g(x), 0_-<x-<l,
n=l

Z (nTr)2a2, + Z b 2<.
n=l n=l

(5.6) u(0, t)= u(1, t)= 0, t->0.

Here f(x, t) is assumed to be of the form

(5.7) f(x, t)= Z f, (t) sin nTrx
n=l

where each/, is integrable and Yn__ 11/, (t)[ 2 < c for a.e. in [0, c). The solution of
(5.4)-(5.7) can be written in the form

u(x, t)=

(5.8) nl= an cos nTrt +
b s n nTrt 1 Iot }+ [sin nTr(t-s)]f (s) ds sin nTrx.

nTr nTr

For each t [0, oo), u(., t) and Ut(" t) L2[0, 1].
Consider the complete set {sin nrx} in L2[0, 1] and define the one-to-one

onto mapping of L2[0, 1] onto 12 as follows

(sin nrx).= e,

where
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Then from (5.8),

i(u(., t))=/an cos nrrt + bn sin nTrt

t nr

+ sin n’(t- s)f, (s) ds

a (t, h, g,

For each t e [0, eo) the nth coordinate of a(t, h, g, f) satisfies the ordinary differen-
tial equation

d2xn
dt2 - (n,rr)Zx. f

or letting

we have

dn(5.9)
dt [ 0

_(nr)z 10]’" + [ 01]f""
Thus we can reduce the study of solutions of (5.4)-(5.7) to a study of an

infinite number of solutions of the forced harmonic oscillator equation (5.9).
Consider the representation of t (t, h, g, f) and take the Hilbert cube I as the

control set U. We shall look at all measurable mappings

f(s)=(f(s), ,f.(s), ")

taking values a.e. in I. Let S(t-s)={(1/mr)sin[mr(t-s)]} and define the
set-valued mapping R (t) as

R(t)= S(t- s)I* ds.

Taking the set-valued derivative of R we obtain

DR (t) S(t)I { 1
nr

Example 5.4. If we phrase the above example in a slightly different context
and change our control set to a compact one with a countable number of extreme
points we shall have an example of a system which satisfies Theorem 5.2. Thus
consider the real Hilbert space H which consists of a countable direct sum of R 2.

That is points 2 such that 2 (, n 1, 2,...) where 2, and

I 1= XJ (x + y (x <
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In place of (5.9) consider the equation

(5.10)
dt -(mr) x +

1 b2
where we assume lujl--< 1, f 1, 2,..., m and

Z b n2+ Z b2. <.
n=l 1=I n=l ]=I

The homogeneous solutions of (5.10) (i.e. (u(t)) O, / 1, 2,..., m) give rise to
a strongly continuous group F(t) defined by the expression

sinntCOS

F(t) n n 1, 2,..
-n sin nt cos nt

where is in H. The control set U is

U={uR" lull_-< 1,]= 1, 2,’’’, m}.

Notice that if we consider the reachable set of the system defined above we are
able to obtain certain uniqueness results.

As a final application we shall consider a variant of a control problem studied
by Neustadt [27].

Example 5.5. Let T(t) be a strongly continuous semi-group of class Co
defined on a separable reflexive Banach space X. Let U be a compact set in R
and/c: R -X a continuous mapping. Define the set-valued mapping

F(t) T(t)f(U).

Since f(U) is compact and T(t) is strongly continuous, F(t) can be easily shown to
be upper continuous and hence measurable (see [6]). Furthermore over finite
intervals, F(t) is integrably bounded. This is due to the fact that T(t) is a strongly
continuous Co semi-group and hence we can obtain estimates of the form

sup {Ixl: x eF(t)I<-_Me’’ sup {lyl: 3, ’(u)}

where to can be assumed positive and M 1.
If X R" and we look at the set-valued mapping

R(t) T(t-s)[(U) ds T(s)f(U) ds

we are in fact studying a finite dimensional control problem of the form

2(t) Ax(t) +f(u(t))

where A is an n x n matrix which satisfies (d/dt)T(t) AT(t) and u is a measura-
ble mapping fromR -R" with values in U. Bythe Lyapunov theorem [25], R (t)
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is for each t a compact convex set in R" and

R(t)= T(s)f(U) as 6-6 T(s)f(g) as.

Thus since f(U) is compact the following holds"

DR (t) -ff T(t)f(U) co T(t)f(U) T(t) co f(U).

In the case where X is infinite dimensional the most that we can conclude is that
cl(R(t))=to-ff6(T(s)f(U))ds. Hence by our theory and the Krein-Milman
theorem [16] we can conclude that

D(cl (R(t))) =" T(t)f(U)= T(t) -6-dr(u) a.e.

(Here cl (A) denotes the closure of A in the normed topology.) Problems of the
type mentioned above can arise from distributed parameter problems of which the
following is a simple example.

In Example 5.3 we replace f(x, t) in equation (5.4) by f(x, u) where

f (x, u)= Y, a,(u) sin nrx
n=l

and u U, some compact subset of R.
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INFORMATIONALLY NONUNIQUE EQUILIBRIUM
SOLUTIONS IN DIFFERENTIAL GAMES*

TAMER BASAR"

Abstract. This paper is concerned with two-person deterministic nonzero-sum differential games
(NZSDG) characterized by quadratic objective functionals and with state dynamics described by linear
differential equations. It is first shown that such games admit uncountably many (informationally
nonunique) noncooperative (Nash) equilibrium solutions when at least one of the players has access to
dynamic information. We provide a characterization of all Nash equilibrium solutions to the problem
for a particular dynamic information pattern, and propose an optimal unique selection of an element of
the Nash equilibrium set, which exhibits a robust behavior by being insensitive to additive random
perturbations in the state dynamics. We model these random perturbations as a local martingale
process and obtain the abovementioned optimal Nash strategy pair as the unique noncooperative
equilibrium solution of a related stochastic NZSDG. With regard to the latter, it is shown that the
unique Nash equilibrium strategy of the player with dynamic closed-loop information can be realized
by affine control laws.

1. Introduction. A significant portion of the research activities concerning
nonzero-sum differential games (NZSDG) has been concentrated on linear-
quadratic problems (i.e. differential games characterized by quadratic cost func-
tionals, and with state dynamics described by linear differential equations) since (i)
these problems are more tractable and admit noncooperative equilibrium solu-
tions that can be expressed in closed form, (ii) a thorough treatment of this class of
problems and investigation of the properties of their permissible equilibrium
solutions help to gain insight into the solutions of structurally more complicated
NZSDG.

However, even though it constitutes, in some sense, the simplest class of
NZSDG to deal with, the LQNZSDG theory is by no means complete today. In
particular, there are no general enough results in the literature for problems
characterized by dynamic information patterns. In obtaining the noncooperative
(Nash) equilibrium solutions to these problems, it has been common practice to
start with specific functional forms for the strategies of the players and then to
derive the necessary conditions for existence of a Nash equilibrium solution within
the class restricted by the a priori selected functional structure (this restriction has
always resulted in the class of linear feedback control laws for the general
closed-loop information structure). (See e.g. [7], [8], [11], [16], [17]). Attempts
have been made in [11] and [8] to prove uniqueness of the linear feedback solution
under the closed-loop information structure. However, Lukes assumes in [11]
that the permissible strategies are also in pure-feedback form in addition to being
linear, which is a rather severe restriction on the strategy spaces. Friedman claims
in [8] that he has established uniqueness of linear Nash strategies under the
general closed-loop information structure; however he has made an explicit
assumption on the functional form of the-optimal return function (see [8, p. 318])
which places a similar a priori restriction on the strategy spaces. To sum up: until

* Received by the editors February 28, 1975, and in revised form October 7, 1976.
5" Applied Mathematics Division, Marmara Scientific and Industrial Research institute, Gebze-

Kocaeli, Turkey.
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very recently, there were no existence and uniqueness results in the literature
concerning LQNZSDG with dynamic information structures.

The first systematic and constructive approach to problems of this kind has
been taken in [1] for the class of two-person LQNZSDG in which the state
dynamics are described by a difference equation instead of a differential equation.
It has been shown in [ 1] that when at least one of the players has access to dynamic
information, then such differential games admit uncountably many Nash equilib-
rium solutions. Moreover, it has been shown in [2] that the solution can also be
nonlinear. In order to resolve the dilemma arising from existence of nonunique
Nash solutions, it has been proposed in [1] to further restrict the Nash solution
concept for a given information pattern by including a zero-mean additive random
perturbation term in the state dynamics and require the solution to be insensitive
to this additive noise. Within the context of two-person LQNZSDG described by
difference equations and for different information structures for either player,
existence of unique Nash equilibrium strategies which exhibit this robust behavior
has then been established in [1]. These results have further been extended to
similar M-person differential games (M> 2) in [3], for the case when a subset of
the players have access to closed-loop information and the rest to open-loop
information.

The results reported in [1], [2] and [3] hinted that an analogous structural
behavior might be seen in LQNZSDG described by differential equations. A
rigorous investigation of the validity of this conjecture, however, requires a
mathematical approach different from the one taken in [1] and [3]. Hence, this
paper constitutes the first systematic treatment of LQNZSDG described by
differential equations and has a twofold objective" 1) To put into perspective the
difficulties encountered in obtaining the entire class of noncooperative equilib-
rium solutions of an LQNZSDG for a given dynamic information pattern, and to
display the fact that a direct extension of single criterion optimization techniques
and dynamic programming does not suffice to characterize all such solutions; 2) to
propose an optimal unique selection from the Nash strategy set composed of
uncountably many elements, and to obtain the corresponding solution in closed
form when one of the players has access to closed-loop information and the other
one to open-loop information.

In the next section, we formulate the two-person LQNZSDG under a
particular information structure which provides the first player with the classical
closed-loop information and the second player with open-loop information. In 3
ve obtain a characterization of the entire class of Nash equilibrium solutions to
the problem, elaborate on the informational nonuniqueness of the Nash equilib-
rium point, and then provide an illustrative example. In 4 we relate the process
of the optimal unique selection from the Nash equilibrium set to the derivation of
the unique noncooperative solution of a particular stochastic differential game. A
similar type of stochastic differential game has previously been considered by
Friedman in [9] for the case when both players have access to closed-loop
information. However, Friedman further restricts the strategies of every player to
be functions of only the current value of the state vector. Here, we make no such
assumptions and prove existence of a unique equilibrium solution under the
information pattern of 2.

The paper ends with a conclusion section and three appendices.
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2. Formulation of deterministic LQNZSDG. The differential game under
consideration is a two-person, fixed-duration ([to, tf]) NZSDG, described by
linear state dynamics

(1) =F(t)x +G(t)u(t)+Gz(t)uz(t); X(to)=Xo

where dim (x) n, dim (u) ri, the matrices F, Ga and G2 have appropriate
dimensions and are continuous on [to, tf]. X(to) is the initial state vector and its
value Xo is known to both players. The functions u(t) and uz(t) represent the
control policies of players 1 and 2, respectively, and assume values in r and Rr,
respectively.

To delineate the information structure of the problem we let C, C,[to, tf]
denote the space of continuous functions on [to, t] with values in R". We further
let , be the sigma-field in C, generated by the cylinder sets {x C,, x(s) B}
where B is a Borel set in " and to -< s =< t. Then, the information gained by player
1 during the course of the game is completely determined by the information field

for all t => to; i.e., player 1 has access to perfect nonanticipative closed-loop
information concerning the state of the game. Player 2, on the other hand, gains
no information during the course of the game (i.e., he plays open-loop).

Permissible strategy for player 1 will be a mapping y(., of[to, tf] C, into
Rr with the following properties"

(i) y(t, rt) is continuous in for each r/ C,.
(ii) It is uniformly Lipschitz in r/; i.e., for some k > 0

[to, tf],

where 11. is the standard sup norm in
(iii) ul(t)= 3,1(t,x) is adapted to the information field t; i.e., it is t-

measurable.
We denote the class of strategies described above by U1, to be referred to as

the permissible strategy set for player 1. Since player 2 has access to open-loop
information, we let the permissible strategy set U2 for player 2 be Cr2.

Since the strategy set U1 does not only contain Markovian (pure-feedback)
controls (i.e., controls that depend only on the current value of the state vector),
equation (1) is actually a functional differential equation rather than an ordinary
differential equation, which should better be written as

(2) dx/dt F(t)x + Gx(t)/[t, x( )]+ G2(t)/2(t); X(to) Xo.

It is known that this equation admits a unique continuous solution on [to, tf] for
every pair {/ U1, y2 U2} (see, for example, [6]).

For any pair of strategies {yi U,., 1, 2}, the loss (or minus the payoff)
incurred to player is given by the quadratic cost function

(3) Ji(ua, U2)=x V(tt)Cix(tt)+ [xTCi(t)x +uDil(t)u+ufDiz(t)uz]dt

where u y[., ], u2 ]/2(’ ); the weighting matrices C,, C/(t) are nonnegative
definite for all [to, tf] and each entry of C(. is continuous on [to, tf]. The
matrices D(t) > O, Diz(t) > 0 are also defined and continuous on [to, re], 1, 2.

The objective of player is to pick the permissible strategy that will yield the
minimum value of the cost function J against some rationally selected strategy of
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player/’,/" i. With no direct cooperation between the players allowed, this
reasoning leads to what is known as the noncooperative Nash equilibrium solution

DEFINITION 1. A pair {y* Ux, y2* U2} is said to be in (Nash) equilibrium if
the following inequalities hold for all

(4a)

(4b)

If there exist more than one set of Nash equilibrium solutions, then we can
define a partial ordering within this solution set as follows:

DFIrIa:ION 2. For a given information structure, a permissible Nash pair
{y, yz} is said to result in a better performance than (or be superior to) another
permissible Nash pair {/3, 2} if

(5) J/(yx, 3’2)_-<(/31,/32), i= 1, 2

with strict inequality for at least one i. We will call a permissible Nash pair {71, "g2}
admissible if there exists no other permissible Nash solution pair that is better than

It is this author’s strong opinion that a given Nash solution pair can be
considered as a reasonable equilibrium solution for noncooperative nonzero-sum
situations if it is also admissible. Even an admissible strategy pair might sometimes
be considered unreliable if the problem admits more than one admissible equilib-
rium solution. As a matter of fact, it turns out that this is the case for most of the
nonzero-sum differential game problems that admit nonunique Nash equilibrium
solutions.

It is not only the structure of the cost functions or the differential equation
involved that is responsible for the nonuniqueness of the Nash equilibrium
solution, but in addition (and more commonly), the dynamic nature of the
information structure plays a role in the appearance of nonunique equilibrium
solutions. In particular, an NZSDG that admits a unique noncooperative equilib-
rium solution in open-loop policies will admit nonunique solutions when the
information structure is made dynamic. We will say that this kind of nonunique-
ness arises purely because of the informational structure of the problem.

Existence of this phenomena in NZSDG has only recently been established in
the literature (see Baar [1], [2]), and it has been shown within the context of
LQNZSDG described by difference equations and vith dynamic information that
this is a rule in such games rather than an exception.

In the next section, we will describe a technique of obtaining "information-
ally nonunique" Nash solutions and find a characterization of the entire class of
Nash equilibrium strategies for the LQNZSDG of this section. It will be apparent
from the sequel that the same technique can also be applied to nonlinear and
nonquadratic deterministic NZSDG described by differential state equations, and
under any dynamic information structure.

3. Nonuniqueness of the Nash solution under dynamic information. It has
previously been shown by Lukes et al. [12] that the Nash equilibrium solution of
the LQNZSDG of 2, with the open-loop information structure for both players,
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is unique whenever it exists, and that the solution exists when the interval [to, t] is
taken to be sufficiently small. We will, however, show in what follows that the
same differential game admits nonunique and both linear and nonlinear permiss-
ible Nash solutions if at least one of the players (say, player 1) has nonanticipative
closed-loop information.

To this end, let us first fix player 2’s strategy at a 352 e U2 and note that for this
fixed control policy of player 2, player 1 is faced with a "one-sided" optimal
control problem, namely

(6) min Jl(yl, 372), yl e U1
where J1 is given by (3) and the state vector x is defined by (2), with u2 32( ). It is
a well-known result in optimal control theory (linear regulator) that the global
minimum of J1 exists and a candidate that yields that minimum is the Markovian
(pure-feedback) strategy

(7) yl*[t, x(. )] y*(t, x)= -D-;(t)G(t)[P(t)x + k(t)]

where P(t) is obtained as a solution to a matrix-Riccati equation and does not
depend on /, and k (t) is obtained as a solution to a linear time-varying differential
equation and does depend on ’2 (see e.g. [4]). However, (7) is not the only element
of U1 that yields the global minimum. To see this, we first introduce for each
o-, to < o- < t, an affine mapping of N" onto C,[o-, tf] by

(8a) Z(t) O(t, r)z(r)- O(t, ’)[G1D-Gk(’)-G2/2(r)] d"

where z(cr) e R", Z(" e C (r, tf], and O(t, r) is the transition matrix associated
with the differential equation

(8b) :: (F- G1D-[:GP)(t)y.

If Y(t), to_-< _-< tf, denotes the unique trajectory resulting from application of the
strategies / (given by (7)) and 22, then we note that with z (o’) picked to be equal
to Y(o,),Z(t) agrees with the restriction of (. to [o-, t:]. Now, we let
o[x( ), Z,(. )] denote any element of U1, with the additional properties:

(i) q[ , ]: C[o’, t]x C[o,, t]--> R for each fixed t, r, to<-Cr<-t <- <-tf;
(ii) q[., ] satisfies the boundary condition

(9) o[x( ), Z(" )]= -D-(t)Gr(t)[P(t)x(t)+ k(t)]

whenever Z=(s) is replaced by x(s), for all s, o-<-s-< t. A typical candidate would
be

(10) q[x( ), Z(. )] [x(s)-Z(s)] ds -D-[l(t)G(t)[e(t)x(t) + k(t)].

It is now not difficult to see that anysuch o, with the additional side condition
z(o-):= x(o-), achieves the global minimum of Ja, and therefore is an optimal
solution to the problem for every fixed 72 s U.. Hence, we have a nontrivial subset
of Ua, to be denoted by q/a (372), which has uncodntably many atoms, each of them
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yielding the global minimum of J1. //1(372) can in fact rigorously be defined as a
subset of U1 as follows:

(11) q/1(2) {3’1 e UI" ‘/l(t, Zto(t)) -D-(t)G(t)[P(t)Zto(t)+ k(t)], Z(to)=Xo}

where Zto(t) is defined by (8a) and the dependence of 2 is through k(t) as
described before. Hence, we have

OBSERVaa’ION 1. If q/1(372) is as defined by (1 1), then for every fixed 372 U2,
any element of q/1(72) yields the global minimum of Jl(’, 2). Furthermore, it
follows from (11) that for every fixed 32 U., different ‘/1 in q/1(372) stand for
different representations (in terms of the state vector) of the same control value
which is 71(’, Zto(" )).

PrOPOSITION 1. For the differentialgame of 2, every Nash strategyforplayer
1 is in q/l(Y2) for at least one Y2 U2.

Proof. Assume that there exists a Nash pair {37, 372} with 37 a q/1(372). How-
ever, since J1 is a strictly convex functional over U, there exists a unique
minimizing open-loop policy for player 1, which also determines 0//1 (372) [see 1 1)].
Hence, if 1 a q/1(2), then J1(71,372) > mintq Jl(’, 72), which contradicts the
Nash optimality of {/1, ;/2}. Q.E.D.

In order to obtain a permissible Nash strategy for player 2, we start with an
element / q/(yo) and solve the optimization problem

(12a) min J2(’l, U2)
Uz

Assuming that a solution exists, it will in general also depend on y2; i.e. any
candidate u2* will be of the form

(12b) u2* ‘/2(t, yo).

We now require consistency in the solution and solve for a "3,20 U2 that satisfies
the fixed-point equation

(12c) 3,o= 3,2(t, 3,2).

The pair {*ql e R (*3,), *3,2} will then constitute a Nash solution for the differen-
tial game that we have considered.

If the procedure described above is executed for every 3,2 U2 and every
3,1 e //1(3,.), then this provides us with a nontrivial subset of the product space
U1 x U2 to be denoted by a//N which has uncountably many elements and every
element is a pair of strategies that are Nash optimal against each other. RN will be
called the "Nash strategy set" of this differential game corresponding to the given
information structure. We have only a partial ordering in a//N determined by the
notion of betterness introduced in Definition 2; and a subset of RN can be formed
consisting of all the admissible Nash pairs. Several illustrative examples worked
out by the author indicate that this subset is, in general, not a singleton, and its
elements yield different Nash costs. It now follows from the definition of a//1(3,2)
that given any pairs (3,, 3,), (‘/, ‘/2) in 0?/N a sufficient condition for Jl(‘/l, ‘/)=
Jl(‘/, "/22) and J2(‘/l, ‘/) J2(‘/, 3,22) isthat ‘/2( )- ‘/2(. ). It is a property of the
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two-person linear-quadratic team problem that this sufficiency condition is
satisfied for all elements of q/N, i.e.,

PROPOSITION 2. For the LQNZSDG of 2, and under the parametric restric-
tions Clf CEf, C1 C2, Dx ------ DEx, the corresponding Nash strategy set allN has the
property that the second components of every element of VllN are identical.

Proof. Under the parametric restrictions given above, there exists a Nash
solution to the LQNZSDG if and only if there exists a person-by-person team
optimal solution for the problem described by the objective function

(13) J(Ul, U2)=xT(toC,x(t)+ (xTCI(t)x +u(Dx(t)ul+ufD22(t)u2) dt=xo}
0

and the state dynamics (2). Since Ja is convex in the pair (u 1, u2), every person-by-
person team optimal solution is also globally optimal and furthermore there exists
a unique open-loop solution for both players. Because of the nature of the
permissible strategy set of player 1, he can pick different representations of the
same open-loop control value; however, for player 2, he is permitted to use only
open-loop policies and is therefore committed to a unique representation. Hence,
player 2 has a unique Nash strategy. Q.E.D.

Remark. It should be noted that, for the team problem, even though player 1
can employ different representations and player 2 is faced with a different
objective functional to be minimized in each case, these objective functionals all
have the same global minimum yielded by the same control vector. The reason for
this is that the objectives of both players are essentially the same. However, this
does not hold true in NZSDG which cannot be converted to equivalent team
problems (with a possible exception of 2-person NZSDG that can be converted
into equivalent zero-sum differential games), since for two different representa-
tions player 2 is in general faced with two entirely different optimization prob-
lems, the global minima of which do not necessarily coincide. Thi reasoning
brings us to the following conclusion.

CONCLtSION 1. Nonzero-sum differential games which admit a unique
Nash equilibrium solution in open-loop policies, will, in general, admit uncounta-
bly many Nash equilibrium solutions ("informationally nonunique" solutions)
when the information structure of at least one of the players becomes dynamic.
Deterministic LQNZSDG have this property of admitting informationally
nonunique solutions.

In order to illustrate this conclusion, let us now consider the following scalar
LQNZSDG in which the strategy set of player 2 is taken to be the class of all
piecewise-constant controls, which makes the computational aspects of the
problem rather straightforward. This example will therefore allow us to focus our
full concentration on the technique of obtaining informationally nonunique
solutions.

Example 1. Within the framework of the formulation given in 2, let the
state dynamics be described by

(14a) =u+v, x(0)=x0, t[0,1], u a-ul, I) A’U2,
A team problem is a dynamic optimization problem with a single objective functional to be

jointly minimized (or maximized) by several controllers with possibly different information.
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and the cost functionals by

I01(14b) J =xa(1)+ u dr,

(14c) J2 x2(1) + /3
2 dt+fl U

2 dt, fl>-O.

The control spaces are , and the information structure of the problem is as given
before. The permissible strategy set for player 2 is taken to be a proper subset of
Uz, which consists of all constant maps, whereas the permissible strategy set for
player 1 is as described before in 2.

Now, for every fixed yz(’ )= t7 , minimization of J1 over U1 yields the
solution

(15a) u y(t, x) -(Sx + k),

(15b) S(t) 1/(2- t),

(15c) k(t) [(1 t)/(2- t)]t7

which is unique in value but not in representation. It follows from Observation 1
that any strategy of the form (16) is permissible Nash against 72(’ = z5 for any
measurable p(. and q(. ):

(16a) y(t, x) -($x + k)+ [x(o-)-i(o-)]p(o-) do- +[x(t)-(t)]q(t)

(16b) .=-S-k +t; (0) Xo,

or in more compact form with the use of (15b) and (15c):

(16c) yl(t, x) (q -)x-(+’S-)- iT- q(1 -)Xo+ y (t),
1 1 t

(16d) 9 =xp-(1-t/2)pxo-(tp/2)O; y(0)-- 0.

Adopting the functional form (16c) as player l’s strategy and using the technique
described following Proposition 1, we obtain a unique Nash strategy for player 2
for every fixed q and p. This Nash strategy is given by (refer to Appendix A for
details of the derivation)

+(1-fl)A(p, q)(17a) t3*(p, q)
2 + fl + (1- fl)A (p, q) x’

where

(17b) A (p, q) o(1, o-) do-

and q( , is the 2 x 2 state transition matrix satisfying

(17c) (o [q-1/(2-t) ]P
q, q (tr, tr) I.
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It is important to note that the NZSDG (14a)-(14c) can be converted into an
equivalent team problem if and only if/3 1 and that g* becomes independent of
different representations of (15a) (i.e. independent of p and q in this case) if and
only if/3 1 (see (17a)), which is in accordance with Proposition 2.

In order to illustrate the informational nonuniqueness of the Nash solution
more explicitly, we now assume p(t) =- 0 and q(t) a + 1/(2- t) where a is a scalar
parameter. Then we have

(18a) u*(a) ax (1 +at)v*/2-(1 +a(2-t))Xo/2,

(18b) v*(a) =-(1-2/[2 +/3 + (1-/3)(e 1)/a])X,o,

which is a Nash equilibrium pair for each value of a. If (18a) and (18b) are
substituted into (14b) and (14c), the corresponding Nash costs will be

(18c) J(a) 2x/[2+/3 +(1-fl)(e- 1)/a] 2,
(18d) J2*(a) {(1 +fl +[fl +(1-fl)(e- 1)/a12)/[2+/3 +(l-fl)(e 1)/a]2}Xo2.

Since a was arbitrary, it follows from the above that the Nash costs are definitely
nonunique whenever fl # 1, and that they are not strictly ordered as a function of
a. Especially, in the limiting case when a is sufficiently large, we observe a
phenomenon similar to the one noted in [2, p. 428] within the context of
LQNZSDG described by difference equations. For sufficiently large values of a,
J= approaches its lowest possible value, zero, whereas J2* approaches an-unfavor-
able cost of x). When a approaches zero, however, J*-+(2/9)x and J2*-+
[(2 + fl)/9]Xo2.

After first discovering this informational nonuniqueness of the Nash
solution within the context of LQNZSDG described by difference equations [1],
[2], we have proposed in [ 1] a possible resolution of this dilemma by requiring the
Nash equilibrium solution to possess some kind of a stability property. This
requirement was imposed on the problem by inclusion of additive zero-mean
random perturbations in the state dynamics, and we sought a robust noncoopera-
tive equilibrium solution that is insensitive to these perturbations.

In the next section, we impose similar restrictions on the continuous-time
model by including an additive zero-mean independent increment process (a local
martingale) in the state dynamics. We formulate this new version of the
LQNZSDG of 2 under the Ito interpretation for the stochastic differential
equation and obtain explicit expressions for the unique element of y that
possesses the abovementioned robust behavior.

4. Derivation of robust noncooperative equilibrium solutions. We now
assume that the state of the game evolves according to the Ito stochastic
differential equation

(19a) d&=F(t)xtdt+G(t)u dt+G2(t)udt+dwt, t>-to, Xto=Xo
where we have adopted a different notation (from that in (1)) for the state vector
and the first player’s control function in order to emphasize that they are no longer
deterministic functions, xt, >-to, is an n-dimensional vector stochastic process
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with continuous sample paths, and Xo is a known deterministic vector. The
additive perturbation term wt, t_>-to, is any separable process with zero-mean
independent increments, the covariance matrix of each increment being positive
definite. The results obtained and the conclusions drawn in this section will,
however, be valid for a larger class of processes; namely, wt is allowed to be an
n-dimensional local martingale with respect to the increasing family of sigma-
fields 3t, t _>- to, where Y3 is the sigma-field generated by ws and xs, to --< s _-< t. (See
Wong [18, p. 165] for a definition of local martingale.) Furthermore, Wto-
O, E[ww K(t)< oo, for each t _-> to, where K(t) is an n x n matrix function
which is independent of the processes u, u2(t), to_<- t_<- tt, and E[dwtdwtr] A(t)
which is a positive definite matrix for all _>- to. An example of a stochastic process
that satisfies these requirements is the zero-mean independent increment Gaus-
sian process in which case K(t)= Io A(s) ds.

The coefficient matrices F(. ), GI(" and G2(’ are, as defined before,
continuous matrix functions of appropriate dimensions. Again, as before, player 1
has access to perfect nonanticipative closed-loop information concerning the state
of the game, and player 2 has access to open-loop information. Hence, we can take
the strategy sets of players 1 and 2 to be U and U2, respectively, as defined in 2.
It is known that corresponding to any pair of strategies {y e U, Ta s U2}, the
stochastic functional differential equation

(19b)

dx, F(t)x, dt + G(t)y[t, x; s <-_ t] dt + G2(t)yz(t) dt + dw,, xo Xo, t >- to,

admits a unique solution that is a sample path continuous second order stochastic
process [6], [19], [20]. Furthermore, the control process u] yl[t, x; s <-t] is a
second ol:der process with continuous sample paths and adapted to 5t, which is the
sigma-field generated by x and w,, to -< s _-< t.

The objective functions of the players are expected values of the expressions
given by (3), which we denote by J/.

Hence, the prime objective of the rest of this paper is verification of existence
of a unique noncooperative equilibrium solution {yl* e U1, y2* e U2} such that

(20a)

(20b)

for all ]/1 U1, y2 t U2.

Now, for every fixed y2 e U2 player 2 is faced with the following stochastic
control problem:

(21a) rain J-(u, y2)
U1

with

(21b)

(21c)

JI=E xtfClfxt;f + (xrtC1xt-t-(utl)rDUtl+StfD12"g2)dt
0

dxt (Fxt + Gu] + G2y(t)) dt + dw,.
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The unique solution to this (generalized linear regulator) problem is given below
in Lemma 1. A proof of this lemma is provided in Appendix B.

LEMMA 1. For every fixed y2 U2 there exists a unique element of U1 that
solves the stochastic control problem (21a)-(21c). This unique solution is given by

(22a) y’(t, x,)= -D-GP(t)x, + k (t)],

(22b) P+FT"P+PF-PGID-GTp+cx=o;
P(t) Cx,, to <-_ tf,

(22c) l +(FT-pGDGk +PGy2(t)=O;

k(t) 0.

Remark. We note that (22a) is functionally similar to the solution (7)
obtained for the deterministic version of this problem, and hence y’ is an element
of q/(y2). However, as it has been shown in Appendix B, we do not have the
nonuniqueness problem arising from different representations in this case, since
J-(y*, y2)<(yl, y2) for every other element 3’1 of q/l(y2), because of the
assumption that the local martingale wt has a positive definite incremental
covariance.

It now follows from Lemma 1 that in characterizing all solutions to (20), we
can restrict ourselves (without any loss of generality) to a proper subset of U1
consisting of all measurable aftine mappings ’1 of the form

(23) y(t, xt) -D-Xa (t)GTx (t)[P(t)xt + l(t)],

where P is given by (22b) and ! is any element of C,,.
Hence, every Nash strategy for player 1 will be of the form (23) for some I in

C,,. Now replacing u] by the expression given by (23) in both (19) and (3) with
2, we observe that every Nash policy for player 2 will be an optimizing solution

to the following stochastic control problem for some C,’

(24a) min L(u2)
Uz

with

(24b1

L(u2)--E xtff2fxt’ [xrt d2x,+2xr[+uT2D22u2+ITG1D-D21D-GI]dt
0

(24c)

(24d)

and subject to

(24e)

(24f)

(24g)

?PGID-IDzlD-Gl,

2- Cz +PGD-DzlD-GP,

dx, (lx, + G2u2 + s) dt + dw,,

P(t) -F-GD?G p,
s(t) -G1D-GI,

Xto X0,
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where P(t) is given by (22b), and l is any a priori picked element of C, that is
functionally independent of u2. (In the above description we have intentionally
suppressed the time dependence in order to avoid unnecessary repetition).

This stochastic control problem admits a unique globally optimal solution
which is given below in Lemma 2. A proof of Lemma 2 is also provided in
Appendix B.

LEMMA 2. Corresponding to every a priori fixed l Cn there exists a unique
element y of U2 that solves the stochastic control problem (24.a)-(24g). This
optimal strategy can explicitly be written as a function of l(t) as follows (where time
dependence is again suppressed):

(25a) u2*= y2*(t)= -DG2r[S(t)y(t)+ b (t)],

(25b) +rS+S-SG2DgGfS+(2=O;

(25c)

S(t) C2,, to t,

+ + 0;

(25d)

b(tf) 0,

/: +(GzDGS [-’)y +GzD-122G2b-s =0;

y(to) Xo.

Lemmas 1 and 2 provide us with a characterization of all possible Nash
strategies of players 1 and 2, respectively, in terms of a continuous function l(
yet to be determined. Now, for (23a) and (25a) to be mutually consistent as a
permissible Nash strategy pair, they have to be optimal against each other, which
implies that k(t) should be equivalent to l(t) when y2(t) is replaced in (22c) by its
optimal value from (25a). It is now not difficult to see that the NZSDG of this
section will admit a noncooperative equilibrium solution if and only if the
abovementioned compatibility condition is satisfied. This brings us to the follow-
ing important result which directly follows from Lemmas 1 and 2 and the
discussion given above:

TI4EOREM 1. Every noncooperative Nash equilibrium solution to the
LQNZSDG of this section is given by

(26a) *u yl*(t, x,)= -D-G(Px, + ),
-(26b) u(t) y*2 (t) -DGf(S(t) +)
where P(t) and S(t) are as defined by (22b) and (25b), respectively, and k, , b
satisfy the coupled differential equations
(27a) fc+Pr.-PG2DGf(S+)=O; kS(t0=0,
(27b) f+(r-SG2DG)+(PGDD2-SG)D-(G=O; /7(/.f) 0,

(27c))-(/ G2D-1 T22G2S)+G2DG+G1D-[G1=O; )7(/o) Xo.

Furthermore, a necessary and sufficient condition[or existence o[a Nash equilibrium
point is existence of a solution to the two-point boundary value problem (27a)-
(27c).
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Remark. A proof of the last part of the statement of Theorem 1 follows from
the fact that since Cl(t)>=O, C2(t)>-O, D22(t)> 0, Dll(t) >0, both of the Riccati
differential equations (22b) and (25b) admit unique bounded nonnegative definite
matrix solutions (see, e.g., Reid [14, p. 121]).

Via Theorem 1, we have now converted the original problem of investigating
existence of a unique Nash equilibrium point to investigation of existence of a
unique solution to the two-point boundary value problem (27a)-(27c). This, in
turn, is equivalent to existence of a unique

(28) z a---D12 G(S; + E),
which also constitutes the optimal unique Nash Strategy for player 2, whenever it
exists. Now, adopting a Lebesgue interpretation for the integral appearing in the
cost functions (3), we seek existence of a unique element z Lr2 such that
(27a)-(27c) are satisfied. (Here L r2 denotes the Banach space of all r2-dimensional
real-valued Lebesgue square-integrable functions on [to, tf]; i.e., if z e L, then
)o z rz dt < oo.) As it will be clear from the sequel, any such element (if it exists)
will also be in C because of the nature of the differential equation involved (or the
nature of operator defined below by (32b)). Furthermore, it will be a unique
element of C: since any two elements of C are equivalent under the sup norm if
and only if they are equivalent under the norm of Lr:.

Denoting the state-transition matrices associated with the differential equa-
tions (27a), (27b) and (27c) by q, q% and qy, respectively, we write these
equations in the equivalent form

(29a) k 1,

(29b) b =:k,

(29c) 37 r(t, to)Xo+3k +4b,

where z is defined by

(30) z -DGf2,
and i, 1, , 4, are linear operators mappingL into L n, and are defined by

(31a) ,Q91, OP(t, r)[PG2DGf](r) d,

(31b) -- Oo(t, r)[SGIDG-PGIDD:ID-GffJ(r) dr,

(31c) ’3/ Oy(t, q)[GID-G](r) do’,

(31d) 4E= --It (t, o’)[G:DG](o-) &r.

Compatibility condition now requires solvability of the operator equation

(32a)

(32b)

S(t)dPy (t, to)Xo +,A (S,3 -" S,4,2 "" ,2)01
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We now find a bound on the norm [1" [[0 of , where [[. [[o is the standard norm on
the Banach space 9(L") of continuous linear transformations of L" onto itself,
i.e.,

(33a) I1 11o sup I1 11, 
.L

where

(33b) I1 11,

Preliminary remarks and notation. For every t’ [to, tel, let P(t’, t) and S(t’, t)
denote the unique matrix solutions to the Riccati differential equations (22b) and
(25b) respectively, for to<-t<-t and with the original boundary conditions
replaced by P(t’) C1,, S(t’)= C2,. We know that a unique nonnegative definite
solution exists for every t’ s [to, tel and furthermore that the solution is a continu-
ous function of t, to <- <-t’ (see, e.g., Reid 14]).

Since k, b and y are continuous functions of entries of S and P, they will
also be continuous functions of t, -< t’, for every fixed t’ e (to, tf]. To denote the
explicit dependence on t’, we adjoin the variable t’ to their argument. That is, we
write

(34a) k k(t’, t, r),

(34b) q% b(t’, t, r),

(34c) y y(t’, t, o’), t, o" _-< t’.

We now define bounded scalar numbers ai, 1,. ., 4, by

(35a) al max [(t’, t, r)[P(/’ r)G2DG2r](er)lij,
i,j,o’, t, t’

(35b)

(35c)

2 max Io(t’, t, tr)[S(t’ o’)GIDTG
i,j,r,t,t’

P(t’, o’)GIDTD21DTG IT](o’)Iii,

a3 max [y(t’, t, r)Gl(r)D-[(r)G(r)li,
i,j, cr, t,t’

(35d) O4 max t,
i,],cr, t,t’

where] [0 denotes, in each case, the absolute value of the ifth element of the n x n
matrix ), and tile maxima are taken over i,/" 1, , n; to =< r, _-< t’ =< t. The
maximum exists, in each case, since the matrices involved have continuous and
bounded elements for every i,/" 1, , n, and every t’ [to, t], and the interval
[to, t] is compact. We further let denote the maximum value of trace of the
nonnegative definite matrix S(t’, t)S(t’, t); i.e.,

(35e) max [tr (S(t’, t)S(t’, t))]
t’,

where to < < t’ _-< tf.
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LEMMA 3. If. is defined by (32b) and ai, 1,..., 4, ,s by (35), then we
have the bound

[- n ]nal(36) II.’llo -< a2+Asa3+As(t,-to)-a2a,- 2
(tf-to)2.

Proof. Since each g, 1, , 4, is in (L ") and since (L ") is an algebra,
we have (see Simmons [15, p. 222]):

IIllo ll(s +S42
(37a) IIS3 +S42

{llsllo + [[s4[Io II&llo + II&llo}lllllo
where the last relation follows from the Minkowski inequality applied to L". We
now note that for any v L",

IIs vIl,, (&v)rS(tf, t)S(g t)&v dt
0

max
tottf

-_< max A ($2(t’.; t).)llvll,,; t’>_- t,
t’,t

--2 2

which implies the inequality

(37b) IIsello --< Xs IIello.
Similarly,

(37c) IlS.’4[Io --< Xs IIe,llo.
we now refer the reader to Lemma 4, Appendix C, for a proof of the bound

(37d) ]lillo <=n(te-to)ai//; i= 1,..., 4.

By using the relations (37b)-(37d) in (37a), we obtain the desired result
(36). Q.E.D.

Lemma 3 can now be used to prove existence of a unique solution to (32a) for
sufficiently small time intervals [to, tf]. We first make the following crucial obser-
vation:

OBSERVATION 2. If the original differential game is instead defined on a
shorter time interval [to, to + 6], 0 < 6 -< t- to, everything else remaining the same,
then the statement of Lemma 3 will still be valid with tf- to replaced by , since As
and ai are independent of the length 6 of the time interval as long as -< t-to.
Therefore we have

(38)
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for a differential game defined on a time interval of length 8 =< t- to. This implies
that II ello can be made arbitrarily small by a sufficiently small choice of 8 > 0.

THEOREM 2. The nonzero-sum differential game of 4 admits a unique
Nash equilibrium solution given by (26a)-(26b), if the time interval on which the
game is defined is taken to be sufficiently small.

Proof. We have previously shown that there exists a unique Nash equilibrium
solution if there exists a unique z e L" that solves (32a).

Since IFello can be made less than one by a proper choice of 8 (this follows
from (38)), is a contraction mapping for sufficiently small 8. This consequently
implies existence of a unique solution to (32a) by Banach’s classical fixed point
theorem (Simmons [15, p. 338]), which further implies existence of a unique
z Lr through (30). Q.E.D.

Remark. Theorems 1 and 2 indicate that every robust Nash equilibrium
solution of the original deterministic differential game of 2 will be of the
structural form given by (26a)-(26b), under the given information pattern.
Furthermore, the solution will exist and be unique if the length of the time interval
on which the game is defined is taken to be sufficiently small. As it has been noted
in Theorem 1, the existence condition, in general, is solvability of a two-point
boundary value problem.

The same deterministic LQNZSDG and with the same information pattern
was considered previously by Foley et al. [7], who asserted a linear strategy for
player 1 that is a function of only the current state vector. Their condition of
existence for such a Nash strategy was nonexistence of conjugate-points in the
solution of some coupled matrix-Riccati differential equations. The solution given
in [7] does not correspond to the one given in Theorem 1 and neither do the
existence conditions. It should be noted that the Nash equilibrium solution
proposed in [7] is not Nash optimal under the additional restriction that the
solution should be insensitive (robust) to external disturbances in the state
dynamics, which are modeled by a local-martingale process.

5. Concluding remarks and possible extensions. In the first part of this paper
( 2 and 3), we have looked into the role dynamic information plays in the
characterization of the Nash equilibrium set in nonzero-sum differential games
(NZSDG), and have shown within the context of DG described by linear
differential state dynamics and quadratic cost funetionals that dynamic informa-
.tion pattern gives rise to existence of uncountable number of admissible (informa-
tionally nonunique) Nash solutions for DG which otherwise admit unique
solutions.

In order to overcome the dilemma arising from existence of informationally
nonunique Nash solutions, we proposed in the second part of the paper ( 4)
further to restrict the definition of a Nash solution in deterministic NZSDG by
requiring the strategy of each player to be insensitive to external zero-mean
disturbances in the state dynamics. We have modeled these disturbances by an
additive local-martingale process and have shown, again within the context of
LQNZSDG, that if player 1 is provided with the classical nonantieipative closed-
loop information and player 2 with open-loop information, then every permissible
Nash strategy of the former will be an affine transformation on the current state
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vector. Furthermore, we have proven existence of a unique Nash equilibrium
solution if the time interval is taken to be sufficiently small. The significance of this
result, in our opinion, is that it is the first existence and uniqueness proof in the
literature on NZSDG characterized by differential state dynamics and nontrivial
dynamic information patterns.

If the closed-loop information pattern for player 1 is replaced by an e-delay
information pattern, it seems that it is possible (if not immediate) to extend and
generalize the approach presented in 4 in order to prove existence and unique-
ness of Nash equilibrium solution for that problem also. If, however, the informa-
tion available ,to player 2 is also dynamic, the approach taken in 4 will no longer
be applicable since it strongly makes use of the assumption that one of the players’
information structure is static. Hence, we can only conjecture at this point that
under a general e-delay information pattern for both players, the stochastic
differential game of 4 will only admit Nash strategies that are affine in the
available information (i.e., a counterpart of Theorem 1 will be valid). Verification
of this conjecture still remains a challenge at this stage.

Appendix A. In this appendix, we supply the reader with the missing steps in
the derivation of informationally n0nunique Nash solutions for Example 1 ( 3).

If player 1 ’s strategy is fixed a priori in the functional form (16c)-(16d), player
2’s best response will be an optimizing solution to

(A.1) minJ2

where

(A.2)

(A.3a)

J=zT"(1)O(1)z(1)+v2+ [az +klf +k2xo] dr,

:i Az +Bf + Cxo +Dv, z (0) Zo,

(A.3b) A a-- [ q -1/(2- t) ],P

(A.3c)

(A.3d)

(A.3e)

(A.3f)

(A.3g)

(A.3h)

B a--[qt/2-(1-t)/(2-t),-tp/2],

C7" &-[-q(1-t/2),-p(1-t/2)],

DT-A[1, 0],

ar&-[q-1/(2-t),l],

kx a---qt/2-(1- t)/(2- t),

kz a---q(1- t/2),

(A.3i) [xo, o],
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Now, denoting the state transition matrix associated with the differential equation
(A.3a) by (.,. (this is also given in 3 by (17c)), we write out the solution to
(A.aa)"

(A.4)

z(t) q(t, O)zo + o(t, cr)B(tr) dtrO + o(t, tr)C(tr) dtrxo

+ o(t, tr)D do’v

 Xo+ZSv.
Substitution of this expression in (A.2) and minimization with respect to v
yields the unique solution

v --[lT(1)O(1)l)(1)+fl ([graaTD) dt+ 1]-a

(A.5) {Dr(1)o(ll[z+:f + dx]lt=l

+ r[MZo+r+rdxo+k+kxo]dt

Now, for consistency we require v t7 in (A.5), and make use of the fact that we
are operating at the equilibrium point. The latter observation provides us with a
simplified version of (A.4), i.e.

z7=[.,)7]7, Y=(1-t/2)Xo+(t/2)g, )7=0

where 2 denotes the value of the state vector at equilibrium, and )7 denotes the
value of the solution to (16d) at equilibrium. Using this simplification in (A.5)
(with v ), we obtain the solution given by (17a), after some rather straightfor-
ward but extensive manipulations.

Appendix B. We now provide a proof for Lemmas 1 and 2 of 4. Lemma 1 is
a generalization of Kwakernaak’s result 10] and hence our proof will parallel his.
We first give a restatement of Lemma 1 for the sake of completeness.

LEMMA 1. For every fixed Y2 U2 there exists a unique element of U1 that
solves the stochastic control problem (21a)-(21c). This unique solution is given by

(B.la)

(B.lb)

y(t, x,)= -D-GP(t)xt + k (t)],

P +FT"P +PF-PG1D-GP+ C1 0;

(B.lc)

P(tr) C,, to <- <= t,

I + (FV-PGID-G)k +PG2yz(t) O;

k(tf)=O.

Proof. The objective function to be minimized is given by

(B.2a) Jl(U ) . Xtefl,Xtf-[" [xTtCxt+(ut1)TD1ut+TfO12"YE]dt
0
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and an integral representation of the state dynamics (19) is

(B.2b) xt Xo + F(s)xs ds + Gl(S)U ds + G2(s)y2(s) ds + wt, >-- to.
o o o

Since 3’2 U2 it follows from [10] that {xt, t, >- to} is a semi-martingale and if
,(y, t) is any function having first and second partial derivatives with respect to
y e R" and a first partial derivative with respect to t, then O(xt, t) can be expressed
in the form (B.3) by applying the Dol6ans-Dade-Meyer "differentiation rule":

(xt, t) d/(Xto, to) + ,(xs-, s) ds
o

(B.3) + Or(x,-, s) dx +1/2 tr G(x-, s) dq,
o 13

+ N,(x,, s)-(x,-, s)-,(x,-, s)(x,- -x,)]
to<--st

where t, t -> to is a matrix-valued stochastic process, the i/’th element of which is
(x, xT),, x being the ith component of the continuous local martingale part of the
process xi. (See [10] or [5] for further elaboration on this representation.) Now
taking (x,, t) xfP(t)x, + 2xr,k(t), where P(. and k(. are uniquely defined by
(B.lb) and (B.lc), and applying the above differentiation rule at tr, we have

(B.4)

tf

X tfClfxtfT xP(to)Xo+ 2xk(to)+ [x-P(s)x- + 2xY-/ (s)] ds

+ 2 [P(s)x,- + k(s)]r dx + tr P(s) ddp
o

+ .. {xrP(s)x,-x-P(s)x,-+2xr, k(s)-2xr-k(s)
toStf

-2[P(s)xs- + k (s)]r(x, xs-)}.

Substitution of/,/ and dx, (from (B.lb), (B.lc) and (B.2b), respectively) into
(B.4) yields the following expression for J-(u)"

(B.5)
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+xP(to)Xo+2xk(to)+tr PdO,

+
to S’’tf

-2[ex,-+

where we have suppressed the explicit time dependence when there is no
ambiguity from the context.

Obseations. 1) It follows from (B.2b) that dO, =dO, where the i]th
element of

2) It follows from (B.2b) that x-x-= w- w-.
3) x- and (w- w-) are stochastically independent.
4) (w- w,-) is a zero-mean process.
5) It has been shown by Kwakernaak [10] that

{i
tf

E tr Pd’+tr Y
to-S tf

}it’
P(w, ws-)(Ws w s-) r P(s) dK(s).

6) X(to)= Xo is a deterministic vector.
Now, using the preceding observations and facts in (B.5), we obtain (after

rearranging some terms)"

J-x U E U +D-:G Px + k ]TV [U +D-; G PX + k)] dt
0

(B.6)
"+" ’/’2TD122 dt + xP(to)Xo + 2xk(to)

0

+ ,it

tf

i
tf

krGiD-xGrxkdt+ P(t) dK(t).
0 0

if we now make use of the assumption that the matrix function K(t) is
independent of the process u’ <

1, to t -< t., it follows from (B.6) that minimization of
J-l(U) over U1 is equivalent to minimization of

.(u) E [ut1+D-(1G(Pxt+k)]rDll[ul+D-;G(Pxt+k)]dt >-0

over U1. Since y* given by (B.la) is in U, and since J(yl*)=0, we can easily
conclude that (B.la) is a globally optimizing solutian for J(Ul). in order to
complete the proof of Lemma 1 we still have to show that (B.la) is the only
element of U1 that achieves this global minimum.

If we restrict the permissible strategies to a subset of U1 such that u is not
functionally dependent on x, to --< s -< t, then it follows from strict convexity of ]1
that (B.la) is the only such solution. Therefore, if there are other elements of U1
which yield the same global minimum as yl*, then they have to reflect different
representations of *u 1. However it follows from (B.2b) that xt cannot be expres-
sed in terms of x, for any s < t, since (w- w,-) has a positive definite covariance for



656 TAMER BASAR

all to < <- tf, i.e. every element of U1 has a unique representation. This completes
the proof of the lemma. We note in passing that if this positive definiteness
restriction were not impos.ed on the process w,, then y* would not be the only
element of U1 that yields Ja 0. Q.E.D.

LEMMA 2. Corresponding to every a priori fixed C, there exists a unique
element ’2 of U2 that solves the stochastic control problem (24a)-(24g). This
optimal strategy can explicitly be written as a function of l(t) as follows:

(B.7) u* y(t)= -DGS(t)y(t)+ b(t)],

where $, b and y are uniquely defined by (25b)-(25d).
Proof. Working along the same lines of the proof of Lemma 1, we pick

d/(Xt, t) xTts(t)Xt + 2xrb(t) and arrive at the following expression for L(u2) (after
similar reasoning and manipulations)"

{iL(u2)=E [u2(t)+DeG(Sxt+b)]TDzz[uz(t)+DGf(Sx,+b)]dt

(B.8) + lrG1D-D2D-(Gldt+xS(to)Xo+2xb(to)

+2 .bs dt bTG2DGfb dt + S(t) dK(t).
0

Since only the first term determines the optimal solution, minimization of L(u) is
equivalent to minimization of the nonnegative expression

(B.9) L(uz)=E [ue(t)+D-Gf(Sxt+b)]rD22[u2(t)+DG(Sxt+b)]dt.
0

We now decompose the solution to (24e) into two parts--a purely deterministic
part to be denoted by z(t), and a purely stochastic part that is functionally
independent of u2, which we denote by yr. z(t) satisfies the DE

(B. 10a) ff’Z + G2u2 + s, Z(to) Xo,

and vt satisfies the stochastic DE

(B. 10b) dr, Fvt dt + dw,

If we now replace xt in (B.9) by z(t)+ v, and note that (i) v defines a zero-mean
semi-martingale, (ii) u2(t) is functionally and statistically independent of v, we can
rewrite (B.9) in the equivalent form

(u2) E [uz+DG(Sz +b)]Dzz[u2+DGrz(Sz +b)]dt

+E{ Iti’ vrtSG2DGSv, dt}
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and since the first term inside the expectation is completely deterministic,

(uz) [uz+DG(Sz +b)]TDz.[uz+D12Gf(Sz +b)]dt
(B.11)

+tr SG2DGSE[vtv dt.

Minimization of L(u2) over U2 is now equivalent to minimization of the first term
of (B.11) which is a strictly convex functional. It therefore follows that

(B. 12) u2=-D-Gf(Sz +b)

yields the unique global minimum of/(u2). Substitution of this solution into
(B. 10a) yields the DE (25d) and replacing z in (B. 12) bythe unique solution of this
DE provides us with the unique element of U. given by (B.7), (It is important to
remind the reader that the notion of uniqueness used here is with respect to
equivalence classes formed in U2 under the Lebesgue measure, i.e. two elements
of U2 are said to be equivalent if they differ at most on a set of Lebesgue measure
zero, but since U2 C, this is equivalent to the notion of equivalence with respect
to the sup norm.) This completes the proof of Lemma 2. Q.E.D.

Appendix C. In this appendix we provide a proof for Lemma 4 which has
been used in the proof of Lemma 3 in 4.

LEMMA 4. Ifi (Ln), 1," ", 4, are defined by (31a)-(31d) and ai by
(35a)-(35d), we have the bound

(C.1) 1[,i1[0 n(tf- to)ai//; 1, , 4.

Proof. We first note that because of the structurally similar forms of (31a)-
(31d), and taking into account the modifications (34a)-(34c), the proof will be
completed if we can show that

(C.2a) llsell0 <= n (tf to)a//
where ow (L n) is defined by

(C.2b) Yv A (tf, t, o-)v(o-) do’, <- tf

for some A(., .,. which has square Lebesgue integrable elements, and a is
given by

(C.2c) a= max ]A (t’ t,o’)[i; to <= t, o" <- t’ <= tf, i, j l n.
i,j, cr, t,t’

Since IIel)o sup II vll,,; Ilvll,, -< 1, we start with

(C.3a)

where

(C.3b)

It It )T(o’)Kt(o’, S)I)(S) ds do"

Kt(o’, s) a_ A T(tf, t, o’)A (to t, s).
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Denoting the i/’th component of Kt by K7 and the ith component of v by vi, we can
write (C.3a) as follows:

(C.4)

i,/"

where we have made repeated use of Buniakowski’s inequality since L (to, t) is a
Hilbert space. Expression (C.4) can be bounded from above by

(c.5)
X IIKII, (llv, llY + IIvllY)/2 X Ilvill X (IIKII, + IlKil[t)/2
i,j

where in arriving at the last equality we have made use of the symmetry property
of Kt as defined by (C.3b).

It now follows from (C.5) that
tf

IIvll, X [Ivillt" IIKfll, dt
t,l 0

Since IIvll, is a monotonically nondecreasing function of for any v e L", we can
bound the last expression from above by

t,1 0

which can further be bounded from above by

where

tf

(C.6a) / max X IIK;II, dt.

This implies that

and hence
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To find an explicit upper bound on h, we first note that

Ilglql,- ]gi(r, s)l 2 ds &r

IA t, t, s)l

N max [A r(tf, t, g)A (tf, t, s)[ (t- to);
t,,$

N n. max max ]A (tf, t, ).. (t- to)
i,] t,

N n. { max IA (t’, t, (t- to),
i,],t’,t,

and substitution of this bound in (C.6a) yields

0" S <=t,

to _-< t, o- _-< t’ < tf,

/_-< n 2. { max IA (t’, t, o’)lgi}2" (t,- to)2/2
i,],t’,t,

(C.7)
a--n2a2(tf--to)2/2

which is the desired bound.
This completes verification of the bounds (C. 1) for all 1,..., 4, since if

(C.2b) is instead defined with to replaced by tf the procedure described above will
still yield the bound given by (C.7). Q.E.D.
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ON A NONLINEAR EVASION PROBLEM

BARBARA KAKOSZ

Abstract. We prove a theorem which asserts the possibility of approximating a "relaxed controls"
strategy by ordinary strategies. Next we consider a nonlinear game of evasion and give a sufficient
condition of evasion.

1. introduction. The differential game of evasion is a game given by a system
of equations’

(1.1) 2=P(z,u,v), zeR", ueU, ve V,

two compact control sets U, Vand a linear subspaceMofR of codimM>- 2. The
parameter u is controlled by the pursuer who wants the trajectory z(t) to hit the
subspace M; the parameter v controls the evader whose aim is opposite. We
assume the following conditions:

(a) P(z, u, v) is a continuous function on R" U x V,
(b) there exist positive constants A and B such that

Iz" P(z,u, v)l<-AlzlZ+B forall(u, v)e Ux V,

(c) for eachR > 0 there exists a constant CR such that if Izl --< R, -< R then

[P(z,u,v)-P(.,u,v)l<-CRlz-el for all (u, v) e Ux V.

The conditions (a)-(c) ensure that for any two measurable functions u(t), v(t)
defined on[0, +oo), u(t) U, v(t) V, and anyinitial condition z0 R there exists
on [0, +oo) the unique solution of the initial problem:

]. (t) P(z(t), u(t), v(t)),
(1.2)

z(O)=zo.

The aim of the evader is to find for every initial state Zo M and every pursuer’s
measurable control function u(t), u(t)e U, a measurable function v(t), v(t)e V,
such that the corresponding trajectory of (1.2) satisfies z (t) M for all [0, +c).
Similarly as in [1]-[5], to prove that evasion is possible we construct two closed
sets W1, W, containing M in their interiors, W1 c W and such that: if z0 W the
trajectory remains outside W for all t => 0; if z0 e W then the trajectory leaves W
after a certain short period of time and remains outside W for the rest of the time.
It is assumed, quite naturally, that the evader choosing at any moment a value
v(t) of his control function does not know the future, but he can make use of
information concerning the past and present. In particular, he does not know the
future behavior of the opposer and hence his choice of control should be
independent of the values u(s) for s > t. To make the statement more precise we
define a notion of strategy corresponding to this information pattern.

* Received by the editors June 29, 1976, and in revised form November 19, 1976.
t Instytut Matematyczny Polskiej Akademii Nauk, Warsaw, Poland.

661



662 BARBARA KAKOSZ

Fix an arbitrary initial condition Zo. A mapping v U(Zo; t) which assigns to
each pursuer’s control function u(t), [0, +m), an evader’s control function
v(t) v (Zo; t), t [0, +oo), is called a strategy if for any T and any two control
functions ua(t), Uz(t) the equality Ul(t)=Uz(t) a.e. in [0, T] implies that
v (Zo; t)= v"(Zo; t) a.e. in [0, T].

The problem as stated above has been considered by L. S. Pontryagin and E.
F. Mishchenko in [1]-[2] for a linear game of the form z" Cz + u + v, where C
denotes a constant matrix, and then by R. V. Gamkrelidze and G. L. Kcharatish-
vili [4], E. F. Mishchenko [3], M. S. Nikolski [5] and others for the game of the
form z" Cz +f(u, v). In each of papers 1]-[5] sufficient conditions of evasion are
given, that is, conditions under which a strategy of evasion v(Zo; t) can be
constructed for each initial state Zo M.

In the present paper we consider a nonlinear evasion problem. First, in 2 we
prove an approximation theorem. The theorem answers a question stated in [5]. It
asserts that for each strategy for the extended game of the form 2=
k= IxP(z, u, v), where the player v uses so-called relaxed controls, that is,
collections (Ix1," ", Ixk, Vl," ", Vk), Eik_ Ixi 1, Ixi 0, V V, 1,..., k,
there exists a strategy for the game (1.1) such that for any u(t) the correspond-
ing trajectory of (1.1) approximates uniformly that of the extended game.
Conditions of evasion contain usually an assumption that an intersection of
certain sets, sort of a set of superiority, has a nonempty interior. The approxima-
tion theorem of 2 allows us to consider a bigger set as a set of superiority. In
Mishchenko’s paper [3], for example, it is assumed that for some integer k and
some two-dimensional subspace L orthogonal to M, each of the sets IIcr[(u, V),
r 0,..., k-2, consists of a single point, where II denotes the orthogonal
projection onto L, and the set f’l erIICk-lf(u, V) contains an interior point in L.
The conditions of evasion we give in 3, when applied to the linear case, lead to a
weaker assumption, namely that the set u:co IIck-lf(u, V) contains an
interior point in L and each of the sets IIcrf(u, V), r 0, , k 2, consists of a
single point.

The recent paper by P. B. Gusatnikov [6] concerns also a nonlinear game of
evasion. Again our conditions of evasion are essentially more general than those
in [6] because of the use of the approximation theorem. Our method of construct-
ing the sets W, W1 is different than that in [6].

2. The approximation theorem. Consider two games in R""

(2.1) =P(z,u,v), usU, veV,

n+l n+l

2 Y IxiP(z, u, Vi) U e U, E Ixi 1, Ixi >--O, vi e V
(2.2) i=, i=1

fori =1,"’n+1,

where U, V are compact, P(z, u, v) satisfies (a)-(c). In the game (2.2) the player v
chooses instead of one control function v(t) a collection B(t) (/(t), /x,+(t),
Vl(t), V,+l(t)) of measurable functions. This extends his chances. In fact, in the
game (2.1) the player v chooses for each u(t) a point from the set P(z(t), u(t), V)
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while in the game (2.2) he is allowed to choose a point from the set
co P(z (t), u (t), V).

Fix an arbitrary initial condition Zo and a compact interval [0, T]. The
following theorem holds"

THEOREM 2.1. Let 7(Zo; t) tT (t) ( (t), /zu+(t), v(t),’.., v,+(t))
be a strategy for the game (2.2). Then for every e >0 there exists a strategy
v U(zo; t)= v"(t) for the game (2.1) such that for any control function u(t) the
trajectories z(t), z2(t) of the games (2.1), (2.2) corresponding to Zo, u(t) and v (t),

(t), respectively, satisfy"

(2.3) Iza(t)-z2(t)l<e fort6[O, T].

Before giving the proof of this theorem, we prove first the following
LEMMA 2.1. Let p(t),’’. ,p,,(t) be a collection of measurable, bounded

functions defined on an interval [0, T] taking values in R", I(t)," ", I,,(t) a
collection of measurable scalarfunctions on [0, T] such that =1/z (t) 1, tz(t) ->
0 for 1, , m, [0, T]. Then for any e > 0 there exists a measurable function
p(t), p(t){p(t), p,,(t)} for t[0, T] and such that:

(2.4) sup Ixi(’)Pi(’)-p(’) dr < e.
t[0, T]

Moreover, the value p(t) atany moment t does not depend on the values tzi(s), pi(s)
fors>t.

Proof. Take a constant R such that IP(t)l <R/2 for [0, T], i= 1,..., m
and an integer n such that

R
(2.5) T nn< e.

Divide the interval [0, T] into n intervals of the length 6 T/n" I1 t.J I.J I,
[0, T],/. [(j- 1)8,/’],/" 1,..., n. We will construct the function p(t) step-by-
step on each interval/.. Put:

p(t)=pl(t) fort

In order to define p(t) on/# f 2,. ., n, take

sj_l Y tx(’)p(’)-p(r) d’.
i=1

If s._l=0 define p(t)=pl(t). If S]--’10 take an orthogonal basis
(:{-1,..., :/,-1) in R" such that :{-1 si-1. Put

p(t)=maxlexe-,{p(t),...,p,,(t)} for te/,

where "max lexeJ-l" means the lexicographical maximum with respect to the basis
:i-1, that is, maximum with respect to the following order: if x, y R" and x , yi
are coordinates of x, y with respect to the basis :j-1 then x is not greater than
y iff x y or there exists k, 1 -<_ k _-< n, such that x y for 1, ., k 1 and
xk<y k.
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The function p(t) is uniquely defined in this way; it is measurable and has the
following property:

(p(t), si_a)= max (p(t),Si_l)
i=1,.. ",m

and therefore

(2.6) ti(t)pi(t)-p(t), sj-1 <-- 0 for t /..

We have the estimation

fro18-1)3Ipi()i(f)-p(r)dr<R’i forj 1, , n.

Because of (2.6) and the definition of s_ we have for f 2,. ., n,

fot (i Pi(r),i(r)--p(7))

]-1)8

Thus an easy induction argument gives the inequality

(2.7) IO ( Pi(g’"i("--P(g’)d’} R’4 fOrt’’

which together with (2.5) implies (2.4).
We proceed now to prove the theorem. Because of (b) all trajectories of (2.1)

and (2.2) with the initial condition Zo remain over the interval [0, T] in a certain
ball of radius to. Thus, because of (c), the function P(z, u, v) satisfies the Lipschitz
condition with a constant C Co along any two trajectories starting from Zo.
Using the integral form of the equations (2.1), (2.2) we obtain

lZl(t)-z:(t)l

e(z(r), u(r), v()) E 7(r)e(z(r), u(r), 7(r) ar
i=1

therefore

(2.8)

Iz(t)-zz(t)l

P(z2(r), u (r), v (r)) Y. ILl, (r)P(z2(’), u (r), v (r)) dr
i=l

+ IZl(r) z2(r)l dr.

Applying to (2.8) Gronwall’s lemma, we deduce that it is enough to find a
strategy v"(t) for the strategy 7 such that for each function u(t) and each
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t[0, T]

fo’ (P(z(r), u(r), v" (r))
(2.9)

Z .’(lP(z(r, u (rl, v ’(r)l dr < g,
i=1

where < e e -cr. Take p/(t) P(za(t), u(t), v/(t)) and apply Lemma (2.1). We
obtain the function p (t) and define v (t) for [0, T] as follows:

v"(t) v/(t) where is the smallest integer such that p’(t)=p’(t).

The function v u(t) defined in this way is measurable for each u(t) and satisfies
(2.9). The mapping v (t) is a strategy because of properties p(t). Thus the proof of
Theorem (2.1) is completed.

Remark. The function P(z, u, v) above can be replaced by a function
P(t, z, u, v) which is measurable in for fixed (z, u, v) and continuous in (z, u, v)
for fixed and which satisfies (b) uniformly for all and (c) for all t [0, T] with a
constant CR.r.

3. The evasion theorem. In this section we give a solution of the evasion
problem when the game is described by the following equation:

(3.1) 2=Po(z)+f(z,u,v), zeR", uU=R’, veVcR’,

two compact sets U, V and a subspace M of R" such that codim M>-2. Assume
that the function P(z, u, v) Po(z) +f(z, u, v) satisfies (a)-(c). The extended game
takes the form:

(n+l). Po(z) + Z /xf(z, u, Vi), U e U, d (.. 1"’" -$n +1) e A,
i=l

(3.2)
(V, Vn+) V V

where A {/z R"+lv"+
Izi= ’l’i 1, [’/’i >" 0}. For every initial state Zo R", a pair of

measurable functions u(t), v(t) such that u(t) U, v(t) Vfor e [0, +m) defines a
trajectory of the l[ame (3.1), and a pair of measurable functions u(t), tT(t) such that
u(t)e U, (t)e V=Ax Vx... x VcR"+)+"+) defines a trajectory of the
game (3.2). Let Pi, P, be two mappings from R" into R". ByDPi P we denote the
mapping from R" into R" defined byDP P(z) DPi(z)" P(z), where DPi(z) is
the differential of Pi at a point z. Let I denote the identity matrix. We shall use the
following notation:

Co(z) 1, Ca(z) DPo(z),

Cr (z) D(D(... (Deo" Po) )Po)(Z).
r times

We assume that the mapping Po is differentiable as many times as it is required in
the conditions which follows. The conditions which we give next are basic for
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constructing a strategy of evasion and we shall refer to them as conditions of
evasion or conditions (E).

(E) For each z, M there exist a two-dimensional subspace L L (z,) of R
orthogonal to M, an open neighborhood q/z, 9 z, and an integer p -p(z.) such
that the following two conditions (i), (ii), hold, where II =Ii(z,) denotes the
orthogonal projection R onto L(z.)"

(i) {IIC(z )f(z, u, v)l(u, v)6 U V}= {0} for all z -//z., r=0, p-2,
(ii) (3 uuCO{IICt,_x(Z.)f(z., u, v)[v V} contains an interior point with

respect to L.
Under the conditions (E) an evasion strategy can be constructed for all Zo M. The
following theorem holds:

THEOREM 3.1. Iffor the game (3.1) the conditions (E) are satisfied, then there
exist closed sets W, W1, Mcint W1 c int W, a positive function T(), T() < 1,

(0, +o), a positive function 3(, .), , . (0, +) and a strategy of evasion
defined for all Zo Msuch that any corresponding trajectory satisfies:

if Zo W then p(z(t),M)>-’y(p(zo, M), [z0[) for t[0, T(IZoi)] and
z(T(Izol)) W;

ifforsome t, z(ti) Wthen z(t): Wl forall t>-t;
if z(t) e W then for some t2 e Its, + T([z(t)[)] z(t2) W.
In the proof of the theorem we will construct the sets W, W1 which are unions

of cylinders around M and describe a strategy of evasion. Briefly speaking,
according to the strategy, the evader is doing something, say choosing a constant
control t, e V, as long as the trajectory remains outside the set W. When it hits W
at a moment t the evader begins an actual maneuvre of evading that takes some
time T= T(lz(t)l). The trajectory remains outside the set W1 during the man-
euvre and it appears outside W at the moment t + T. The evader again puts his
control function equal to till the next moment ta such that z(t)e W. If
z(0) z0 e W then the evader starts with a maneuvre of evading which brings the
trajectory outside W at time T(Iz0l) and ensures the estimation given by the
function /over the interval [0, T(Iz0l)].

Consider a particular case of the game (3.1) when the equation is linear:

5:=Cz +[(u, v) + a,

where a is a constant vector, C is a constant n n matrix. The conditions (E) take
in this case the following form: there exist a two-dimensional subspace L
orthogonal to M and an integer p such that:

(i) each of the sets {IIC-f(u, v)[(u, v) U x V} for r 1,..., p 1 consists
of the origin,

(ii) the set (3uuco{HC"-lf(u, v)lve V} contains an interior point with
respect to L.

Hence the conditions (E) contain in this case the conditions from [3].
We will prove Theorem 3.1 in several steps.

(A) Take z. eM and a neighborhood q/z. as in (E). There exist a neighbor-
hood.7z., 7z. q/z. and a number 7z. (0, 1) such that for any initial condition
Zo e 7/’z. every trajectory of (3, 1), (3.2) remains in q/z, over the integral [0,
Integrating by parts the integral form of (3.1) we obtain the following expression
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for z(t):

tP-1 tP
z(t) Zo + Po(zo) t + + Cp-2(Zo) Po(zo) + Cp-l(Zo)Po(zo)--7

1) p:

+ f(z(-), u(-), v(-))+C(z(-))f(z(-), u(-), v())(t- ) +

(p-2)! ]
d-

+ Cp_l(Z(7"))f(z(T), u(T), 0(7"))
(t T)p-1

(p- 1)!

+ C.(z())(Po(z(.))+f(z(z). u(-), v(-)))(t’’)"
p!

dT.

Because of (E) the projection Hz(t) of the trajectory into L L(z.) takes the form

IIz(t) wp(zo; t)
(3.3)

+ IIC_l(z(’))f(z(’r), u(’), v(’r))
(t-’r)P-
(p- 1)!

d’+R(t"+)’

where

R(tp+a) IICp(z(z))(Po(z())+f(z(z), u (-r), v (-r)))!t-z.).p dp

satisfies

(3.4) IR(t’+l)l <=Nz.t+ for e [0, z.]
for some constant Nz., wo(zo; t) IIzo + IIPo(zo)t +.. + [-ICt_l(Zo)Vo(zo)(tP/p !)
is a curve whose components are polynomials of degrees not greater than p.

(B) Take a square (2 c L and an integer p. There exists a positive constant 0
such that for any curve w,(t) in L whose components are polynomials of degrees
not greater than p there exists a point Wo s Q such that

(3.5) [Wp(t)+WotPl>-otp for all e [0, +).
This assertion is contained in a more general statement in [1]. An outline of the
proof is as follows. Let L R 2 and O be a square whose sides are parallel to the
axes. Divide -Q by lines parallel to the axes into r2 squares whose interiors are
mutually disjoint. Consider the curve (1/t)w(t)= ((1/t)w(t), (1/t)w(t)). If r
is large enough, namely if r > 2p + 1, then there exists at least one among the small
squares whose interior is not intersected by the curve. Suppose that the curve
intersects all squares. Then there exists a line parallel to the first axis or a line
parallel to the second axis, say a line parallel to the second axis, which is
intersected by the curve at least 1/2(r- 1) times, that is more than p times. It means
that for some c the function (1/t’)w(t)-c has more than p zeros and so does the
function wl(t) tc. Hence w(t)-tc =-0 and the curve remains on one line all
the time and so it cannot intersect all squares. We take the center of the square



668 BARBARA KAKOSZ

whose interior is disjoint with the curve as -Wo. The inequality (3.5) holds with
0- (l/2r) where denotes the length of a side of the square Q.

(C) We will describe a local maneuvre of evading in a neighborhood of a point
z, M. By (ii) there is a square Qz, such that

(3.6)

Qz. ("l co {IICp_l(Z.)f(z., u, v)lv e V}
uV

n+l

("] {1-ICp(z.) Z tz’tf(z.,u, vi)l(I-el,’’’,tZn+l)A, viV,i=l, "’’,
ueu i=1

n+l}.

Take Oz. as in the section B for Q (1/p !)Qz.. Choose neighborhoods 7/’z., z.
and a number 7Z. e (0, z.) such that if Zoe 7/’z. then any trajectory of (3.1) and
(3.2) remains over the interval [0, 7z.] in the neighborhood z. which has the
following property:

u, v)-IIC,,_(z.)f(z., u, )l<=- for z e z. z.IIIfp-l(Z)f(z,
(3.7)

and all (u, v) e U V.

Let Zo e 7/’z.. Denote by Wzo, Wzo e Q the point corresponding as in (B) to the curve
w,(Zo; t). We have from (3.6) that if w e Qz. then for each u e U there exists
/.(U)-" (b/l(U), n+l(U), Vl(U), /)n+l(U)) e such that

n+l

(3.8) 1-ICp-l(Z,) E [Ul,i(u)f(z,, u, 13i)= w.
i=1

Fix a basis : in R"+1)+"+1)q and choose from the set of all solutions tT(u)e Q of
(3.8) the lexicographical maximum tT0(u) with respect to the basis s. We prove as in
the well-known Fillipov’s lemma that o(U(t)) is measurable for any measurable
u(t). Therefore for each ZoeT/’z. we have a strategy tTz.(Zo;t)=
(lz(t),"’, I/(t), v(t),..., v/(t)) in the extended game such that for any
control function u(t) the following holds:

n+l

(3.9) HCp_l(Z.) Y tz(t)f(z., u(t), v’(t)) Wzop!
i=1

Since we have (3.3), (3.4) which are valid as well for trajectories of the extended
game and since (3.5), (3.7), (3.9) hold, we conclude that each trajectory Y(t)
corresponding to the strategy tTzU.(zo; t) satisfies

[II3(t)l >-_- tP -Nz.tp+I.

Take/z., Tz. such that/z. > 0, Tz. (0, L.] and

(3.10) Irff(t)l >--Iz.t for t

Take a positive constant Cz. such that Cz. >(1/Tz.) and

(3.11) IPo(z)+f(z,u,v)l<1/2Cz. forzeq/z., (u,v)eUx V.
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Hence if Zo //z., [0, Tz.], then any trajectory of (3.1) satisfies

(3.12) p(z(t), M) >=p(Zo, M)- *.
2

We can assume that p(zo, M) <- 1 for Zoe z.. Therefore we have from (3.12)

(3.13) p(z(t), M) >__p,Zo,
2

for e [ 0, O (ZO,zz]M) ].
Choose for each Zo z., Zo M, a positive number e(Zo) such that

(3.14) I.t">- tP +e(zo) fort >p(z’M)
CZ

Take Tz.(Zo; t) and apply Theorem 2.1 for e e(Zo), T= T.. We obtain a
strategy v.(Zo; t) defined for all Zo z., ZoMand [0, Tz.] and such that any
corresponding trajectory satisfies

(3.15) p(z(t),M) p

fortt ,T..
P L./2. WeMoreover, it satisfies (3.13). Take Kz. such that Kz.< C./2, Kz. N

conclude that any trajectory corresponding to v.(zo; t) satisfies

o(Zo, M)O(z(t), M) egz.t*, O(z(t), M) eKz.
(3.16) =z.

for t e [0, Tz.].
(D) We proceed to construct the sets W. Denote by K(0, r) the closed

ball of radius r and center at the origin. Take a sequence 0 ro < r < < r <
r+ such that for any trajectory z(t) of (3.1) the following condition holds’

(3.17) if zoeK(O,r),te[-1,1] thenz(t)sintK(O,r+)fori= l,2, ...
The existence of a such sequence follows from the growth condition (b).

Define M K(0, r) for 1, 2,. . Each is compact and {
i,1 i,mis its open covering. Choose a finite covering z., , . of. Define

K1 min {K,, Kz.,}, K min {Kk;..., K,,, Ki-}
for/=2,3,....

Assume To 1, Po 1, Co 1 and define for 1, 2,...,

Tz.T/= min{Tz21, i,mi Ti-1}, Pi max{p41, P4m,, Pi-},

Ci max {Czar,"’, Cz:.m,, Ci- }.

We have therefore that each of the strategies v z.J(Zo; t), f 1, ., mi, ensures the
following estimation:

(3.18) p(z(t), M) >gitpi, p(z(t), M) >--Ki
p(zo, M)"’ for e [0, T/].
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Denote by W(p, M) the cylinder around M, W(p, M)={z R"[p(z, M)<-p}.
Take a positive pi for each 1, 2, ., such that

(3.19) W(pi, M) f3K(O, ri) J’ U+..
Take a sequence o’1, r2," ", o’i," of positive numbers such that

(3.20)
O’i < P O’i < Ki+ T-+I fori= 1, 2,..

O" O’i-- for 2, 3,.

Define

W-- U W(o’i, M) VI K(O, ri).
i=1

We proceed to describe a strategy of evasion v (Zo; t). Fix an element iS, e V.
Take an initial condition Zo, Zo W, and a control function u(t) on [0, +oo). Put
vU(zo; t)= as long as the corresponding trajectory z(t) satisfies z(t) W. Let tl
be the first moment that z(tl)=zle W and let [zlls(ri-l, ri]. Therefore Zle
W(o,i, M) and because of (3.19), (3.20), Zl e 7/’z for some/’. Denote by jo the
smallest of such integers. Put vU(zo; t)= Vz;io(Zl; t-t1) for tS[tl, tl + T/I, where
t(t-tl) u(t). Since p(Zl, M)>-o’i/l, we have from (3.18)

’(3.21) p(z(t), M) >-_Ki(t- tl); p(z(t), M) >-Ki C" t It1, tl + T].

Hence from (3.20), p(z(tl + Ti),M)>KiT’>ri-1 >=ri >-ri+l and since (3.17),
Iz(ta + T/)I (ri-, r+a). Therefore z(tl + T) W. Again we put vU(zo; t) till the
next moment t2 such that z(t2)s W when one of the strategies v.(z2, t-tz) is
switched on again. Let Zo s Wnow. Assume [Zol (ri-, ri] and let jo be the smallest
of the integers such that Zo s 7/’z;i. Put v (Zo; t) v.o(Zo; t) for t s [0, T/]. We have

(3.22) p(z(t),M)>-_KitPi; p(z(t),M)>-Ki
P(z’M)P’

forte[0, T/].

Hence z (T) W and we proceed as before. It may happen that --’i T/< -t--oo but
by (3.17), if Iz<t’)l<-r, and Iz(t" l>ri/ then It’-t"l>l and therefore the
game proceeds as described above over the whole interval [0, +oe); in other
words, the procedure defines a strategy v (Zo; t) for all [0, +oo). Take

and define W1 (-Ji=l W(Tli, M) (3 K(O, ri). Notice that ri+l > "Yli > T/i+I" Take a
trajectory corresponding to the strategy v (Zo; t) and assume that z(q): W. Let
t>-_tl, Iz(t)]s(ri-l, ri]. Then, either ]z(t)l>O’i+l>i and hence z(t)W1, or
Iz(t)l < ri+l. The latter implies that z(t) int W and the trajectory is on the course
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of action of a local maneuvre of evading which began at some earlier moment at a
point z2 0 W, Iz21 (ri-2, r,.+l). Therefore from (3.22)

O z M) eKi+l 6+1

and hence z(t)
_
W. Define: T(() T/for (s (ri_l, ri], 1, 2," ",

for:le(O,+), & e (ri-l, ri], i=1,2,’’’

The functions T(s), ’(:1, :2) have properties required in the assertion of the
Theorem 3.1. and this completes the proof.

Remarks. It is required in condition (i) that all functions IICr(z)f(z, u, v),
r 0, , p 2 vanish in a neighborhood q/z. of a point z. M. Notice that this
condition can be easily replaced by the assumption that the functions
IICr(z)f(z, u, v) vanish along the subspace M and grow up slowly enough with-
drawing M. Namely, if we assume that for some constant Fz. there is

(3.23) [HC(z ).f(z, u, v )l <= Fz.p (z, M)"- forze//**, r=0,...,p-2,

then for Zo s z., e [0, z.] the expression

B(t) (z(r), u(r), v(r))

+ IICl(Z(r))f(z(r), uO’), v(r))(t-r)+

+ IIC_2(z(r))f(z(r), u(r), v(r))
(t- r)-2) dr
(p-2)!

can be estimated together with R (tp+l). Indeed, we have

p-1

IB(t)l<=Fz. , ti(p(zoM)+Dz.t)p+-i
i=l

for e [0, Tz.],

where Dz. sup {IPo(z) +f(z, u, v)l Iz q/z., (u, v) e Ux V}. Therefore

O(zoM)

It suffices since for <-p(zoM)/Cz. we use the estimation p(z(t), M)>-_p(zoM)/2
(see (3.13)). Notice, furthermore, that instead of considering a division of
P(z, u, v) into a sum P(z, u, v)= Po(z)+f(z, u, v) we can consider a division
II(z.)P(z, u, v)=Pa(z)+f(z, u, v) of the projection of P(z, u, v) into the sub-
space L (z.) and assume that the functions Pl(Z), fl(Z, u, v) have properties
corresponding to the properties of HPo(z), IIf(z, u, v) required in the conditions
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(E). In this way the division depends on point z. M. Namely the conditions (E)
take the following form (compare [6]): for each z.M there exists a two-
dimensional subspace L (z.) orthogonal to M, a neighborhood q/z., and an integer
pz. such that the projection II(z.)P(z, u, v) of the right hand side into L(z.) can be
written in the following form:

II(z,)P(z, u, v)=Pa(z)+fa(z, u, v),

DPi P(z, u, v)--Pi+l(Z)-[-fi+l(Z u, 13), i= 1, 2,... ,pz.-1

where the functions f (z, u, v) for 1, , Pz.- 1 vanish in q/z. or are estimated
as in (3.23) and the function fpz. (z, u, v) is such that the set fq ,t co fp** (z,, u, V)
contains an interior point with respect to L (z.).

We have considered only the autonomous case. The nonautonomous case is
not essentially different. The problem of possibility of evasion for each initial
condition (to, Zo) for the game z" P(t, z, u, v), t R, z R", is equivalent to the
following autonomous evasion problem in R "/1" z=/;(zT, u, v), =(z, z)
R"/1,/6(z7, u, v) (1, P(z, z, u, v)), ll=R x M. Evasion conditions of such type
as the conditions (E) and a division of the right hand side into a sum P(z, u, v)
Po(z) +f(z, u, v) appear in a natural way if, for example, one considers an evasion
game between two objects x, y in R whose motions are described by equations
of orders p and q, respectively:

x () F(x, x () (P-),,...,x v), veV,

y(O= G(y, y(g, y(q-1), u), u U.

Consider the corresponding game in R(+)" that is, take

Z (X, X (1) (p--l) (q--l)
," ",x y," ", y )=(zl," ", z+q)R(/q",

M {z e R (’+")" IZl zp+ 1}’

and the corresponding system of equations z" Po(z)+f(z, u, v), where

Po(z) (z2, z3,’’’, Zp, 0, Zp+2, Zp+q, 0),

f(z, u, v) (0,’" ", O, F(z, ", z, v), 0,’" ", G(z+I, ,z,+q, u)).

In order to ensure the possibility of evasion for each initial state it is necessary to
assume that the evader x has a sort of superiority. The following two conditions
(e), (e) are in a sense natural conditions of superiority"

(e) q <p and for each point (x, x(l, x(-) there exists a two dimen-
(psional subspace L L (x, , x -1) of R such that

inttcoIIF(x, x (), x (’-), V) ,
where by intL we denote interior with respect to L, and II is the orthogonal
projection onto L.
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(e2) q =p and for each pair of points (x, x(l, , x(p-1)), (y, y(1), y(q-1))
such that x =y there exists a two-dimensional subspace L of R such that for
some Wo L,

w0+IIG(y,..., yq-1 U) c intLcoIIF(x, x(- V)

One can easily check by computing C(z)f(z, u, v) that each of the conditions (el),
(e2) implies the condition (E)..

Aeknowleflgments. I wish to express my gratitude to Professor Czeslaw
Olech; without his assistance and encouragement this work could not have been
done.
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STEEPEST DESCENT WITH RELAXED CONTROLS*

J. WARGAf

Abstract. We prove the convergence of a steepest descent iterative procedure for determining an
"extremal" point of a function defined on a sequentially compact convex subset of a topological vector
space. We then apply this procedure to the problem of determining an extremal of a relaxed optimal
control problem defined by ordinary differential equations without endpoint or unilateral restrictions.

Let K be a sequentially compact convex subset of a (real) topological vector
space and 4 :K a continuous function such that the directional derivative

Dqb(x; y-x) a= lim 1--[4(x+ce[y-x])-(x)]
ottO+ Ol

exists for all x, y K and the family of functions

x Db(x; y-x):KR,

corresponding to all y K, is equicontinuous, lit is easy to see that if, moreover,
the topology of is metric and b is Lipschitz continuous then the function

(x, y) Db(x; y-x):KKR

is continuous.]
In its simplest form (which we shall apply to optimal control) our procedure is

a very "natural" form of steepest descent: if the function (x, y)D4(x; y-x) is
continuous, we choose an arbitrary x0 K and determine x 1, x:, iteratively as
follows: given xi, we determine any yi that minimizes y D(xi; y -xi) on K. We
then determine (by a search on [0, 1]) a number 0 [0, 1] that minimizes
0 4,(x + O(y-x)), and choose as x+l any point such that,(x+) <- 4 (x + Oi (y xi

In a more general way, we apply
Procedure A. We choose some c (0, 1) and Xo K. Given x, we determine

some yi such that

Dc(xi’, yi--Xi)<=C max {--1, inf Dcb(x; y--xi)}
yK

(observe that infy.KDqb(xi;y-xi)<=Dqb(xi;xi-xi)=O), then choose some 0
[0, 1] such that

4’ (x, + 0, (y, x,)) 4 (x) =< c [ min 4 (x, + 0 (y, x)) 4 (x)],
t. o[o, ] J

and finally select as xi+l any point in K such that

(Xi+I) )(Xi "[" Oi(Yi--Xi)).

* Received by the editors July 2, 1976, and in revised form August 30, 1976.

" Department of Mathematics, Northeastern University, Boston, Massachusetts 02115. This
work was supported in part by the National Science Foundation under Grant MPS 73-08532A02.
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We shall later prove
THEOREM I. Let {Xo, x l, X2, } be constructed by Procedure A and xoo be

the limit of some subsequence of (Xo, Xl, ). Then

Dqb(x; y-xoo)>_-0 (y K).

The above relation is a necessary condition forx to minimize tb. We refer to
a point satisfying this condition as an extremal point of b. We observe that in the
special case where b is a convex function, the point x of Theorem I actually
minimizes b on K, and we obtain a useful estimate of the error at the ith step by
applying

THEOREM II. If 49 is convex and Xo, x 1, are as described in Theorem I then

lmi A__ min tb (K) -< b (xi) -< min inf Db (x,; y xi)
yK

(i=0, 1,2,. .)

and

lim inf Dqb (xi y xi O.
yK

If is a Hilbert space, b W and b (x) [x b [2 then Procedure A determines
the nearest point inK to b and Theorems I and II yield results previously obtained
by Gilbert [2] for the case W R" (and related to the algorithm of Frank and Wolfe
Eli).

If b is not convex then Procedure A yields an extremal point of b but not
necessarily a minimizing one. The question then arises---and it was posed by the
refereemabout the range of applicability of this procedure in "nonconvex"
problems (and, in particular, in optimal control problems involving nonconvex
cost functionals or nonlinear differential equations). A second question concerns
the possibility of implementing this procedure. To both of these questions our
answer will be subject to many "if’s" and "maybe’s" and may therefore appear
unsatisfactory. However, we must point out that no method presently exists---or
will likely ever exist--for determining a minimizing point of an arbitrary continu-
ous, or even "differentiable", function defined over a compact and convex set.
This remark even applies to functions over a compact real interval. Thus a method
of the type under investigation must be considered as a general scheme whose
practical value and power can only be tested for special classes of applications.
The same remark applies to "implementation". In Procedure A, in order to find
an extremal point of b, we must at each step come within a certain "range" of the
minimum of a subsidiary function, namely y D)(xi, y -xi). As we shall see later
in the special case of optimal control problems, the determination of the minimum
of the latter function, defined over a convex and compact subset of a normed
vector space, can be reduced to the problem of minimizing functions over control
sets that are usually finite-dimensional. This appears to be--and often is---a great
simplification. However, no general assertions appear possible even for such
"finite-dimensional" problems. Furthermore, all the objections that may be
directed at a "steepest descent" procedure like ours are even more applicable to
all the indirect methods of the calculus of variations, of optimal control and of
optimization that are based on necessary (but not sufficient) conditions for
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minimum. Thus, in summary, "beggars can’t be choosers" as is evident by
considering the applicability of most approximation methods designed for difficult
mathematical problems.

We shall now indicate a few applications of Procedure A (and of its optimal
control version, Procedure B below) that come immediately to mind: (1) as will be
apparent from the proof of Theorem I, Procedure A yields a lower value of b with
each iteration and can be used therefore to improve on known admissible results;
(2) if one can determine from the known structure of the problem (or by physical
arguments) a finite number of "small regions" that contain all the extremal points
of b then Procedure A, with suitable initial guesses in those "regions", might yield
all the extremal points and therefore also all the minimizing ones; (3) we have
recently derived, in [6], certain "second order" conditions stronger than "extrem-
ality" and applied them to optimal control. Some preliminary results indicate that
these conditions may perhaps be used "constructively" to find an argument of b
that yields a lower value than a given extremal point which violates these "second
order" conditions. Thus Procedure A, in conjunction with these auxiliary con-
structions, may yield several extremal points, each of them better than the
preceding one.

We next describe a class of relaxed optimal control problems to which we
shall apply the interative procedure. Let T a__ [to, tl] , V be an open subset of
N", Ao a convex compact subset of V, R a compact metric space, ’(R) the
collection of closed nonempty subsets of R with the Hausdorff metric, and
R#: T-->g(R) a measurable set-valued mapping I-5, 1.7, p. 146]. We define #
as the collection of all measurable selections of Re( and the space 6e# of relaxed
control ]’unctions as the compact metric space of all measurable r: T--> rpm (R)
such that r(t)(R#(t))= 1 a.e., where rpm (R) is the set of all Radon probability
measures on R with the relative weak star topology of C(R)* (see [5, Chap. IV]
for details) and the topology of 6e# is the relative weak star topology of L X(.T,
C(R))* [5, pp. 272 and 287]. For any continuous b :R -->, we write b (r(t)) for
k(r)r(t)(dr).

Let]" Tx VxR -->N" and ho" V-->N be given functions. We denote by h the
derivative (gradient) of ho and by [ the partial derivative of ]’ with respect to its
argument in V. We assume that

(a) ho, h’o, f(t, .,. and ]’o (t, .,. exist and are continuous for all t e T;
(b) ]’(., v, r) is measurable for all (v, r) Vx R; and
(c) there exist a compact D V and an integrable O:T-> such that the

differential equation

y(t) a + f(-, y (-), r(’)) dr (t e T)
o

has a unique solution y(o-, a), with y(o-, a)(t) D for all r 6e#, a Ao and t T,
and we have

If(t, v, r)l -< p(t), I/o (t, v, r)l =< (t6T, vD,rR).

We set

b (r, a) & ho(y (r, a)(t)) ((o’, a) s 6e# x Ao).
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Before describing the procedure in detail, we recall [5, VI.3.2, p. 370] that for
every (r, a) e 6ee x Ao there exists a "Gamkrelidze control" ra s 6e#, represented
by some Oj

# and measurable aj’ T--> [0, 1] (] 0, 1,.. , n), with

and such that

eel(t)= 1 (t T),
i=0

o’6(t)({p(t)}) a(t) (teT,]=O,’" .,n),

y(ro, a)=y(r,a).

We denote by 6e the collection of Gamkrelidze controls and say that (o-6, a)
9xAo is f-equivalent to (o-, a) 9o# x Ao if y (r, a) y (r, a). In a computa-
tional procedure, there may be an advantage in using Gamkrelidze controls
because they require the storage of "only" the 2(n + 1) functions p., aj instead of a
measure-valued function r.

Finally, we ought to mention at this point that Procedure B, which we
describe below, bears a certain relation to some algorithms investigated by Mayne
and Polak. In a few of them [3], use is made of a function defined like of
Procedure B and, in another [4], the authors consider convergence in the topology
of relaxed controls.

Procedure B (for the determination of an extremal in "free" problems of
optimal control).

Let (ro, ao) 6xAo be arbitrary. If (o-, a) 6e x Ao is known, we deter-
mine (r+, a+) as follows: we set ya=y(o’g, a) and determine the unique
absolutely continuous solution z" T- N" of

z(t)T= ho(y,(ti))+ i
tl

z (t T),

where the superscript T denotes transposition or a row vector. We next determine
any 7 e Ao that minimizes

a -> z (to) Ta

over A0 and any fi # such that

z(t)Tf(t, yi(t), fi(t))= min z(t)Tf(t, yi(t), r)
rR(t)

a.e. in T.

If

Z(to)Tai minz(to)Ta and z(t)Tf(t, yi(t), ri(t))= z(t)Tf(t, yi(t),(t))
aeAo

a.e. in T,
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we set (ri, a.) (o’i, a;) (/= + 1, + 2, and terminate the procedure.
Otherwise, we observe that for all 0 e [0, 1] we can solve the equation

y(t) (1-0) ai + f(’, y(’), ri(’)) d

+ 0 a + f(-, y(-), (’)) d (t e T)

to obtain the unique solution (O)(t). We determine (by a search on [0, 1]) a
number 0e[0,1] that minimizes Oho((O)(tl)). Finally, we set a+=
(1-0)a +0a and choose as + any element of such that

ho(y(cri+, a,+a)(t)) -< ho(Y(O)(tl)).
In particular, we may choose ri+ so that

y (o’i+, ai+l) y((1 0)ri + Oi, a,+l),

where 3(t) is the Dirac measure concentrated at fi(t).
Remark. For the sake of simplicity and clarity, we have adapted Procedure A

in its simplest form to optimal control. However, Theorem III below, and its
proof, remain valid if we adapt Procedure A in its general form. This can be done
by choosing a priori a number c (0, 1] and, at the ith step, computing (fi, a)

# Ao and Oi 6 [0, 1] so that

Z(to)Tfft + Z(T)Tf(T, yi(7"), (T)) dr

-<c max -1, min z(to)ra + min z(-)rf(-, yi(-), r] d"
aAo o reR#("r)

and

ho(if(Oi)(tl))- ho(yi(t)) <- c rain [ho(;(O)(tl))- ho(y,(t))],
0[0, 1]

everything else remaining the same.
THEOREM III. Let (croo, ao) be the limit in (the compact metric space) 6"# x Ao

ofsome subsequence of ((o-i, ai)). Then (troo, aoo) is an extremalofthe optimalcontrol
problem, i.e.

zoo(to)ao min zoo(to)a,
aAo

where

and

Zoo(t)Tf(t, yo(t), O’oo(t)) min z(t)Tf(t, yo(t), r)
rR#(t)

y y(o’, a)

z(t)T= h(y(t)) + i
tl

Zoo(r)Wfv(r, yoo(r), r(-)) dr

a.e. in T,
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Examples. The following very simple examples illustrate the use of Proce-
dure B.

Example I.

J)l(t) y2(/)2- f r2er(t)(dr), 2(t) I rer(t)(dr),

yl(0) y2(0) 0, T= [0, 1], R#(t) R [- 1, 1], ho(Vl, v2) vl. (Thus we mini-
mize ya(1).)

The optimal solution is er(t) 1/281 + 1/2&l, where & is the Dirac measure at r.
i=0. We choose er0 80 yielding b(O-o) 0, zl(t)= 1, z2(t)=O.

We choose iS(t)= 1, yielding 01 1.
i= 1. era =1, b(era)=-0.66 Zl(t)= 1, z2(t)-l-t2, tS(t)---1, 02=1/2.
i= 2. o’2 1/26-1 + 61, &(er2)=-1, 0"2 optimal.
Example II. The problem is the same example as in I except that

)l(t) y2(t)2 + I r2er(t)(dr)’ y2(0) 1/2.

The optimal solution is the point-valued function

o-(t) ,%,, with u (t) 1/2 sinh (1 t)
cosh 1

yielding optimal Dmin 0.19038.
i= 0. O’o ao, b (er0) 0.25, Zl --- 1, z2(t)1 t, t(t)---- -1/2(1 t), 01 1.
i= 1. If we set O" =(1-Oa)ero+Oa6o=6o then b(erl) 0.2.

However, Procedure B allows us to pick any erl for which b(o’l)_-<
4((1- 01)O"o + 018) and, because of the convexity of the problem, tlais will be the
case if we choose o’1 6u,, where

u=(1-O).O+O .
_o and 4(ua)=0.19047--anwith 0 chosen optimally. This yields 0optimal--14

improvement over 0.2.
Proof of Theorem I. Assume, by way of contradiction, that there exists 37 K

such that

D&(x; xoo) -3’ < O.

Let fl Ac min (1, 3,/2) and let {il, i2, } be such that limj xij =xoo.
We first observe that, for each 0, 1, 2,...,

(Xi+I) <: (X -- Oi(y --Xi)) (Xi).

Thus 2-)qb,(xi+’l)<-&(xi’) (/’= 1, 2,"’). Since the functions x-+Dqb(x; yi,-x)
(/= 1, are equicontinuous, there exist foe {1, 2,. } and 0o e (0, 1/2] such
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that, for all/" ->_/’o and 0 6 [0, 0o], we have

Dc(xi, + O(y# -xii); Yi,-Ix# + O(y# x#)])
<-DO(x,,; Yi, xi,) + ill2
<_- c max 1, Db(xg; )7 x)] + fl/2
-<c max [-1, Db(xoo; ;-xoo)+a/2]+fl/2

<_--/3/2<0.

If we set 0j(0)__a b (xii + 0(yii-xi)) then above relation implies that

1
lim --1 [0i(0 + a) 6i(0)] t 0 D6(O; 1 O)
aO+

1
l_oPd(x# +O(y,,-x,); (1-O)(y,-x,,))

<--/2 (0 <-_ 0o, j >-jo).

It follows that ffj(0o) -< 0.(0) 00/3/2, that is,

(Xi "[- 0’0(Yii- Xii)) (Xii) --00/3/2
hence

(/’->-jo);

( (Xii+ 1) -- $ (Xii+ 1) -- I (Xii +Oii (yii Xii))
(1 c)qb (x,,) + cab (x,, + Oo(y x))

<- (1 c)b (x,,) + c[4 (x,;) 00/3/2]

0 (x,;) cOofl/2 (l" >= jo).

Thus lim. b (x;) -c, which is absurd because the continuous function b must be
bounded on the sequentially compact set K. Q.E.D.

Proof of Theorem II. Since b is convex, we have

(x, yK, 0[0, 1]),+ O(y x)) (x)] <- ck(y) ck(x)

hence

and

Dc(x; y -x)_-< b(y)- b(x)

inf D4(x; y x -< min 4(K) b (x)
yK

(x K).

Now assume that there exist e > 0 and sequences J c (1, 2,. .) and (yj)jj in
K such that Db(x; yi x) < -e for ] J. We may assume that (xi)jj converges to

some 2 in the sequentially compact set K and it follows, by Theorem I, that

Db(; y.-)-> 0 (/" J);
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hence, by the equicontinuity of x -. Dd(x yj -x), we have Dqb(xj yi xi) >-_ e/2
for sufficiently lai,ge/" in J, a contradiction. Q.E.D.

Proof of Theorem III. Let L I(T, C(R)) be the Banach space of Lebesgue
integrable functions b:TC(R) with the usual norm, and let denote its
conjugate space LI(T, C(R))* with a "weak" norm[. [w [5, IV.1.9, p. 272],
defined by

Ilw Y. 2-’ I()I

where {, 2," } is some dense denumerable subset of L (T, C(R)). We recall
[5, IV.3.11, p. 287] that can be identified with a compact convex subset of
(, I" Iw). Weset

WxR", K&XAo, (, a)h0(y(g, a)(t)).

For any (, a), (u, b) K, we have

D((g, a); (u, b)- (g, a))= h’o(y(g, a)(t))n(t),

where "T is defined by

n(t)= b-a + [(, y(, a)(), ())n()

+(, y(, a(r, (r (rl] r (t e rl.
It follows easily that

D((, a); (p, b)- (, a))= z(to)r(b -a)
(1

+ z(z)7"f(z, y(r, a)(-), v(’)- o’(-)) dr,
o

where z" Tn is the solution of

z(t)r= h;(y(o’, a)(tl))+ z(z)rf(-, y(r, a)(’), r(z)) dz (t T).

We can verify by standard techniques (such as in, e.g., [5, VI. 1.1, p. 348]) that
b :K It and the function

((tr, a), (,, b))Db ((tr, a); (,, b)- (tr, a)):K x K

are continuous. Thus the assumptions of Theorem I are satisfied. Relation (1) now
shows that for any (tri, ai)K the element (t, a)K minimizes the function

(,, b)Dqb((tri, ai); (,, b)-(try, ae)).
Thus Procedure B is a special case of Procedure A, and our conclusion follows
from Theorem I and relation (1). Q.E.D.

Acknowledgement. I wish to acknowledge stimulating discussions with Pro-
fessor E. Polak about algorithms for solving optimal control problems.
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NECESSARY OPTIMALITY CONDITIONS WITH
APPLICATION TO A VARIATIONAL PROBLEM*

NORBERT CHRISTOPEITf

Abstract. For an abstract optimization problem with operator constraints and vector-valued
objective function, necessary optimality conditions of Kuhn-Tucker type are developed, and are then
used to obtain a generalized Euler-Lagrange condition for the problem of Bolza with phase
restrictions in the nonconvex and nondifferentiable case.

Introduction. Consider the following abstract optimization problem:

minimize F(x)
subject to

(P) G(x)<-gO,
H(x) 0,
X Ego,

where
(i) F, G and H are operators defined on a locally convex space X with

values in locally convex spaces W, Y and Z, respectively;
(ii) the pre-ordering ’’y" in Y is defined by

y <--yO: (y,la)<--O foralla EA,

where A {1a}aA is a given family of continuous linear functionals on Y;
(iii) the minimum is meant to be a generalized Pareto-optimum with respect

to the pre-ordering "<- w" in W generated by a family fl {to,},B of continuous
linear functionals on W in the same way as described in (ii), i.e. for Q =X
F() v-min F(x): => there is no x Q such that (F(x), to <- (F(f), wt3) for all

xQ

fl B and strict inequality holds for some fl’ B;
(iv) Xo is a nonernpty subset of X.

The pre-orderings in Y and W correspond to convex cones Ky=-A=
{y Y: (y, A) >- 0 for all A E A} (the negative polar) and Kw -fl via the relations
y <=yO:y -Ky and w <=w0,w -Kw, respectively. It is easy to show that if :
is an efficient point of F(Q) with respect to the cone Kw, i.e. if F(Q)f’)
{.F() Kw} {F()}, then F() v-minxco F(x). The converse is not true in
general.

Necessary optimality conditions for problems like (P) with scalar-valued
objective function have been obtained by Halkin [5] and Neustadt [11] for finite
dimensional equality constraints, by Bazaraa and Goode [1] and Virsan 16] in the
infinite dimensional case. In this paper we shall derive a multiplier rule under
fairly mild differentiability conditions, including both the convex and the differen-
tiable case. Further, the assumption that Ky possesses interior points will be
weakened.
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1. Convex approximations. Let us introduce the sets

o {x X:F(x) <-_ wF(xo) and (F(x), o for some/ B},

O {x x: G(x)-<0},

02 {x X: H(x) 0},

O O fq O2 fq Xo.
Then problem (P) can be written in the form

find v-min {F(x): x O}.

Adopting the notation of Laurent [9] we define the cone of interior directions of a
set O X at the point Xo X:

F(Q; Xo) {x X: there exist a neighborhood U of x and a positive number e such
that Xo + (.J o<,< r/U Q}

and the cone of tangent directions

F*(Q; Xo)= {x X: for every neighborhood U of x and every positive number e
there exist y U and 0 < 7 < e such that Xo + fly Q}.

In the classical theorems of Kuhn-Tucker type the cone of interior directions of
the set O1 is characterized by means of the derivative of G. Following this line of
thought we introduce a generalized concept of differentiability.

Let A (Xo)= {a A" (G(xo), As)= 0} denote the set of active constraints at
the point Xo. The corresponding family A(xo)= {A}sA(xo) of functionals gener-
ates a convex cone K’.---A(xo) inducing a pre-ordering "<= ." in Y. Obviously
K. cK. Now assume"

(G) a) A is a topological space, and there exists a K-convex mapping
(" X Y with G(0)= 0 such that for all 2 X and all ff A (Xo) the
following is true:
For every e >0 there exists an open neighborhood 0a of "ff and a
positive number rta as well as a neighborhood U, of 2 such that

(1.1) G (Xo + fix) G (Xo) ( (2) < e

for all x Ua, 0 < r/< rt,, a 0a.
b) There is a neighborhood q/of Xo such that

(i) (a, x)---Gs(x): A all. and
(ii) (a, x) (s (x)" A (Xo) X

are continuous mappings.
Here Gs(x) and (s(x) stand for (G(x), As) and ((x), As), respectively.

Let us compare the above concept with the notion of differentiability
introduced by Neustadt 11]:
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(G’) There exists a K-convex mapping (" X Y, (0)= 0, such that for
every 2 X and every 0-neighborhood V in Y, a neighborhood U of 2
and a positive number 6 can be found such that

(1.2) G(xo+rlx)-G(xo) G()-K.+V
for all x U, 0 < r/< 8.

It can be shown that if the mapping (a, y)-(y, A): A (Xo) Y- is continuous
then (G’) implies (G) part a). For compact A (Xo) this amounts to requiring the
equicontinuity of A(xo). Let us remark in this context that every convex cone K
containing interior points can be represented in the form K A where A is an
equicontinuous family of functionals.

Introducing the notation

g. (x x: (x) < o},

,[ n A(XO) Ka
K1

X

if A (Xo) ,
if A (Xo) ,

we can now give a characterization of the cone F(Q1; Xo) where Xo is supposed to
be feasible for the inequality constraints, i.e. G(xo)<=yO.

PROPOSITION 1. Let Gsatisfy condition (G). Supposefurther that the following
assumptions hold"

(A1) A (Xo) is compact and
(A2) for every open neighborhood 0 ofA (Xo) there is a O-neighborhood Uo in

Xsuch that G(Xo + x) < 0 for all x Uo and all a A O.
Then

(1.3) F(Q1; Xo) = K1.

Proof. (I) Consider first the case A (Xo) . For 0 , (A2) guarantees the
existence of a 0-neighborhood U, which may be supposed to be convex, such
that G(Xo + x) < 0 for all x U, a A. Now for arbitrary 2 X choose e > 0
such that e2 U and take a neighborhood U of $ that lies in (l/e)U. Then
G(Xo + r/x) < 0 for all x U and all 0 < r/< e, i.e. 2 F(Q1; x0).

(II) Suppose 2 K1, ff A (Xo). By (G) b) (ii) an open neighborhood vao(1) of 5
can be found such that

(1.4) (g) _--< -6 < 0 for all a 01

where 8 =-a()/2. Let Ua and 02) be the neighborhoods of ff and 5, respec-
tively, and r/a the positive number whose existence is postulated in (G) part a) for
e 6/2. Then by (1.1) and (1.4)

6 (xo+nX)-G (Xo) < G,()+-_ <- --<0 for allx
2

0(1) 1"]0(2) O<’r/<r/a,
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and G,, (Xo) =< 0 implies

G,, (Xo + r/x) < 0 for all x Ua, 8, 0 < 1 <

A (Xo) being compact we can select a finite number of neighborhoods 8al,...,
from the open covering {Oa}aa(xo) Of A (Xo) such that

A (Xo) 0 8a, =: 8.
i=1

Setting U := fl" Ua., r/l"=ming /,, we obtaini=1

(1.5) G(xo+nx)<O forallx U1, a O, 0<r/<r/1.

Now proceeding as in the first part of the proof choose r/ > 0 and a neighborhood
U. of such that

(1.6) G,,(Xo+qx)<O forallx U2, a A\O, 0<r/<r/2.

Then with U:= U fl U2, e :=min (r/, r/), (1.5) and (1.6) imply

G(xo+X)<-vO forallxeU, 0<r/<e.

This completes the proof.
Proposition 1 is especially useful in cases where Y is a function space over a

noncompact time interval with "-<" representing the natural (pointwise) order-
ing. Let, for example, G(x(t)), eL be a continuous function describing phase
restrictions in some control problem. Then, from the structure of the problem, it
may be known that, for an optimal solution Xo, G(xo(t)) 0 on some compact set
of t-values and that there is no asymptotic movement to zero outside this set.

COROLLARY 1. IfA is compact and G satisfies (G), (1.3) holds.
Proof. A straightforward compactness argument shows that (A1) and (A2)

hold. l-1
The cone F(Oo; Xo) can be dealt with in a similar manner. Let (F) denote the

assumption obtained from (G) by substituting W, F,/6, B, fl, o for Y, G, (, A,
respectively. Introducing the mapping (x)= F(x)- F(xo) and the sets

Oo={X ex: (x)_-<wo},

O ={x x: (x) < 0},

K {x X: ;(x) < 0},

Ko=K

(b(x) (b(x), c@), (x) ((x), c@)) we have

Oo 0o fl U O.
I3B

Making use of the relations (compare [9])

F( f3 (2g; Xo) f3 F(Og; Xo) for finite/,
iI iI

F(U Q; Xo) U F(Q; Xo) for arbitrary J
]-J ].J
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we obtain
(1.7) r(Oo; xo) = r(Oo; xo) r(o.;

Now if F is differentiable in the sense of (F), so is 4 with =/3. Observing
B(xo)= B we apply Proposition 1 to obtain

PROPOSITION 2. Let F satisfy the differentiability condition (F) and assume"

(B 1) B is compact.
Then

(1.8) F(Oo; Xo) Ko.
Proof. By Proposition 1, F(Oo; Xo) = Ko, and, as is easily shown, F(Oa; x0)

K. From (1.7) we get F(Oo; Xo) Kof-1UonK Ko. [3
Finally, with regard to H, let us impose the following conditions.
(H) For all a sX the limit

H(xo+nx)-H(xo)
H(?) lim

x-7

exists, and H(x) is continuous and linear in x.
(C1) ker H= F*(O2; Xo).

This leads us to the following almost trivial result:
PROPOSITION 3. (n) and (C1) imply ker= F*(O=; Xo).
A sufficient condition for (C1) is given by Liusternik [10].

2. A iactorization theorem. Having found subsets of the approximating
cones which can be expressed in terms of the generalized derivatives F and G, we
will proceed to the next step which will be to apply a separation theorem to these
sets. This will establish the existence of zero-sum functionals belonging to the
polar cones. The Lagrange multipliers are found as the first factors in the
decompositions to F etc. of these functionals.

To see when such a factorization is possible we need a result from the theory
of ordered topological vector spaces (Peressini [12]).

LEMMA 1. LetE be a locally convex space, {e}r and {r}r families in E
and respectively. Then a sucient condition for the existence of a continuous
linear functional o on E satisfying (e, o)>=r for all / F is the existence of a
O-neighborhood V in E such that ’= pie, V, pi >- O, / F, implies

i=1

[or some positive number M.
The cones K. and Krinduce dual cones Kr. -Krand K.. -(K.) in Y*

(the topological dual). The corresponding pre-orderings in Y* will be denoted by
"<y." and""--y.. Clearly K-. c Ky..

PROPOSITION 4. Let G satisfy (G). Assume further"
(A3) A(xo) is w*-compact and int (K.) # .

Then gK1 , for every K there exists A K. such that

(2.1) ((x),A)_->(x, l} forallx X,
(2.2) (G(xo), A) 0.
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Proof. We apply Lemma 1 with E Y and F X [.J K., the families {e} and
{rv} being defined by

(x) fory=xX,
dr

y for 3, y K.
and

(0x, l) for 3’ x e X,
r=

for 3, y eKe.
respectively. Take x K and set m maxACxo G,(x). Then m < 0 (we sup-
pose A (Xo) # , the case A (Xo.) being trivial). Choose y e int (K.) such that
-m > m’ maxACxo (y, ,) >0. Then V= y-Kr is a 0-neighborhood in Y.
Denote by G/(0;. the one-sided Gteaux derivative of G at 0. Then

Y p(x) e V (p > 0) implies

Pi.(O;xi)
i=1 i=1

for all a A (Xo)

and so

i+(0; Xi) < m’ < -m.
i=1

From the subadditivity of the one-sided Gteaux derivative (Holmes [7]) it
follows that

"t O, piXi+X1 piGOt+(O;xi)+GOt(Xl)
i=1 i=1

piGOt+(O; xi) 21- m < 0
i=l

for all a A (Xo),

which means that 2% pixi .4- x ’) OtA(xo K’=:K[ with K’ {x" t’+(0; x) < 0}.
Because t(0) 0, G’/(0; x) < 0 implies G,(,x) < 0 for some r/ > 0; a compact-
ness argument then shows that for every x sK there is a positive number n such
that r/x s K. Hence K[ K, and for zK we have

(2.3)
pi(Xi, 1) <= -(xl, l) =:M for all [i > O, X X

i=1

such that F oG(x)e V.
i---1

Now consider y.n pi(Xi "4- nik___l O’/XV V Pi, o’i < 0, Yi E g. Setting y :=
riyiEK’v we obtain ,i=l piG(xi) V-y =y-(K’+y)c y-K’r= V.

From (2.3) and the definition of {r}r it follows that the sufficient condition of
Lemma 1 is fulfilled. Hence there is a continuous linear functional a such that
(r(x),h)(x,l) for all xX and (y,h)O for all yK, i.e. h.O.
(G(Xo), A) 0 is obvious.



NECESSARY OPTIMALITY CONDITIONS 689

Applying the above result to F yields"
PROPOSITION 5. Let assumptions (F) and (B1) be satisfied. Assume further"
(B2) f is w*-compact and int (Kw) f.

Then if Ko , for eery K there is a functional to Kw, -Kv such that

(2.4) ((x ), >= (x, l) for all x X.

Finally let us impose a condition on H which will be useful in proving
factorization properties of functionals in F*(O; Xo):

(C2) I2I: X-H(X) is an open mapping.
PROPOSITION 6. Under condition (C2) every ! (ker/_))o can be written in the

form I I2I with Ix Z*.

3. The multiplier theorem.
LEMMA 2. Let Xo be a solution of (P). Then

F(Oo; Xo) 3 F(O; Xo) f3 F(Xo; Xo) f3 F*(O; Xo) .
Proof. Assume that the intersection contains a point $. Then

F(Oo (q O fq Xo; Xo), and by definition there exist a neighborhood U of and a
positive number e such that Xo + r/x (20 f’) O f3 Xo for all x U, 0 < rt < e.
According to the definition of F* we can find x’ U and 0< rt’< e such that
=Xo+r/’x’ O. Then satisfies all the constraints and F($)<=wF(xo) with

F(2)<F(xo) for at least-one/3 B. This is a contradiction to the optimality of
X0o

LZMMA 3. Let Co, ", C_ be nonempty open convex sets in X, C a nonvOid
convex set with the property that 0 cl(C), 0,..., n. Then a necessary and
sufficient condition for f3"= Ci ( is the existence of functionals li CT,
0," ", n, not all zero, such that Y__ 1 O.

The proof is based on a separation theorem (compare Laurent [9]).
On the basis of these two lemmas the following multiplier rule can be proved:
THZORZM 1. Suppose Xo (2. Assume that F, G and H satisfy (F), (G) and

(H), respectively, and that conditions (A1)-(A3), (B1), (B2), (C1) and (C2) are
fulfilled. Further assume that F(Xo; Xo) contains an open convex coneK with vertex
O. Then a necessary condition for Xo to be a solution of (P) is the existence of
functionals Wo Kw., ,to K’v., tZo Z*, not all zero, such that

(3.1) (P(x),oOo)+(O(x),ao)+(I?i(x),lZo)>-O forallxK,

(3.2) (G(Xo), ,o) 0.

Proo[. From Lemma 2 and Propositions 1-3 it follows that

(3.3) Ko fqK fqK fq ker I= .
Suppose first that Ko ,K . Then the sets in (3.3) satisfy the conditions of
Lemma 3 (note that by (G) b) (ii) and (A1) K is open; the same is true for Ko).

0Hence there exist functionals lo Ko, l Ka, l F(K; Xo) K, 13 (ker H)
not all zero, such that lo + l + l+ 13 0. Application of Propositions 3-5 yields
functionals Oo Kw,, ,o K’v,, tZo Z* such that

(P(x), oo)+ ((x), ;to)+ (r(x), go)+(x, 19->0
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for all x and (G(xo), ho) 0. Equation (3.3) then follows from the definition of
Now take the case Ko . Then the set/3(X)/ := {w W: w >= wfZ(x) for

some x X} is convex and has the property/6(X)/ f’lint (-Kw)= . By a well
known separation theorem there is a closed hyperplane with slope o0 0 separat-
ing F(X) and -Kw:

(-Kw, oo) <- O,

(P(x), oo) --> 0 for all x X.

The argument in the case K1 follows the same lines.
In nonlinear control problems a direct application of Theorem 1--treating

the differential equation as equality constraint H 0--leads only to a differen-
tial form of the maximum principle; the proof of the proper maximum principle by
means of this theorem requires a certain transformation of the original problem
(compare [4]). More versatility may be obtained by amalgamating part of the
equality constraints in the set Xo.

THEOREM 1’. Suppose Xo (2. Assume that F and G satisfy (F) and (G),
respectively, and that conditions (A1)-(A3), (B1) and (B2).are fulfilled. Define
X6=Xo 02; assume that F*(X6; Xo) contains a convex cone K’ with vertex O.
ThenforXo to be a solution of (P) it is necessary that there existfunctionals Oo K’w.,
Ao K., not both zero, such that

(3.1’) (P(x), wo) + (((x), ,o) -> 0 forallxK’,

(3.2’) (G(xo), ,o) 0.

Proof. An obvious modification of Lemma 2 leads to the necessary condition

r’(o0; Xo) I"(O1; Xo) ( r*(x); Xo)
Then similar considerations as above apply.

As to the scope of these theorems it should be noted that no constraint
qualification is needed and so part of the equality constraints could also be
incorporated in Q1 if there is a suitable way of defining the order cone. For finite
dimensional constraints this is always possible.

Theorem 1 may be compared to the result obtained by Virsan [16], who
derives a multiplier rule for operatorial equality constraints; however, only finite
dimensional inequality constraints are admitted. More closely related to our
results are those of Bazaraa and Goode [1]; they are obtained for normed spaces
under stronger differentiability conditions and the assumption that Ky itself
contains interior points. The results of Neustadt are of the form presented in
Theorem 1’ with G consisting of the finite dimensional equality constraints o and
the (possibly) infinite dimensional inequality constraints b in [11]. Kym
corresponding to the cone Z--is required to contain interior points, whereas K’
plays the role of the convex approximating set

Up to now we know only that at least one multiplier must be nonzero. We
shall now give a sufficient condition for Oo # 0.

PROPOSITION 7. If in addition to the assumptions made in Theorem 1

K1 ["] F(Xo; Xo) ker/-)

holds, then Oo O.
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Proof. We can confine ourselves to the case Ko # . Going back to the proof
of Theorem 1, suppose that too 0. Then it follows that 1 + 1 + 13 0 and 1 0 or
12 0. To be definite, suppose 11 0. Then for x K1 f’l F(Xo; Xo) fl ker/- we find
(x, 11) < 0, (x, 12) < 0, (X, 13) 0; hence (x, la + lz + 13) < 0, which leads to a
contradiction.

4. Application to a variational problem. We shall be concerned with the
following variational problem of Bolza type"

minimize l(x(O),x(1))+ L(t,x(t),2(t))dt

subject to gi(t, x(t)) <= 0 for all t /, 1,. ., k,

where x ranges in the class of absolutely continuous functions from [0, 1] to ",
1: 2n , L: [0, 1] n " and g: [0, 1] " k are given functions and
the/,, are compact subsets of [0, 1].

As is shown in [14], constrained problems of this kind can be transformed
into an unconstrained variational problem of the form

131minimize l(z(O), z(1))+ L(t, z(t), i(t)) dt

where the minimum is to be taken over all absolutely continuous functions z
taking on values in an appropriately augmented state space. Here ’ and/_ are
extended real valued functions taking on the value +o outside certain sets which
are suitably chosen so as to describe the problem constraints. By means of the
theory of conjugate convex functions and an appropriate extension to the
nonconvex case, Rockafellar and Clarke have obtained generalized versions of
the Euler-Lagrange equation in the convex case [13] and under the assumption
that L satisfies a Lipschitz condition [2].

In the approach developed in the preceding sections the constraints enter the
problem explicitly, i.e. in the form of functional equalities or inequalities. We
restrict our attention to the case where and L are locally Lipschitz (in a sense to
be defined below)which is a stronger assumption than in [2], where may be
lower semi-continuousand the g are convex functions. Additional constraints
such as convex differential inclusions or convex mixed phase-control constraints,
which can be treated in the framework of [13], could be included. The former
without offering any major difficulties-would produce an additional multiplier
playing the role of an adjoint variable; the latter would lead to specific problems
concerning the well-behavior of the corresponding multipliers, which come up as
bounded finitely additive measures. To keep things simple we shall restrict
ourselves to the problem stated above. However, at the end of this section, we
shall indicate the modifications caused by constraints of the form (x (0), x(1)) S.

In the case where both I and L are convex--which is also covered because of
the finiteness of and L---our results may be compared to those obtained in [ 15].
In the nonconvex case the approach via extended real valued functions will lead to
troubles concerning the Lipschitz properties of L when the phase constraints are
integrated into the objective function.
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We begin with some definitions and propositions taken from [3]. Let (t, x, u),
(x, y) and (t, x) denote the arguments of L, l and g, respectively.

DZVYTXON 1. Let x (’) be an absolutely continuous function with derivative
:(. ). L is called Lipschitz near x (.) if there exist an integrable function k (.) on
[0, 1] and a positive number r such that whenever (Xa, ua), (Xz, uz) lie within r of
(x(t), x(t)) the inequality

IL(t, x, ua)-L(t, x, u)l <= k(t)l(xa-x_, u,-u2)l
holds.

Let F be a functional on a normed space X satisfying a local Lipschitz
condition at some point Xo, i.e.

(4.1) IF(x)- F(y
for all x, y close enough to Xo.

DEFINITION 2. The functional

F(xo + h + 3x F(xo + h)

According to the remark following (1.2) this proves the assertion.

F(xo; x) lim sup
80

is called the generalized directional derivative of F at Xo in the x direction.
DEFINITION 3. The generalized gradient of F at Xo, denoted OF(xo), is the

convex hull of the set of points of the form lim_,o VF(x), where we consider all
sequences x converging to Xo such that 7F(x) exists and converges.
For functionals on " the.following properties are shown in [3]:

PROPOSITION 8. (i) F(xo; x) is a finite convex function of x.
(ii) If F is convex, then OF(xo)= OF(xo), where OF(xo) is the usual set of

subgradients.
(iii) OF(0)= OF(xo).
We now come to a result relating the notion of generalized directional

derivative with the concept of differentiability developed in 1.
PROPOSITION 9. F(xo; satisfies the differentiability condition (F).
Proof. With the notation of 1 we have W= and {ro}B ={1}. The

Lipschitz property implies that F(xo; x) is bounded above on an open set; hence,
by convexity, it is continuous.

Now, for e >0, we can find positive numbers h(e) and 6(e)<= 1 such that

F(xo+h+6x)-F(xo+h)<=FO(xo;x)+e forallh<_h(e), 0<6<_6(e).

Let Bhang(x) denote the h(e)-ball centered at x. Then every r/x’ with x’ 6Bh)(x)
and 0< rt <=8(e) can be written in the form ,lx’= x + h withl{hll<-h(e). Hence, if
in addition h is chosen so small that (4.1) is valid for the pair (Xo, Xo + h),

F(xo + rtx’) F(xo) F(xo + nx + h) F(xo+ h) F(xo+ h) F(xo)

<_(F(xo;x)+e)+ <=F(xo;x)+e+Kh(e).
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In order to apply Theorem 1 we must write our problem as an abstract
optimization problem. Restricting the admissible solutions to absolutely continu-
ous functions with essentially bounded derivative, let us suppose that Xo is an
optimal solution. In particular this means that L(t, Xo(t), 20(t)) is a measurable and
integrable function. If we assume that L is measurable in t and Lipschitz in (x, u)
near Xo, then L(t, x(t), u(t)) is measurable and integrable (with finite value of the
integral) for all (x, u) C" x L2o lying within r of (Xo(t), 2o(t)) almost everywhere.
Thus the functional

Fz(x, u)= L(t, x(t), u(t)) dt

is well defined and finite on a ball B(xo, o) in C" x Lo. We extend its domain of
definition to the whole space by setting it equal to a positive constant outside
Br(xo, o).

Further we introduce mappings F1, G andHon C" x L2o with values in R, Ck

and C", respectively, defined by
F(x, u)= l(x(O), x(1)),

G(x, u)(t)= g(t, x(t)),

H(x, u)(t)= x(t)- u(s) ds.

Then (Xo, o) is a solution to the problem

find min{Fl(X, u)+F2(x, u)." (x, u)nr(xo,o),
(4.2)

H(x, u) O, G(x, u) <= x,O},
which is of the form discussed in the preceding sections. Here we have set
Kz {x C": x(t) <= 0 for all t e/, = 1,. ., k}, or, in the notation of the Intro-
duction {la}otA ={6t}t,,.,i=....,k, where (x, 6)= xi(t).

LEMMA 4. Under the assumptions made above F2 is locally Lipschitz at
(Xo, o). Furthermore, t2(Xo, o; x, u) exists for all (x, u) C" xL and
F2(Xo, 20; x, u) <- o L(t, Xo(t), 2o(t); x(t), u(t)) dt.

Proof. For (x, u), (x’, u’) B(xo, Ao) we have

IF (x, u &(x’, u’)l

<= k(t)l(x(t)-x’(t), u(t)-u’(t))[ dt

k(t)[lx(t)-x’(t)l2 + lu(t)- u’(t)l]/ dt

<- k(t) 21/2 sup ([x(t)-x’(t)l, ]u(t)-u’(t)l) dt

_-< 21/2 I21 k(t)[[x(t)- x’(t)[ + lu(t)- u’(t)l] dt

21nllkll(llx x’ll + Ilu u’ll)- g’ll(x -x’, u u’)ll.
The second part of the assertion is a consequence of Fatou’s lemma.
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Concerning I and g we make the following assumptions: I is locally Lipschitz
at (Xo(0), Xo(1)); g is continuous in (t, x and convex in x. Then it is easy to see that

(Xo, Uo; x, u) =/(Xo(0), Xo(); x (0), x (1))

and that

t(x, u)= G(xo+x, u)-G(xo, u)

satisfies (G).
Finally let us suppose that there exists an absolutely continuous function x:

such that gi(t, Xo(t) + xl(t)) < 0 for all satisfying gi(t, Xo(t)) O, 1,. ., k. Then
by Theorem 1 and Proposition 7 there exist n functions/xi with bounded variation
and k nondecreasing functions A with the following properties:

(4.3) Ai(1)=O, and hi(t) is continuous from the right and constant on every
subinterval having an empty intersection with the set {y: gi(t, Xo(t))= 0},

such that

(4.4)

J(x, u):= l(xo(0), Xo(1); x(0), x(1))

L(t, Xo(t), Xo(t); x(t), u(t)) dt

[g (t, Xo(t) + x (t)) g (t, Xo(t))]

[xi(t)- u(s) ds] dlxi(t) >-- 0

for all (x, u) Br(0, 0). Hence J has a local minimum at the point (0, 0), which is
also a global one because J is a convex function. From ordinary subdifferential
calculus we obtain that (0, 0) OJ(O, 0) y,.4= j(0, 0), where J stands for the ith
term in the sum (4.4). Our main task is now to calculate the subdifferentials. As to
J2 and J3 this task is achieved by using the fundamental results of Ioffe and Levin
in [8]. They imply that for every pair (p2, r2)J2(0, 0) there are measurable
R"-valued functions p2(t), q2(t) with integrable components satisfying

{(x, u), (0, o’)} [(x(t), p(t)}+{u(t), q(t)}] dt

for all (x, u)s C" xL and

(4.5) (p(t),q(t))sOL(t, xo(t),2o(t);0, O) a.e.

Similarly, taking into account that every pair (03, O’3)( 0J3(0, 0) must have its
second component equal to zero, we find that the subgradients of J3 can be
represented in the form

Io (t))dA(t),((x, u), (P3, 0))= (x(t), P3
i=1
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where the p3 are measurable "-valued functions with Ai-integrable components
satisfying

(4.6) p’3(t) Ox(g,(t, Xo(t))(O), A-a.e.;

the right hand side means the subdifferential of the function x -&(t, Xo(t) + x) at
0.

In order to calculate 0J(0, 0) we write J in the form

Ja(x, u) /(Xo(0), Xo(1); , (Eo, E1)(x, u),

where (Eo, Ea)(x, u) (x(0), x(1)). Then, from subdifferential calculus,
OJa(O, 0)= (Eo, E1)*(Ol(xo(O), Xo(1); 0, 0)), the asterisk denoting transposition.
Hence, for every pair (pl, rl) MI(0, 0) there are n-vectors p, ql such that

(X, ]91)"F" (U O’1)= (Y(O), pl)+ (X(1), ql)
and

(4.7) (pl, ql) Ol(xo(O), Xo(1); O, 0).

Collecting all these results we see that (0, O) OJ(O, O) implies

(X (0), p} +(X(1), qe}+ [(X (t), p(t)}+(u(t), q(t)}] dt

Io[ Io ]’(t))dA(t)+(4.8) + (x(t), P3 x,(t)- u,(s) ds dtz,(t) 0
i=1 i=1

for all (x,u)C"xL. For pairs (x,) with x(0)=0, x(1)=0, this equation
reduces to

01 tlf01(x(t), p2(t)) dt + (x(t), p (t))
(4.9)

By using a straightforward modification of Hestenes’ proof of the fundamental
lemma in the calculus of variation it can be shown that (4.9) implies

(4.10) q (t) p2 (s) ds + pa(s) dA(s) + ci a.e.,
i=1

where

(4.11) cj= lim -1 q(t) dt.
"O 8

Now consider functions x, 1,..., n, defined by

xi.i(t)
l(e t) for 0 =< t =< e,

I fore-<t-<l,

X.i,i=O fori#j.
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Inserting the pairs (xT, 7) into (4.8) we obtain

p{ + xd(t)p (t) dt-- q2 (t) dt + xd(t)p3d(t) dAi(t) 0

and, passing to the limit,

k
(4.12) p=c. pa,i (0)Ai ({0}1.

i=1

Similar considerations concerning the right endpoint lead to the equation
k

(4.13) q{ =ci Z’- p3,i(llA, ({1}1,
i=1

where

’=-lim
1 fa(4.14) c qi2(t) dt.

e0 E -]l-e

Let us sum up these results in
THEOREM 2. Suppose that the following assumptions hold:

(i) L is measurable in t and Lipschitz in (x, u) near Xo;
(ii) I is locally Lipschitz at (Xo(0), Xo(1));
(iii) g is continuous in (t, x) and convex in x, and there exists an absolutely

continuousfunction x such that gi(t, Xo(t) + x(t)) < 0 for all Ii satisfy-
ing g(t, Xo(t)) O, i= 1,..., k.

Then a necessary condition ]:or (Xo, o) to be an optimalsolution to the problem (4.2)
is the existence ofn-vectors p, ql, "-valued measurable functions pE(t), qE(t) with
integrable components, k nondecreasingfunctions Ai satisfying (4.3) and k measur-
able "-valued functions p(t), each with Ai-integrable components, such that

(4.15) , qa) Ol(xo(O), Xo(1)),
(4.16) 2(t),q2(t))OL(t, Xo(t),o(t)) a.e.,

(4.17) p3(t)Ox(g(t, Xo(t)), A-a.e.,

(4.18) q(t)= p(s)ds+ P(s) d(s)+c a.e.

and the transversalit conditions"

(4.19) p c P3(0)A ({0}),
(4.20) ql c’- P3(1)A ({1})

hold. Here P3(t) is the n x k matrix whose i-th column is p(t).
Proof. Expressions (4.17)-(4.20) are just symbolic notations for the corres-

ponding relations derived above. Expressions (4.15) and (4.16) follow from (4.7)
and (4.5), respectively, by considering Proposition 8.

In case there are no phase restrictions (A =0), (4.18) shows that q2(t) is
absolutely continuous; therefore 0 and 1 are Lebesgue-points of q2, and (4.19)
and (4.20) reduce to p q2(0) and ql =-q2(1), respectively (compare [2]).
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Now suppose that there are additional constraints of the form (x (0), x (1)) S,
where the set S is given by the relations

l(x(O),x(1))<=O, i=2,... ,r,

with real valued functions li. Assuming that these functions are locally Lipschitz at
(Xo(0), Xo(1)) and regarding them as additional components of the operator G we
find that there exist a vector (ill,"" ", fl) with nonnegative components and r
pairs of n-vectors

(4.21)

(with l l) such that

and (4.8) holds with

(p , q /30/(xo(O), Xo(1))

t(xo(O), Xo()) 0, i=2,... ,r,

((x(0), p)+(x(1), q))
i=1

instead of the first two terms of the sum.
Note that now the multiplier belonging to l may vanish because no constraint

qualification concerning the l has been made as yet (of course the constraint
qualification for the g can then be dispensed with, too), thus maintaining the
possibility of including equalities. Proceeding as above it is shown that all the
results of Theorem 2 hold with (4.15) replaced by (4.21), (4.19) and (4.20) by

(4.22) p c P3(0)A ({0})
i=1

and

(4.23) q c -P3(1)a ({1}),
i=1

respectively. For convex li, (4.21) is equivalent to

(So Xo(0), p ) + (s Xo(1), q -< 0, i=l,.. .,r,

for all (So, Sl) e S.
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Abstract. A "forcing function" approach is developed for the analysis of convergence properties
of "monotonic" mathematical programming algorithms. This approach differs from rather more
traditional analyses based on point-to-set mappings in that it does not require point-to-set mapping
concepts. A comparison is given between the forcing function and point-to-set mapping approaches
that indicates that they are essentially mathematically equivalent for two major categories of
algorithms, but that only the forcing function approach is readily extended to a third category of
algorithms involving anti-jamming parameters.

1. Introduction. The point-to-set mapping approach to the qualitative
analysis of convergence of mathematical programming algorithms is well-known,
having been considered and promoted in many papers and books. (The reader
entirely unfamiliar with the field can get a "feel" for the area by consulting [5], [7],
[ 10], [ 11], [15] or [20] or the excellent survey article by Hogan [4].) On the other
hand, analyses of convergence that do not rely on properties of point-to-set
mappings have also been numerous (see, for example, [2], [8], [12], [13], [16],
[18], [21]), but have not considered algorithms at the level of generality of the
point-to-set mapping approach. This report proposes a "forcing function"
approach to convergence analysis that not only is more general than the best-
known point-to-set mapping results, but moreover, is often easier to apply and
may be readily extended to handle a class of algorithms that do not appear to be
amenable to analysis by a straightforward point-to-set mapping approach. (These
are constrained optimization methods involving "anti-jamming" parameters.)
The forcing function approach has the further pedagogical advantage of requiring
only certain continuity properties of real-valued functions rather than of point-to-
set mappings.

In the results to be obtained below, the sequence of iterates {x} should be
thought of as resulting from the application of an iterative algorithm. Such
sequences will always be assumed to be contained in a closed set G

_
". Unless

otherwise specified, the domain of all functions and mappings considered below
* Received by the editors December 29, 1975, and in revised form September 10, 1976.
f Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706. This
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will be G.(For unconstrained optimization algorithms an appropriate G might be
", whereas for constrained optimization, the set G is often taken as the feasible
region. Many of the results below also remain valid when G is a closed subset of an
arbitrary topological space, and this will be pointed out when it is the case.)

The notation qi q is to be understood to mean that I is an infinite increasing
sequence of nonnegative integers and that limi_,oo,ii q is q.

2. The forcing function approach. Roughly speaking, the nonnegative func-
tion 8 to be considered below will play the role of an "optimality indicator" in the
class of algorithms to be described, in that an iterate xi may be repeated only if
(x)=O. When (xi)>0, the next iterate, xi+, will be required to have a "value
improvement" (in terms of a particular function b to be introduced below) of at
least 8 (xi).

The term "forcing function approach" is used since, on the one hand, 8
"forces" an improvement if (xi)>0, and, on the other hand, convergence of a
sequence of function values of b will be seen to "force" the sequence {8(x/)} to
converge to 0. (The term "forcing function" is used by Ortega and Rheinboldt
13] to describe a related but slightly different property. Specifically, they define a
mapping o-: [0, c)-->[0, ) to be a forcing function if, for any sequence {t}c
[0, ), the property o-(t)->0 implies t->0; they then analyze a family of
optimization methods in which 8(xi) is equal to a forcing function of a certain
scalar function of xi. See the Appendix for further comparisons.)

Let 8" G--> R + and define

(2.1) fL {Xl::l{y/} C G with yi->X, (yi)-> 0},

(2.2) 12" - {x[x G, 6(x) 0},

(2.3) fl+ {x Ix s G, 6 (x) > 0}.

Since is assumed to be nonnegative, note that G fl* t.J fl+.
Thinking of 6 as an "optimality indicator" that is 0 at points satisfying some

optimality condition, it is clearly desirable for an iterative algorithm to have the
property that its iterates must converge to a point in fl*. In order to achieve this
strong result (given as Corollary 2.5 below) a number of hypotheses are needed.
By assuming only some of the hypotheses of Corollary 2.5, however, weaker
results that are of some interest in themselves are obtained, and we shall first
develop these weaker results.
La2.1. Letc G -> R be afunction that is lower semi-continuous (l.s.c.)

on G, and let {xi} be a sequence with the property that

(2.4) (xi)-(Xi+l) ’ (xi), 0, 1, 2, ...
If {xi} has an accumulation point , then 6(Xi) "-> 0 and
Proof. If is an accumulation point of {Xi}, it follows from (2.4), the

nonnegativity of 8, and the 1.s.c. of b, that b* lim b(xi) exists and that
b(g) for all i. Thus 4(xi)-(xi+)-->O, 8(xi)->O, and if I is the index set
corresponding to the subsequence of {x} converging to , then xi and
8(xi) O, proving that g flL.
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It might be noted that the sole continuity hypothesis, namely, 1.s.c. of b on G,
could be replaced by the hypothesis that b is boundedfrom below on G, since the
1.s.c. of b is only needed to establish convergence of {b(x)}. However, in most
applications the corresponding b is at least continuous, and often continuously
differentiable, so the 1.s.c. hypothesis appears preferable to the boundedness
hypothesis. Since no special properties of n were used, note that Lemma 2.1
remains true if G is a subset of some topological space. The same observation also
applies to Lemma 2.2 and Theorem 2.3 below.

It might also be noted that Lemma 2.1 is similar in some respects to some
results of Eaves and Zangwill [3]. They develop a theory of cutting plane
algorithms by assuming that the distance between an iterate and certain prior
iterates is bounded from below by a nonnegative "separator" function 5, that has
the property that if z z and 8(z) 0, then z must be in what is termed "the goal
set". In Lemma 2.1, 8 is a lower bound for the change in an arbitrary function b,
and fL itself plays the role of the "goal" set, rather than being a subset of a "goal"
set that is never characterized. Since convergence to a point outside of 12L is also
impossible under the hypotheses made by Eaves and Zangwill, it seems inappro-
priate to describe any point outside of I] as being a "goal" of the algorithm.

A comparison of Lemma 2.1 with the more closely related results of Zangwill
[20] and Polak [15] is given the Appendix. Again the conclusion that the
accumulation points must lie in II turns out to be a sharper result than
membership in a so-called "solution" or "desirable" set.

In most specific applications, the function 5 turns out to have certain
continuity properties that allow a strengthening of the conclusion of Lemma 2.1.
In particular, the weak continuity property that we will now introduce turns out to
be satisfied by most optimality indicators that arise in practice (the only significant
exception seems to arise from optimality indicators associated with certain
feasible direction methods; this point will be taken up in 5).

A scalar-valued function to is said to be null-continuous or Co at a point z if
the existence of a sequence {Yi} with yi z and to(yi)0 implies to(z) 0. The
function is said to be Co on a set if it is Co at each point of the set. (As will be seen,
this continuity concept for scalar functions will replace point-to-set mapping
continuity properties in the convergence theorems to be developed. From a
pedogogical standpoint, it also appears preferable to introduce convergence
analysis through the use of continuity properties of functions rather than con-
tinuity properties of point-to-set mappings, since students often have difficulties
in obtaining a feeling for point-to-set mappings.)

Note that null-continuity of 5 on G is a weaker property than lower
semi-continuity of 5 on G (assuming G f*), but a stronger property than
lower semi-continuity on *. (It is, in fact, equivalent to the relation f f* and
also equivalent to 1.s.c. of 5 on Oz..) For many well-known constrained optimiza-
tion algorithms, the corresponding optimality indicator is not lower semi-
continuous on all of G, but is a function for which f/ 11" may be established.

(It might also be noted that if 5 is nonnegative and null-continuous on G, then
there exists a function tSL defined on G such that (i) 0 -< (x) -< 5 (x) for all x G,
(ii) SL is l.s.c, on G, and (iii) {x 15 (x) 0} 1)*. In fact, 5 may be defined at each
x G by the equation 8 (x) inf {O[{y,}, yi x, 5 (y) 0}, and properties (i), (ii),
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and (iii) are easily verified. From the standpoint of application, however, null-
continuity is a weaker requirement than 1.s.c. and one that may often be verified
more easily than 1.s.c.)

As an immediate consequence of Lemma 2.1 and the property that 12L fl*
when 8 is null-continuous we have:

LEMMA 2.2. Let be l.s.c, on G, let be a Co function on G, and let {x} be a
sequence satisfying (2.4). If {x} has an accumulation point , then f*.

Example 1. As a simple example of the forcing function approach we will
consider the method of steepest descent with an Armijo-type step-size. (Exam-
ples of the application of this approach to constrained optimization methods may
be found in [8] and in Chung [ 1], where an interesting application to exact penalty
methods is made.) We will assume that 4’ is continuously differentiable on all of
", that G ", and that, given a point z, its successor z’ is uniquely determined by
the relations"

z’=z-aV(z),
where

A=max {AIA 2-i, i=0, 1, 2,..., (z)-(z-AV(z)r)  1/2AIIV(z)ll=}.
It is easily shown that a suitable optimality indicator for this example is obtained
by setting

(z) L(z)llv4,(z)ll- (z)- (z’),

where L has the property that if yi-->z, and V(z)#0, then liminfL(yi)>0.
Here, is nonnegative and null-continuous on ", since Yi --> z and 6(y) --> 0 imply
V(yi)--> 0, and thus V(z)= 0. Note that I)L 11" ={xlV(x)= 0}. Lemma 2.2
thus guarantees that if the sequence {x} has an accumulation point , then
V(2)=0. (Boundedness of {xi} may be guaranteed by appropriate level set
compactness hypotheses on .)

The preceding example also illustrates that the application of the con-
vergence theorems of this section to a given algorithm may require the determina-
tion of an appropriate function 6. In order that the conclusions of the theorems be
as sharp as possible, the sets in which the accumulation points are contained
should be as small as possible, which means that the best choice for 6 is the
supremum of all functions for which (2.4) will be satisfied. In the case of Example
1, this is the motivation for the definition of 6(z). A general procedure for
obtaining an appropriate 6 for algorithms in which 6 is not given explicitly is
discussed in 3.

Of course, if {x} has no accumulation point, then there is no guarantee that
12" is nonempty or that 8(x)-->0. Examples are easily constructed with these
properties. Furthermore, even if {x} is bounded, there is no guarantee that the {x}
will converge to a unique accumulation point, and, in fact, "oscillatory" behavior
of the {xi} between a finite number of accumulation points may occur (see [10]).
(Indeed, under certain weak hypotheses, the existence of a sequence satisfying the
hypotheses of Lemma 2.2 yet displaying oscillatory behavior can be guaranteed,
as will be shown in Theorem 4.3). From a practical point of view, however,
oscillatory behavior is quite rare, suggesting that some additional properties are
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generally satisfied which prevent such bad behavior. Thus, we are led to consider
additional hypotheses under which convergence of the sequence {x} may be
demonstrated. The most obvious (but least applicable) such hypothesis is given in
Corollary 2.3 below, and a more useful approach is presented in Theorem 2.4 and
Corollary 2.5. (In all of the remaining results of this section, the compactness of
closed, bounded subsets of n is exploited, so a direct extension to more general
spaces is not possible.)

COROLLARY 2.3. Let the hypotheses o]’ Lemma 2.2 hold, and assume in
addition that c is continuous, that {xi} is bounded, and that, ]:or each 0 R, the set
l-l* fq {xlx G, 4(x) O} contains at most one element; then there exists an x*
such that xi --> x *.

Proof. If the result were false, then there would be two subsequences with
index sets I and J such that x L> x’ and x x" with x’ x". By Lemma 2.2, x’ and
x" are in fl*, and by the monotonicity of {b(xi)}, b(x’)=b(x"), a
contradiction.

The disadvantage to the above approach to proving convergence is that it
requires what amounts to a global uniqueness hypothesis. This type of hypothesis
is usually not verifiable except under strict convexity hypotheses. On the other
hand, since most algorithms perform only a local search at each iteration, their
convergence properties are generally determined by the local behavior of the
function to be minimized. To make these notions precise, we will introduce in
Theorem 2.4 below a "stability" hypothesis (2.5) that, in effect, "damps" the
step-length Ilxi-x+ll when X is near

TI-IEOREM 2.4. Let the hypotheses of Lemma 2.1 hold, let {xi} be bounded,
and, in addition, assume that there exist]unctions p and Ix such that Iz " --> +, Iz is
a Co function defined on n with tx (x) > 0 for x O, p is a ]unction from G into
such that 3 (xi) --> 0 implies p (xi) --> O, and for O, 1,. .,
(2.5) p(xi) >= Ix (xi x/l).

Then Ilxi-xi+lll--> o, and the set of accumulation points of {xi} consists of a single
point or a continuum.

Proof. Suppose that Ilxi- xi/ll, 0. Then there exists an index set J such that
Y "7 J ** X*x x x+l- x with #x By Lemma 2.1, 8(x)->0, so (2.5) implies

/z (x xi/l) -> 0, and thus /z (x* x**) 0. However, IIx* x**ll > 0 implies
/z (x* x**) > 0, a contradiction. Thus Ilx xi+111 --> 0, and because of the bounded-
Hess of {x}, the remaining conclusion is a well-known result of Ostrowski [14]. I-1

Example 2. If the sequence {xi} was derived according to the procedure
described in Example 1, then by taking/z(z) Ilzll and p(z)= IIV (z)ll, it is easily
seen that the iterates of Example 1 satisfy (2.5) and that p and/z satisfy the
hypotheses of Theorem 2.4.

The following Corollary is an immediate consequence of Lemma 2.2 and
Theorem 2.4 and establishes sufficient conditions for convergence of the entire
sequence {x} to a point in

COROLLARY 2.5. Let {x} be a bounded sequence satisfying:
(a) ck(xi)-4(xi/)>=6(xi) (i=0, 1, 2,...), where k is 1.s.c. on G and 6 is Co

on G, and
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(b) [9(Xi)[db(Xi--Xi+l) (i=O, 1, 2," "), where p(x)=O ]’or x ll* and p is
continuous at each x 12", and I is Co on R" and satisfies t (x) > 0 for
xO.

If ]’or each x*s 1*, there exists an open set N(x*) containing x* such that
N(x*) f’) 1* {x*}, then {xi} converges to a point of 1*.

Proofi By Theorem 2.4, either {xi} converges to a point in ll* or its accumula-
tion points form a continuum contained in fl*. However, by hypothesis,
consists of isolated points and hence cannot contain a continuum. []

Example 3. Again let {xi} be as in Example 1, and suppose that b Cz and
that 72(X) is nonsingular if x 12". Then for each x f*, there exists an open set
N(x) such that N(x) 012’ {x }. (For, otherwise, there would be an x* 1)* and a
sequence {yi} with yi x* and V(y)=0. Without loss of generality, we may
assume the sequence {(yi-x*)/llyi-x*ll} converges to d, where Ildll 1, and it is
then easily shown that Vzb(x*)d 0, contradicting the nonsingularity of vErb on
1)’3

Note that Corollary 2.5 is a global convergence theorem, i.e., it guarantees
convergence to a point in 1* from an arbitrary starting point Xo of G provided that
the monotonicity and localization hypotheses are satisfied by the iterates and by
(l*. Point-of-attraction theorems establishing local convergence under somewhat
weaker hypotheses as well as convergence theorems that make use of the
properties of accumulation points of {x} may be found in [10], but it should be
recognized that for global convergence, global hypotheses are required. The main
results of this section are summarized in Table 1, which also indicates the results to
be obtained in 3 and 4.

Properties of the

point-to-set mapping S

Monotonicity

x* S(x*)(x* a GFP)

Monotonicity plus sequential
monotonicity at non-GFP’s

{x*} S(x*)(x* an SFP)

Monotonicity plus sequential
monotonicity at non-SFP’s
plus u.s.c, at SFP’s

TABLE

Properties of the

functions 6, O,/

Non-negativity of 6

6(x*)=0

Nonnegativity and
null-continuity of 6

a(x*) O; p(x*) 0

Nonnegativity and
null-continuity of 6; p is
continuous and equals 0 at
points x such that 6(x)= 0;
Ix is null-continuous
and positive-definite

Convergence

results

Accumulation points
are in 12L.

x* can be an
accumulation point.

Each accumulation point
is a GFP and 6() 0 ( 1"*).

If Xo x*, then xi x*
for all i.

If {xi} is bounded and the
SFP’s do not form a continuum,
then {xi} converges to an
such that 6() p() 0

( is an SFP).
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3. Relationships between forcing functions and point-to-set mappings.
Given a pair of functions b, 6 defined on G, the algorithm corresponding to qb and 6
is defined to be the algorithm given by:

(3.1)

and

choose an arbitrary Xo G,

(3.2) given xi, choose Xi+ such that

t)(Xi)--((Xi+l)(Xi) i=0, 1, 2, ".

Clearly, this algorithm will be well-defined if and only if the set defined by

(3.3) S(x)={yly O, 4(x)-4(y)>-3(x)}

is nonempty for a//x G. Having so defined the point-to-set mapping $, this
algorithm could also be thought of as the algorithm corresponding to $ since (3.2)
could be replaced by the statement

(3.4) given xi, choose Xi/l S(xi), O, 1, 2,. .
Thus, we could attempt to analyze this algorithm either by considering the
properties of b and 6 and applying the results of the previous section, or by
considering properties of S, and applying point-to-set mapping convergence
theorems. In this section we will discuss what properties of $ are, in some sense,
equivalent to certain properties of b and 6, and develop point-to-set mapping
convergence theorems analogous to the convergence theorems of 2. (The results
to be established in this section are summarized in Table 1.)

As shown in the previous section, some convergence properties can be
proved if we merely assume that b is 1.s.c. on G and that 6 is a nonnegative Co
function on G.

These properties of b and 6, however, do not imply semi-continuity proper-
ties for S. S, for example, may fail to be upper semi-continuous (or "closed" as
this property is sometime described) as a result of discontinuities in b and/o.r 6.
(A mapping T from G into the subsets of G will be said to be u.s.c, at a point x if
{xi }

_
G, x x, yi T(x), and y y imply y T(x), and u.s.c, on a subset ofG if it

is u.s.c, at every point in that subset.) In order to see what properties may be
claimed for S in this case, some additional notation will be introduced.

Let T be a point-to-set mapping from G into the subsets of G. A point x* is
dened to be a generalized fixed-point (GFP) of T if x* T(x*), and a strong
fixed-point (SFP) of T if T(x*)= {x*}. (Clearly every SFP is also a GFP, but the
converse will not hold if {x*} is a proper subset of T(x*). As will be seen below,
there is a correspondence between the set of GFP’s and the set of points on which
a related optimality indicator vanishes, and a correspondence between the set of
SFP’s and the set of points on which both an optimality indicator and a certain
distance majorant vanish.)

T is said to be monotonic on G w.r.t, a function to" G R if y T(x) implies
o (y) <- w (x). T will be said to be sequentially monotonic w.r.t, w on a setM

__
G if

x M, x x, y T(x), oo (x) w *, and w (y) - a3 imply a5 < w *. (Note that if x * is
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a GFP or SFP of T, then x* cannot be in the set M on which T is sequentially
monotonic, because we may take x y x*, and the strict inequality in the
definition of sequential monotonicity is not satisfied. In the convergence results
below, the mappings considered will be sequentially monotonic at all points other
than GFP’s or SFP’s. Note also that if xM and y T(x), then o(y)< o(x), but
that sequential monotonicity is a stronger property than the simple requirement
that 0(y)< o(x) whenever x M and y T(x).)

Our first result using these definitions indicates the properties induced by
requiring 8 to be a nonnegative Co function on G.

TrEOREM 3.1. If8 is a nonnegative Co function on G, then (a) $ is monotonic
on G w.r.t, ok, and (b) S is sequentially monotonic w.r.t, qb on G/O*, and (c) 1* is
the set of GFP’s of $.

Proof. Properties (a) and (c) follow directly from the definitions, so we will
exhibit the proof for (b) only. Let x f/, xix, y S(xi), b(x) b*, b(y) .
By the nonnegativ_ity of 8, _-<b*. If = b*, then 8(x)0 and thus x f*, a
contradiction, so b < b*.

Let the functions p and Ix be defined on G and n respectively, and define the
point-to-set mapping

(3.5) (x)--{yly S(x),(x)>-z(x-y)).

Note that $ is a restriction of , by which we mean that g(x)
_
S(x) for all x G. As

a restriction of S, it is easily seen that conclusions (a) and (b) of Theorem 3.1 must
continue to hold when S is replaced by S. We will now show that conclusion (c)
may be strengthened in a useful manner if appropriate properties are assumed for
p and Ix. (These properties are essentially those used in Theorem 2.4.)

THEOREM 3.2. Let 8 be a nonnegative Co function on G, letp be a nonnegative
function on G such thatp is continuous on l* andp (x *) 0 ifx * f* and let tz be
a nonnegative Co function on ff" with Ix (z) > 0 if z O. Then (a) S is sequentially
monotonic w.r.t, c on Gift*, and (b) S is u.s.c, on f*, which is the set of SFP’s of.

Proof. As noted previously, conclusion (a) follows from the observation that S
is a restriction of S; we thus need only prove (b). If x* 1*, then p (x*) 0, so the
inequalityfl (x *) _->/z (x * y) and the positive-definite property of/x force 1’ x*
wheny S(x*), so x* must be a SFP of $. Conversely, if x* is a SFP of $, then
x* S(x*) implies 8(x*) 0. Now suppose also that z- x*, y S(z), y - y*.
Since p(x*) 0 and p is continuous on f*, p(z) - O, and thus/z(zg y) - 0. Since

is a Co function, tz (x* y*) 0, and thus y * x* $(x*). [-1

Having derived properties of S and S that are induced by properties of the
functions appearing in their definitions, we will now take the opposite point Of
view, and, given a point-to-set mapping T with certain properties, we will show
that related functions 8, p, and/x with the properties introduced in 2 may be
constructed.

Let T be a point-to-set mapping from G into its subsets. If T is monotonic on
G w.r.t, a function b, we define the nonnegative optimality indicator correspond-
ing to T and’b to be

(3.6) 8*(x)= inf (b(x)-4(y)).
y T(x)
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Also, we define the distance maorant associated with T to be the extended
real-valued function on G defined by

(3.7 o*(x sup
T(x)

The set of GFP’s of T is denoted by F* and the set of SFP’s of Tis denoted by F**.
Our first result employing these definitions gives sufficient conditions for the

optimality indicator to be Co on G.
THEOREM 3.3. Let T be monotonic on G w.r.t, qb, and let T be sequentially

monotonic on G/F* w.r.t, qb. If qb is continuous or if qb is l.s.c, and boundedfrom
above on G, then * is a nonnegative Co [unction on G, and {xl6*(x) 0} F*.

Proof. Clearly if x* F*, then 8*(x*)=0. On the other hand, if 6"()=0,
then by choosing xi for all i, letting {yi} be such that {yi}_ T() and b(y)-->
b(), and exploiting the sequential monotonicity property of T on G/F*, we
conclude that G/F*, so F*.

If {zi}_ G and zi--> , then because of the hypotheses on b, there exists a
subsequence of {zi} such that b(zi) is convergent. So if xi-->x and 6*(x)->O,
without loss of generality we may assume that there exists a b* such that
(Xi)’->g and a sequence {y} such that Yi T(xi) for each and b (yi) -’> q*. Thus
x G/F* and 8" is a Co function on G.

The following theorem shows that if T is u.s.c, on F**, and has a weak
boundedness property "near" F**, then p* is continuous at each point of F*.*.

THEOREM 3.4. Let Tbe u.s.c, on F**. Iffor each x** F** there existpositive
constantsKandK’ such that [[x- x**[] <=Kimplies thatp *(x) <-_ K’, then p* (defined
by (3.7)) vanishes and is continuous at each point of F**.

Proof. If x** F**, then by definition p*(x**) O. Let {xi}_ G with x--> x**.
For sufficiently large, p*(xi)<-_K’, so choose an index set I and a sequence {yi}
such that yi T(x) for all i, yi L> y, and [[yi-xill > lim supi_, p*(xi). But by the
u.s.c, of T on F**, y T(x**) so y x** and lim supi_,oo p*(x) O. Since
lim sup p*(x) _-> lim inf p*(xi) >--. O, we have lim sup p*(x) lim inf p*(x) 0 and
thus p* is continuous at x**. [:]

The following corollary summarizes the results of the previous two theorems:
COROLLARY 3.5. Let Tsatisfy the hypotheses of Theorems 3.3 and 3.4. Then

there exist [unctions , p, and tz such that y T(x implies (x b (Y) >-- (x and
p (x) >- tz (x y ), where andp are nonnegative on G, is Co on G, p vanishes and is
continuous at each point of F**, and tz is Co and positive-definite on .

Proof. Let 8 -= 8", p -= p*, and/x(x y) --[[x- y[[, and apply Theorems 3.3 and
3.4. [3

It should be noted that the defining relation (3.6) provides the supremum
over all functions 8 for which the relation (2.4) would be satisfied for arbitrary
choices of the successor point xi+l, and, in this sense, is the best choice for a 8 to be
used in applying the theorems of 2 to an algorithm corresponding to a point-to-
set mapping. In some applications, however, it may be more convenient to derive
an estimate for a lower bound on (xi)-(Xi+l) and a 6 developed by such an
estimation procedure will yield the same results as 6" provided that 8 is null
continuous and has the same set of zeros as *.



4. Convergence theorems for point-to-set mappings. By using the con-
vergence results of 2 and Theorems 3.3 and 3.4, it is possible to develop
convergence theorems for algorithms based on point-to-set mappings. However,
rather than constructing proofs for such theorems by applying previous theorems,
it turns out to be somewhat simpler and more illuminating to give direct proofs.

The first result of this type is the analogue of Lemma 2.2 suggested by
Theorem 3.3.

TzorM 4.1. Let T be a point-to-set mapping ]rom G into the nonempty
subsets of G, and let T be monotonic on G w.r.t, some 1.s.c. ]unction
and sequentially monotonic w.r.t. b on G/F* (where F* is the set olGFP’s o] T).
a sequence generated by the algorithm corresponding to Thas an accumulation point
x *, then x* F*.

Proof. We will suppose that x* F*, and show a contradiction. Since b is
assumed 1.s.c., b* =lim b(x) =>4,(x*). Let I be such that xx*. Then b(x)
b*, and b(x/)b*, contradicting the sequential monotonicity property at
Xo

A similar analogue of Theorem 2.4 may be stated, but for the sake of brevity
we will state and prove the analogue of Corollary 2.5 suggested by Theorem 3.5.

Ti-io 4.2. Let T satisly the hypotheses o] Theorem 4.1, and let {x} be
generated by the algorithm corresponding to T. If (a) {x} is bounded, (b) the set o]
SFP’s olTcoincides with F* and does not contain a continuum, and (c) Tis u.s.c, at
each SFP, then x x*, where x* is an SFP o/" T.

Proo] Let x* be an accumulation point of {x}. By the previous theorem
x* F* so x* is an SFP of Tby hypothesis (b). We will assume IIx/-xillO and
show a contradiction. If there exists an I and a 8>0 such that
Ilxe/ - x;ll-> for I and x x’, x+ L x". Since x’ must be an SFP, x" x’ and
thus IIx / -x ll c, 0, a contradiction. Since {x,} is bounded and IIx / -xell-, 0, if {x}
did not converge, its accumulation points would form a continuum contained in
F*, which is impossible.

The crucial role of the SFP’s in the preceding theorem is illustrated by the
following result, which shows that, if F* is finite but contains no SFP’s, it is always
possible to generate a divergent sequence by using the algorithm corresponding to
T.
Tzor 4.3. Let the hypotheses o] Theorem 4.1 hoM. ff F* is a finite set

containing no SFP’s then there exists an Xo and a corresponding sequence {xi}
generated by the algorithm corresponding to Tsuch that {x} does not converge.

Prool. Let d=-{x’lx’ F*, d, (x’) -< d,(x) for all x F*} and let Xo . Given x,
choose x/ x. (This is always possible, for otherwise x would be an SFP.) We
will suppose that x x*, and show a contradiction. By a preceding theorem,
x* F*, and since b (x*) =< b (Xo), we have x * and thus b (x*) b (xi) for all i.
Thus (x)= 0 for all and x for all i. Since is a finite set, the relations
{x} and x x* imply x x* for all sufficiently large, contradicting the fact
that xi+ xi.

5. Methods involving anti-jamming parameters. We now wish to extend the
convergence analysis approach developed in previous sections to algorithms for
which the optimality indicator depends not only on x but also on a scalar
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parameter e. This extension allows the analysis of constrained optimization
methods employing a so-called "anti-jamming" parameter. The conditions to be
given below were previously stated in [12], but here they will be presented as a
natural extension of the results in 2-4.

The simplest approach to an appropriate extension of the previously
developed theory is to replace the relation qb(xi)-c(xg/l)>-8(Xg) by

(5.1) (Xi) t(Xi+ 1) (Ei, Xi)

in order to reflect the dependence of the change in b on the ith value of the
parameter,, eg. Note that by defining the composite variable z (e, x) and the
function (z)=4(x), the relation (5.1) can be written so that the same variable
appears on both sides, i.e., in the form(zg)-(zg/l)-> g(zi). If g is nonnegative
onR x G and 4 is 1.s.c. on G (so that 4 will also be 1.s.c. onR x G), then Lemma
2.1 may be applied to establish properties of the accumulation points of the
sequence {zi}. (More generally, any set of relations of the form f(ug)-]:(ug/)>-
g(vi), where the ui are in some space U and the vi are in some space V may be
converted in an obvious fashion to a new set of relations in which variables from
Ux V appear on both sides and the functions involved have the same continuity
and nonnegativity properties as [ and g, so that the results of 2 may be applied.)
As in 2, we would then like to go a bit further and exploit additional properties of
g in order to sharpen the characterization of the accumulation points obtained
from Lemma 2.1. Unfortunately, while an analogue of Lemma 2.2 may be
established if is Co on R x G, for many well-known feasible direction methods
the corresponding function g is not null-continuous on R+ x G (for a simple
example of this phenomenon see p. 24 of [10].)

Thus the properties of 6 that we will exploit are weaker than null-continuity,
but will nonetheless be strong enough to guarantee that the accumulation points
satisfy an optimality condition. These properties will also, of course, be such that
they are satisfied by the well-known feasible direction methods. The appropriate
additional properties of g are as follows’

(5.2)

where

(5.3)

and

(5.4)

g(Ei, Xi) 2(0.)i, Xi) min {(.oi, [Ixi Xi/l[I},

(.Oi 3(F-.i, Xi),

[[xi-Xg+l[I dl(min {ei, o)i}, xi)

where and 82 are nonnegative and have the generalizedforcingfunction property
(for/" 1 2) on R+xG.
(5.5) 6j(r/g, yg)--> 0 and yi --> 7 imply r/i --> 0

and 83 is nonnegative and null-continuous on R / x G. By assuming (5.1)-(5.5)
and making an assumption on the relationship of {ei} to {to/}, the following
Theorem shows that 83, which plays the role of an optimality indicator, vanishes at
the accumulation points of {(e, xg)}.
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THEOREM 5.1. Let 49 be Ls.c. on G, let (5.1)-(5.5) hold, and let 63 be
null-continuous on R / x G. Let {eg} be such that the existence of a subsequence of
{ei} converging to 0 implies (i) that eiO and (ii) that {o)} also contains a
subsequence converging to O. If {x} contains an accumulation point , then
3(0, g) 0.

Proof. This result is proved in Theorem 1, p. 7, of [10]. [1

It is shown in [12] that this theorem may be applied to the analysis of the
feasible direction methods of Zoutendijk [21], Topkis and Veinott [18], and
Mangasarian [8], and that it also suggests new and, in some cases, more efficient
parameter generation schemes. While it is thus possible to extend the forcing
function approach to algorithms with an anti-jamming parameter, it does not
appear possible to similarly extend the point-to-set mapping approach in a natural
way to cover this situation, since the convergence proof depends on the special
structure of (e, x;). The results of this section may also be compared with similar
results of Klessig [6]. (Although Klessig’s results are stated in a rather different
format involving point-to-set mappings, the continuity properties that are the
cornerstone of his hypotheses can be formulated as continuity properties of
single-valued functions analogous to the 6i above.) Theorem 5.1 provides (i) a
more general lower bound on the decrease b(x)-b (x+l), which permits a wider
variety of step-sizes to be used, and (ii) a more general relation between the
sequence of values, {e}, of the anti-jamming parameter and the sequence of
values, {w}, of the optimality indicator, so that new, nonmonotonic procedures for
anti-jamming parameter generation can be handled. (For more details on these
points, see Meyer [12].)

It might be noted that Zangwill [20] treats the convergence of the feasible
direction methods that he considers by a direct argument rather than by the
application of his general point-to-set mapping convergence theorems. (There is
also some question as to whether Zangwill’s results are correct, since the proof
given for his Theorem 13.2 is erroneous and cannot be corrected in a straightfor-
ward manner.)

The interested reader may also refer to [12] for extensions of Theorem 5.1
that give sufficient conditions for the convergence of the full sequence {xi} to a
point x* such that 83(0, x*) 0. These conditions are analogous to those assumed
in Corollary 2.5.

il. Conclusions. A general convergence theory for monotonic mathematical
programming algorithms has been developed via the forcing function approach.
This approach has the pedagogical advantage of avoiding the use of point-to-set
mappings, but is nevertheless shown to be equivalent to a development relying on
point-to-set mapping properties for two of the three classes of algorithms consi-
dered. The forcing function approach has some advantages in terms of
providing a framework for the analysis of the third class of algorithms, feasible
direction methods. On the other hand, there are classes of algorithms involving
contraction mappings [10], cyclic or "restart" policies [11], and linearization
procedures 16] for which a point-to-set mapping approach appears quite suitable
whereas the forcing function approach would be somewhat unnatural. The point-
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to-set mapping approach also offers geometric insights not as easily obtained from
the forcing function approach.

Appendix. In order to obtain globally convergent mathematical program-
ming algorithms, it is customary in practice to introduce step-size procedures that
guarantee a "sufficient decrease" in some function. In terms of the theory
described above, "sufficient decrease" means that the function 8 determining a
lower bound for the decrease should be null-continuous and that the set of points
on which vanishes should coincide with the set of points satisfying an
appropriate optimality condition. For purposes of comparison with the results of
Zangwill and Polak, however, we must allow for the possibility of a "worsening"
(or increase) in the value of b, or an empty set of successors, even though for
nonlinear minimization algorithms used in practice it is always possible to let
Xi+l Xi if computations at the ith iteration have not yielded a point with a smaller
objective value.

A comparison with Polak’s Theorem 1.3.10 (see [15]). In Polak [15], it is
assumed that a set T*_c G has been designated a priori as the set of desirable
points, and the following algorithm and theorem are given:

ALGORITHM (Polak). Let A be a point-to-set mapping from G into the
nonempty subsets of G.

Step O. Compute a z0, G.
Step 1. Set 0.
Step 2. Compute a point y A (zg).
Step 3. Set zg+a y.
Step 4. If b(Z+l) >-b(z) stop; else, set =i+ 1 and go to Step 2.
TI-mORM 1.3.10 (Polak). Suppose that (i) b is either continuous at all

nondesirable points or qb is boundedfrom below on G; (ii)for every z G which is not
desirable, there exist an e (z > 0 and a 6 (z <0 such that ck (z") ck (z ’) <= (z < 0
for all z’ G such that IIz’- z <- (z) and for z" A (z ’). Then, either the sequence
{z} constructed by the algorithm is finite and its next to last element is desirable, or
else it is infinite and every accumulation point of {z} is desirable.

In order to compare our approach with that of Polak, we first define

(A.1) (x)-- max {0, inf {qb(x)-qb(x’)lx’ A (x)}}.

Note that t is nonnegative on G. We will now show how Lemma 2.1 may be used
to obtain a strengthened version of Polak’s theorem.

LEMMA A.1. Let rb be either l.s.c, or bounded from below on G, and let
hypothesis (ii) of Polak’s theorem hold. If the set of zi constructed by Polak’s
algorithm is finite, then its next-to-last element is in 12". If the set of zi has an
accumulation point, then I, which is contained in the setofdesirablepoints.

Proof. In the finite termination case, the conclusion is obvious. In the infinite
case, since b(z)-b(z+l) >-(z) for all i, Lemma 2.1 applies (recall that the proof
requires only that b is bounded from below). To see that ilL is a subset of the
desirable points, suppose that yi-x and 8(y)-0, but that x T’, the set of
nondesirable points. Since (yi) - 0, there exists a sequence { y }, with y A (yi)
such that lim sup [b(y)-b(yl)]<-0, contradicting Polak’s hypothesis (ii). [-1
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Note that Lemma A.1 yields a stronger result than Polak’s theorem, since f/L
may be a proper subset of the desirable points, as the following example shows:

Example. Let G---{1/nln 1, 2,...} U{0} U{-1}, (x)=x, T’=
{1/nln 2, 3,...}, and

-1} if x -1, or O,
A(x)-[{1/(n+l)} ifx=l/n, n=l, 2,....

Then all of the hypotheses of Polak’s theorem are satisfied, and G/T’ {-1, 0, 1},
f/L {_ 1, 0}, and I* {-1}. Note that although the point 1 has been classed as a
"desirable" point, the algorithm can neither terminate at 1 nor converge to 1. In
this case, then, Lemma A.1 is a sharper result than Polak’s, since it restricts the
terminal and accumulation points to smaller sets.

The difference between the sharpness of the two results is essentially a result
of the fact that f/L and 12" are completely determined by A and via (A.1),
whereas Polak’s "desirable set" is determined independently of the algorithm.
Note, however, that if the points in f/L are designated as the desirable points, then
hypothesis (ii) of Polak’s Theorem 1.3.10 is unnecessary, since the set of nondesir-
able points then becomes G/fL, which is precisely the set of points for which the
algebraic conditions of Polak’s hypothesis (ii) hold; in this instance the conclusions
of Theorem 1.3.10 and Lemma A.1 are.essentially equivalent.

Comparison with Zangwill’s Theorem A (see [20]). In Theorem A the
algorithm is given a point z and generates the sequence {Zk} by use of the
recursion Zk+ E A (Zk )o

CONVERGENCE THEOREM A (Zangwill). Let the point-to-set map A: G -> G
determine an algorithm that given a point z E G generates the sequence {Zk}. Also
let a solution set 12 c G be given.

Suppose
1) All points Zk are in a compact setX G.
2) There is a continuous function Z: G --> E such that:

(a) if z is not a solution, then for any y E A (z)

Z(y)>Z(z);

(b) if z is a solution, then either the algorithm terminates or for any
yEA(z),

z(y)>-Z(z).

and
3) The map A is closed at z if z is not a solution.
Then either the algorithm stops at a solution, or the limit of any convergent

subsequence is a solution.
The statement of Zangwill’s theorem is a bit unclear, since the suggestion of

the possibilities that "the algorithm terminates" or that "the algorithm stops"
cannot be reconciled with the hypothesis that the algorithm generates an infinite
sequence {z, li 1, 2,. .}. On the basis of some of Zangwill’s other results we will
assume that the statement that "the algorithm terminates" at xi is equivalent to
A (x) being empty. Hence, we will again define a 8 to take this into account, and
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apply Lemma 2.1 to obtain a strengthened result. Let -Z and let 8 be defined
as follows .on G"

inf {(x) (y)ly A (x)}, if A (x) is nonempty,
(A.2) (x) -=

0 if A (x) is empty.

(Note that is nonnegative on G.)
LEMMA A.2. Let 2) and 3) of Theorem A hold, and let {zli I} be a set of

points generated by Zangwill’s algorithm. If I is finite, then the last element
zi f* f312. IfI is infinite and the sequence {zi} has an accumulation point 2, then
2 12L. Iflis infinite and the sequence {z} is bounded, then each accumulationpoint

Proof. The proof of the first two conclusions is analogous to the proof of
Lemma A.1. If the sequence {z} is bounded, then by Zangwill’s theorem the
accumulation points belong to lq, and by the second conclusion of the lemma they
also belong to

It should be noted that f may contain points not in l’l and vice-versa, as the
following example shows:

Example. Let

N-{nln 1, 2,...},

G--Nt.J{1/nln 1, 2,." .} {0}lO{-1},

-1 if x -1 or 0,
A(x)= (1/x)+l ifx=l/n, n=2,3,...

1/(x+l) ifx=n, n=1,2,3,...

x ifx<l,
(x)--

1Ix ifx > 1,

Note that hypotheses 2) and 3) of Zangwill’s theorem are satisfied, and that
lz {- 1, 0} and 12" {- 1}. Thus, by Lemma A.2, if the algorithm terminates in a
finite number of steps, it must terminate at the point -1; if the algorithm yields an
infinite set of iterates, then either of -1 or 0 could be accumulation points; and, if
it yields an infinite set of iterates contained in a bounded set, then they must
converge to -1. Note., in fact, that these results are in this case the best possible,
since -1 will be the unique accumulation point if the algorithm starts with z -1
or 0 and 0 will be the unique accumulation point for any other starting point in G.
By comparison, Zangwill’s Theorem A does not apply to the case in which the zi
are unbounded (which occurs unless z =-1 or 0), and in the bounded iterate
case, Theorem A narrows the candidates for accumulation points only to the set
{-1, 0}. Analogues of the comments made regarding the sharpness of Polak’s
theorem apply here, since fl is not uniquely determined byA and Z, and thus may
be taken to be larger than is really necessary, whereas f* and ll are uniquely
determined by A and Z. Of course, in applying Theorem A one would like to
choose the set l as small as possible, i.e., as the intersection of all 12 for which
hypotheses 2) and 3) were satisfied. However, this choice has the disadvantage of
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providing a rather complex definition of a "solution set" l (in comparison with
the definition of fl*), and the resulting f need not contain all the possible
accumulation points in the unbounded iterate case.

Other torcing function approaches. In the approach to convergence analysis
used by Ortega and Rheinboldt [13] (a similar approach is also used by Daniel
[2]), two main hypotheses are made regarding the decrease in b at each iteration:

t (Xi) t (Xi+ 1) >- o’(IVt (xi)Pi 1/11Pi II),
and

IV6 (xi)p, 1/11 P, e (llv6 (x,

where pi is a search direction and the trj have the property that, for/" 1 or 2,
lirnk_,o trj(tk) =0 implies limk-o tk =0 for any nonnegative sequence {tk}. (By
considering the above two inequalities, the step-size and the direction-generation
techniques of an algorithm may be analyzed separately, so that the potential
independence of those two techniques is emphasized.) If we assume in addition
that O" is monotone nondecreasing (a hypothesis that is satisfied by all the
algorithms considered in Ortega and Rheinboldt 13], where, in fact, in most cases
trl(t)=Mt2 for some M>0), then we have

Letting and assuming that 4 is continuously differenti-
able and try(0) r2(0) 0, we may conclude that 6 is Co and that the set of points
on which 6 vanishes is the set of points on which 4 vanishes. Thus, under these
hypotheses Lernrna 2.2 may be applied, and we may conclude that will vanish
at the accumulation points of {x}. Finally Ortega and Rheinboldt also establish,
for each algorithm they consider, conditions analogous to (2.5) to guarantee
IIx,-x,+ ll- 0 (these are generally of the form
where .r> 0), or prove the relation IIx,-x,/111- 0 by utilizing properties of the
step-size techniques together with a hypothesis (hemivariateness) on b.
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OPTIMAL PERIODIC CONTROL:
A GENERAL THEORY OF NECESSARY CONDITIONS*

ELMER G. GILBERTf

Abstract. Does time-dependent periodic control yield better process performance than optimal
steady-state control? This paper examines exhaustively the role of first order necessary conditions in
answering this question. For processes described by autonomous, ordinary differential equations, a
very general optimal periodic control problem (OPC) is formulated. By considering control and state
functions which are constant, a finite-dimensional optimal steady-state problem (OSS) is obtained
from OPC. Three solution sets are introduced: 6e(OSS)--the solutions of OSS, 6e(OPC)--the solutions
of OPC, 6e(SSOPC)--the solutions of OPC which are constant. Necessary conditions for elements of
each of these sets are derived; their solution sets are denoted, respectively, by Se(NCOSS),
ff(NCOPC), and (NCSSOPC). The relationship between these six solutions sets is a central issue.
Under various hypotheses certain pair-wise inclusions of the six sets are determined and it is shown
that no others can be obtained. Tests which imply that time-dependent periodic control is better than
optimal steady-state control ((6(SSOPC)= , 6a(OSS) ), including those based on relaxed
steady-state control, are investigated and limits to what tests exist are established. The results integrate
and amplify results which have appeared in the literature. Examples provide insight which supports the
theory.

1. Introduction. Since the 1967 paper by Horn and Lin [13] there has been
an increasing interest in the mathematical theory of periodic processes. The
motivations for this theory came initially from the optimization of chemical
processes [3], but there are other areas of potential application such as vehicle
cruise [10]. The essence of most applications is the optimization of a "continuing
process," a process which is fixed in its characteristics and is expected to operate
continuously over an indefinitely long period of time. The traditional approach to
such problems is to minimize process cost by selecting constant controls subject to
the constraint that the (dynamic) process is in static equilibrium. Although this
"steady-state" approach is simple (time does not appear) and has intuitive appeal,
it is not necessarily best. It may be possible to exploit the process dynamics and
obtain even lower cost. Experiments with actual processes have shown that this
can indeed be the case. The theory has helped to explain some of the mechanisms
for such improvement and suggests situations where "time-dependent" control
may improve performance. Much of the literature on periodic control has been
reviewed by Bailey [3] and Guardabassi, Locatelli and Rinaldi [11].

The natural starting point for a theoretical investigation of continuing
processes is the formulation of a dynamic optimization problem. It is clear from
the preceding discussion that this optimal control problem should satisfy certain
requirements" 1. the system dynamics and control constraints should not depend
explicitly on time, 2. the system state and control functions should be defined on
the time interval (-oo, +oo), 3. a meaningful "optimal steady-state" problem,
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which does not involve time, should result when the system state and control
functions are assumed to be constant. This is the attitude taken in this paper;
everything is based on the optimal control.problem (OPC) which is stated in 2.
The structure of this problem is chosen so that requirements 1 and 3 are met
directly. Requirement 2 is imposed indirectly by assuming that the system state
and control functions are periodic. Although this is not absolutely essential it is
consistent with the previous literature, is a practical constraint, and avoids certain
mathematical difficulties. The problem OPC, which assumes the system dynamics
are represented by ordinary differential equations, is quite general and includes
most of the problems which have appeared to date as special cases.

Because of the special form of OPC there are three notions of optimality
(solutions of OPC, solutions of OPC which are constant, solutions of the steady-
state problem) and, correspondingly, three sets of necessary conditions. Hence
many potential relationships exist between the necessary conditions and the
various optima. The investigation of these relationships is the central theme of this
paper. Apart from its intrinsic interest this investigation is valuable for a number
of other reasons: it puts together in a larger, more consistent framework many of
the scattered results in the literature; it produces stronger tests for optimality and
properness (time-dependent control better than optimal-steady-state control); it
establishes certain limits to what can be proved concerning these tests; it sheds
new light on the role of relaxed steady-state controls.

The paper is organized as follows. Section 2 states the problem OPC and
introduces notation for the three sets of solutions. In 3 the necessary conditions
are derived. The developments are restricted to the "first variation" and are, for
the most part, applications of well established theory. Section 4 introduces
notation for the sets of solutions of the necessary conditions and relates these sets
to the three sets of optima. Section 5 presents a number of examples which show
that it is not possible to obtain more set inclusions than those obtained in 4. Tests
for properness are considered in 6 and it is shown that under certain reasonable
conditions no other tests exist. Tests for optimality and relative optima are also
discussed. Section 7 treats relaxed steady-state optima; one of the main conse-
quences is an extension of the well known results of Bailey and Horn [1].

It is worth noting that the concept of a continuing process seems essential to
much of what follows. While it is possible to pose optimal periodic control
problems which do not satisfy requirements 1 and 3, the results concerning the
comparison of time-dependent and steady-state optima are greatly weakened.

2. Formulation of the problem. In this section a problem of optimal periodic
control is formulated which meets the general requirements of the previous
section. It models a wide class of continuing processes and subsumes a.meaningful
steady-state problem. Solution sets related to the two optimization problems are
defined and some simple facts concerning them are noted.

Before stating the optimal periodic control problem it is necessary to
introduce the following notation and assumptions: /" and k are nonnegative
integers, T R is positive, Uc R is an arbitrary set, Xc R and Y R are
open sets, for -j, , k the functions gi" YxX R are continuously differen-
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tiable, the functions f: Xx U R" and/: Xx U-R are continuous and for each
u U are continuously differentiable in x.

Optimal periodic control problem (OPC). Find u(-), x(. and - which
minimize J subject to

(2.-)

(2.1-2)

(2.1-3)

(2.1-4)

(2.1-5)

(2.1-6)

(2.1-7)

(2.1-8)

-- g0(y, x (0)),

gi(y, x(0)) =< 0, =-/’,... ,-1,

gi(y, x(0)) 0, 1, , k,

1
f(x(t), u(t)) dt Y,Y .

A(t) =fix(t), u(t)) almost all t [0, T], x(0) x0"),

u(. ) q/= {u(. ): u(. measurable and essentially bounded
on [0, T], u(t) U for all t [0, T]},

x(. ) {x(. ): x(. absolutely continuous on [0, T],
x(t) X for all t [0, T]},- (0, T].

Some general comments are in order. Equations (2.1-5) represent the
dynamics of the process and the constraints that x(. and u (.) are periodic on
(-, +o) when appropriate extensions of their definitions are made: x(t + u-)
x(t), u(t + uz) u(t), t [0, -), u integer. The components of f(x(t), u/t)) are
quantities of interest in the optimization problem, e.g., rates of process fuel
consumption, material flow rates, overhead cost rates, value measures of process
products. It is the average of these quantities y, as given by (2.1-4), which appear
in the actual optimization of the process, i.e., the minimization of (2.1-1) subject
to (2.1-2) and (2.1-3). The dependence of the g on x(0) allows consideration of
factors relating to the "start-up" of each cycle of. operatio.n. It also allows
constraints to be imposed on x(0)= x(’).. Note that f and f and the control
constraint set U do not depend on t and the g do not depend on ’. This is essential
if the requirements 1 and 3 of 1 are to be satisfied. The bound (2.1-8) is
consistent with the assumption of periodic operation. While T= +oo is not
allowed, arbitrarily large T is permitted. Thus the quasi-stationary approximation
treated in the literature [3], [11] can be extended to OPC. This is not done here.
The convention/" 0 is used to denote the absence of inequality constraints;
similarly k 0 denotes absence of equality constraints.

By appropriate changes in notation problem formulations considered previ-
ously in the literature become special cases of OPC. For example, the problem of
Guardabassi, Locatelli and Rinaldi [11] requires/" 0 and g, 0, ., k equal to
the components of y; the.problem of Bailey and Horn[l] requires/’ k 0 and go
equal to a general function of y. The problem in [ 1] is somewhat more general than
it may first appear because a simple substitution of variables allows it to include
the case /" 0, k >0 when the functions gi,. >0, are components of y [2].
However, when restricted to the context of continuing systems, none of the
previous formulations have the full generality of OPC.
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The steady-state problem is obtained from OPCby adding the constraint that
x (.) and u (.) are constant. As expected, this yields a finite-dimensional optimi-
zation problem which does not depend on r.

Optimal steady-state problem (OSS). Find u and x which minimize J subject
to

(2.2-1) J go(Y, x),

(2.2-2) &(y,x)<-O,

(2.2-3) &(y, x) 0,

(2.2-4) y f(x, u) Y,

(2.2-5) f(x, u)= O,

(2.2-6) u e U,

(2.2-7) x X.

It is of interest to compare the solutions of OPC with the solutions of OSS.
This can be done conveniently by introducing the following solution sets, all of
which are subsets of 0-//x x (0, T]:

(2.3)

(2.4)

(2.5)

(2.6)

Y(OPC {(u(" ), x(" ), r): (u(’), x(" ), r solves OPC},

Y(SS) {(u(. ), x(. ), ’): (2.1-2)-(2,1-8) are satisfied and
u(. and x(. are constant},

(SSOPC) 5v(OPC) f3 5(SS),

Y(OSS) {(u(. ),x(. ), r): (u(.),x(. ), r) e ’(SS) and
(u (0), x (0)) solves OSS}.

Of course, 6e , the null set, is possible in any of the four cases. The particular
circumstance 6e(SSOPC)= , 6e(OSS) . implies that there exist time-
dependent controls which do better than the best steady-state controls. If
6e(SSOPC) any 6e(SSOPC) is also in 6e(OSS) since g is optimum with
respect to choices in x x (0, T] and 6e(SS)c x x (0, T]. Also, it is clear
that all elements of Se(OSS) and Se(SSOPC) yield identical costs J. This leads to the
following.

Remark 2.1. There are three mutually exclusive possibilities:
(i) 5(SSOPC) 5e(OSS) # ;
(ii) Se(SSOPC)= , ae(OSS)# ;
(iii) Se(SSOPC)= .9’(OSS)= (R).
Possibility (iii) is not apt to occur since for well posed problems it is likely that

Y(OSS) # . Possibility (i) implies that OPC has a steady-state solution and
consequently, there is no advantage (even though OPC may also have time-
dependent solutions) in using time-dependent control. Possibility (ii) implies
time-dependent control can do better than steady-state control (a statement
which holds true even if .9’(OPC) ). Because of the importance of possibilities
(i) and (ii) the following definitions are introduced.
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DEFINITION 2.1. If 5e(SSOPC)= 5e(OSS)# the problem OPC is called
steady -state.

DEFINITION 2.2. If 5(SSOPC) , 5(OSS) # the problem OPC is called
proper (compare [5]).

The study of relative minima of OPC and OSS will prove to be of value,
particularly in the case of steady-state minima.

DEFINITION 2.3. (u(’), x(" ), ’) Y(SS) is a strong {weak} relative minimum
of OPC if there exists an e >0 such that for all (t(.), (. ), ) which satisfy (2.1-
2)-(2.1-8) and II(t)-x(0)ll<e (ll(t)-x(0)ll<e, Ila(t)-u(0)ll<e), t[0, T], it
follows that go(y, x(0)) -< go(), .(0)).

DEFINITION 2.4. (U("), X(" ), ’) Se(SS)is a strong {weak} relative minimum
of OSS if there exists an e > 0 such that for all (t, :) which satisfy (2.2-2)-(2.2-7)
and II -x(0)ll < ll -x(0)ll < Ila u(0)ll < it follows that go(y, x(0)) =<
go(, .).

In these definitions I1" denotes any norm on R" or R and y for u =/,
x ;, r ". Corresponding to each of the four types of relative minima, notations
for the set of minima are adopted"

6e(SRMSSOPC), 6e(WRMSSOPC), 6(SRMOSS), S(WRMOSS).

For example,

(2.7) 6e(SRMSSOPC) ((u(.), x(. ), ’)" (u(.), x(. ), ’) 6e(SS)
is a strong relative minimum of OPC}.

Obviously, 6e(SSOPC) Se(SRMSSOPC) Se(WRMSSOPC) and Se(OSS)
6e(SRMOSS)c6e(WRMOSS). By using the same reasoning which led to
Remark 2.1 it is easy to see that 6e(SRMSSOPC)m6e(SRMOSS). However,
6e(SRMSSOPC) does not imply 6e(SRMSSOPC)= (SRMOSS) because
elements of 6e(SRMSSOPC) do not necessarily have the same cost as elements of
6e(SRMOSS). Similar reasoning applies to the case of weak relative minima. All of
this is summarized in

Remark 2.2. The following conclusions are valid: ow(SSOPC)
5e(SRMSSOPC) c 5(WRMSSOPC), ow(OSS) 5e(SRMOSS) c ow(WRMOSS),
5e(SSOPC) = 5e(OSS), 5e(SRMSSOPC) = 5e(SRMOSS), S(WRMSSOPC) =
(WRMOSS).

3. The necessary conditions. Since explicit characterization of 5e(OPC),
5(SSOPC) and 5t’(OSS) is generally difficult or impossible, it is essential to
consider necessary conditions for the elements of these sets. The necessary
conditions for OPC will be obtained by applying some necessary conditions
obtained by Neustadt (summarized in Appendix A). Similarly, known conditions
for finite-dimensional optimization problems (summarized in Appendix B) are
applied to OSS. An entirely separate derivation starting from the necessary
conditions for OPC is required to obtain necessary conditions for elements of
5’(SSOPC). Relationships between the various necessary conditions and the
solution sets introduced in the previous, section are examined in 4.

In what follows: let fx (x, u) and [x (x, u) denote respectively the Jacobian
matrices of f(x, u) and f(x, u) with respect to x; for -],. ., k, let giy (y, x) and
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gix (y, x) denote respectively the Jacobian (row) matrices of gi(y, x) with respect to
y and x; let a prime denote the transpose of a (column) vector or matrix.

TEOREM 3.1 (necessary conditions for OPC). Let

(3.1) H(x, u, p, )=p’f(x, u)+/’)(x, u)

where p s R and R I. Let (u(.), x(. ), r) solve OPC. Then there exist an
absolutely continuous function p(.)’[O,’]R", i6sR and real numbers
a_, , ak such that the following conditions are satisfied"

(3.2-1)

(3.e-)

(3.2-3)

max H(x(t), v, p(t), ) H(x(t), u(t), p(t), )
vU

k

’= E g,(y, x (o)),

p’(t) =-p’(t)fx(X(t), u(t))-’f(x(t), u(t))

almost all t [0, -],

almost all t [0, r],
k

p’(’)-p’(O) " E ag,x(y, x(0)),

ai <-- O, -f, O,
(3.2-4)

aig (y, x(0)) 0, -/’, ", -1,

(a_i, ’, a, p’(r)) # 0.

If f(x(" ), u( )) and (x( ), u(. )) are continuous at the following additional
condition is satisfied"

(3.2-5)
’Y H if T,

’y=H ff<T,

where

(3.2-6) HM max H(x(-), v, p(’), ).
vU

Proof. With the following substitution OPC can be written as GOC of
Appendi,x A: n + l, Ix j + 1, u k + n, ff XxR , 2 (x, ), f(2, Iz)
(f(x, u), f(x, u)); for -],..., k, 0(1, 22, z) gi(’-l(2-), x); for
k + 1, k + n, 0(: A2x -)= X-k X-k where the subscripts denote the com-
ponents of x 2 and x 1^; 0_i_1( 1, 22, .) ’- T; ’ is any real number greater
than T. By choosing X and X2 to be appropriate neighborhoods of 21(0) and
22(.) the constraint y e Y is assured. Using the conditions from Theorem A.1,
letting/3 (p,/), and replacinga by ’ai gives conditions (3.2). To confirm the last
line of (3.2-4), note that the last condition of (A.3-4) can be written (i6’y-
Ht, a-i," ", ak, p’(r)) O. Since (a_i, ., Ok, p’(’)) 0 implies/’y -H4 0,
the last line of (3.2-4) must follow.

Before stating the necessary conditions for OSS it is necessary to introduce a
procedure for obtaining "perturbations" in the constraint set U. This can be done
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in a variety of ways (see, e.g. [7], 17], [ 19]) without being very specific about the
characterization of U. Here the presentation follows Canon, Cullum and Polak
[7]. Let co V convex hull of V and cl V closure of V.

DEFINITION 3.1. A convex cone C(u, U)c R"; u U, is a conical approxi-
mation to U at u if for any collection {ul, , 8Us} of vectors in C(u, U) there
exist an e >0 and a continuous function (: co{u,u+eul,... ,u+e6us} U,
both dependent on {Bu, ., Bu}, such that ((u +u)= u +Bu +o(Bu) where
IIo( u)[I. II ull as 8u 0.

When Uhas simple characterizations so does C(u, U). For example, suppose

(3.3) U= {u: hg(u) O, 1,..., q},

where the h are continuously differentiable on R with Jacobian matrices hgu(U).
Let I(u) {i: hg(u) 0}. Then

(3.4) cl C(u, U)={6u: hu(U)6U N0, I(u)}

if U is convex or {hu(U)}z(u are lineay independent. For more details see [7].
Finally, the assumptions on[ and must be strengthened. When they exist, let, (x, u) and , (x, u) denote respectively the Jacobian matrices of f(x, u) and

[(x, u) with respect to u.
4ssump{ion A1. and f are continuously differentiable on X x 0 where

U U and U R is an open set.
TnEORE 3.2 (necessary conditions for OSS). Let[andsatis[y Assumption

A1 and let (u, x) solve OSS. Then there exist p s R", R and real numbers
a_i, , ak such that the following conditions am satisfied[or any C(u, U) which is
a conical approximation to U at u"

(3.5-1) (p’[,(x, u)+’[,(x, u))6u 0 orall6u eel C(u, U),
k

(3.5-2) fi’= E ag,y(y,x),

(3.5-3) -pZ(x, u)-’fx(X, u)= E agx(y, x),
i=-j

aNO, i=-L O,
(3.5-4) aig(y, x) O, -L -1,

(a_i," ,ak, p’)#O.

Proof. With the following substitutions OSS can be written as FDO of
Appendix B: n + 1, ], u k + n + l, 2 Xx Y, 2 (x, y); for -], , k,
0(, u) g(y, x); for k + 1,. ., k + n, 0(, u) -k (X, U) where the sub-
cripts denote components of f(x, u); for k + n + 1,. ., k + n + L 0(2, u)
’-k-,(X; U)--Y-k-, where the subscripts denote components of (x, u) and y.
Applying the conditions from Theorem B.1, letting p’= (ak+,’’’, ak+,) and

’= (ak.+,+," ", ak+,+), gives the conditions (3.5). The last line of (3.5-4) holds
because (a_i, , p’) 0 and 0 is impossible.

By changing the hypotheses other necessary conditions for OSS may be
obtained.
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Assumption A2. The set

(36) /^(x, U)= {(]’(x, u), )(x, u))" u U}R"+

is convex for all x X.
THEOREM 3.3 (maximum principle for OSS). Let1 and satis]’y Assumption

A2. Let (u, x) solve OSS. Then there exist pR, R and real numbers
t_j, ., k such that conditions (3.5-2), (3.5-3), (3.5-4) and the ]ollowing condi-
tion are satislied"

(3.5-1) max H(x, v, p, ) H(x, u, p, ).
vU

Proo[. Make the same notational assignments as in the proof of Theorem 3.2.
Applying Theorem B.2 gives (3.5-1)’ instead of (3.5-1) while everything else
remains the same as in the proof of Theorem 3.2.

Remark 3.1. By applying Theorem B. 1 to the maximization problem (3.5-1)’,
under Assumption A1, it can be seen that (3.5-1) is a necessary condition for
(3.5-1)’. Thus the conditions obtained in Theorem 3.3 are stronger than those in
Theorem 3.2.

THEOREM 3.4 (necessary conditions for SSOPC). Let (u( ), x( ), ’)
oW(SSOPC). Then there existp R", R and real numbers ce_, , such that
conditions (3.5-1)’, (3.5-2), (3.5-3) and (3.5-4) are satis]ied ]’or u u(O) and
x x(0).

Proo[. Introduce the following notation: c’=(_j,...,tk), g’(y,x)=
(g_j(y, x),. ., g(y, x)), gy(y, x) Jacobian matrix of g(y, x) with respect to
y, g(y, x) Jacobian matrix of g(y, x) with respect to x. Since u(. and x(. are
constant let u(t)=-u* and x(t)=x* and define: ]*=fx(X*, u*), )r* =L*(x*, u*),
y*=](x*,u*), g*y=gy(y*,x*), g*=gx(y*,x*). Clearly, (u(.), x(.), tr)
0(SSOPC) for all tr (0, T]. Thus, for each tr, (u(.), x(. ), tr) must satisfy the
conditions of Theorem 3.1. For each tr let ai (o’), -/’,. , k, and p(o-, denote
corresponding ci and p(. whose existence is guaranteed by Theorem 3.1. It is
easy to show that (3.2-5) is satisfied automatically for -= tr and imposes no
conditions on c(tr) and p(o-, ). By introducing the sets

(3.7) V*={(ce, p)" ct<-O,i=-f, O; ctig(y*,x*)=O,i=-f, ,-1},

c* t,)" u*))<-_o
(3.8) for all v U}

the conditions imposed by (3.2-1)-(3.2-4) on t(tr) and p(o-, can be written

(3.9-1). (a (tr), p(tr, r)) 0,

(3.9--2) (a(o’), p(tr, t)) V* f’) C* for all [0, o-],

(3.9-3) p’(tr, t)=-p’(tr, t)f*-a (tr)gy [x for all t [0, o’],

(3.9-4) o’-l(p’(r, tr)-p’(tr, 0))= a’(o’)g*.

These conditions must hold for all tr (0, T]; ,6’ a’g*y has been used to eliminate
/’.
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With the use of the variation of parameters formula condition (3.9-3) can be
written

(3.10’1) p’(tr, t) p’(tr, O)P(t) + a’(tr)Q(t)

where the matrices P(. and Q(. are analytic on [0, T] and satisfy the condi-
tions" P(0) the identity matrix,/5(0) -f**, Q(0) 0, 0(0) -g**. Note that if
a(tr), p(tr, satisfy (3.9) then Aa (tr), Ap(tr, do also, where X is a positive real
number. Thus a(tr), p(tr,. can always be normalized so that (3.9-1) becomes

/ IIp(, , Because of (3.10-1) and the properties of P(. and Q(.
there therefore exists a (0, T] such that (3.9-2) yields

(3.10-2)
a (at), p(o’, t)) V* n c* n p): .5 Ilall+llpll 1.5}

forall t, tr [0, "].
Finally, by using (3.10-1) and the propertie.s of P(. and Q(-) it is possible to
write (3.9-4) as

(3.10-3) -p’(tr, O)f**-a’(o’)g***+,(o’)=a’(o’)g** foralltr[O, ],
where y(tr) --) 0 as tr -) 0.

Now let ((rq} be a sequence in [0, 2] such that o-q --) 0. From (3.7) V* is closed
and C* is closed because it is the dual cone [20] of the set {(/3,p): fl=
g*((x*, v)-(x*, u*)), p =/(x*, v)-f(x*, u*), v U}. Thus the set on the right
side of (3.10-2) is compact and there exists a subsequence of {try}, {tr,}, such that
tr, --)0, a (tr,)--) t and p(tr,, 0)/ where (,/) V*N C* and .5 =< II, ll/llt ll_-< 1.5.
This shows that &,/5 satisfy (3.5-1)’ and (3_5-4)/ and/’=.._d"g* ,satisfies (3.5-2).
From (3.10-3) and 3,(tr,)--)0 it follows that ,f** A,

-a gy f -ag,, which verifies
(3.5-3).

Remark 3.2. The conditions in Theorems 3.3 and 3.4 are the same. Thus the
reasoning used in Remark 3.1 shows that the conditions in Theorem 3.2 (with
u u(0), x x(0)) are necessary conditions for the elements of 6e(SSOPC).
However, since this (weaker) set of conditions arises from OSS it has no value in
distinguishing the difference between "steady-state" and "time-dependent" con-
trol. Similar observations have been made in more restrictive circumstances by
Horn and Lin [13].

Remark 3.3. It is not difficult to modify the preceding developments if " is
fixed (-= T). All the theorems are unchanged, except that condition (3.2-5) is
eliminated from Theorem 3.1. The proofs are the same except: r T is treated as
an equality constraint in the application of Theorem A. 1 to the proof of Theorem
3.1, the elements of the sequence {crq} in the proof of Theorem 3.4 are given by
o’q (q)-lT.

Several comments concerning Theorem 3.1 and its relation to previous
results in the literature are in order. There are, of course, many necessary
conditions which can be written. Theorem 3.1 represents a good compromise in
getting strong necessary conditions with weak hypotheses. Previous derivations of
necessary conditions [2], [8], [13] have required stronger assumptions, apply to
more specialized problems, and have given the same or weaker conditions. It
seems essential to follow a line of proof similar to that which has been taken
above. The comprehensive approach taken by Bailey [2].adapts the conditions
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from 18] by a change of variables. This approach applied to OPC would require
the gi, # 0, to be twice differentiable (a hypothesis which for Bailey’s problem is
evident from equation (29) of [2]). Moreover, inequality constraints would be
handled by the trick of Valentine which gives somewhat weaker necessary
conditions (a- 0, -L" ’, -1, omitted from(3.2-4)). The requirement on the
continuity of f(x(. ), u(. )) and )(x(. ), u(. )) which is needed for (3.2-5) is
satisfied automatically when u (.) is piecewise continuous with a finite number of
discontinuities. This accounts for the absence of the continuity requirement in the
conditions obtained in [2]. Additional necessary conditions, e.g. the derivative
condition onH expressed by equation (17) of [ 14], require additional hypotheses
which appear to be quite strong or difficult to verify generally. The necessary
conditions obtained in [5], [12] are of considerable interest, but they involve
consideration of the second variation and therefore go beyond the scope of this
paper.

Consider what happens if OPC is modified by replacing g,. (y, x) by ge(y, x, ’)
for -/’, ., k. The modified OPC is not a continuing process in the sense of 1
because requirement 3 is not satisfied. All of the preceding definitions and results
can be generalized to the modified OPC, except for Theorem 3.4. The proof of
Theorem 3.4 fails because (u(.),x(.), r*)=St’(SSOPC) no longer implies
(u(.),x(’),r)6e(SSOPC) for all r(0, T]. Since much of what follows
revolves about Theorem 3.4, this shows the importance of requirement 3. A
similar observation applies to the relaxation of requirement 1.

4. Relationships between the necessary conditions and the solution sets. In
order to simplify references to the necessary conditions and make clearer their
relationship to the solution sets introduced in 2 it is helpful to introduce the
following definitions:

(4.1)
6e(NCOPC) {(u(- ), x(" ), r): equations (2.1-2)-(2.1-8) are satisfied and

there exist p(. ),/, ce_., ., ak such that the conditions of
Theorem 3.1 hold},

(4.2)
0(NCOSS) {(u(" ), x(" ), r)" (u(’), x(" ), r) e Y(SS) and there exist p,/5,

a_., ., ak such that the conditions of Theorem 3.2 hold
with u u (0) and x x (0)},

(4.3)
9(NCSSOPC) {(u(" ), x(" ), ’): (u(’), x(" ), ’) e b(SS) and there exist p,

/if, a_j, ., ak such that the conditions of Theorem 3.4
hold}.

The set 6e(NCOSS) has been defined as a subset of q/x N’x (0, T], even
though Theorem 3..2 requires (u, x)e Ux X. This is done as was the case with
5(OSS) to emphasize the fact that steady-state control is a special case of
time-dependent control and to allow a direct comparison of all solution sets.

With the above definitions Theorems 3.1-3.4 can be paraphrased
compactly by the following inclusions: 6(OPC)c0(NCOPC); if A1 is satis-
fied O(OSS) O(NCOSS); if A2 is satisfied O(OSS) 5(NCSSOPC);
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5(SSOPC)c 6e(NCSSOPC). Furthermore, if A1 is satisfied it is clear from
Remark 3.2 that 6e(NCSSOPC)c 6(NCOSS).

Since Theorem 3.4 was obtained from Theorem 3.1 it is tempting to surmise
that 6(NCSSOPC) c 6(NCOPC). The following example shows that this conclu-
sion is not valid.

Example 4.1. k =]=0, n =/= 1, X= Y=R, U=[-1, 1]R, T= 1, f=
-x + u, )r= x, go y-x-x. Application of the conditions in Theorem 3.4
shows that ow(NCSSOPC) is characterized by elements of the form: u(t) x(t) =-- 1
or -1, - (0, 1]. Now consider those elements of 6e(NCOPC) which also belong to
0(SS). Application of the conditions in Theorem 3.1 is more difficult because p(.
is not necessarily constant. However, in this example it is not difficult to integrate
(3.2-3) and verify that 0(NCOPC)f3 6e(SS) is characterized by elements of the
form" u (t) x (t) 1, - (0, 1]. The elements u (t) x (t) -= 1, - (0, 1] are
excluded because condition (3.2-1) requires p(t) <-0 on [0, -] and this turns out to
be impossible. Thus 6e(NCSSOPC) 6e(NCOPC). Under the assumption which
follows it is possible to prove 0(NCSSOPC) 6e(NCOPC).

Assumption A3. The functions g_j(y, x),..., gk (Y, X) depend only on y.
THEOREM 4.1. Let A3 be satisfied. Then 5(NCSSOPC) c 5v(NCOPC).
Proof. Suppose (u(.),x(. ), -) 6 5(NCSSOPC) and let u u(0), x--x(0).

Then there exist pR", / 6R and real numbers a_j,..., ak which satisfy
(3.5-1)’, (3.5-2)-(3.5-4). Because gx (Y, x)=0, i= -],..., k, this impl.ies p(t)=-p,, -,’", ak satisfy (3.2-1)-(3.2-4). Since f(x(t), u(t))=-O and y =f(x(-), u(.))
condition (3.2-5) is satisfied as an equality. Thus (u(.), x(. ), -)6 5(NCOPC).

Remark 4.1. For OPC problems which do not satisfy A3, Theorem 3.1 may
(as Example 4.1 illustrates) offer a stronger test for (u(.), x(. ), -) 5e(SSOPC)
than Theorem 3.4. This is not surprising because Theorem 3.4 is obtained from
Theorem 3.1 by drawing certain conclusions as - 0. Unfortunately, the test may
be much more difficult to apply because the (constant-coefficient, linear) differen-
tial equations (3.2-3) must be considered. For OPC problems which do satisfy A3
(this includes almost all the problems which have appeared in the literature on
periodic control) Theorem 4.1 shows that Theorem 3.4 provides at least as strong
a test as Theorem 3.1.

Now consider a variation of Example 4.1.
Example 4.2. Same as Example 4.1, except T= 2. It is easy to show

0(NCSSOPC) is the same as in Example 4.1 and that 5(NCOPC)ffl 5e(SS) is

c.haracterized by elements of the form: u(t)=-x(t)=--1, z(0, -*]. Here -*=
1.5936.. is the positive root of z 2(1 e-). Elements of the form u(t) =- x(t) =-
-1, - (-*, 2] are excluded from 5(NCOPC) because (3.2-3) shows that it is
impossible for p(t)>-O on (0, -] if - > -* and p(t)>-O is required by (3.2-1). The
characterization of 5(NCOPC)f’l 5(SS) leads to the following observation.

Remark 4.2. Let (u(.), x(. ),-) 5v(SSOPC). Since this implies
(u (.), x (.), -) 6 5(SSOPC) for all - 6 (0, T] the conditions in Theorem 3.1 apply
to (u(.), x(. ), -) for all - (0, T]. If Theorem 3.1 is to be exploited fully for
testing (u(.), x(.), )0(SSOPC) all values of - (0, T] must be considered.
This is illustrated by Example 4.2. For z (-*, 2] there are no elements of 0(SS)
which satisfy the conditions of Theorem 3.1. Thus it may be concluded that
5(SSOPC)- For - (0, -] it cannot be concluded from Theorem 3.1 that
5(SSOPC) .
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Using the results of 2 and this section it is now possible to summarize
compactly what is known about the sets 6e(OPC), 6e(SSOPC), (OSS),
6e(NCOPC), (NCSSOPC), and 6e(NCOSS).

THEOREM 4.2. (i) 6e(SSOPC) c 6e(OSS), (ii) 6e(SSOPC) c 6e(OPC), (iii)
e(oPc) e(NCOPC), (iv) e(SSOPC) e(NCSSOPC), (v) if A1 is satisfied
(OSS) c e(NCOSS), (vi) if A1 is saaslied 5e(NCSSOPC)c 6e(NCOSS), (vii) if
A3 is satisfied 6e(NCSSOPC)c 6e(NCOPC), (viii) if A2 is satisfied 6e(OSS)c
6e(NCSSOPC).

In reading the theorem it should be noted that assumptions A1 and A3 are
satisfied in many applications of the theory. Assumption A2 is strong and, as will
be seen later, has strong implications. Are there additional inclusions beyond
those listed in the theorem? The answer is generally no, a conclusion which is
made precise in the next section. The inclusions of Theorem 4.2 are summarized
in Fig. 1.

6e(OPC) 6e(NCOPC)

U U A3

6e(SSOPC) 6e(NCSSOPC)

N N A1

se(oss) Se(NCOSS)
A1

Without A2

6e(OPC) m 6e(NCOPC)

U U A3

5e(SSOPC) Se(OSS) 6e(NCSSOPC)

n A1

6e(NCOSS)

With A2

FIG. 1. Summary of Theorem 4.2. See (2.3), (2.4), (2.5), (4.1), (4.2) and (4.3) for definitions
solution sets.

The results of the previous section are also related to the solution sets of
relative minima. For example, let (u(.), x(. ),.-) 6a(SRMSSOPC). Then if X is
replaced by XN{;: II;-x(0)ll<e), >0 sufficiently small, (u(.),x(. ), ’) is a
regular minimum and the conditions of Theorem 3.4 apply without change to
(u (.), x (.), z). Thus (u (.), x (.), z) 6e(NCSSOPC). Similar arguments apply to
weak relative minima but in the cases of Theorems 3.3 and 3.4 it is necessary to
introduce a weak form of the maximum condition,

(4.4) max H(x, v, p, ) H(x, u, p, ),
v, IIv-ull<e

and define

S(WNCSSOPC) {(u(. ), x(. ), -): (u(.), x(. ), ’) 6a(SS) and there
exist p,/, a_z, , ak. such that conditions (4.7), (3.5-
2), (3.5-3) and (3.5-4) hold with u u(0) and x x(0)

(4.5) for some e > 0}.

In addition the following assumption, which is not necessarily stronger than A2,
must be introduced.

Assumption A4. There exists an g>0 such that the set
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fi(x, un{u.llu-oll<  )}) (see (3.6) for notation) is convex for all x6X,
v U, e

The conclusions which follow along with the inclusions of Remark 2.2 are
summarized as follows.

THEOREM 4.3. The inclusions displayed in Fig. 2 are valid.
Some applications of these inclusions are discussed in 6.

(NCSSOPC) (WNCSSOPC) (NCOSS)
A1

5(SSOPC) 5e(SRMSSOPC) 5e(WRMSSOPC)

N N N

5e(OSS) 6t’(SRMOSS) 5e(WRMOSS) Y(NCOSS)
A1

NA2 0A4

9(NCSSOPC) 9(WNCSSOPC) m 9(NCOSS)
A1

FIG. 2. Theorem 4.3

5. Some examples. The examples of this section serve a number of purposes.
First, they show that it is not possible to prove more inclusions than those which
are contained in Theorem 4.2; this conclusion is formalized in Theorem 5.1 and
extended somewhat in Theorem 5.2. Second, they delimit certain tests for
optimality; this is discussed in the next section. Finally, they provide insight into
the difficulties of applying and solving the various necessary conditions and into
the wide variety of circumstances and phenomena which can occur in OPC
problems.

Example 5.1. k=]=0, n=l=l, X= Y=U=R, T>4rTr, /=-x2+u,
[=-2x2+ u 2, go Y. The assumption T=Cr is sufficient to assure that the
characterization of the solution sets is not changed by T. If T</,r one element
of.5(NCOPC) disappears (d below) and everything else remains the same.

Omitting details, the conditions contained in Theorem 3.1 can be sum-
marized as follows. From (3.2-2),/ fro. It is easy to show that for Cro 0, (3.2)
cannot have a solution and without loss of generality the case a.o < 0 can be treated
as ao=-l. Condition (3.2-1) gives

(5-.1) u

The remaining conditions are (3.2-5) and

(5.2) -x 2 +1/2p, /5 2xp-4x,

(5.3) x(0) x(z), p(0) (0, T].

Figure 3 shows the (x, p)-phase plane for (5.2). Each characteristic curve corre-
sponds to a fixed value ofH in the relationH=-px2+ 1/4p2+ 2x 2. The points
labeled a, b and c are constant solutions of (5.2) and (5.3) and satisfy (3.2-5) with
ff’y H for all z e (0, T]. The only other solutions of (5.2) and (5.3) are d, which
has period T, and all the other solutions "inside" d (excluding c) which have
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periods - (x/r, T). Calculation shows that for all these "time-dependent"
solutions of (5.2) and (5.3), /’y =--y<HM. Thus by (3.2-5) d is the only
"time-dependent" solution of the conditions in Theorem 3.1. Because for each
(x(.), p(. ), ’) there is a corresponding (u(.), x(. ), ’) the labels a, b, c and d
can be used also to designate sets of elements in 0-// (0, T]. In particular,
oW(NCOPC) "corresponds" to a, b, c and d, i.e., it is the union of elements
designated a, b, c and d.

By using Theorems 3.2 and 3.4 it may be verified that both 6e(NCOSS) and
6(NCSSOPC) correspond to a, b and c. Moreover, 6e(OSS) corresponds to a and b
and the cost associated with a and b is J 1. Suppose there exist u (.), x (.) and -which satisfy (2.1-2)-(2.1-8) and give J <-1. This implies

(5.4)

-1 >- (--2X 2 + U dt (--2X 2 + U 2) dt

_1__ (u2_2u) dt

which in turn implies

0 >- (u2_ 2u + 1) dt (u 1)2 dt.

This inequality is false and thus a and b are "contained" in 5e(OPC). Any
additional elements of O(OPC) must be elements of Se(NCOPC). But c has cost
J 0 and it can be shown that d has cost J> 1. Thus 6e(OPC) corresponds to a
and b and 6(SSOPC)= 6(OPC).

The above results are summarized in the first lineof Table 1. It is easy to show
that 6(SRMOSS), 5(WRMOSS), ow(SRMSSOPC) and (WRMSSOPC) all cor-
respond to a and b. The element d is a "time-dependent" strong relative minimum
of OPC.

Example 5.2. k=f=0, n=/=l, X= Y=R, U=[-2,2]cR, T>0, f=
-x + u + 1, f= x(u + 1)(u 1)2, go Y. For (u(.), x(. ), ’) e ow(SS), x u + 1 and
y =(u+ 1)2(u-1), Thus (OSS) corresponds to u(t)=- 1, x(t)=2, ’e(0, T]
(labeled a) and u(t)----1, x(t)=-O, -e (0, T] (labeled b). Consideration of (3.5)
shows that 9(NCOSS) corresponds to a, b and u(t)=-O, x(t)=-l, ’e(0, T]
(labeled c).

Theorem 3.1 leads to the characterization of 5e(NCOPC). From (3.2-2),
/ ao and inspection of (3.2-3) and (3.2-4) shows that ao 0 is impossible. Thus
without loss of generality assume ao 1. The maximization of

(5.6) H=p(-x + u + 1)-x(u + 1)(u 1)2

with respect to u U is complicated somewhat by the fact that the maximizing u
may be in the interior or in the boundary of U, depending on x and p. Let L1, L2,
L3, L4 be rays emanating from the origin of the (x, p) plane which do not contain



OPTIMAL PERIODIC CONTROL 731

the origin and have, respectively, slopes" 1 2095. (the root of 16-- 16i-, -, 3- 3

E-Efi -t-q
16 "16" 3 3

1/2q =0), 7, 2.5097... (the root of -+/1 +zq +1/2q =0), 15. Let A:, A2, A3,

FiG. 3. (x, p)-phase plane for Example 5.1

TAttLE
Characterization qfsolution setsfor examples

Example 6e(SSOPC) 6e(OSS) S(NCSSOPC) 6e(NCOSS) Se(OPC) 6e(NCOPC) OSS OPC

5.1, 5.7 a, b
5.2
5.3(i), 5.8(i)
5.3(ii), 5.8(ii) a
5.4 a, b
5.5
5.6

a,b a,b,c a,b,c a,b
a,b b a,b,c
a a a b
a a a a, d

a,b a,b a,b,c a,b
a,b a,b,c a,b,c d
a,b a,b a,b,c d

a, b, c, d
b

a, b, c, d
a, b, c, d

a, b
a, b, c, d (?)

a, b, d

-1
0
0

-1
0
0
0

-1

-1
-1
0

<0
-1

* Minimum does not exist.
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A4 be the open sectors bounded by these rays (see Fig. 4). Then the maximizing u
is given by

u =2, (x, p) Ax UL.,

-2 or 1.4651 , (x, p) e L3,

(5.7) =-2, (X, p) A3 I.J L4,
--/’1 "t" 43- (X, p) A4,.

=2or-.5873..., (x,p)

e [-2, 2],
Conditions (2.1-5) and (3.2-3) yield
(5.8) =-x+u+l,

x =p =0.

=p+(u+l)(u-1)2,
(5.9) x(0) x (’), p(0) p(z), " e (0, T].
With u given by (5.7), equations (5.8) lead to the characteristic curves shown in
the (x, p)-phase plane, Fig. 4. The point x =p =0 corresponds to a constant
solution if and only if u(t)-l. Points on the ray Lx below Px correspond to a
discontinuity in u(t) (u(t) at the discontinuity may be defined to be either 2 or
-.5873...). Above Px solutions of the system (5.7)-(5.8) cannot be continued
across Lx because from both A1 and A4 they lead into L1. On L3 solutions of
(5.7)-(5.8) intersecting above P3 or below P2 can be continued across L3 with a
discontinuity in u(t). On L3 between P2 and P3 solutions lead away from L3, going
upward if u (0)= 1.4651 and downward if u (0)= 2. Thus the only solution of
(5.7)-(5.8) which satisfies (5.9) is u(t)--1, x(t)O, p(t)=-O. This solution also
satisfies (3.2-5) for all - e (0, T] and hence 6e(NCOPC) corresponds to b in Table
1. It is also clear that Se(NCOPC)= 9(NCSSOPC).

The following argument shows that Se(SSOPC)= ;. Suppose to the con-
trary. Then 6e(SSOPC) c 6e(NCSSOPC) implies that Se(SSOPC) corresponds to b
in Table 1. But this contradicts Se(OSS)= Se(SSOPC) (Remark 2.1). Finally,
Se(OPC) because there are no "time-dependent" solutions of (5.7)-(5.8).

The above results are summarized in Table 1. Perhaps the most interesting
conclusion is that 6e(NCSSOPC) is a proper subset of 6e(OSS). Clearly,
6e(SRMOSS) 6e(WRMOSS) correspond to a and b. It is not difficult to show that
with weak variations from u(t) -1, J< 0 can be obtained. To obtain J< 0 in the
neighborhood of x(t)-2 it is necessary to use strong variations from u(t) 1.
Thus 6e(SRMSSOPC)= ; and 6e(WRMSSOPC) corresponds to a.

Example 5.3. k=0, ]=1, n>0, 1=2, x=Rn, Y=R2, U=R, T>0, f=
ax +bu, f*l=--1/2({’X)2, ]2 1/2U 2, go Yl, g-x Y2-- 1. a is a real n xn matrix and
b, ee R n. This example is a special case of the problem considered in [6]. If e’x is
interpreted as the output of the linear system Ax +bu, it corresponds to
maximizing the average output power subject to a constraint on the average input
power. Assume A is stable (characteristic roots of A have negative real parts),
(A, b) is controllable, (e’, A) is observable [22] and let

(5.10) G(s) c’(Is A)-Xb
denote the system transfer function.
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p L2

A

-2 2 3

A4

L
L4

FIG. 4. (x, p)-phase plane for Example 5.2

Consider the characterization of 5e(NCOPC). From (3.2-2),
First, assume t_l 0. Conditions (3.2-1), (2.1-5) and (3.2-3) give

(5.11) U (_)-lp,,
(5.12) =Ax +l)u, #’=-p’A + ((oe’x)e’,

(5.13) x(0) x(z), p(0) p(z), " E (0, T].
SinceA has no characteristic roots with zero real parts, ao 0 implies p(t) =- 0 and
thus u(t)=-O. But this gives g_x(y)<0 which contradicts (3.2-4). Since ao=0 is
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impossible, take ao=-l. The system (5.11)-(5.12) is a linear, constant-
coefficient, differential system of order 2n which has a periodic solution if and only
if the characteristic equation has at least one root with real part zero. A simple
calculation shows that there exist characteristic roots +/-ico (co eR, co =>0,

4"i-) if and only if

(5.14) -a_ G(ico)G(-i)= lG(io)l=,

an equation which always has a solution for a-1 < 0 because controllability and
observability imply G(ico) 0. Since y2 1 for a-l<0, there must exist a u(t)
satisfying (5.11)-(5.13) of the form

cos (wt + 0), w _-> z__",
+,, o =0,

where 0 is arbitrary. The only remaining condition which must be satisfied if
(3.2-5). A rather lengthy but straightforward computation shows that HM--/Yy
-o(d/doo)lG(ico)l2. Thus co in (5.14) is a permissible value if and only if

w=0 or

2zr d
(5.16) w>-- and --wlG(iw)[2=0 or

27r d
w =-- and ---wlG(iw)l =< O.

Now consider a_l 0. The possibility ao 0 is excluded because it implies p(t) =- 0
which violates (3.2-4). Thus take a0 =-1. Then it follows from (3.2-1) that
p’(t)b 0 on [0, -] and u is not determined by (3.2-1), i.e., u is a singular control.
The condition p’(t)b-0 can be shown to imply" u(t)=q cos (cot+O) where 0 is
arbitrary, 0_-<q_-<2, co>=2r/T, G(ico)=0; or u(t)---q where -x/_-<q_-<x/,
G(0)=0. Thus for a-l-0 the conditions on co agree with (5.14) and (5.16)
(observe that (d/dco)lG(ico)12=O for co suchthat G(ico)=0). In the (relatively
rare) circumstance that (5.14) and (5.16) permit multiple solutions (co=
w,..., coz< satisfies (5.16) and [G(|coi)lE=[G(|col)[E=-a_l, i=2,... ,K) and
u(t) =Y. U cos (co:+O) is periodic with period -_-< T then this u(t) corre-
sponds to a family of solutions of the necessary conditions for OPC provided the
U are chosen so that g_(y)= 0 (or g_(y)_-< 0 if a_ G(ico)= 0).

Application of Theorem 3.4 shows that 5e(NCSSOPC) may be obtained by
specializing the above results to the case where x(t) and p(t) are constant. Thus for
G(O) O" u(t)--+/-/r, x(t)=qzA-11)4r, - (0, T] corresponds to 5e(NCSSOPC).
For G(0) 0: 5e(NCSSOPC) corresponds to u(t) =-q, x(t) =--A-ll)q, - (0, T],
q [-x/, x/]. It is also clear from the form of H and U that 0(NCOSS)-
5(NCSSOPC).
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Simple arguments (see [6]) show that 6e(OPC) . Since for elements in
6e(NCOPC), go(y)=-IG(ko)[ it is clear that 6e(OPC) corresponds to those
elements in 6e(NCOPC) with o maximizing IG(io)] on (0} LJ [2r/ T, +oo). The
maximum exists and is positive (because Ia(i,o)l= > 0 or some o and [G(ko)l2 o 0
as o o +oo) and can occur only at a finite number of frequencies (because
is rational in o2). 6e(SSOPC) if and only if IG(io)l_-< G(0) for all o >-2r/T.
6e(OSS) corresponds to u(t)=-+/-/, x(t)--:A-lb4r, " E (0, T] if G(0) 0 and to
u(t) =-q, x(t) -A-ibq, " E (0, T], q [-4, /] if G(0) 0.

Since the elements of the solution sets are characterized in terms of [G(io)l it
is easy to determine them even though n may be large. Figure 5 gives two cases
whose solution sets are summarized in Table 1. With the possible exception of d in
Case (ii) it should be obvious what is meant by the designations of the solutions.
For d, u(t) U + U2 cos (a3t + 0), U1 +zU 1, " (a3)- 27r. It is clear
that 6e(NCOPC) may contain many more elements than Se(OPC). Unfortunately,
for most other OPC problems, the suboptimal extremals are not so easily deter-
mined and rejected as they are in this example.

c
d

0
o

2"." 2"."
case (i) case (ii)

FIG. 5. Designation of solution sets for Example 5.3

Example 5.4. k =/" 0, n 1, X Y U R, T> 0, f
-x +(u- 1)2(u + 1)2,/r=x, go y. Make the following designations’ (a) u(t) 1,
x(t)=-O, -(0, T]; (b) u(t)-=-l, x(t)=O, z(0, T]; (c) u(t)-=-O, x(t)=-l, -E

(0, T]. Then the characterizations for 6e(OSS), 6e(NCOSS) and 6e(NCSSOPC)
given in Table 1 can be verified easily. Inspection of (3.2-3) shows that only the
allowed solution for p(t) is p(t) do. This implies 6e(NCOPC)= 6e(NCSSOPC).
15rom (2.1-5) and the form off it follows that x(t) >- 0 for all (0, T]. This implies
J=y =>0 and J=0 is only possible if x(t)=-O. Thus 6e(OPC)=6e(SSOPC)=
se(oss).

Example 5.5. k=]=0, n=2, /=1, X=R
f -x-x2+ u,= (x- 1)2(x + 1)- (x2), go y. Make the following designa-
tions: (a) u(t)--x(t)--1, x.(t)=-O, -(0, T]; (b) u(t)-x(t)=-l, x2(t)--O,
’(0, T]; (c) u(t)=-x(t)--x(t)=-O, -(0, T]. Then the characterizations for
6e(OSS), 6e(NCOSS) and 6e(NCSSOPC) given in Table 1 can be verified easily.
Let u(t)= 1 +A cos ot. Then y may be computed easily from (2.1-4) and (2.1-5).
For o >/ and A > 0 sufficiently small the computation shows that y < 0. Since
the optimal cost for OSS is J 0 this proves that 6e(SSOPC) . From standard
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existence theorems it follows that 6(OPC) . Let the elements of (OPC) be
designated by d. Since A3 is satisfied it is clear from Theorem 4.1 that a, b, c, d are
"included" in 6(NCOPC). It is not known if there are additional elements in
6e(NCOPC).

Example 5.6. k=O,]=l,n=l=2, X= Y=R2, U={u" u3>u}R T--
3rr, f=x2, f2=-x-xa+u2, 1=(u-l)2(u1+l)2-1/2(x2)2, /2=1/2u3, g0=y,
g_ y.-1. In each of the following designations assume that x(t)=-ua(t)=-q2,
u3(t)=-q3, x2(t)--O, q3[0, 2], q3>-q, z(O, T]" (a)u(t)--1, (b)u(t)-=-l, (c)
u(t)=O. The characterizations of 6(OSS), 6e(NCOSS) and 6e(NCSSOPC) are
given in Table 1. To minimize J in OPC it is necessa,ry and sufficient to separately
minimize the average of each of the two terms in f(x(t), u(t)). The first term is
minimized by u(t)-= + 1 and the second term leads to a minimization problem of
the type considered in Example 5.3, because at the minimum u3(t) (U2(t)) (see
also Example 5.8). This problem has a solution of the form: u2(t)=x.(t)=
2 cos (t+0), u3(t) 4 cos

9 (t+O),Xl(t)=2sin (t+O) r 2r, OR. Let the set of
all (u(.), x(. ), r) characterized in the above fashion be denoted by d. Then
6(OPC) corresponds to d. It can be shown that 6(NCOPC) corresponds to a, b
and d.

Example 5.7. Same as Examp,le 5.1, except for the following changes:
U {u" u2 --> u} R2, f -x2 + u, f -2x2 + u2. This example is essentially the
same as Example 5.1. This can be seen by observing that in the characterization of
all the solution sets it is required that u2(t)= (u(t))2. Thus the designations in
Table 1 hold if: u(t) u(t), u2(t) (u(t))2 where u(t) is given as in Example 5.1;
x(t) is the same as x(t) in Example 5.1.

Example 5.8. Same as Example. 5.3, except for the following changes"
U={u" u2>=u}R 2, f=Ax+bu, f=1/2u2. The modifications are similar to
those used in Example 5.7. This leads to the designations shown in Table 1.

An immediate application of the examples is the following theorem.
THEOREM 5.1. Let A1 {A1 and A3} [A1, A2 and A3] be satisfied. Then it is

not possible to obtain additional inclusions beyond those which are implied by
(i)-(vi) {(i)-(vii)} [(i)-(viii)] of Theorem 4.2.

Proof. Of the 30 nontrivial, pair-wise inclusions involving 6(SSOPC),
(OSS), 6(NCSSOPC), 6(NCOSS), S(OPC), 6(NCOPC) which are possible
(i)-(vi) {(i)-(vii)} [(i)-(viii)] of Theorem 4.2 imply that 8 {9} [11] are satisfied.
Examples 4.1, 5.1, 5.2, 5.3(ii) {5.1, 5.2, 5.3(ii)} [5.5, 5.6] show that with A1 {A1
and A3} [A1, A2 and A3] satisfied the remaining 22 {21} [19] inclusions cannot
hold generally.

Now consider the effect of stronger assumptions. Suppose as is the case in
many practical problems that A1, A3 and 6e(OSS)# are satisfied. Additional
assumptions which are of interest are (i) OPC is proper (6(SSOPC)= 5), (ii)
OPC is steady-state (6(SSOPC)# ), (iii) OPC is proper and A2 is satisfied,
(iv) OPC is steady-state and A2 is satisfied. For each of these cases Theorem 4.2
yields certain implications which are summarized in Fig. 6. It does not follow from
Theorem 5.1 that these are the only implications concerning inclusion which can
be drawn. However, the examples do show this. For instance, suppose that (ii)
holds. Then Fig. 6 implies 13 nontrivial, pair-wise inclusions; Examples 5.1,
5.3(ii), 5.4 (which satisfy A1, A3, 6(OSS) # , and (ii)) imply that the remaining
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17 pair-wise inclusions cannot hold. All of the results are summarized in the
following theorem.

THEOREM 5.2. Let A1, A3 and 9(OSS) f be satisfied. Under the addi-
tional hypotheses (i), (ii), (iii) or (iv) the results ofFig. 6 are true. In each ofthe ]:our
cases it is not possible to prove additional inclusions exist.

9(OPC)c 9(NCOPC) Se(OPC) c 9(NCOPC) St(OPC) c 9(NCOPC)

U U O O

6(SSOPC) 6(OSS) c S(NCSSOPC) 6(NCSSOPC) 5"(OSS) c S(NCSSOPC)

9(NCOSS) 9(OSS) (NCOSS) 9(NCOSS)

(ii) and (iv) (i) (iii)

FIG. 6. Inclusions which are satisfied under A1, A3, S(OSS) O and: (i) OPC is proper, (ii) OPC
is steady-state, (iii) OPC is proper and A2, or (iv) OPC is steady-state and A2

6. Tests for optimality. If 6(OPC) and 6(OSS) are known it is possible to
determine immediately whether or not time-dependent control improves perfor-
mance and, if it does, the amount of the improvement. Since in most practical
problems the solutions of OPC are not obtained easily, other paths must be
pursued. One such path is suggested by Fig. 6. Under assumptions A1 and A3 it is
clear that 6(OSS) Se(NCSSOPC) implies that OPC is proper. Thus it can be
determined that 6(SSOPC)= without obtaining 6(OPC). This motivates the
class of tests investigated in this sectioa. Triples (u (.), x(. ), z) 5(SS) are
considered and it is supposed that it is possible to determine whether or not

6(A) for certain A. The principal concern is if OPC is proper or steady-state,
but tests which may help in the search for solutions of OPC are examined too. The
tests generalize (to OPC) and supplement tests which have appeared in the
literature. An entirely new result is Theorem 6.1 which establishes limits to what
can be tested in certain contexts.

To be complete the idea of Remark 4.2 is incorporated into the discussion.
The condition given there corresponds to checking ff 6(NC’OPC) where

(6.1)
S(NC’OPC) {(t( ), (. ), "): (t(.), (. ), ,) e 5(SS) and for all z e

[0, T] there exist p(. ), p, aw,..., ak such that (3.2-1)-
(3.2-4) are satisfied for u (t) a (0), x (t) -= 2 (0)}.

By tracing the proof of Theorem 3.4, it is easy to see that S(NC’OPC)c
6(NCSSOPC). Moreover, under A3, Theorem 4.1 states that 6(NCSSOPC)
S(NCOPC); since (u(.),x(.), ?)6(NCSSOPC) implies (u(.),x(.),
6(NCSSOPC) for all - (0, T], this shows that 6(NCSSOPC) implies
6e(NC’OPC). These facts and the content of Remark 4.2 are summarized in

Remark 6.1. 6e(NC’OPC) satisfiesthe following inclusions: S(SSOPC)
6(NC’OPC) 6(NCSSOPC). If A3 is satisfied, 6(NC’OPC)= 6(NCSSOPC).

From this and the results of 4, it is clear that the following tests are valid.
Test T1. The existence of , ff 6e(SS), 0 6e(OPC), implies OPC is steady-

state.
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Test T2. The existence of O, ow(OSS), 6(OPC), implies OPC is proper.
Test T3. The existence of t#, 6e(OSS), S(NC’OPC), implies OPC is

proper.
Test T4. The existence of , O 6(OSS), 6e(NCSSOPC), implies OPC is

proper.
Tests T1 and T2 arise directly from the definitions of proper and steady-state.

Since T1 requires the determination of an element of 6e(SSOPC), it is the most
difficult test to apply in practice. Usually, it involves inequalities which make use
of particular structures in the problem data as in Example 5.1. Test T2 is easier to
apply since it only requires exhibiting an admissible time-dependent triple
(a(.), (. ), ,) which has lower cost than any element of 6e(OSS). See Example
5.5. General tests which implement T2 have been based on sinusoidal perturba-
tions from an optimum steady-state solution [5], 12] and relaxed controls (see [ 1]
and T8 of the next section). From Remark 6.1 it is seen that T2, T3 and T4 are
successively weaker tests. Under A3 Remark 6.1 shows that T3 and T4 are
equivalent; however, when A3 is not satisfied T3 may be a stronger test than T4
(Remark 4.2). Test T4 is stronger than tests of a similar type which have appeared
previously [1], [13] in that it applies to a very general OPC problem and does not
require fx(x(O), u (0)), (x(.), u(. ), -) O(OSS), to be nonsingular. The:following
theorem shows that T1, T2, T3 and T4 are not vacuous and that there exist no
other tests in a reasonable class of tests.

TIJEOREM 6.1. Suppose OPCsatisfies no special assumptions {A3} [A2] (A2
and A3). Then tests T1, T2, T3 and T4 {T1, T2 and T3 T4} IT1, T2 and T3]
(T1 and T2) are not vacuous (always negative) or pairwise equivalent (one test
positive always implies the other test positive). Let O 6e(SS). In the class of tests
which employ an evaluation of all five conditions, (A) or 5(A) for
A OSS, NCSSOPC, NCOSS, OPC, NC’OPC, there exist no tests other than T1,
T2, T3 and T4 {T1, T2 and T3 T4} IT1, T2 and T3] (T1 and T2) which can show
that OPC is proper or steady-state.

Proo[. First suppose that OPC satisfies no special assumption. Attach to
tpSe(SS) the designation h(p) where h(O)=(hoss, hNcssoPc, hNcoss, hoPc,
hNc’o,c) is a five digit binary number such that hA 1 if 5e(A) and hA 0 if
O 5e(A). From Theorem 4.2 and Remark 6.1 it follows that 24 of the 32 possible
values of h() are excluded. The remaining eight with examples taken from Table
1 (where (NC’OPC) 5(NCSSOPC)) and 4 are: (1, 1, 1, 1, 1)Example 5.4
with ---a or b; (1, 0, 1, 0, 0)---Example 5.2 with O--- a; (1, 1, 1, 0, 0)---Example
4.2 with tk--u(t)=-x(t)=--1; (1, 1, 1, 0, 1)Example 5.5 with 4-a or b;
(0,1,1, 0,1)Example 5.5 with 4---c and Example 5.7 with
(0, 1, 1, 0, 0)Example 4.1 with -u(t) x(t)-- 1 and Example 4.2 with
u(t)x(t)-- 1; (0, 0, 1, 0, 0)---Example 5.4 with -c and Example 5.6 with
t#---c; (0, 0, 0, 0, 0)--Example 5.4 with O-u(t)=-1/2, x(t)-- and Example 5.6
with q u(t) =- Xl(t) --1/2, x2(t) --0. The first result of the theorem follows because:
(1, 1, 1, 1, 1) implies T1 positive; (1, 0, 1, 0, 0) implies T2, T3, T4 positive;
(1, 1, 1, 0, 0) implies T2, T3 positive; (1, 1, 1, 0, 1) implies T2 positive. For each of
the four remaining values of h() there are examples of OPC which are both
proper and steady-state. This is a consequence of Table 1, Example 4.2 being
proper (see Remark 4.2) and Example 4.1 being steady-state (to show this
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requires an investigation of the solutions of (3.2) and an application of an
existence theorem to OPC). Thus there are no additional tests for proper or
steady-state. Now consider A3. Since 6v(NC’OPC)=0(NCSSOPC), h(ff)=
(1, 1, 1, 0, 0) and h(ff)= (0, 1, 1, 0, 0) are impossible. The remaining examples
apply as before. Under A2 Theorem 4.2 gives 6e(OSS)c ow(NCSSOPC) and this
eliminates h (if) (1, 0, 1, 0, 0). All of the above stated examples except Example
5.2 satisfy A2 and thus the results for A2 are obtained. When A2 and A3 both
hold, the argument is essentially a combination of the previous two arguments.

The preceding results and Fig. 2 suggest how a search for solutions of OPC
might proceed. Since the determination of elements of 6e(NCOPC) requires the
solution of the difficult two-point-boundary-value problem (3.2), it is worthwhile
to see what can be learned by trying triples ff (u (.), x (.), ’) ow(SS). If there is
some reason to believe that OPC is proper, it is useful to have tests which indicate
how to begin a search for time-dependent controls. For O 6e(SS) conditions
which may be checked (listed in order of increasing difficulty) include:
ow(NCOSS), the system (3.5); p 5v(WNCSSOPC), for some e >0 the system
(4.4), (3.5-2)-(3.5-4); 4,6e(NCSSOPC), the system (3.5-1)’, (3.5-2)-(3.5-4);
66e(NC’OPC), the system (3.2-1)-(3.2-4) for all -[0, T]. The test
5v(NCOSS) has little value, except perhaps to narrow the search. If elements
4’ 6e(OSS) are known, T3 and T4 may be applied. While there may be fewer
elements that satisfy O .6e(OSS), ow(WNCSSOPC) than T4, this test pro-
vides somewhat greater information than T4. In particular, reference to Fig. 2
shows 6e(WRMOSS) and 4, 6e(WRMSSOPC). This gives

Test T5. The existence of 4’, 4’ ow(OSS), 4’ 0(WNCSSOPC), implies OPC
is locally proper [5], i.e., OPS is proper and for all e >0 there exists a time-
dependent admissible triple (a(.), 2(. ), ,)with Ila(t)-u(0)ll, II(t)-x(0)ll < for
all [0, T] which has lower cost than

Thus if T5 is positive the search for better time-dependent controls may begin
with a guarantee of success in the neighborhood of (u(0), x(0)). If T4 is positive
4’ 6e(SRMOSS) and O 6e(SRMSSOPC). Thus there exist time-dependent
admissible triples (t(.), 2(. ), .) with (t) in the neighborhood of x(0) which
reduce the cost, but large variations, t (t)- u (0), may be necessary. If 4’ 6e(OSS)
and 4’ 6e(NC’OPC) (4’ 6e(NCSSOPC) under A3), 4’ is a likely candidate for
6e(SSOPC). Since ff ow(NCOPC), Theorem 3.1 can reject 4’ only if other
(time-dependent) solutions of (3.2) are found which have lower cost.
However, since it is not known that 4,6e(WRMSSOPC), a search for
better time-dependent controls might prove successful in the neighborhood
of (u(0), x(0)).

If it is not possible to determine elements of 6e(OSS) much less can be said.
Figure 2 suggests several conditions for optimality including
6e(NCSSOPC) f’) 6e(SRMOSS) and O 5v(WNCSSOPC) f3 6e(WRMOSS). Check-
ing (SRMOSS) and 4’6e(WRMOSS) may be difficult. Since
ow(NCSSOPC) c 5v(WNCSSOPC) = 5e(NCOSS) necessary conditions for ele-
ments of 6e(SRMOSS) and 6e(WRMOSS) are of value only if they are stronger
than (3.5). Obvious candidates for such conditions are second order necessary
conditions [9], [15]. Adjoining second order necessary conditions for OSS to the
condition ow(NCSSOPC) can produce a stronger necessary condition for
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elements of 5e(SSOPC) than 4’ 5e(NCSSOPC). This happens in Example 5.1
where elements of 5e(NCSSOPC) corresponding to c are eliminated.

Finally, it should be observed that the following simple tests, evident from
Fig. 2, may be useful.

Test T6. The existence of , p (SS), 0(NCSSOPC), implies that for all
e >0 there exists an admissible triple ((-), g(. ), -), possibly in ow(SS), with
IIx(t)-x(O)ll<e for all t [0, T] which has lower cost than .

Test T7. The existence of , 6(SS), 6e(WNCSSOPC), implies that for
all e >0 there exists an admissible triple (t(.), (. ), ,), possibly in 6e(SS), with
Ila(t)-u(O)ll, II (t)-x(0)ll< e for all t [0, T] which has lower cost than 0.

Remark 6.2. The importance of the assumption A2 is clear. If A2 is satisfied
T4 and T5 are vacuous. Moreover, 6e(SRMOSS) and 9(OSS). are stronger
necessary conditions for 6e(SSOPC) than 9(NCSSOPC). Under A4
6e(WRMOSS) is a stronger necessary condition than Se(WNCSSOPC). Tests
T1, T2, T3, T6 and T7 remain useful.

7. Relaxed steady-state optima. The replacement of an original optimal
control problem by a relaxed optimal control problem is a well established
technique in the application of existence theory [4], [21]. In the treatment of
optimal periodic control problems it has been recognized [1], [3], [11], [13] that
the replacement has.an additional function. Steady-state analysis of the relaxed
problem, which is relatively easy to carry out, may shed light on the dynamic
behavior of the original problem. This path is pursued here; a principal objective
is to extend tile results of [1].

To introduce the relaxed problem let

W (/91 /+n+l /+n+l
,’",o ,z ,...,tz )ew(7.1)

where

(7.2)

/+n+l

W=w’Z
i=1

p =landp _->0, eUfori=l,...,l+n+l

Cg(l+n+l)(m+l)

Define ft. X W’-> R" and f X W--> R by
/+n+l

(7.3) ff(x, w)= pf(x, lz),
i=1

l+n+l

(7.4) )r(x, w) 2 Pi(x, tzi)
i=1

and let

1 r(x(t), w(t)) dt e Y,(2.1-4) y .
(2.1-5) (t)=ff(x(t), w(t)) almost all [0, T], x(O)=x(z),

(2 1-6) w(. 7g’ {w(. )" w(. measurable and essentially bounded on [0, T]
w(t) W for all t [0, T]}.
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The system (2.1-1), (2.1-2), (2.1-3), (2.1-4)r, (2.1-5)r, (2.1-6)r, (2.1-7), (2.1-8),
which is denoted by (2.1)r, constitutes the relaxed OPC problem. The same
substitutions apply with obvious modifications elsewhere, e.g., in the statement of
the relaxed OSS problem, (2.2)r. Solution sets for the relaxed problem are defined
as before and are denoted by 6er( ). By the Carath6odory theorem [20],

(x, W)= co f(x, U). This result and an obvious modification lead to the follow-
ing conclusions.

Remark 7.1. The relaxed OPC problem satisfies A2 and A4.
Suppose that OPC satisfies A2. Then fr (x, W)=/(x, U) and it is possible to

show that for every solution of (2.1) with cost J there is a solution of (2.1) with
cost J. Thus the relaxed problem has no interest when OPC satisfies A2.

DEFINITION 7.1. The sequence {(u( ), xO( ), -)} is an approximate solution
of (2.1) with period - and cost J if: (i) for all q>0 (u"(.),x(.),z)
q/xx(0, T], q(t)=f(xq(t),uq(t)) for almost all t[0, T] and yq=
(1/-) o(X(t), u(t)) dy Y; (ii) for all e >0 there exists an integer Q(e) such
that for q > Q(e)

g,(yO, xO(0))-<e fori=-/’,...,-1, Igo(y,xo(O))-Jl<e,
Igi(y,xo(O))l<e fori=l,...,k and

By suitably adapting well known results [4] the following theorem can be
proved.

THEOREM 7.1. Let (w( ), x( ), ) satisfy (2.1)r. Then there is an approximate
solution of (2.1) with period z and cost J.

Since for every (u(.), x(. ), -) which satisfies (2.1) there exists a w(. such
that (w(.), x (.), z) satisfies (2.1)r, inf J over (2.1) is not greater than inf J over
(2.1). The system (2.1) is of interest because it may have a solution whose cost is
less than can be achieved in (2.1). In such a case the corresponding approximate
solution of (2.1) has particular importance. These observations also apply when
only steady-state solutions are considered. There may exist elements 0 6er(SS)
which have lower cost than the cost of any element 6e(SS). Elements of Ser (SS)
are relatively easy to determine and lead to approximate solutions of (2.1) which
have a particularly simple form" (w (.), x (.), -) 6er(SS) implies
(u" (.), x (.), -) can be constructed as a "chattering" solution [4] in which x (.)
is approximately constant (xO(t)-x(O) for all t[0, T]) and uO(t) takes on the
value/z (0) on a subset of measure p(0)T. As suggested in 6 this motivates an
additional test for proper. Before stating the test it is necessary to extend the
definition of proper to allow for approximate solutions.

DEFINITION 7.2. OPC is approximately proper if OSS has a minimum cost
Joss, and there exists an approximate solution of (2.1) with cost J such that
J< Joss.

Test T8. Suppose there exist p 6e(OSS) and r Ser(SS) such that t# has
lower cost than . Then OPC is approximately proper.

The validity of the test is obvious from Theorem 7.1. It can be seen from
Example 5.2 that the test is not vacuous (take tg(t), t92(t)=1/2, /z(t)l,
/z2(t)--2, x(t)=-1 which gives J=-3). In fact, it is easy to find examples (in
Example 5.2 replace X R by X {x" x < 1.8}) where there exist no ff such that
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T4 is positive and yet T8 is positive. The relationships between T8 and the tests
T4, T5, T6 and T7 is clarified by the following theorem.

THEOREM 7.2. Suppose (u(’), x(" ), ’) 0 5(SS) and 0 9(NCSSOPC)
(@ 9(SS) and 5(WNCSSOPC)). Then there exists (w( ), xr( ), ’)
5r(SS) with lower cost than q. Furthermore, for any e > 0 it is possible to choose
so that IIx (0) x (0)1[ < e (llx (0)- x (0)11 < e and I[l (0) u (0)1[ < e for 1,...,
l+n+l).

Proof. Consider w(.) such that pl(t)-=l, tzl(t)=-u(O). Then
(w(.),x(. ), -)9r(SS). Suppose 0 SCr(NCSSOPC). Then there exist p, ,6,
r_.,..., ak which satisfy the conditions of Theorem 3.4 with notation appro-
priately modified to account for the relaxed problem. Since Hr(x, w, p,
H (x, v, p, ,6) for all vW the same inequality holds for all v=
(1, 0,...,, 0,... ,0) such that U. This implies that for the same p,/,
a-i,"’ ", ak, 0 satisfies the conditions of Theorem 3.4, i.e., 5(NCSSOPC).
This is a contradiction and hence @r9r(NCSSOPC). Now suppose
5r(OSS). Then because of Remark 7.1 and Theorem 4.2 Ore 5r(NCSSOPC).
Thus by contradiction Or 5r(OSS) and there must exist an element of 9r(SS)
with lower cost than 0r. The argument still applies ifX is replaced by an arbitrarily
small neighborhood of x(0). Thus the part of the theorem corresponding to

5(NCSSOPC) is proved. For 0 (WNCSSOPC) the argument is the same
except U is replaced by U (q {t" [[t u][-< e} with e > 0 sufficiently small and parts
of Theorem 4.3 are used.

Applying Theorem 7.2 with 6e(OSS) shows that if T4 or T5 are positive
there exists a 0 6er(SS) such that T8 is positive. Additionally, if OPC is proper
then OPC is approximately proper. These facts and the comment before Theorem
7.2 are combined in the following conclusion.

Remark 7.2. T8 is a stronger test for OPC approximately proper than either
T4 or T5.

To put this remark in perspective it should be observed that T8 has a weaker
consequence than T4 or T5. Specifically, there are examples which show that
"OPC is approximately proper" does not imply "OPC is proper."

Example 7.1. f =O, k=2, n l, U=[-1, liaR, T>O, f=-x +u, l=Xz,
2 -u, go y2, g yl. It is clear that (2.1) is satisfied if and only if x(t)=- u(t)=-
0 and J=0. Thus OPC is steady-state. But pl(t)1/2, p2(t) =1/2,/z(t) 1,/x2(t)
-1, x(t)=-O satisfies (2.1) with J=-l. Thus Theorem 7.2 implies OPC is
approximately proper.

Similarly, Theorem 7.2 establishes a connection between relaxed steady-
state solutions and tests T6 and T7. When T6 and T7 are positive there exists a
r ,.r(ss) with lower cost than 4’. Moreover, 4, can be chosen to that the
"chattering" approximate solution of (2.1) corresponding to 0 satisfies the same
closeness requirements as do the regular solutions whose existence is guaranteed
by T6 and T7. If it can be determined that OS’(SRMOSS) (for T6)or

6eiWRMOSS) (for T7) there is no need to resort to the relaxed problem and
approximate solutions; it is clear that there are elements of 6e(SS) which reduce
the costs according to the requirements of T6 or T7. However, relaxed steady-
state solutions may produce larger reductions in cost than the regular steady-state
solutions.



OPTIMAL PERIODIC CONTROL 743

The main practical value of Theorem 7.2 is that it provides a constructive
approach for seeking controls which improve performance when any of the tests
T4-T7 is positive. Bailey and Horn [1] make the same observation but with
respect to T4 only. Their method of proof is more direct but requires ff S(OSS)
andfx (x (0), u (0)) nonsingular. The key to the proof presented here is part (viii) of
Theorem 4.2 which is a direct consequence of Theorem 3.3.

Remark 7.2 makes it clear that the solution of the relaxed OSS problem
deserves special attention. This is the conclusion of Bailey and Horn. Their
sufficient condition I (equivalent to T8 under certain restrictions) is stronger than
their sufficient condition II (equivalent to T4 under certain restrictions). Because
of Remark 7.1, Remark 6.2 applies to the relaxed OPC problem. Hence, there is a
hierarchy of necessary conditions which can be applied to the solution of
the relaxed OSS problem: 6r(OSS) c 6r(SRMOSS) c 6r(NCSSOPC)
6r(NCOSS). If it is not possible to obtain elements of 5er(SRMOSS) it may be
useful (see below) to combine second order necessary conditions for the relaxed
OSS problem with Cr Ser(NCSSOPC). Also notice that T4 and T5 are useless
when applied to the relaxed OPC problem.

Example 5.2 illustrates some of the points which have been made in the
preceding paragraphs. The solution of the relaxed OSS problem is given by r.
p1=.3896..., p2=.6103,..., /Z 1=-2, /Z2=1.5, X=1.1363"’’, J=
-3.5511 ’". fir is also the (unique) solution of the relaxed OPC problem. This
can be deduced from the application of Theorem 3.1 which yields an (x, p)-phase
plane which is the same as Fig. 4 except: on L1 there is a solution which moves
from P1 toward the origin, on L2 there are solutions which move from P and P3
toward P4, P4 is an equilibrium solution. Thus 6r(NCOPC) has two elements
corresponding to x(t) p(t) 0, J 0 and x(t) =- 1.1363 , p(t) 2.8518. .,
J -3.5511 ... Because the relaxed OPC problem has a solution (an existence
theorem can be applied) the second extremal must be optimal. OPC does not have
a solution but all chattering solutions corresponding to 4, satisfy (2.1-2)-(2.1-8)
exactly and as q --> oo the cost approaches -3.5511 . The elements of 6(OSS)
labeled "a" are in 6(WNCCSSOPC) but not 5e(NCSSOPC). Thus T4 and T6 are
positive but T5 and T7 are negative. This is consistent with elements "a" in
6e(WRMSSOPC) but not 6(SRMSSOPC). For element "b" T4-T7 are all
negative but T8 is positive, ser(NCSSOPC) has two elements corresponding to
x 0 and x 1.1363 . The first element does not satisfy second order neces-
sary conditions for the relaxed OSS problem.

Other examples illustrate that the relaxed OPC problem need not be
steady-state. For instance, Example 5.8(i), which can be shown to be equivalent to
the relaxed version of 5.3(i), is proper.

Appendix A. Necessary conditions for a general optimal control problem.
Consider the following notation and assumptions:/z ad u are positive integers;

C 2 C?R lsposltve; U R sanarbtraryset;X,X,X R are open sets; for
^I ^2

-/x, v the functions #:X X x (0, t) --> R are continuously differenti-
able; the function f: X U--> R" is continuous and for each u a U is continuously
differentiable in . Let(, u) denote the Jacobian matrix of f(x", u) with respect
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to :; let 0e(, 2 z), 0e( .2,x z) and O(, 2, .) denote respectively the
Jacobian matrices of 0(, ^2x z) with respect to , :: and z.

General optimal control problem (GOC). Find u(. ), (. and z which
minimize J subject to

(A. 1-1) J 0o((0), (), ),

(A.1-2) ,((0),:(), z)_-<0, i=-/z,... ,-1,

(A.1-3) 0,(:(0), :(z), -)= 0, i= 1,..., v,

(A.1-4) :(t) =(:(t), u(t)) almost all t [0, ’],

(A.1-5) u(. ) q/= {u(. )" measurable and essentially bounded on [0, t], u(t)
U for all t [0, ’]},

(A.1-6) (" )={(" )’ (" absolutelYA1 continuous on [0, ], ,(t)" for all
t[0, t], (0)X, :(-) ’},

(A. 1-7) - (0, ’).

THEOREM A.1 (necessary conditions for GOC). Let

(A.2) H(x, u, )=’f(, u)

where R. Let (u(.), (. ), ) solve GOC. Then there exist an absolutely
continuous [unction ( ): [0, ’]-)R and real numbers a_,, ., a such that the
following conditions are satisfied"
(A.3-1) max H((t), v, (t)) H((t), a(t), (t)) almost all [0, -],

vU

(A.3-2)

(A.3-3)

t’(o) a0,((0), (), ),

’(’) ,,o,,(X’(o), X’(-), -),

’(t) -ff’(t)f( (t), u (t)) almost all t [0, z],

a-< 0, =-/z,..., 0,

(A.3-4)
a,o,((o), (), ) o,
(a_,,, ., a) o.

=-/z, -1,

Iff(x (t), u (t)) is continuous at " thefollowing additionalcondition is satisfied"

(A.3-5) max H((z), v, (’)) a,Oi,(2(O), 2(z), ’).
U =--I

Proof. With minor changes in notation the conditions are taken from 7 of
[16], assuming that: Zx is fixed, tx ’x 0, the 0i do not depend on ’3 and z(z3).
The regularity condition (7.3) of [ 16] is not required. This can be seen by changing
the proof in 16] to follow the pattern used in [ 17].
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Appendix B. Necessary conditions ,for a finite-dimensional optimization
problem. Consider the following notation and assumption.s"/ and z, are nonnega-
tive integers, f)c R" and XcR are open sets, U U is an arbitrary set, for
=-tz,""", u the functions Oi" 2 x OR are continuously differentiable. Let

0i(, u) and Oiu(, u) denote respectively the Jacobian matrices of Oi(, u) with
respect to and u.

Finite-dimensional optimization problem (FDO). Find u and which
minimize J subject to

(B.1-1) J Oo(., u),

(B.1-2) O,(,u)<-O,

(B.1-3) O,(,u)=O,

(B.1-4) u U,

(B. -5) ..
THEOREM B.1 (necessary conditions for FDO). Let C(u, U) be a conical

approximation to U at u U. Let (u, ) solve FDO. Then there exist real numbers
a_,, , a such that the following conditions are satisfied:

(B.2-1) aOu (, u)6u <= 0 for all 6u cl C(u, U),

(B.2-2) aOe(, u) O,

a -< 0, , , 0,

(B.2-3) aO(, u) O, , 1,

(a_,, .., a) 0.

Proof. Apply Theorem 2.3.12 of [7] letting: the equality constraint corre-
spon to (B.1-3) and 0(, u)=v_u i=-,... ,-1; z (u, , v)R++"; =
UxXx V where V {v: v 0, 1,. , }; (ao, a a," , a, a-a," ",a-,)
correspond to .

TnzoM B.2 (maximum principle for FDO). Assume that for all the
set {(0_,(, u),..., 0,(, u)): u U} is convex. Weaken the differentiability
requirements on the O to the following: for =-,..., u the functions O am
continuous andfor each u Ucontinuously diffemntiable in . en the conditions
in Theorem B. 1 apply with (B.2-1) replaced by

(B.2-1)’ aO(i, u)= max aO(i, v).
i=-- oU i=-

Proof. See Theorem 4.6 of [19] and take note of the comment on p. 221.
Alternatively, the approach taken in 4.2 of [7] may be adapted.

Acknowledgment, The author expresses his thanks to George D. Ianculescu
whose excitement in periodic control motivated his own interest in the subject.
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A "CONJUGATE" INTERIOR PENALTY METHOD
FOR CERTAIN CONVEX PROGRAMS*

HISASHI MINE, KATSUHISA OHNO AND MASAO FUKUSHIMAf

Abstract. This paper deals with convex programming problems satisfying certain growth condi-
tions. The "conjugate" interior penalty method proposed in this paper utilizes conjugate convex
functions and is based on Fenchel’s duality theorem in convex analysis. Conjugate interior penalty
functions behave quite mildly and hence avoid the ill-conditioning of ordinary interior penalty
methods. Convergence of the method is proved, and the relationship between ordinary and conjugate
interior penalty methods is shown.

1. Introduction. Numerous classes of penalty functions have been proposed
for solving constrained minimization problems, and the effectiveness of those
methods has been verified in the literature. One of the familiar classes is the class
of interior penalty methods, which convert a constrained problem into a sequence
of unconstrained problems. The convergence properties of these methods have
been investigated by Fiacco and McCormick [4]. However, it is inevitable that the
interior penalty functions become ill-conditioned near the boundary of the
constraint region as the iteration proceeds [7], [8]. It should be noted that this
difficulty is encountered even when other penalty methods (e.g., exterior or mixed
interior-exterior [4], [7]) are employed.

In this paper, restricting our attention to convex programs, we present a new
class of sequential unconstrained optimization methods which we call conjugate
interior penalty methods. Under appropriate assumptions they circumvent the
ill-conditioning of ordinary penalty methods. The idea is to dualize ordinary
interior penalty methods by use of Fenchel’s duality theorem 11, 31]. Specific-
ally, the conjugate interior penalty method involves sequential unconstrained
maximizations of conjugate interior penalty functions which approach infinity
nowhere. It is shown that maximizing the conjugate interior penalty functions is
dual to minimizing the ordinary interior penalty functions.

The concept of conjugate convex (concave) functions, originated by Fenchel
and applied to nonlinear programming variously, e.g., [2], [3], [6], [10], [11], plays
a central role in this paper. The material from convex analysis used in this paper
can be found in Rockafellar [11].

2. Conjugate penalty functions. Consider the following convex program-
ming problem"

(P) minimize f(x)

subject to

gi(x)>--O,

where f and -gi, 1,...,. m, are everywhere finite convex functions on R n.
* Received by the editors May 30, 1975, and in revised form September 16, 1976.

" Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan.
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Define

Hoa {xR.,g(x)>=O,i=l,...,m},
H a-{x R" gi(x)>O, 1, m}.

Since the gi’s are everywhere finite concave functions, Ho is closed and convex and
H is open and convex. Furthermore, if H is nonempty, then H= int Ho and
Ho clH.

It is assumed that the following conditions are satisfied in problem (P)"
CI" f is co-finite, i.e., the epigraph of f contains no nonvertical hairlines;
C2" Ho is compact and H is nonempty.
Define the class I" of extended-real-valued functions as follows: G I" if
(i) G is a continuous concave function with dom G R"/, where R"*/ is the

(strictly) positive orthant in R"*;
(ii) G is nondecreasing, i.e., for :, r/ R m, : __< r/ implies G(:) _-< G(r/).

Note that (i) implies that G(:) tends to oo if approaches the boundary ofR ’.
An interior penalty method for solving problem (P) is defined for each G I,..

In what follows, let G I,. be given. Define a function h on R" by

h(x) a_ G(gl(x), g,.(x)):
Then by the concavity of gi together with the properties of G, h is a concave
function with dom h H. Furthermore, h(x) tends to -oo as x approaches the
boundary of H.

Let

(1) ut a= inf Ut(x)

and

for all _-> 0, where

s, {x; U,(x)= u,}

Uta_{-’y(.IHo) if t= O,
th if t>0,

and y(. IHo) is the concave indicator function of Ho defined by

f 0 if x Hoy(xlHo)
-oo if x Ho.

Clearly, the Ut are convex functions with dom Ut Ho if t 0, dom Ut H if
>0, and the St are convex subsets of dom Ut. Minimizing Uo over R" is

equivalent to solving problem (P). The functions Ut with a parameter t > 0 are
ordinary interior penalty functions for problem (P). As is well known, {ut} and St
converge to Uo and So, respectively, as decreases to zero [4], [5], [7], [8].

Now we introduce a family of pr6blems dual to (1) by means of

A(2) vt sup V,(y)
yR
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and

for all t _-> 0, where

T,- (y;

_a_. [ ’*(" [Ho)-/* if t O,
h’t-f* if t > O,

and * denotes conjug’acy [11, pp. 104 and 308]. Right scalar multiplication of h* is
defined as (h*t)(y)a--th*(t-ly), t>0. Note that h*t=(th)* [ll, Thm. 16.1].
Notice our double usage of *, that is, convex conjugates for convex functions and
concave conjugates for concave functions. However, this should cause no diffi-
culty, since the distinction is always clear from the context. The functions Vt, t > 0,
are called the conjugate interior penalty functions for problem (P).

LEMMA. Under conditions C1 and C2, the V are everywhere finite and
concave for all t >= O. Furthermore,

Vo(y) lim Vt (y) ]’or every y R n.
to

Proo] By C1,/* is everywhere finite and convex [11, Cor. 13.3.1]. Since
dom 3’(" [Ho)= Ho and dom th H which are nonempty and bounded by C2,
’*(" IHo) and h*t are everywhere finite and concave [11, Cor. 13.3.1]. Hence, the
first part of the lemma follows. The latter half follows from the fact that

’*(ylHo) /*(y IH)= ’*(Yl dom h)

(h*0+)(y) [11, Thm. 13.3]

=lira (h*t)(y) [11, Cor. 8.5.2]
t$o

for every y e R ". This completes the proof.
The lemma says that as t decreases to zero the conjugate penalty functions

{ Vt} converge pointwise to Vo whichis finite everywhere.
The following theorem demonstrates the relationship between the minima of

problems (1) and the maxima of problems (2).
THEOREM 1. Assume that conditions C1 and C2 are satisfied. Then

are nonempty and compact, and

--00 < Ut Vt < +00

for every t >- O. Furthermore, the following (i), (ii), (iii) are equivalent]:or each t > 0,
and (i), (ii’), (iii’) are equivalent for t 0:

(i) x St and y T
(ii) x 0(h*t)(y) f’) 0/*(y); (ii’)x 0’*(y [Ho) fq 0/*(y);
(iii) y 0/(x) f) O(th)(x); (iii’) y 0/(x) f’) Oy(xlHo).
Proo] Since 1 is everywhere finite,/* is co-finite [11, Cor. 13.3.1]. From this

and C1, both U, and Vt are co-finite and, in particular, have no directions of
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recession for all t-0. Hence, St and Tt are nonempty and compact
[ll, Thm. 27.1]. The assertion about optimal values follows from Fenchel’s
duality theorem, for by C2 and the lemma, conditions (a) and (b) in
[ 11, Thm. 31.1] are satisfied. Therefore,

o < ut min Ut max Vt vt < +c

for all t-> 0. Finally, we shall prove the equivalences for > 0. A necessary and
sufficient condition for (i) to hold is

y Of(x) and x O(h*t)(y) [ll, p. 333].

This is equivalent to (ii) and to (iii) by [11, Thm. 23.5]. The equivalences for 0
follow analogously. This completes the proof.

By virtue of Theorem 1, for each the minimum of Ut can be obtained in
terms of the maximum of Vt, and vice versa. Therefore, the two sequences of
minimization problems (1) and maximization problems (2) are essentially equival-
ent, since they are convertible to each other without loss of equality.

The following theorem describes a convergence property enjoyed by maxima
of the conjugate interior penalty functions.

THEOREM 2. Assume that conditions C1 and C2 are satisfied. Then

v0 lim vt
t$o

and

0 lim sup inf IIz yll,
t$O zTt yeTo

Proof. We shall prove the last equality; then the first equality follows from the
lemma and the continuity of Vo. Let us assume that there exist a decreasing null
sequence {tk} of positive numbers and an e >0 such that

=:! Zk Tt,, and inf Ilz -yll > e for all k.
yTo

Let T be the boundary of the set To + eB, where B is the unit sphere in R". Since
To is compact, T is also compact. Choosing yo arbitrarily in To, let ZTk be a point
where the line segment joining yo and Zk intersects T". Then {ZTk} has a convergent
subsequence by the compactness of T". We assume without loss of generality that
Z’k converges to zT. For all k, by the definition

v, (z) _-> v, (yo)

from which we have

v() _-> v, (yo)

by the concavity of Vt. Taking the limit as k -> oo, we have

Vo()->_ Vo(yo),

because, by the lemma and [11, Thm. 10.7], Vt(y) is jointly continuous in y and t.
But To, which is a contradiction. F1
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Theorem 2 implies that the point-to-set map Tt is upper semicontinuous
(u.s.c.) at 0 [1, p. 109]. In particular, if To is a singleton, say {yo}, then every
sequence {yk Tk} converges to Yo. Note that the first part of Theorem 2 could
also be deduced from the fact that Uo limto ut and ut vt for all t _-> 0.

3. Discussion. The conjugate penalty functions { Vt} converge to V0, which is
everywhere finite but in general not everywhere differentiable. It can be shown,
however, that the Vt are actually everywhere ditterentiable for all > 0, providedf
and -h are strictly convex on their effective domains dora f R and dora h
int (dom h) [11, Thm. 26.3]. In such cases, first derivative methods may be used in
each unconstrained maximization of V. Furthermore, for each > 0 and y
necessarily f*(y) (h*t)(y). Consequently, from (ii) in Theorem 1, x St may
be written as x =f*(y)=(h*t)(y). More generally, if either f* or h* is
differentiable, (ii) in Theorem 1 reduces to either x f*(y) or x 7(h*t)(y). In
such cases the conversion of y into x may be considerably simplified. We note here
that (h*t)(y) h*(t-ly). When Vt is nodifferentiable, some suitable method
for maximizing nondifferentiable functions should be employed (cf. [2]).

In general, it may not be so easy to evaluate the conjugate penalty functions,
because the class of functions for which the conjugate has a simple closed form is
limited. However, when the functions possess certain structure, the difficulty
might be relaxed somewhat be means of various dual operations [11, 16]. For
instance, if h is separable, i.e.,

Ut(x) =/(x)- , G,(gi(x))
i=1

f(x) Z hi (x) for t > 0,
i=1

where Gi 11, 1,..., m, then Vt may be written as

Vt(y)=(t hi)*(y)-f*(y)
i=1

sup h(y) y= y/t -’*(y) [11, Thm. 16.4].
i=1 i=1

We should mention that the evaluation of V, above is sometimes expensive in
practical computation, because one needs to solve constrained subproblems.
H6wever, the difficulty can be eliminated provided one is willing to increase the
dimentionality of variables. In fact, we have

where the maximization is completely unconstrained in R "n.
To ensure the finiteness of all Vt, especially of Vo, rather strong conditions C1

and C2 have been imposed on problem (P). Those conditions may be relaxed
somewhat, while preserving the favorable properties of V. One way of doing this
is to use the asymptotic properties of problem functions, e.g., the recession
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function ofj and the recession cone of Ho (cf. [11, 8]). However, the everywhere
finiteness of Vt may be lost there. Such an approach is developed in [9].

Finally, the rate of convergence of the conjugate penalty method is consi-
dered. For ordinary penalty methods, the convergence rate analysis has been well
investigated [7]. We assume here that f and j* are differentiable and that j and
/* are Lipschitz continuous on some neighborhoods of Xo and yo, respectively,
where {Xo} So and {yo} To. Then there exist positive scalars M1 and ME such
that for every t > 0 sufficiently small

and

Ily,- yoll--liar(x,)- /(xo)ll Mllx,- xoll

IIx,- xoll IlVf*(y,)- JC*(yo)ll MIIy,- yoll,

where xt St and yt Tt. Hence, we have

lllx,-xoll<M=
M-JJy,-yoJ]

for all t > 0 sufficiently small. Consequently, we may conclude that {Yt} converges
to Yo as fast as {xt} does. For instance, if Ut is the logarithmic interior penalty
function, we have

Ily,- yoll O(t).

4. Examples.
Example 1. Consider the following one-dimensional problem:

minimize (x 2)2

subject to 1 -x => 0,
l+x->O.

The logarithmic interior penalty function is of the form

Ut(x)=(x-2)2-tlog(1-x2) if-l<x<l,

The conjugate penalty function becomes

Vt(y) t-(t2 + y2)1/2 + log

otherwise.

t + (t2 + y2)l/2 y2
2t

-2y ----for all y e R’. Fig. 1 and Fig. 2 illustrate Ut and Vt, respectively, for some values of
t. It is seen that Vt is more moderate than Ut for small t. Obviously the optimal
solution of the problem is 2? 1 and f()= 1.

One of the referees suggested this. At that time, two of the authors had already completed the
work [9].



A "CONJUGATE" INTERIOR PENALTY METHOD 753

0.01

0
.5 .6 .7 .8 .9 1.0

FIG.

Example 2. Consider the problem:

minimize 1/2x+x-XlXE-7X7x2
subject to 25 4x-x -> 0.

As in Example 1, we employ the logarithmic interior penalty function. Then, by
the calculation, the conjugate penalty function is

where y (y l, y2) and

Vt(y)= t-pt(y) + log
t +p,(y)

50t

Pt(Y) It2 + 25(y2/4 + y)]1/2.
The optimal solution of the problem is (2, 3) and f() -30.
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The computational results for Examples 1 and 2 are presented in Tables 1
and 2, respectively. In each example, the initial point is the origin for t 1, and the
subsequent unconstrained maximizations of Vt are initiated from the previous
terminating points. The termination criterion is Ily k + Y

k < 10-. The values of
xt are given by xt Vf*(yt).

TABLE

No. of
iterations Yt vt xt V/*(Yt)

1 5 --2.62222 2.36255 0.688892
10-1 3 --2.09326 1.33503 0.953368
10-2 3 --2.00993 1.05610 0.995037
10-3 2 --2.00100 1.00791 0.999500
10-4 2 --2.00010 1.00102 0.999950
10-5 2 --2.00001 1.00013 0.999995
10-6 --2.00000 1.00001 0.999999

initial point y 0.
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TABLE 2

No. of
iterations Yt vt xt ’f*(Yt)

13 --8.01275 --3.06639 --29.6688 1.90812 2.92087
10-1 9 --8.00139 --3.00667 --29.7388 1.99055 2.99194
10-2 7 --8.00014 --3.00067 --29.9509 1.99904 2.99919
10-3 5 --8.00002 --3.00007 --29.9928 1.99990 2.99991
10-4 3 --8.00000 --3.00001 --29.9990 1.99998 2.99998
10-5 1 --8.00000 --3.00001 --29.9999 1.99998 2.99998

initial point y (0, 0).

In both examples, Vt is twice differentiable everywhere for all t > 0. We have
used the pure Newton’s method for the maximization of each V. On the other
hand, we would not be able to use the method in each unconstrained minimization
of the ordinary interior penalty function, since we should always go outside the
feasible region when t is small. In conjugate penalty methods, therefore, we can
avoid the considerable effort of determining step sizes to maintain feasibility, as is
required by ordinary interior penalty methods.

Finally, in conjugate penalty methods, we need not determine an initial point
in the interior of the feasible region, as is required by ordinary interior penalty
methods.

Acknowledgment. The authors wish to express their appreciation to one of
the referees for his careful review and helpful suggestions.
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THE OPTIMAL CONTROL OF A STOCHASTIC SYSTEM*

ROBERT J. ELLIOTI’"

Abstract. The optimal control of a stochastic system with both complete and partial observations
is considered. In the completely observable case, because the cost function is, in the terminology of
Meyer, a "semimartingale sp6ciale," a dynamic programming condition for the optimal control is
obtained in terms of a certain Hamiltonian. The partially observable case is then discussed from first
principles, and it is shown that,, almost surely, the optimum control should minimize the conditional
expectation of a certain Hamiltonian, with respect to an optimum measure and the observed tr-field.

1. Introduction. In a notable paper [4] M. H. A. Davis and P. P. Varaiya
obtained dynamic programming conditions for the optimal control of a stochastic
dynamical system using martingale methods. The solutions to the dynamical
equations are interpreted by the Girsanov measure transformation method and
no complicated existence conditions for stochastic or parabolic equations are
required. (A review of previous results in stochastic control is given in the
introduction to [4].) Using a different approach, Haussmann [9] applies a basic
result of Neustadt 13] on extremals to obtain general necessary conditions for the
optimal control of a stochastic system (which may be subject to certain stochastic
constraints).

The work below is presented as a simplification of the works of Davis and
Varaiya and Haussmann, (though we do not consider state space constraints).
After describing the dynamics and cost in 2 the completely observable case is
discussed first in 3 and 4. By observing that the cost function is a "semimarting-
ale sp6ciale" (see Meyer [12]), an explicit dynamic programming condition is
obtained immediately. Unlike [4], we do not have to restrict ourselves to "value
decreasing controls" (which are automatically optimal if the cost is terminal), and
the absolute continuity of the increasing process in the Doob-Meyer decom-
position of the cost is immediate, because special semimartingales have a unique
decomposition.

For the partially observable case we again work from first principles, and so
do not in particular need Neustadt’s results. However, we do need certain very
delicate estimates for the LP norms of the Radon-Nikodym derivatives intro-
duced in the Girsanov measure transformation; our proofs here are adapted from
Haussmann [9] and Bene [1]. Our final result says that the optimal partially
observable control should, almost surely, at any time and position minimize the
conditional expectation of a certain Hamiltonian, where the conditional expecta-
tion is taken with respect to the partially observed tr-field using the optimal
measure. This optimality principle is in terms of just one process, and so is an
improvement on [4] where corresponding to each control there is a different
Hamiltonian. The work in 3 to 8 is based on the hypothesis that there is an
optimal control which attains the minimum cost. In 9 it is shown how this
condition can be removed; in fact, although there may not be an optimal control
there is always an idealized optimal measure.

* Received by the editors November 4, 1975, and in revised form November 30, 1976.
f Department of Pure Mathematics, University of Hull, Hull, HU5 2DW England.
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2. Dynamics. Consider a system whose evolution is described by a stochastic
functional differential equation of the form

(2.1) dx, f(t, x, u) dt + 0-(t, x) dBt.
Here t [0, 1] and B is an m-dimensional Brownian motion. Write for the

space of continuous functions from [0, 1] to R m. Denote a member of c by x and
the value of x at time t by x. The drift term can depend at time t on the past
{x,: s _-< t} of the process; in the Markov case f will depend only on x. We shall
consider a solution of (2.1) which has an initial value x0 R at time 0.

The control u is chosen from a set U, which is a Borel subset of R . U is
given the Borel 0--field a//.

t is the 0--field on generated by {xs:x , s <-_ t}.
DEFINITION 2.1. At this stage we suppose the m x rn matrix 0- (0-ij) satisfies

(i) for l<-i,j<-m, trij(t ): ->R is t measurable, and trii(" ,x): [0, 1]-
R is Lebesgue measurable for each x .

(ii) 0-(t, x) is nonsingular.
(iii) each 0-q satisfies a uniform Lipschitz condition in x, where x is given

the uniform norm Ilxlls sup0_<t_<_s Ix(t)l.
Suppose an m-dimensional Brownian motion Bt is given and that Bt is

defined on a probability space (l-l, M,/z). Then from properties given in Definition
2.1 the equation

dx, 0-(t, x) dB,,

x(O)=xoR"*,

has a unique solution x,, and there is an induced measure P on its sample space
(fI, 1) given by

P(A Ix{to: X(to A A 1.
In the partially observable case we suppose that x e R is written in terms of

two components

x, (y,, z,)

where Yt R and z, R"-". Correspondingly f and o- will be written

f’- (fl, f2), 0---
0-2

where fl (resp. f2) is an n (resp. rn, n) dimensional vector function and 0-1(t, x)
(resp. 0-2(t, x)) is an n n (resp. (m -n) m) matrix function. The variables y
represent the (noisy) observations that are made of the whole process and

dyt fl(t, x, u) dt -[- 0-1(t X) dBt.

?Jr, the observation 0--field of :Tt is defined by

t 0-{Y" s =< t}.

DEFINITION 2,.2. Write for the set of functions b" [0, 1] x R" which
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satisfy
(i) for each t [0, 1], b(t, is ,t measurable,
(ii) for each x c, 4 ", x) is Lebesgue measurable,
(iii) [tr-l(t, x)4(t, x)]-<M(1 /llxll,).
In the partially observable case we also require

00
el 2_(iv) there is a constant ko such that L Jo o’ea < ko a.s.P.

Write at r(t, x)cr’(t, x), and for b define

dx 1/2 4,a -2 rb dt.4 4),a

A measure P, is defined on (c, .1) by writing

Pg’A I, exp (sc(b)) de, A 1,

and, because o--lb has linear growth (see Lemma 0 of [ 1]), Girsanov’s theorem [7]
states the following:

THEOREM 2.3.
(i) P4, is a probability measure on (c, 1).
(ii) P, is mutually absolutely continuous .with respect to P.
(iii) {wt; t [0, 1 ]} is a Brownian motion under t4, where

dwt dBt-tr-l(t, x)c(t, x) dt

o’-l(t, x)(dxt- d(t, x) dt),

and tz4, is defined on by

4, (A P4, (x (A )).

DEFINITION 2.4. In the completely observable case an admissible feedback
control over Is, t] [0, 1] is a measurable function

u. [s, x-such that
(i) for each r, s-< --< t, u(-, is , measurable.
(ii) for each x c, u (., x) is Lebesgue measurable,
A partially observable admissible feedback control over Is, t] is defined simi-

larly, except condition (i) above is replaced by:
(i) (P) for each z, s _-< z _-< t, u (z,.) is measurable and Elu (,r,.)1 < o.
Write eg (resp. Wts) for the set of such completely (resp. partially) observable

controls. Set and W W, and note that, for example,

DEFINITION 2.5. We suppose the drift function f satisfies:
(i) f: [0, 1] c U R" is jointly measurable; and

(ii) for every u e /,

fu (t, x) f(t, x, u (t, x)) ,
(iii) for each (t, x) [0, 1] x c, f(t, x,. is continuous on U.
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Writing pfu as Pu and ;,u as/zu Theorem 2.3 can be re-phrased as follows:
THEOREM 2.6. Suppose Bt is an m-dimensional Brownian motion on

(fZ, , tz) and, as above, xt is the solution of dx, or(t, x) dBt, x (0) Xo R ". Then
under the measure Ix, on f, w is a Brownian motion, where

dw tr-l(t, x)(dx, fu (t, x) dt).

That is, from Lemma 6 of [7],

and

dx, f(t, x, u(t, x)) dt +or(t, x) dw,

x(0) =Xo.
This result enables us to interpret solutions of the dynamical equations (2.1)

under weak conditions on f.
Write

’s(f,) {r-l(r, x)f’(’r, x)}’ dB.,.

__1_. Io._(,r x)fU(’r, x)12 d"2

and

p(u) exp (sets(fu)).

Then (see [1] and [4]) the linear growth condition on ensures that

E[p’(u)ls] 1 a.s. Po.

COST 2.7. We suppose the cost associated with the process is of the form

g(x(1)) + c(t,x,u) dt,

where
(i) g and c are real valued,

(ii) 0=<lgl _-_k and 0=<lcl--<k for some constant k,
(iii) g is 9rl measurable and for each ue and e[0,1], cU(t,.)=

c(t,., u (t,.)) is @t measurable and for each x @, c( x) is Lebesgue
measurable,

(iv) for each (t, x) [0, 1] x @, c(t, x,. is continuous on U.
If Eu denotes the expectation with respect to the measure P, then the

expected value of the cost corresponding to control u is

The optimal control problem is to determine how u (resp. u ) should
be chosen so that J(u) is minimized.
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3. Completely observable principle ot optimality. In the following two
sections we consider completely observable systems, that is, at time the
controller has all the information in t and he uses completely observable
controls. We quote below a result, the principle of optimality, from the paper of
Davis and Varaiya 4].

Suppose u, v ; then we can define a control u by putting

u(s,x), O<=s<=t,
w(s, x)

v(s, x), t <=s <= l.

If a control u is used on [0, t] and a control v is used on (t, 1], giving rise to an
admissible control w t as above, then the expected remaining cost at time t,
given the information t, is

quo(t) Ew g(x(1))+ c
where cs c(s, x, v(s, x)).

Now pro(U) is measurable so

q,.o (t)

E[plt (v)(i lc’ ds + g(x(1)))
c ds + g(x(1))1 say.

Therefore, 0,o (t) 0, (t) is independent of the control used up to time t. Now
L(, Po) is a complete lattice under the partial ordering.

0 <0 if and only if 0(x) N 0(x) a.s. Po,

and the set {0 (t)" v e} is bounded below so the following infimum exists in L
for each t"

W(t) is, therefore, an measurable function representing the minimum cost
that can be incurred from time t onwards, given the situation at time t.

We now quote the principle of optimality from Theorem 3.1 of [4]"
To3.1. For any u ,

W(t)NE c2ds +N[W(t+h)].

u* e is optimal i and only i

W(t)=. c2" ds +N.[W(t+h)].

Immediately we can state the following:
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COROLLARY 3.2. (i)’U* is optimal if and only if

c ds + W(t)

(ii) In general, for u l,

c ds + W(t)

is a (t, Pu*) martingale.

is a (t, Pu) submartingale.

c ds resp. c2 ds

is t measurable and the results are obtained by adding these quantities to the
inequalities of Theorem 3.1.

4. Completely observable minimum principle. Using martingale representa-
tion results and the unique decomposition of "semimartingales sp6ciales" [12] we
now exhibit in a very explicit way a Hamiltonian for the control system and an
optimality condition in terms of the Hamiltonian, just as in the deterministic case.

From [12] we quote the following definition:
DEFINITION 4.1. An t adapted process St is called a special semimartingale

if it has a representation St So +Mt +At where Mt is a,locfil martingale and At is
a predictable process of locally integrable variation.

Furthermore, it is.shown in [ 12] that the decomposition of a special semimar-
tingale is unique.

LEMMA 4.2. Suppose St is a submartingale of class D with a representation

St So+Mr WAr,

where Mt is a local martingale and At is a predictable process of locally integrable
variation.

Then Mt is a martingale and At is an increasing predictable process.
Proof. From the Doob-Meyer decomposition result for submartingales of

class D (see [11 ])

St So+M+A’t
where M is a martingale and A is an increasing predictable process. By the
uniqueness of the decomposition for special semimartingales, therefore, we have

and

At =At.
THEOREM 4.3. (a) u* sl is an optimal control if and only if there is a

predictable process g*: [0, 1] fl--> R" such that ’o (g,)2 ds <o a.s. and

c ds + W(t) g* dw* + W(O)
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where w* is a certain Brownian motion on 12.
(b) Suppose u* l is an optimal control.
Writing

f*(t, x)=f(t, x, u*(t, x)),

c*(t, x) c(t, x, u*(t, x))

and

we have

f"(t,x)=f(t,x,u(t,x)),

cU(t,x)=c(t,x,u(t,x)),

(g*. tr-if. + c*) min (g* tr- if, + c) a.s.
uU

That is, the optimum control value u*(t,x) is almost surely, (Lebesgue x/z),
obtained by minimizing the Hamiltonian

g*(t,x) tr-(t,x)f"(t,x)+c"(t,x).

Proof. (a) From Corollary 3.2, u* is optimal if and only if

+ W(t) a (, P.) martingale.Cs* ds is

However, by construction

Bt o"-1 dxt

so if t is the it-field on 12 generated by {Bs’s <= t} we have that t x-l(t).
Therefore, in terms of the original measure space 12 we can say that

Iot C* ds + W(t) is (t,/zu.) martingale.an

However, on (t,/z,*), w t* is a Brownian motion, where

dw,* -’(t, x)(dx,-l*(t, x) dr).

Consequently, by the martingale representation theorem there is a predict-
able process g*" [0, 1] 12--> R such that

and

E,. (g,)2 ds <c

c* ds + W(t)= g* dw*+ W(O) a.So
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(b) Consider now a different control u(t, x)5t giving rise to a measure Pu
on c and a measure/Xu on f. On (t, P,) we have from Corollary 3.2 that
’o c ds + W(t) is a submartingale. It is, therefore, a submartingale on (,,/z,) and
so has a unique Doob-Meyer decomposition (see [ 11, Chap. VII, Thm. 29). That
is

ds + W(t)=J*+M+At,Cs

where M’ is an (Mr, ) martingale and A’ is a unique predictable increasing
process.

However, from the representation in (a),

fo ;o=J* g* * U-c*) dscsds+W(t) + dw + (cs

J* + g*(tr-1 dxs -tr-lf ds)

+ g*(tr-f-tr-f*) ds+ (c2-c*) ds a.s.

Now, by Theorem 2.2, w’ is a Brownian motion on (Mr, Iu) where

dw= tr
-1 dx -cr-lf dt.

Therefore,

g*o’-l(dx-f ds)= g* dw

is a stochastic integral of this Brownian motion. Because

o
(g) as < a.s.

and so I’o g d2 is a local martingale on (, ).
Also, by construction

0’ ((g*- +c)-(g*-f* +c*)) ds

is a predictable process. Therefore, applying Lemma 4.2 to the submartingale
’o c ds + W(t), in the Doob-Meyer decomposition we must have

IoM= g*dw a.s.
and

(g*o’-Y +c)-(g*o’-y* +c *) ds a.s.
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Because A’ is monotonic increasing we have, almost surely with respect to
Lebesgue measure, that

g*o’- f, + c * min (g*r-lf + c ").
u

Therefore, as in the deterministic case, g*r-if+ c is the Hamiltonian and the
optimum control value is the one that minimizes the Hamiltonian.

Remark 4.4. From the paper of Davis [3] we know that an optimal admissible
control u* exists if for each (t, x, p) [0, 1] x R R" there is a u0 U such that

p f(t, x, Uo)+C(t, x, u0)= inf (p f(t, x, u)+c(t, x, u)).
u.U

This is the case if f and c are continuous in u and U is compact.

5. Partially observable principle oi optimality. We now consider a partially
observable system, so that at time t the controller has only the information Yt and
only partially observable controls from A; are used. Suppose control u ) is used
to time and control v t is used from time to time 1. Then as in 3 a control
w eAr can be constructed by concatenation. If v is used from time t to 1, the
expected remaining cost at time t, given the information in Y and given that
control u has been used to time t is"

[ 11uv(t)=Ew g(x(1))+ c[dslt

where c c(s, x, v(s, x)). By Love [10, 24.4] this is

E[p’o(U)p, (v)(g(x(1)) /$ c7 ds)10Y,]
F_,[p’o(U )p (v )lY,]

and, because E[p](v)]] 1, the denominator is E[pto(u)lYt]. Now, although
po(U) is t measurable it is not necessaril~y 0y measurable, so we note that, unlike
the completely observable case of 3, quv (t) is not independent of u. Following
Davis and Varaiya [4] write

fuo(t) =E po(u)pt(v) g(x(1))+ c ds

Again using the partial ordering defined in 3, L 1(c, P0) is a complete lattice, so
the infimum

V(u,t)=ox,f,o(t) exists.

E[po(U)lYt] does not depend on v so the partially observable expected remaining
value function is defined to be

[ 11W(t) ox, E,v g(x(1))+ cs ds

V(u, t)/z[o’o(U)[v,].
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Note that the t-measurable function W, (t) does depend on the control u
used up to time t. Theorem 3.1 of [4] then states the following principle of
optimality for the functions W (t)"

THEOREM 5.1. (i) U * g’is optimal ifand only ifforeach t [0, 1] and h > O,

W,,(t)=E, c2" ds[, +E,[W,(t+h)lt].

(ii) In general, ]’or u ,
W(t) c2dsl +E[W(t+h)[].

For the time being we make the following supposition:
HYPoWEss 5.2. There is an optimal control u* .
We indicate in 9 how this condition is removed.. An immediate consequence

of Theorem 5.1(i) is the following result:
COROLLARY 5.3. Write

(t) =E. g(x(1))+ c2" dslt
so that, because u* is optimal,

W.(t)=E,.[(t)[,].
Note that (t) involves only the values of u* beeen t and 1. en
(i) u* is optimal ff and only gE.[N[,] is a (, t, P*) martingale,

where

N c ds + (t).

where

(ii) For general u V and h >= 0,
E..[Nt Idt] E..[E. [NT+I,],],

N= c ds + IV(t).

Proof. (i) If u* is optimal, then because to c* ds is t measurable,

N*=E,. g(x(1))+ c ds[,,

so N is a (, , P..) martingale. It is easily seen that

* s + w.(t),

and the converse follows from Theorem 5.1 (i).
(ii) Suppose that control u* is used to time t, control u is used from time t to
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+ h and control u* is used from time + h to 1. Then, because u* is optimal,

E.,[(t)l%] W,(t)

In effect, on the right hand side of the above inequality we are considering the
nonoptimal control veN], where

v(s,x)={u(s,x), t<s<=t+h,
u*(s,x), t+h<s_-<l.

The result follows by adding E,[I c dslt] to each side.

6. Unitorm boundedness. Suppose u* eN is an optimal control. Then, u*because N, o c ds + ITV(t) is a square integrable martingale there is a
predictable process g* such that I E*(g*)2 ds < oo and

Nt* J* + g* dw*.

Here E* denotes the expectation with respect to the optimal measure Pu* P*, J*
is the constant

fly(o) Wu.(O)

and w* is the Brownian motion on (12, 4,/xu.) defined by

dwt* tr-l(t, x)(dx, fu*(t, x) dt).

The following result is adapted.from [9].
LEMMA 6.1. For any u d,

Ilxll + sup
O=<t_l

where w" is the Brownian
-(t, x)(dx, fu(t, x) dt).O"

Further, for any q 1,

Now

Proof. Under

and

motion on (l),sg,lz,) defined by dw=

E, llxllg <=K(q)<

IOxt xo+ .f ds + cr(s, x dws.

--1Ll M(l+llxlls)

a.s,
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so Ifo f ds[a<=koM’o (1 +[[x[[) ds and the first result follows by Gronwall’s
inequality.

For q > 2,

Ilxll 1 +E, sup o" dw

and

sup cr dw

by 9 of [2]. The result for q 1 follows by H61der’s inequality.
From [9] we quote the following result. The proof is adapted from Lemma 1

of Bene [1] by a time-change argument.
LZMMA 6.2. Suppose w is an n-dimensional Brownian motion on (f, tz and

o" (o’q): [0, 1] f-R" R" is a matrix process such that

aoSo

for some finite constant ko. Then

E exp {A s<up
o___t_-<l

if

rr dw

A < (4kon)-1.
The proofs of the following delicate estimates are adapted from Lemma 1 of

Beneg [1] and Lemma 2.1 of Haussman [9].
LEMMA 6.3. For u, u*e/, and p> 1 near enough 1, p(u)p(u*)-lE

Lp(c, p,) where P* is the measure associated with u*.
Proof. Using the notation of 2,.we have

lfu. pE exp p or-if -(p 1) o’- - (cr-lfu)2

+ (P,,;,,,!)I01(o.-lfu*)2)

(6.1)

E exp ((pr-’f (P 1)o’-’fu*) +’-P2 io (o’-lfu)2

+ (P- 1)2 [012 (o’-lfu*)2

-p(p- 1) (o’-lfU)(o’-lfu*) p (o’-lfu)2

+(P- 1)/ol2
(o’-lfu*)2

_-<E exp (,(ptr-lf -(p- 1)o-lff *)
x exp (p(p- 1)K4(1 + Ilxlll)).
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Now under the measure defined by df/dlx exp (sC(po’-lf" -(p- 1)o’-lf"*),

I0’ fo’ *)osdffs=x(t)- (pf"-(p 1)f ds,

where ff is a Brownian motion. Therefore,

Ix(t){z-2 Iot O.s d + 2p2K5 fot
so by Gronwall’s inequality

Ix(l)[ 2 <-_.(p2K5 + sup
0_-<tl

and the expectation (6.1) is of theform

where

rdw

-(exp K6(p)E exp K7(p)p(p- 1) sup

K7(p) 2K4 exp 2p2Ks.

(1 + IIx I1) d

2) e 2pzK5

From Lemma 6.2 this is finite for p > 1 and p near enough 1.
A result established in almost the same way is the following. Suppose u (h) is a

perturbation of the optimal control u* as in 5. That is, for some u

u(h)(s,x)={ u*(s’x)
u(s,x)

0 < <=s=t and t+h<s=<1,
t<s<-t+h.

LEMMA 6.4. For any p 1 there is an hp >0 such that (p(u(h))p(U*)-1) is
bounded in L (, P .for h ht,.

Pro@ Because f (h) f except when t < s -< + h a calculation similar to
Lemma 6.3 shows that

E*(p(u(h))p(u :)-- 1)p
t+h: t+h:l,E*(pt tu(h))p, t )--1)p

E exp (s(pf"(h)--(p- 1)/"*))

x exp hp(p 1)K(p) sup d#

For any p, choosing h small enough the result follows by Lemma 6.2.
CooA 6.5. For any p 1 and any A ,

E*(IA(p+h(u(h))p+h(u*)-1-1)P)O ash 0.

Then

Proof. Write

qb,(h la+h(u (h ))p+h(u

E*(IACl,t(h )P) <- P*(A)I/P’(E*dpt(h )Pq’)1/q,.
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For small enough h 4h(h)p is uniformly integrable for any p. 4t(h) con-
verges almost surely to 1 so the result follows.

LEMMA 6.6. Suppose g* is the process introduced at the beginning ofthis section
and u W. Then

ds < oo.

Proof. First consider any q, 1 =< q < oo. By 9 of [2]

* (g*) ds _-< const, sup g* dw
0Nt_l

=const. E*sup E* g(x(1))+ c2*dsl, -J*

N const. (4k)q,

where k is the constant of Cost 2.7. Then

ds as

for p > 1 and p near enough 1 by Lemma 6.3.

7. Differentiability.
Remark 7.1. Many of the technical details below could be avoided if we

assumed all processes (f, g*, u etc.) were right continuous.DillicUlties arise
because we obtain certain results for almost all t s [0, I]. However, the corres-
ponding null set in [0, i] will depend on the control used. (This problem is not
resolved in Theorem 4.2 of [4].) Using the metrizability of U and the continuity of
f and c in u we show there is a single null set of [0, i], outside which our results
hold for all controls u s Af.

Because the trajectories y are almost surely continuous, for any rational r,
0 _-< r _-< I, r is countably generated by the sets

{Ai,}, i=1,2,..., say.

Write q3 for the measurable functions {u} from (c, ) to U R such that
Elul < Note that if u Ac then u(t, x) c,. Approximating in each coordinate
by finite linear combinations with rational coefficients of the characteristic func-
tions of the sets A, we see, as in Halmos [8, p. 177], that there is a countable
subset Yg, {u,}= , such that given u , and e >0 there is a ui, such that

Further, for any [0, 1),
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is a countable dense subset of ct. Note that if ujr e r, then, as a function constant
in time, ujr e+h for any => r and h > 0.

For r < < <=s=t+h=<1write

(s, x, ui)= g-(f(s, x, ui)-f(s, x, u*(s, x))+(c(s, x, ui)-c(s, x, u*(s, x))).

Now for each i, j, r the indefinite integral

IOtfA (S,X, ui)dP*ds
ir

has a derivative equal to A,, (t, X, Ui)dP* for almost all t 6[0, 1]. There is,
therefore, a set T = [0, 1] of zero measure such that for t T1

lim
1 [’+hi A6(s, x, ui) dP* ds (t, x, ui) de*

hO t Air

for all i, ], r.
Furthermore, there is a set of zero measure T2 [0, 1] such that for t T2,

h01im t
E*(g)2 ds

exists and equals E*(g)2<, as E*(g)2 is integrable on [0, 1]. Write T=
T1 U T2, so T is of zero measure.

LEMMA 7.2. For all t T, all r and all i, j,

limlftt+hfA fAhO O(s,x, u)a(u*)o’,+h(u,) deds O(t,x, u) de*.
ir

Proof. Because d (s, x, Uir) is s measurable for s >-r and

E[p(u *)lTt+h ] [g to+h(u *)E[[ +h(U *)l.t+h ] Oto+h(u *)

we know that if # T,

Now

lim
1 f’+h IA fA(S, X, Ujr)tOto(U*)p ,+hz *)tu dPds &(t, x, u) dP*

h0 fi "t

for some p > 2 and small enough h. From Corollary 6.5,

Io "h" ’+"" I"tu)pt tu -1 dP* 0
1r

as h 0.



THE OPTIMAL CONTROL 771

We must show the second term above isbounded as h 0. Write u for ujr; then

(iA l lt+h q )
l/q- (s, x, u) ds dP*

<---( i
t+h

fAir ]g*o’--l(fu--fu*)lq ds dR*)1/q
+ - f Ic c ds dP*

t

Because Ic] _-< k the last term above is less than 2k for all h. Now p > 2 implies
q <2, so there is a Pl > 1 such that pq 2. With 1/pl + 1/ql 1 the first term
above is less than

1 ,+h

ds) /qpl

For T both terms are bounded as h 0. The result follows.

8. Partially observable minimum prindple.
LEMMA 8.1. For any [0, 1], any A and any u ,

it+h fA qbpo(U*)p+h(u) dPds >_O,

where, as above, g* tr-a(f-[ *) +(c-c"*).
Proof. We have represented

N*t c ds + l’(t)

as

J* + g* dw*

for a predictable process g* such that

01E*(g*)

2 ds < o.

As in 2, w* is the Brownian motion on (I,/z,.) given by

dw* -(t, x)(dx,-"*(t, x) dr).

Now

N’= c, ds + l(t)

/o’ ;o ds=J*+ g* dw

where w is the Brownian motion on (f,/z) given by

dw r-(t, x)(dx,-[u(t, x) dt).
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Because

rolE, (g,)2 as < oo,

from Lemma 6.6, o g* dw is a square integrable t martingale, so

Substituting in part (ii) of Corollary 5.3 we see that

E, 2 ds CO.

Now

E, ck dslt E[po(U)p+h(u)l]
Because pto(U) is - measurable this is

Therefore,

So almost surely

E[pto(U ,)p,+h(u
Therefore, for any A E ,

it+h Ia Pto(U*)p+h(u)ck dPds >-0.

LEMMA 8.2. For any t T, and rational number r <- and any i, ],

fA O, U Ujr E r.ckt" dP* > where
ir

Proo[. We have noted that for r-< t, Ujr can be considered as an element of
dt+h m perturbation u aV" of the optimal control u* is defined by setting

u(s,x)=fu*(s,x), O<-_s<-_t, and t+h<s<-l,
ujr, < s <-_ + h.

From Lemma 8.1 we have that

it+h f pto(U,)pt+h,tu)rp, dPds >-0.
Air
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Dividing by h and letting h 0, because T we have from Lemma 7.2 that

fA & dP*>--O.

LEMMA 8.3. For t

dP* > O.dpt

Proof. Suppose u W, so that u(t, x) . We can, therefore, find a sequence
u such that lim_,Elu-u =0. Consequently, there is a subsequence
{u (k, r)} {ui} such that limk U (k, r) u (t, x) a.s. and so, because b ’ is continuous
in u, lim 4,tk.u-r) b ’ a.s. By the bounded convergence theorem we can conclude
that

fA & de*--O

for all T and all A, Finally, by the monotone class theorem

(8.1) dp* >_ O

for all T and all A t.
We, therefore, conclude with our main result.
THEOREM 8.4. Suppose u* W is an optimal control and u W. Then there is a

set of zero measure T [0, 1] such that if t

_
T,

E*[g*tr-l(f-f*)+(c-c*)lt]>-O a.s.

Proof. This inequality is just a restatement of (8.1) above.
Remarks 8.5. Therefore, the optimal partially observable control is the one

that minimizes the conditional expectation of the Hamiltonian b’ with respect to
the optimum measure P* and t. The expectation can be with respect to the
original measure P if the Radon-Nikodym derivative is introduced. The left
hand side above then becomes

a.s.

9. Suboptimal controls. Our results so far depend on the existence of an
optimal control u* , (resp. W). The existence of u* enables us to represent the
optimal cost as a stochastic integral with respect to/z,,. We now investigate how
this condition can be removed.

The optimal control problem we consider is the same as that described in 2.
However, we makethe cost completely into a terminal cost by introducing the new
state variable x,+1 and a new independent Brownian motion w,, + on a probabil-
ity space (’,/x’). x,,+l satisfies the stochastic equation

dx,+l c(t, x, u) dt + dWm+l,

x(0)=0.
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The (m + 1) dimensional process (x, xm/l) is defined on the product space
+)(f+, (12’ f, ix). In fact (m + 1) dimensional processes defined on this

augmented space 12/ will be indicated with a +. Therefore, writing x / (x, x,,/l)
we have

where

dx + f+u dt + r+ dw+

f+ (f(t, x, u), c(t, x, u)),

cr
0 1

and (w, w,,,+l). + denotes the space of continuous functions

from [0, 1] to R"+ and[ the o--field generated to time t. The cost can be written
g+(X(1))=Xm+(1)+g(x(1)), and P/ is the probability measure induced on
(cg+, -) by tz +.

Corresponding to a control u 6 (resp. Ac) a measure P+P+ is defined
on+ by putting dP+/dP+ exp + +:o(f,). IfE, denotes expectation with respect to
P+ the expected cost corresponding to u is

E[g+(x(1))]=E c(t,x,u(t,x))dt+W+l(1)+g(x(1))

= cdt+g(x(1))

because c and g are independent of Xm/l and Wm/l(t) is a Brownian motion under
+ is the measure on 12/ induced by Pu+.+ where/.u

Completely observable ease. The expected remaining cost from time t given
and using completely observable controls is defined as

w+(t) A

As before, W/(t) is independent of the control used up to. time t. Note that if there
is an optimal control u*

W+(t) W(t) + c ds.

However, because of the nature of the optimum measure (see Lemma 9.2 below),
this representation is not valid in general.

For W/(t) the principle of optimality becomes"
THEOREM 9.1. (i) U* 6ett is optimal ifand only if W+(t) is a martingaleunder

+

(ii) In general, for u celt W*(t) is a submartingale under i
+

Now W+(t) exists whether or not there is an optimal control u*. For the
completely observable case we shall show first that under quite weak conditions,
even though there may not be an optimal control, there is a measure P* on
under which W+(t) is a martingale. The proof is adapted from Lemma 5.1 of [4],
and we first quote Lemma 3 of [3]:
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LEMMA 9.2. Suppose + is the analogue of the set offunctions introduced in

Definition 2.2, so that if y E /, y" [0, 1] x tff/ R", then, because y has linear
growth, E[exp (y)] 1.

Write

{exp (y): y +}.
en is a weakly compact subset of

L 2(+, +, p+).

Note that if e (see Definition 2.2) (, c)6 +.
THEOREM 9.3. ere is a function H6+ such that (W+(t),t,P*) is a

martingale. Here P* is defined by dP*/dP+= exp (H) and E* denotes expecta-
tion with respect to P*.

+0 E+Proof. Consider a sequence {u,}c such that ,.( )= g tx(1))]
decreases to W+(0)=J*. Now f6+ so p(u,)6 . There is, therefore, a
subsequence also denoted by {u,}, and H6+ such that

weakly in L l(p+) where p* exp [(H)]. Conditional expectations are continu-
ous mappings so

converges to

Writing

and

E+[p*lo%[] exp [s%(H)].

qt,+(t) E+r +’x
we have for any set F E o%;,

fv (W+(t + W+(t)) de* fv (W+(t + h)- W+(t))O, dP+h)-

fp (p,-p.)(W+(t + h)- W+(t)) dP+

+f o. ((t)- w+(t)) dP+

+ o.(W+(t + h)-2(t + h)) dP+

+f o.(2(t + h)-2(t)) dP+.
aF



776 ROBERT J. ELLIOTT

Now the last term is zero because q2 is an [ martingale under P,+..
Because W+(t) <-O +,(t) the third term is nonpositive.

Now W/(t) is a submartingale under each u,, so

W+(t) <-_EL[W+(t + h)[o%-].
+0Consider e > 0; then there is n’ such that tp,.( _-< W/(0) + e for n _-> n’. Therefore

EL[+ (t)] p(O) <- E+.[ W+(t)] + e

so as in [4],

IF p,(tP+(t)-- W+(t)) W+(t)]dP <-_E..[q+. (t)

_-<e ifn_->n’.

Again, because (W/(t + h)- W+(t))IFL there is n" such that if n _->n"

Ir (p.--p)(W+(t + h) W+(t)) dP+ <e.

Therefore, if n > max (n’ n")

IF (W+(t + h) W+(t)) dP* <=e

for arbitrary e, so (W/, t+, P*) is a supermartingale.
However, we know that W/, t+, Pu+) is a submartingale for any u 5/so for

any F ,
IF (W+(t + h W+(t))pto(U,) dP+ >- O.

Using weak convergence in L 1(/, p/) we have that

IF (W+(t + h) W/(t)) dP* >-_ O

so (W, t, P*) is also a submartingale.
Therefore, although the function Hs+ may not be of the form f,+, the

process (W+, t+, P*) is a martingale, where

dP*/dP/ exp sc:,(H).

COROLLARY 9.4. Even though them may not be an optimal control we have the
following representations in terms of the function H d+"

Under P*,

W+(t) J* + g* dw*,

where w* is the Brownian motion on (1+, Ix *) defined by dw* (o’+)-l(dx+-Hdt)
and the measure Ix* is the measure on 1/ induced by P*.
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Note that in general for this optimal measure we cannot separate out the
integral part of the cost, and the integrand g* is .now a predictable (m + 1)
dimensional stochastic process. The minimum principle has the following form.

THEOREM 9.5. At any time a position (t, x) the completely observable optimal
control should endeavour to minimize the Hamiltonian g*(r+)-l([u, c ).

Proof. For a general control u 5t, W+(t) is a submartingale and we can
obtain its representation under P+ as

Again

W+(t) J* + g* dw

+ g*(cr+)-((f",c")-H)ds.

o’g*(r+)-l((f

u, cU)-H) ds

is the unique predictable increasing process in the Doob-Meyer decomposition
so H is a process such that

g*(r+)-lH<= inf g*(r+)-(f, c) a.s.

If the Hamiltonian g*r-l(f, c) has a minimum for each (t, x), that is f
there is a measurable u*(t, x) such that

(i) u*(t,. is t measurable,
(ii) u*(. x). is Lebe.sgue measurable, and
(iii) g*(r:)-’ u* , +-1(f ,c )_-<g (r) H,

then u* is an optimal control.
(See Davis [3].)

Partially olservalle ease. Let us now turn to the partially observable case.
After transferring the cost into a completely terminal cost, the partially observa-
ble cost function, given that control u eW has been used to time and given Act, is
defined to be

ff’+(t) oxt__. E+[g+(x(1))l’]"

Consider a sequence {u,}c such that qS (0) E+ /
,,l_g (x(1))] decreases to the

partially observable minimum cost if’/(0). Note that because only controls in
c are used W/(0) =< if’+(0). Again f,+, + so p(u,) . There is, therefore,

a subsequence, denoted by {u,,}, andH+ such that p(u,)--> weakly in
L l(e/), where t5 exp [(H)]. Write/5 for the measure defined by d/dP
and E for the expectation with respect to P. The following analogue of Corollary
5.3(ii) then holds"

1 +hLZMMA 9.6. For any [0, 1], h > 0 and u 6,t

/[g+(x 1))[ Yt _<-/[Eu+[/.[g+(x(1)) t+h]-,]0,].

Proof. Suppose the above inequality were not true. Then there would be a
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a;’+h and a set A 6 t of positive measure such thatU ,,

fa g+(x(1))dP> fA g+(x( -.t ,+h1))POPt (U dP.

By considering a modified sequence of u, , which were all equal to u for
<s =< + h and x cA, we could approximate a quantity strictly smaller than

if’/(0) using partially observable controls. This contradicts the definition of
if’/(0), so the result is established.

Remarks 9.7. All the computations of 6, 7 and 8 then go through, with the
function p(u*) replaced by/5. The partially observable minimum principle takes
the following form.

TI-IZORZ 9.8./[g+(x (1))lt] is a square integrable martingale, so there is
a predictable process , such that

/[g+(x(1))[] Y+

Here ]= /[g+(x (1))], # is the Brownian motion on (l)+,/2) defined by

d (r+)-a(dx+-Hdt)

and/2 is the measure on f+ induced by/5.
At any time and position x the optimal partially observable control should

endeavour to minimize the Hamiltonian

/[g(r+)-(fu, cU)l].
Acknowledgment. The author is indebted to Professors Rishel and Varaiya

for pointing out an error in an earlier version of this work.
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CONVERGENCE CONDITIONS FOR
MODEL*

A TYPE OF ALGORITHM

GERARD G. L. MEYER’

Abstract. This paper is devoted to the study of convergence conditions for the monotone and
autonomous iterative algorithm model. Two convergence conditions are presented, and it is shown
that (i) they are not comparable and (ii) they contain the known convergence conditions for the model.
The presentation of the results is facilitated by the introduction of the concept of extended characteris-
tic set of an iterative procedure.

Introduction. The theory of iterative algorithms has been developed for
essentially four purposes" (i) to streamline the analysis of algorithms [1]-[3],
[8]-[11]; (ii) to obtain methods for implementing conceptual algorithms [4], [7],
[9]; (iii) to synthesize algorithms satisfying a priori given construction constraints;
and (iv) to classify algorithms into families having common properties [5], [8].

This paper is devoted to a specific part of the theory of iterative algorithms,
namely the study of convergence conditions for the monotone and autonomous
iterative algorithm model. Two convergence conditions are presented, and it is
shown that (i) they are not comparable and (ii) they contain the known con-
vergence conditions for the model under investigation. The presentation of the
results is facilitated by the introduction of the new concept of extended charac-
teristic set. It is proved that the previously known convergence conditions involve
the extended characteristic set and that one of the new convergence conditions
involves only the characteristic set [6].

The paper’s first part contains the model and the definition of its characteris-
tic and extended cha.racteristic sets. The convergence conditions for the model are
presented in the second part. The comparison between the new convergence
conditions and the classical ones is carried out in the third and last part of the
paper.

Algorithm model. The algorithm model under investigation is defined in the
most general space compatible with its use. Given a normal topological space - in
which points are closed and a sequentially closed subset T of -, let A (.) be a map
from T into all the nonempty subsets of T, and let c (.) be a map from T into the
reals E.

1. ALGORITHM. Let z0 be a given point in T.
Step O. Set 0.
Step 1.. Pick a point x in A (z).
Step 2. If c(x)>= c(z), stop; otherwsie, set z+ x, set + 1, and go to

Step 1.
The algorithm model may generate finite and infinite sequences. Therefore,

two types of properties of 1 must be characterized, namely the finite properties of
1 and the asymptotic properties of 1.

* Received by the editors November 4, 1975, and in final revised form November 19, 1976.
t Electrical Engineering Department, Johns Hopkins University, Baltimore, Maryland 21218.
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2. DEFINITION. Let F be the set of all last points of all finite sequences
generated by 1, and let Q be the set of all cluster points of all infinite sequences
generated by 1.

The set F is easily obtained from the maps A (.) and c(. ):

F={z T[c(x)>=c(z) for at least one x in A(z)}.
On the other hand, the set Q is more elusive. Instead of trying to obtain Q exactly,
which may not be possible, one tries to obtain tipper bounds for Q.

The sets F and Q are not enough to allow the analysis of 1. One needs a set
which in some sense is linked to the asymptotic properties of 1 but which may also
be expressed as a function of the maps A (.) and c(. ).

3. DEFINITION. The extended characteristic set Fe of I is the set of all points
z of T such that for each scalar > 0, there exists at least one point x in A (z),
which may depend on z and 8 such that

The complement of a set D with respect to T is denoted by Dc; i.e.,

D ={z e TIzeD}.
The set F plays an important role in the theory of algorithm models; to remove
any misunderstanding, ,the expression for its complement with respect to T is also
given:

Fe {z Tic (x) <- c (z) (z), for all x in A (z) and for some 8 (z) > 0}.

Convergelaee eonflitions. The convergence conditions for the model must be
stated in a way which allows for variations in their strength. In order to achieve this
purpose, a subset D of T is introduced.

4. HYPOTHESS. If Z belongs to D, there exist a neighborhood N(z) of z,
8(z) >0, and h(z) such that for all x’ in A(z’) and for all z’ in N(z),

and

(i) c (x’) 4- t (z) c (z’)

(ii) A (z) c (z’).

Note that if the map c (.) is lower semi-continuous on D, then given z in D
there exist A (z) and a neighborhood N(z) of z such that (ii) of Hypothesis 4 is
satisfied.

5. HYPOTHESS. (i) If Z belongs to D, there exists a neighborhood N(z) of z
such that

c(x’)<c(z)

for all x’ in A (z’) and for all z’ in N(z);
(ii) The map c(. is lower semi-continuous on Dc.
The first set of sufficient conditions (Hypothesis 4) is essentially that given by

Polak [9]. Hypothesis 4 generalizes the Polak conditions in that c(. is not
required to be continuous on D or to be bounded from below on D. The
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requirements on c (.), i.e., bounded from below on at least one neighborhood of z
for every z inDc, is therefore a local requirement instead of a global requirement.

6. THEOREM. If Hypothesis 4 is satisfied, then

and

(i) D_Fe

(ii) D
___
Q.

Proof. (i) If z is in Dc, there exists a t (z) > 0 such that

c(x)<-c(z)-(z)

for all x in A (z), and the definition of Fe implies immediately that z is in F.
(ii) Let z* be a cluster point of an infinite sequence {z} generated by 1. There

exists K, an infinite subset of the integers, such that the subsequence {z}g
converges to z*. Assume that z* is in D and that (i) of 4 is satisfied. Then there
exist N(z*) and t (z*) > 0 such that

c(x’)<-_c(z’)-(z*)

for all x’ in A (z’) and for all z’ in N(z*). It follows that there exists k such that z is
in N(z*) for all -> k, in K; therefore,

C(Zi+I) C(Zi)- (Z*)

for all i>=k, in K. The sequence {c(zi)} is monotonically decreasing; one
concludes that the sequence {c(zi)} is unbounded from below.

(iii) If Hypothesis 4 is satisfied and if a point z* in Q is not in D, then there
exists a subsequence {z}: converging to z* such that the subsequence {c(z)}r
"converges" to -oo. Part (ii) of Hypothesis 4 implies that there exist A (z*) and
N(z*) such that , (z *) <-_ c (z’)

for all z’ in N(z*). It follows that the subsequence {c (z)}: is bounded from below,
which is a contradiction. One concludes that if Hypothesis 4 is satisfied, then
D_Q.

Hypothesis 4 involves the extended characteristic set. If D does not contain
Fe, the hypothesis cannot be satisfied. In other words, Hypothesis 4 does not allow
,apper bounds for O which are smaller than Fe. This is an important drawback
when the set Fe is much larger than the set F. Hypothesis 5 does not involve the set

Fe and may therefore be used, whenever applicable, to obtain better upper
bounds on O. Note that if Hypothesis 4 is satisfied with D Fe, then every point z
in Fe possesses a neighborhood N(x) contained in F; therefore, Fe must be
closed.

7. THEOREM. If Hypothesis 5 is satisfied, then

(i) D
_
F

and

(ii) D
_
O.
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Proof. (i) If z is in Dc, then
c(x’)<c(z)

for all x’ in A (z), and the definition of F implies immediately that z is in F.
(ii) Let z* be a cluster point of an infinite sequence {z} generated by 1. There

exists K, an infinite subset of the integers, such that the subsequence {z}g
converges to z*. Assume that z* is in D. Part (i) of 5 implies that there exists a
neighborhood N(z*) of z* such that

c(x’)<c(z*)
for all x’ in A (z’) and for all z’ in N(z*). It follows that there exists k such that

c(z,/)<c(z*)

for all -> k, in K. Part (ii) of 5 and the monotonicity of {c (z)} imply that

c(z*)<-_c(z,)

for all i. This contradicts the fact just proved, i.e., that

c(z,/)<c(z*)

for all => k, in K; therefore, z* cannot be in D.
Relations between convergence conditions. This section consists of two parts.

The first one shows, with the help of two simple examples, that the conditions of
convergence presented in this paper are not comparable: Hypothesis 4 does not
imply and is not implied by Hypothesis 5. The second part of this section is
devoted to the comparison between Hypotheses 4 and 5 and the classical
convergence conditions proposed by Polak, Polyak, and Zangwill. One notes that
Hypothesis 4 is a generalization of the known convergence conditions, but that
Hypothesis 5 is of a different nature. It is the only convergence condition which
may allow one to obtain upper bounds for O smaller than Fe.

8. Example. Let -=U, let T= {z EIz->0}, and let A(. and c(. be
defined as follows:

[;2)
A(z)=

[z-4;z-3),
0-<z=<5;
5<z;

z, 0=<z <2;
c(z)= 2, 2-<z-<4;

z, 4<z;

then F=[0; 2] and Fe =[0; 4]. Pick D =[0; 2]. Hypothesis 5 is satisfied but
Hypothesis 4 is not satisfied.

9. Example. Let =E, let T= {z e EIz =>0}, and let A(. and c(. be
defined as follows:

A (z)
[0.25; 0.5],

[[z/4;z/2],
z=10; {1, z=10"
z 10;

c(z)
z, z # 10;

then F Fe {0}. Pick D {0}. Hypothesis 4 is satisfied but Hypothesis 5 is not
satisfied.
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The classical conditions of convergence are repeated below to facilitate their
comparison with Hypotheses 4 and 5.

10. HYPOTHESIS (Polyak). (i) A (z) contains one and only one point;
(ii) c(A (z)) is upper semi-continuous on T;

(iii) c(. is continuous on T.
11. HYPOTHESIS (Polak). (i) Identical to (i) of Hypothesis 4;
(ii) c(. is either continuous on D or bounded from below on T.
12. HYPOTHESIS (Zangwill). (i) T is sequentially compact;
(ii) c(. is continuous on T;

(iii) A (.) is closed on D i.e., if {Zi converges to z in D, {Yi} converges to y
in T, and y is in A (z) for all i, then y belongs to A(z).

Polyak’s theorem (Thm. 1, p. 865 of [10])states that Hypothesis 10 implies that
F_ Q. One notes that if Hypothesis 10 is satisfied, then F=F; therefore,
Polyak’s theorem is a special case of Theorem 6 with D F. Polak’s theorem
(Thm. 10, p. 15 of [9]) states that Hypothesis 11 implies that D Q; clearly this
theorem is a special case of Theorem 6. The case of Zangwill’s theorem is slightly
more complicated. Zangwill states (Convergence Theorem A, p. 91 of [11]) that if
Hypothesis 12 is satisfied and if D F, then D Q. One can prove that if
Hypothesis 12 is satisfied and if D F, thenF Fe therefore, Zangwill’s theorem
is also a special case of Theorem 6 with D Fe.

Note that if one picks D [0; 2], then Hypotheses 10, 11, and 12 are not
satisfied for Example 8.

Although Hypothesis 4 does not imply and is not implied by Hypothesis 5, it
is possible to exhibit a relation between 4 and 5 by strengthening the assumptions
on c(. ). In particular, if (ii) of Hypothesis 4 is replaced by the assumption that
c(. is continuous, then Hypothesis 4 (modified) implies Hypothesis 5. Thus, in
the case of c(. being continuous, Hypothesis 11 implies Hypothesis 5. Further-
more, since Hypothesis 12 together with the assumption that DF implies
Hypothesis 11 ( [9, p. 16]), it follows that Hypothesis 12 with D

_
F also implies

Hypothesis 5. Finally, Hypothesis 10 also implies Hypothesis 5. One concludes
that when c (.) is continuous, Hypothesis 5 is the weakest convergence condition
available.
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IDENTIFIABILITY OF SPATIALLY-VARYING AND CONSTANT
PARAMETERS IN DISTRIBUTED SYSTEMS OF PARABOLIC TYPE*

S. KITAMURAf AND S. NAKAGIRI

Abstract. For the parameter identification process to minimize the difference between the system
output and the model output, this paper discusses the identifiability of spatially-varying and constant
parameters of the system described by a linear, 1-dimensional, parabolic partial differential equation.
Only the parameters in the system equation (not in the boundary condition) are assumed to be
unknown and the identifiability in the deterministic sense is treated. For both cases of distributed and
pointwise measurements, several results for the parameter identifiability and nonidentifiability are
obtained. As a result, the identifiability conditions depend on the profile of the st/te of the model for
the case of the distributed measurement, while, for the case of the pointwise measurement, such
conditions depend on the position of a detector and the form of initial or input functions. The results
are represented in terms of a priori known quantities and are easily applied to practical problems.

1. Introduction. Recently, the parameter identification problem of distri-
buted systems has been of great interest. In order to identify (or to estimate) the
parameters in distributed systems, under the assumption of a given form of system
equations, the method to minimize the difference between the system output and
the model output is normally used. In many cases, this formulation leads to an
optimization problem and many techniques for this purpose have been proposed
[6], [10]. In this process,, however, there arises the question of whether the
parameters in the mathematical model coincide with those in the real system when
the difference between the outputs of both systems vanishes or, more generally,
the appropriately defined performance index takes the minimum value. Even for
lumped systems, this problem comes into question and some results have been
obtained [1, p. 43] [2].

For distributed systems, however, the concept of the transfer function is
generally not so effective as in the case of lumped systems, and further the
parameters in such systems are often functions of spatial variables. The parameter
identifiability problem is, therefore, more important for distributed systems, not
only in obtaining the mathematical model of controlled objects but in the
experimental determination of physical constants in laboratory. The parameter
identifiability problem could be formulated as the one-to-one property of the
inverse problem, that is, the one-to-one property of the mapping from the space of
system outputs to the space of parameters. However, the uniqueness of such a
.mapping apparently does not hold. Chavent [3, p. 100] considered this problem
for the systems described by elliptic and parabolic partial differential equations
and obtained a sufficient condition (unicity in his terminology) only for the case of
distributed measurements. He gave also some examples showing the possibility of
the appearance of an unbounded solution in the estimation process. Reissenweber
[8, p. 76] treated this problem by the sensitivity function for the system with
constant parameters. His method, however, requires the parameter value which is
a priori unknown for estimators. Seinfeld [9] referred to the relation between the

* Received by the editors April 2, 1976, and in revised form December 14, 1976.
t Department of Instrumentation Engineering, Kobe University, Kobe, Japan. Now at Institut A

f/it Mechanik, Universitit Stuttgart, Stuttgart, F. R. Germany.
t Department of Applied Mathematics, Faculty of Engineering, Kobe University, Kobe, Japan.

785



786 S. KITAMURA AND S. NAKAGIRI

observability and the identifiability but such a relation has not yet been clarified
completely.

In this paper, the parameter identifiability problems for the system described
by a linear parabolic partial differential equation on the 1-dimensional spatial
domain are treated. It is assumed that only the functional and constant parameters
in the system equation are unknown and that the measurement is performed
without deterministic and stochastic errors. The definition of the parameter
identifiability is given in a different form from that defined for lumped systems [ 1].
Since the identifiability conditions depend so much on the characteristic of
measurement systems as the typical form from the mathematical and practical
standpoints, two cases of the distributed and pointwise measurements are studied.
Under these formulations, several conditions for the parameter identifiability
and nonidentifiability are obtained. The conditions are represented in terms of
the known quantities only, and are easily interpreted and applied to practical
identification process.

2. Statement of the problem. Figure 1 shows a conventional system for the
parameter identification with a model. In the following we study the uniqueness of
the estimated parameters by the scheme in Fig 1, where the system is a distributed
system described by a parabolic partial differential equation.

Let the system be described by

a(x) +b(x)u+f(x,t), x e (0, 1) t>0,
Ot

where u u (x, t) is a scalar state variable, f(x, t) a forced input function. Bound-
ary and initial conditions are given as

(2)

On
aoU(t, 0)+ (1-ao)-;--(t, 0)= go(t),

On
OZlU(t, 1)+(1--c1)2---(t, 1) gl(t),

(3) u(x, O)= Uo(X)

0_--<ao--< 1,

f(x,t)

g(t),g,_(t)

u(x,t)

Y
System

0

Model l
Ym

ttm(X, l)

FIG. 1. Parameter identification by using a model
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where Ou/On denotes a derivative of u in the outward normal direction of the
boundary (0, 1).

The measurement of the system state is made and the output y of the
measurement system is written by

(4) y(xp, t)=Cu(x,t), xp lp _c [0, 1], t->0,

where C is an operator with the form depending on the characteristics of the
sensor and the equipment followed to the sensor, fp denotes a subspace of [0, 1],
where the output variable y is defined. The operator C is a linear bounded,
time-invariant operator from C([0, 1] x [0, oo)) to C(12p x [0, oo)).

Throughout this paper we assume that:
(i) the form of equation (1) is a priori known, but parameters a (x) and b (x)

are unknown except that a (x) > 0, a (.) e C2[0, 1] and b (.) e Ca[0, 1],
(ii) parameters in the boundary condition are a priori known,
(iii) operator C is a priori known, and
(iv) input functions/( )e CI([0, 1] x [0, )) and go(" ), ga(" )e C2[0, co)can

be measured, i.e., are known functions.
Under the assumptions (i) and (iv), a unique solution of (1) and (2) exists for a

given u0(" e C[0, 1], and this solution satisfies u (., t) e C2[0, 1] for all > 0 and
u (x, )e C1[0, oo) for all x e [0, 1][5].

From the practical point of view, assumption (i) can be considered as realistic,
but assumption (ii), (iii) and (iv) might not be. For identification of such terms as
the boundary data, measurement operator, and input functions, we will require
different formulations and approaches.

Now the model can be described by

(5)
Ou,, O( OUm
Ot 0-- am (x)--x /+ bm (x)u,, +f(x, t), x (0, 1), t > O,

(6) y,, (Xp, t) Cu,, (x, t), Xp lip, >- O,

where Urn(X, t) is the state of the model and the subscript rn denotes model
quantities. The boundary condition for (5) takes the same form as in (2). The
knowledge of the initial condition for (5), however, depends on the form of
operator C (see next two sections).

DEFINITION. We shall call an unknown parameter identifiable if it can be
determined uniquely in all points of its domain by using the input-output relation
of the system and the input-output data.

That is, in the following, the parameters a(x) and/or b(x) are said to be
identifiable if, for all x [0, 1 ], a (x) am (x) and/or b (x) b., (x) follow uniquely
from the relation e(Xp, t) y(Xp, t)--ym(Xp, t) 0 for all _->0 and all Xp 12p. The
condition e (Xp, t) 0 for all Xp lp and all t _-> 0 means the following: normally, in
the identification process in Fig. 1, the parameters in the model are adjusted by
some proper algorithm so that the difference e goes to zero in C(I)p [0, c)). The
identifiability problem of parameters occurs at the final stage of such an algorithm,
that is, at e 0 in C(p [0, az)). Note here that the information which is usable to
check th identifiability defined above is not the true values of unknown parame-
ters but the measured output and the quantities concerning the model.
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Since the identifiability property depends greatly on the form of the operator
C, the cases of distributed and pointwise measurements are treated in two sections
separately.

3. The case o| distributed measurement. In this section, it is assumed that
u (x, t) is measured at all points of x [0, 1] and => 0; hence, we may set C L
where I denotes the identity operator from C([0, 1] [0, o)) onto itself. We may
thus assume, without loss of generality, that the initial function Uo(X) is known.
Defining the difference variable e(x, t)= u (x, t)- u,, (x, t), we have the following
lemma.

LEMMA 1. e (x, t) 0 ]’or all x [0, 1] and all >- 0 holds if and only if
O [(a(x)-am(X)) Onto ](7) 0-- --x (X, t) +(b(x)-bm(x))Um(X, t)=0

]’or all x (0, 1) and all > O.
Proof. See Appendix A.

3.1. Identifiability oi a(x). In the following it is assumed that e(x, t) 0 for
all x [0, 1] and all t-> 0, and b(x) is known or b(x)= O.

Remark 1. All the results in 3 are represented in terms of the state of the
model Urn. However, Um may be replaced by the state of the system u, since e 0.

Remark 2. The condition e 0 for all Xp [fp] and all -> 0 in 3 and 4
may be weakened by some suitable property of the solution, for example,
analyticity.

(8)

(9)

and

(lO)

Let us define

E(t) x [0, 1][--x (x, t) 0

G(t) [0, 1]-E(t).

RESULa" 1. Parameter a (x) is identifiable if there exists some t > 0 such that

E(tl) #

G(tl) [0, 1]

where is an empty set and G is the closure of G. The condition (10) especially
may be replaced by

(11) meas E(tl) 0

where meas E denotes the Lebesgue measure of E.
Proof. By the assumption we obtain from (7)

O[ Ou,.](12) 0-- q(x)--x.l--O forallx (0, 1)andallt>O

where q (x a (x am (x ), and further

tgUm
q (x)"x C (t)
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where c(t) is a function of t. By condition (9) there exists a tl such that c(t)= O.
From condition (10) the set {x [0, 1]lq(x)= 0} is dense in [0, 1]. Here we note
q(x) is a continuous function on [0, 1] (assumption in 2). Thus q(x)= 0 for all
x [0, 1], i.e., a(x) is identifiable. Condition (11) implies meas G(tl) 1, and
consequently, meas G(tl)= 1. This means G(tl)= [0, 1]. To show this, assume
[0, 1]-G(tl)# . Then, there exists an interval J such that [0, 1]-G(tl)J.
From [0,1]G(tl)UJ, we obtain l=>measG(tl)+measJ, which implies
meas J 0. This is a contradiction. Q.E.D.

Now another condition is given for the identifiability of a (x).
RESULT 2. a (x is identifiable if

(13) E(t) forallt>O

and

(14) (.J G(t) [0, 1].
t>0

Condition (14) especially may be replaced by

(15) meas (t>o E(t)) =0
Proof. By condition (13) and Lemma 1, we obtain q(x)(Ou,/Ox)(x, t) 0 for

all x e (0, 1) and all t >0, where q(x) a (x a,, (x ). Set M= U,>0 G(t). For any
x e M, there exists some t(x) > 0 such that x G(t), i.e., (8u,/8x)(x, t) O. Thus,
q (x) 0 for all x e M, and from condition (14) and the continuity for q (x) it follows
that q (x) 0 for all x e [0, 1]. Moreover, condition (15) implies condition (14) as
in Result 1. Q.E.D.

Note that condition (13) is stricter than (9), while condition (14) weaker than
(10). The following Result 3 is a counterpart to Result 2, and Results 4 and 5 are
counterparts to Result 1.

RESULT 3. a(x) is notidentifiable if I..Jt>o G(t) is notdense in [0, 1], especially
if >o E(t) includes an interval.

Proof. We show that a (Xo) # a,, (Xo) for some Xo (0, 1) even if e (x, t) 0 for
all x [0, 1] and all t_->0 when Ut>o G(t) is not dense in [0, 1]. By the first
condition, there exists an interval J satisfying [0, 1]- I-Jt>o G(t) J. Take Xo and
e > 0 such that J (Xo e, Xo + e), and let r(x) be a twice continuously ditterenti-
able function in [0, 1] with support in (Xo e, Xo + e) and r(xo) O. Assume here
a (x) a, (x) + r(x). If x (Xo e, Xo + e ), then Ou,/Ox 0 for all > 0 since

x Jc[0, 1]- U G(t)c[0, 1]- (.J G(t)= (q E(t)
t>0 t>0 t>0

and if x(xo-e, xo+e), then (a(x)-a,,(x))(Ou,/Ox)=O for all x (0, 1) and all
> 0 since r(x) 0. Thus, by Lemma 1 e(x, t) 0 for alI x [0, 1] and all t _-> 0, and

a(x) is not identifiable. Moreover, if fq>o E(t) includes an interval, Ut>o G(t) is
not dense in [0, 1]. Q.E.D.
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RESULT 4. IrE(t1)= (J ]’or some tl, then

(16) a(x)-a.(x)=(a(xo)-a.,(xo))exp Ox
d

ou____(s t)
Ox

for any x and Xo [0, 1].
Proof. By the assumption, (12) holds in this case, i.e.,

OUm 02Urn-x q’(x) +
Ox

q(x) =0"

Equation (16) is a solution of this differential equation under the condition
(Ou.ffOx)(x, t) : O. Q.E.D.

Remark 3. Result 4 does not necessarily imply the nonidentifiability of
parameter a(x). However, if E(t)= for all _->0, then a(x) is not identifiable as
long as a (Xo) a, (Xo) for an arbitrary point Xo [0, 1]. This means that a priori
knowledge of a (x) is required for the identification of a (x).

RESULT 5. If E(tl) for some t >0 and if u,(x, t) is represented as
V,(X)Wm(t), then a(x) is not identifiable (refer to Result 8 also).

Proof. E(tl) Q implies that wm(tl)O and (Ov,,ffOx)(x)#O for any x
[0, 1]. Let a(x) am (x) + 1/(Ov,,, (x)/Ox), then a(x) a,,, (x) for all x 6 [0, 1], while

(a(x)-am(X))w.,(t) Win(t)

for all x 6 [0, 1] and => 0. Thus,-- {(a(x)-Ox

Ox

for all > 0 and, from Lemma 1, e(x, t) 0 for all x 6 [0, 1] and all -> 0. Thus, a(x)
is not identifiable. Q.E.D.

Interpretations. Results 1 and 2 both require, roughly speaking, the existence
of at most countably many peaks or valleys in the profile of u,, (or u) for the
identifiability of a (x), when e becomes identically zero in Fig. 1. This condition is
very easily understood and applied to practical processes. Actually, if the condi-
tions in Result 1 or 2 are not satisfied, we can construct, as below, simple systems
which are not identifiable.

Example 1. Let us assume that b(x)= 0 and a(x) is a priori known to be
constant. Take in equations (1)-(3)

f(x, t) d(t)x + d(t), d/at,

u(O,t)=d(t), u(1, t)=c(t)+d(t),

u (x, O) CoX + do,

where c(t) and d (t) are continuously ditterentiable functions with a definite sign,
and c(0)= Co, d(0)= do. Then, the solution of (5) is always given by

u,(x, t)=c(t)x +d(t)
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whatever positive constant value the parameter am (x) takes. Thus, a(x) is not
identifiable. Note that E(t) for all ->_ 0 in this example and that Result 5 does
not apply here too.

On the other hand, Result 3 shows that, roughly speaking, the parameter
a (x) is not identifiable in the spatial interval contained in t>0 E(t). This becomes
rather important when the distributed system is approximated by the lumped
system to perform numerical computations. For example, in many cases, the
normal finite-difference approximation causes OUm/OX 0 to hold in the finite
spatial interval even if the true solution of the original distributed system has a
zero of OUm/OX at only one point. Such an example is given below.

Example 2. Consider the system

a(x) a(x) e
Ot Ox

On
u(0, t)=0,

(18) u(x, 0)= const. (0).

The model of (5) is used with b(x)= 0 and f(x, t)= 0, and boundary and initial
conditions the same as in (18). The parameter am is to be time-invariant during the
identification process and is adjusted by using Lyapunov’s method so as to make
e u u,, tend to zero. If a,, (x, t) satisfies

(19) KOa___m_+ Oe Ou____e_m 0; K: positive constant,
Ot Ox Ox

and if the Result 2 holds, then

(20) lie (., t)[[ and [la,, (’, t)- a (-)ILL2 0 as

hold for arbitrary e(x, 0) and am (x, 0) (see Appendix B). Figure 2 is a numerical
result. Equations (17), (19) and the equation of the model are approximated by
the finite-difference method with 20 divisions of [0, i] and with time-step 0.005.
Figure 2 is obtained for u(x, 0)= 1.5, a,, (x, 0)= 0.5 and K 1. It is clear that
am(X, t) approaches the true value a(x) except in the domain containing x 1.
This is caused by the fact that, due to the finite-difference, OUm/OX 0 holds not
only at the point x 1 but in the interval J (0.95,1), so the parameter a(x) is not
Identifiable in J according to Result 3. Namely, a(x) in (17) becomes not
identifiable in the process of numerical computations although it is mathemati-
cally identifiable in the original system.

3.2. Identifiability of b (x). It is assumed that a (x) is known or a (x) O, and
that e(x, t) 0 for all x [0, 1] and all t -> O. Let us define

F(t) {x 6 [0, 1]lUm (X, t)
(21)

H(t) [0, 1]- F(t).

RESULT 6. b (x is identifiable if and only if
(22) L.I H(t)=[0, 1].

t>0
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a,,(x,t)

1.0

0.5

o.o

t=0

FIG. 2. Numerical result--identification o[a(x

b (x) is especially identifiable if

meas (0 F(t)) 0

and not identifiable if (3,>0 F(t) includes an interval.
Proof. By the assumption and Lemma 1, e(x,t)=O if and only if

(b(x)-bm(x))Um(X, t)=0. Sufficiency of the statement follows from condition
(22). Necessity follows by proceeding similarly as in the proof of Result 3. The
latter statement of the result is self-evident. Q.E.D.

3.3. Identitialility oi a(x) and b(x). In this case, the known quantity is
u,,(x, t) only, while the unknowns are a(x) and b(x). Fairly restrictive conditions
will be required for the identifiability of both parameters.

REStL 7. I]’ the ]’unctions u,, (x, t), (OUm/OX)(X, t) and (02Um/OX2)(x, t) are
linearly independent as functions of on a dense subset in [0, 1 ], then a (x and b (x
are simultaneously identifiable.

ProoL By setting q(x)=a(x)-a,n(x) and q2(x)=b(x)-b,,(x), we obtain
from (7)

02Urn OU
(23) q,(x)

Ox 2 (x, t)+q(x)---x (X, t)+q2(X)Um(X, t)=0
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for all x (0, 1) and all t >0. From the assumption of linear independence,
ql(x)=q(x)=qE(X)=O on some dense set in [0, 1], and again by continuity,
q(x) q2(x) 0 for all x [0, 1]. Q.E.D.

For linear independence of the three functions in Result 7, the nonzero input
function f(x, t) or gi(t) (i 0, 1) will probably be required. The linear indepen-
dence of functions may be examined by such means like the Wronskian matrix.

For the nonidentifiability of a(x) and b(x), Results 3 and 6 apply. As an
extension of Result 5, let us consider the case that a solution u,, (or u) is
represented as a product of a function of x by a function of t. Such a case, for
example, occurs when the initial function Uo(X) and the input function f(x, t)=
f(x) (gl(t) gE(t) 0) are given by an eigenfunction of Sturm-Liouville’s problem
as follows:

-x a x ---x ]
+ b, x ,,,, O,

ao,(O) (1 Oo)-7. (0) O,
ax

1(1) + (1 --c,)--7--(1)= O.
ax

The steady state is a special case of this class, where the steady state u,(x, t)=
u,s(x) is defined by (2) and (5) with

Ou___._= O, f(x, t) =f(x) and gi(t) const. (i O, 1).
Ot

In that case we hzve the following.
RESULT 8. If U, (X, t) V, (X)W, (t), then a (x) and b (x) are not simultane-

ously identifiable. This statement holds especially at the steady state.

Proof. For any function v, (x) which is twice continuously differentiable, we
can select nonzero functions q(x) and q2(x) which satisfy the following equation:

"X ql(X)’-x (X) +q2(X)Vm(X)=O forallx (0, 1).

Multiplication by w, (t) yields

0-- q(x) (x, t) +q2(x)u(x, t)=0

for all x (0, 1) and all > 0. Since ql(X) and q2(x) are nonzero, a (x) and b (x) are
not simultaneously identifiable from Lemma 1. Q.E.D.

The above result implies, for example, in the case of the steady state, that it is
not sufficient to consider only the difference e for the identification of both a (x)
and b (x). However, if we have an a priori knowledge that shows a (x) and b (x) to
be constant, the following result is obtained.

RESULT 9. Let a (x and b (x be constant. Parameters a and b are identifiable
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if one of the following conditions is satisfied.
(i) There exists Xoe(O, 1) ]’or which Um(XO, t) and (02u,,/Ox2)(Xo, t) are

linearly independent as functions of t.
(ii) There exist Xl, x2e (0, 1) and ta >0 such that

and

Um(Xl, tl)--O,

Um (X2, tl) yS O, 02--U-m (X2, tl) O.
c3X 2

Further, in the case of the steady state, parameters a and b are identifiable if there
exists Xo (0, 1) such that

Ums (XO) 0 and f(Xo) O.

Proof. The first two results follow from Result 7 and (23). The last statement
is proved as follows. The model equation

and (7) yield

d--- a,,, dX (x) +bmums(X)+f(x)=O

(bmq a,,,q2)u,,s (x q if(X) O.

By the assumption, we have directly q 0. Since f(Xo) O, urns (x) O. Then, we
have Um(X) 0 at some point Xl, which implies q2 0 Q.E.D.

4. The case of pointwise measurement. In this section we consider the case
of a pointwise measurement, i.e., the measured output y is represented by the
following equation

(24) y (t) Cu (x, t) f01 6(x-xp)u(x, t) dx U(Xp, t)

where 6 is the Dirac function and xp denotes the position of a detector. Since the
state u (x, t) is measured only at one point in the spatial domain, we understand
intuitively that it is impossible to determine uniquely a (x) and b (x) as functions of
the spatial variable. Actually, we can easily construct an example which is not
identifiable. Hence, throughout this section, both a (x) and b (x) are assumed to be
constant.

First, we give a lemma concerning the eigenvalue problem. Let us define

(ao + a 2aoa 1)/
(1 ao)(1 a1) 2

000
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LEMMA 2. Consider the eigenvalue problem:

def.(x)
a dx---- +b. (x) -k.. (x), a > O, (a, b" constants),

(25) ao,. (0)- (1 ao) (0) 0,

1n(1)+(1--1)(1) =0, (0, a)e[0, 1]X[0, 1].

en we have:
(i) e case of (ao, a 1) # (0, 0), (0, 1) and (1, 0). Let {A. }.= 1,2... be a set of

roots of the equation

tan A h (A), A > 0,

and assume that the A.’s am monotone increasing. Then, the n-th eigenvalue k. is
given by

k. aA 2_ b, n 1, 2,

and the corresponding eigenfunction (x) is given by

(26) .(x) ao sin A.x + (1-ao)A. cos

(ii) e case of (ao, a) (0, 0). Let . (n 1). en

k. aA- b, n 1, 2,

and the corresponding eigenfunction is . (x)= cos (n- 1)x,
(iii) e case of (ao, a a) (0, 1) or (1, 0). Let . (n -). en

k. aA 2_ b, n 1, 2,

and the corresponding eigenfunction is given by (26).
Proof. The proof is omitted.
Note that in each case the eigenfunctions depend only on the boundary data

(ao, a), while the eigenvalues depend on a and b and every eigenvalue has
multiplicity one. In what follows, it is assumed that the eigenfunctions . (x) are
already normalized. en, the solution u(Z, t) of the system (1)-(3) with a(x) a
and b (x)= b is repesented as

u (x, ) E (Uo, .) e-"’. (x)
n=l

+
(7

+ f ((-(1) e-(-’(xl ()

((o +(o e-(-’n(x



796 s. KITAMURA AND S. NAKAGIRI

where

(u, n) u(X)n(x)d’X

and the prime stands for the derivative with respect to x.
The solution u,,, (x, t) of the model (see (5)) is obtained from (27) by replacing

kn by k. and Uo(X) by U.,o(X), where k’ is the nth eigenvalue of the eigenvalue
problem (25) with a a., and b b,n.

Before giving the first result, we shall consider the following simple example.
Example 3. Consider the system and model defined by

System:

+bu,
Ot aox2
u(O,t)=u(1, t)=O,

u (x, O) Uo(X).

Model"

OU 02Urn + bmum,
Ot

a.,
Ox 2

um(O,t)=Um(1, t)=O,

u (x, o) Uo(X ).

The two solutions are expanded by the eigenfunctions as

u(x, t)= Y’. 2(u0, sin mrx) e -(an-=2-b)t sin mrx,
n=l

Um (X, t)= Y 2(U0, sin nrx) e-a"=--b)‘ sin nzrx.
n=l

Let, for example, Uo(X) sin 27rx +sin 47rx and Xp 1/4; then both outputs y(t) and
y., (t) are positive, while

y (t) y., (t) e -(4a’rz-b)t e-(4a,..2-b,.)t 0

for all t _-> 0 if a,,, and b., satisfy 4aTr2- b 4a.,Tr2- b.,. Thus, the parameters a
and b are not identifiable. However, if we choose xp such that sin 4"trXp 0, then
y (t) y., (t) 0 for all t => 0 yields the identifiability of both parameters.

This example shows that the parameter identifiability depends on the form of
the initial function and the measurement point. Actually, as we will discuss later,
the identifiability has a close relation to the observability of system states.

Let us now define

Pn ={x El0, l]: n(X) # 0}, en,k =en Oek,

Qn {u(. E C[0, 1]" (u, n) # 0}, On,k On f-) Qk,
(28)

R U{Pn x On" n e N},

S= U{P,, x O," n k and (n, k)eNxN},

where ,n(x) is the nth eigenfunction in Lemma 2. Note that S c R c [0, 1]x
C[0, 1] and both S and R are open dense subsets in [0, 1] x C[0, 1]. Under these
definitions we obtain the first result.

RESULT 10. Let f(x, t)=0, go(t)=gl(t)=O in (1) and (2), and Uo(X) be
known. Parameters a and b are identifiable ifand only ifthe pairofthe measurement
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point and the initial function, (Xp, Uo), belongs to the set S. Moreover, if
(ao, a 1) (0, 0) and one parameter is known, the other is identifiable if and only if
(x, Uo) belongs to the set R. If (ao, a 1)= (0, 0), then

(A) if a is known, then b is identifiable if and only if (Xp, Uo) R, or
(B) if b is known, then a is identifiable if and only if (Xp, Uo) t.J{P, x Q,,

n N-{1}}.
Proof. First we give
LEMMA 3. Let {kn}n=x,2,... and {knm}n=l,2,... be strictly monotone increasing

sequences tending to infinity and let

Cn (e -k"t- e -k"t) 0 for all t [0, c).
n=l

I[ Cq 0 for some q, then kq k’.
Proof ofLemma 3. The proof is omitted.
Under the assumptions, the difference of u (Xp, t) and u,, (Xp, t) is given from

(27) as

y (t) Ym (t) u (Xp, t) -Um (Xp, t)

Z C. (e-"t- e--,)
n=l

where C, (Uo, q,,),,, (xp) and k denotes the nth eigenvalue for the model. The
cOndition (xp, Uo) S is sufficient. Indeed, this condition implies that there exist
natural numbers and j (i #j) such that C 0 and C 0. Assume that
y(t)-y,,(t) =0. Then we have ki k’ and k k7’ by Lemma 3; hence, aA/2- b
a,,A 2i bm and aA- b a,,A- b,,. Since Ai # A, these two equalities imply
a a,, and b b,,.

Next we shall turn to the proof of the necessity. We show that (xp, Uo)-S
implies the nonidentifiability of two parameters a and b at the same time. Since
(Xp, Uo) S, C, (Uo, ,)q, (x,) 0 except for at most one n. If C, 0 for all n, we
have y (t) y,, (t) 0 for arbitrary a and b. If Cq 0 for some q and C, 0 for all
n q, then

y (t) Ym (t) (Uo, q’q)qq (X,) e-‘
for am a + 1/h q2 and bm b + 1 if hq 0, and for am 2a if hq 0. Thus, two
parameters a and b are not identifiable at the same time. The latter statement of
Result 10 is self-evident. Q.E.D.

Here, let us define a set P0 by

(29) P0 {x [0, 1]: , (x) # 0 for all n N}.

Note that the set [0, 1J-P0 is countable. If an initial function Uo(X) is neither
identically zero nor an eigenfunction (multiplied by a constant), then at least two
Fourier coefficients of Uo(X), expanded by ,,, (x), do not vanish. The following is a
simplied version of Result 10.

RZSULT 11. Let the assumption in Result 10 hold. Let xp Po and Uo(X be
neither identically zero nor an eigenfunction (multiplied by a constant). Then
parameters a and b are identifiable. Moreover, if (ao, a 1) # (0, O) and oneparameter
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is known, then the other is identifiable if Uo(X) is not identically zero. I]’ (ao, a 1)=
(0, 0), then

(A) if a is known and Uo(X) is not identically zero, then b is identifiable, or
(B) if b is known and Uo(X) is not constant, then a is identifiable.
Next, we give two results dealing with the case of gi(t) 0 (i =0, 1) or

f(x, t) 0 in (1) and (2).
RESULT 12. Letuo(x)= 0 andf(x, t)= 0 in (1)-(3). Let go(t) and gl(t) belong

to L 110, oo) (or to the class o]’ Laplace-transformable functions), and
(i) go(t) 0 and g(t) O,
(ii) go(t)=O and gl(t)0 or
(iii) go(t)O and g(t)=go(t) where satisfies the inequality (,(1)-

(1)) /3 (0n (0) + (0)) ]’or all n e N. Then, parameters a and b are identifiable if
and only if

Xp e Sl U{Pn,k gl Y k and (n, k eNx N}.

Moreover, if (o, ) (0, 0) and one parameter is known, then the other is

identifiable if and only if
Xp eR U{Pn: n

I]’ (o, 1)= (0, 0), then
(A) if a is known then b is identifiable if and only if Xp e R 1, or
(B) if b is known, then a is identifiable if.and only if xp e U{Pn: n e N-{1}}.
Proof. First we give
LZMMA 4. Let On (x) be the n-th eigenfunction in Lemma 2. Then, n (0)+

’(0) 0 and (1) O’(1) 0 for every n 1, 2,....
Proof of Lemma 4. See Appendix C. We shall prove only the case (i) of

Result 12. Under the assumptions, difference of outputs is given by (27) as

e(t) , (O,(O)+O’(O))n(Xp)(e-k.(t-’)-e -k(t-’)) go(r) dr.
n=l

Let e(t)=-O. Since go(" )eLl[0, oo), the Laplace transformation of the above
equation yields for all s -> 0

(O.(O)+,’.(O)),n(Xp)(kn-k")
(s +k.)(s +km.)n=l

[go(t)] 0.

Note that go(t) is not identically zero; hence, [go(t)] 0. Then there exists an
s-interval J c [0, oo) such that [go(t)] 0 for s e J. Since [go(t)] is an analytic
function on (0, oo), the set {s > 0: [go(t)] 0} is a dense, open subset in (0, oo).
Consequently, [go(t)] 0 for almost every s e (0, oo). Then we have

1(30) 2=1 (. (0) + ’.(O))ffn (Xp)(kn k’)
(s + kn)(s + k")

0

for almost every s e (0, oe), and further for all s e [0, oo). Since the function on the
lefthand side of (30) is a regular function of the complex variable s, (30) holds for
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all s 6 {z C: Re z => 0}. Applying the Laplace inverse transformation to (30), we
have

(bn(O)+’n(O))n(Xt,)(e-k"t--e-kt)=O
n=l

for every -> 0. Since p, (0) + (0) 0 for all n N by Lemma 4, we obtain from
Xp Sa that (ff(0)+ff(0))O(Xp)0 and (Oi(0)+ff(0))Oi(xp) 0 for some and
(i ). This implies from Lemma 3 that k k? and k k for . us, a a
and b b.eproof of the necessity is similar to that for the Result 10. Q.E.D.

REsw 13. Let u0(x) 0, go(t)= 0 and ga(t)=0 in (1)-(3). Let the input
funcaon be f(x, t)=f(x)f2(t), where f2(t) is not idenacally zero and f2(" )
L 1[.0, ) (or f2(" belongs to the class of Laplace transformable funcaons). Two
parameters a and b are identifiable gand only g (xo, fa) S. Moreover, g (o, )
(0, O) and one parameter is known, then the other is idenfiable if and only if
(x, f) R. If (ao, a 1) (0, 0), then

(A) g a is known, then b is identifiable g and only g (Xp, f) R, or
(B) g b is known, then a is identifiable g and only g (xp, fl)e

U{P, .x O,: n eN- {l}}.
Proof.

y(t)-y(t) e-(t-’O(xp)O(yff(y) dy ()d

Let y(t)y(t). Since h(" )eL[O, ), we obtain by applying the Laplance
transformation

E I[n(Xp)(fl, ctn) "[e-k"t-e-Tt] [f2(t)]=0.
n=l

Since re(t) is not identically zero, we obtain by a similar process as in the proof of
Result 12

,, (xp)(f, b,,,)(e-k,,t e-k’gt) O.
n=l

The rest of the proof is similar to that for Result 10. Q.E.D.
Interpretations. Let us briefly discuss the relation between the parameter

identifiability and the observability of the system state. The condition Xp P, in
Results 10 and 13, where P is defined by (28), impliis that the nth mode of the
state is observable [7], [ 11, p. 132]. As shown in these results, it is necessary for the
identifiability of two constant parameters that at least two modes are observable.
The condition xp Po, where P0 is defined by (29), implies that all modes are
observable, that is, complete state observability, xp Po means, of course, xp P;
however, note that complete observability is not necessarily required for the
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identifiability of constant parameters. On the other hand, the initial function of
the system must a priori be known for the parameter identifiability in Result 10.
Actually, if the initial function is unknown, there exist cases where the parameter
identifiability does not follow even if Xp Po. Let us show this.

Example 4. First, note that sin 7rx 2 sin 37rx has two nonzero roots in [0, 1]
which are irrational numbers. Take one of these roots as measurement point xp,

and consider the system and model in Example 3 with b b,, 0. If Uo(X) sin 7rx

for the system and Umo(X)= 2 sin 37rx for the model as initial functions, the
solutions are given by

u (x, t)= e -a=2’ sin 7rx, U (X, t)= e-9am’r2’2 sin 37rx.

Put x Xp,’ then u (x, t) u,, (x, t) 0 for a 9a,, and for all t > 0.
We can see from this example that it would be impractical in applications to

require, for the pointwise measurement, that the initial function be known or zero
as in Results 10 and 13. However, this is in fact not so inconvenient from the
engineering point of view. In the identification process in Fig. 1, normally, the
time-varying input function (f(x, t) or gi(t)) will be required to identify the
parameters exactly since the algorithm which makes the difference e tend to zero
is in many cases slowly converging. Under such circumstances, the response due to
the initial function dies out gradually and its influence can be neglected for
sufficiently large time, i.e., the response to a nonzero initial function is approxi-
mately equal to that with zero initial function. Results 12 and 13 apply to these
cases.

5. Conclusion. In this paper, the identifiability problem of the parameters in
the distributed system described by a linear, 1-dimensional, parabolic partial
differential equation is studied. The identifiability is defined, for the identification
process using a model, as the uniqueness of the parameters determined using only
the form of the system equation and the input-output data.

Several results for the parameter identifiability and nonidentifiability are
presented. For the case of distributed measurements, the conditions for the
identifiability depend on the profile of the state of the model (or the state of the
system). In particular, the results in 3 include the result by Chavent [3, p. 100]
although only the one-dimensional case has been treated here. For the case of a
pointwise measurement, the identifiability conditions depend on the position of a
detector and the form of the initial function or the input functions to the system.
The relation between the identifiability and the observability is also discussed and
the results are related to the N-mode observability [7].

The definition of the parameter identifiability in 2, and correspondingly the
results in 3, may be weaker than those obtained for lumped systems (e.g. [1]).
However, it seems to be straightforward to extend the results in this paper to the
multi-dimensional systems. For practical applications, it will be important to take
into account the observation errors. The stochastic approach to the identifiability
problem (e.g. [1]) may be used for distributed systems, too.
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Appendix A. Proof of Lemma 1. Necessity of the statement is self-evident
from the following equation (A. 1). Sufficiency we obtain from (1), (5) and (7).

(A.1)
O -x -x + be +-x a a

Ox J

a + be for all x e (0, 1) and t > 0.
Ox

The initial condition for (A. 1) is given by e (0) u (0) -Um (0) 0 and the boundary
condition similar to (2) with g0(t) gl(t) 0. Thus, due to the uniqueness of the
solution, we obtain e(x, t)= 0 for all x [0, 1] and => 0. Q.E.D.

Appendix B. Derivation of (19) and (20). e u -Um satisfies

Oe O(Oe) O [ OUm’
O Ox -x -x ,q"--x ]

(.1)
Oe

e(O,t)=(1, t)=O

where q a (x)- am (x, t). Define a Lyapunov functional by

V=- eE(x, t) dx +- qE(x, t) dx

where K is a positive constant; then

(B.2)
lk(.l, [(a+q)eOe] ’ (Oe)xxJ0- a(x) -x dx

f Oa,, Oe OulqiK-+-ox --xJ dx.

The first term in the above equation vanishes by the boundary condition and the
third term by (19). For the second term, we have

a(x){--x) dx >- a dx >-a e2 dx >-0

where a(x)-> a > 0 (a: positive constant) and Wirtinger’s inequality [4, p. 79] are
used. Thus, f’ is negative semi-definite. Further, the condition of (13) in Result 2
is always satisfied by the Neumann-type boundary condition in (18), and (14)
holds for sufficiently smooth a(x) and am(X, t). Thus, the identifiability from
Result 2 guarantees q 0 for all x and when V 0 for all x and t. Then,
the system (B.1) and (19) is asymptotically stable with respect to L 2 norm [11,
p. I07].

Appendix C. Proof of Lemma 4. If (ao, al) (0, 0) and n 1 we have

(0)/(0)-1 and Ol(1)-(1)=cos(n-1)Tr0.
For other cases, (0) + ff(0) A 0 by Lemma 2. To show the latter relation,
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we use a contradiction. Assume that $n(1)-&’(1)=0; then

(C.1) ,(1)-’(1)= (ao+ (1-ao),2) sinZ, + (1- 2ao)A .cos,, =0.

By Lemma 2, An satisfies the following equation.

(C.2) {(1 ao)(1 a a)A ,2 aoa a} sin A, (ao + a 2aoa)A, cos A, 0.

Since sin An and cos An do not vanish simultaneously, the coefficient determinant,
D, of (C.1) and (C.2) must be zero, i.e.,

D
(ao + c1 2aoa a)(ao + (1 ao)a 2,) + (1 2ao)((1 ao)(1 a a)a ,2 aoa a).

=ao+(1--ao)Zh 2 =0

This yields a contradiction. Hence, qn (1) q,’(1) 0 for all n N. Q.E.D.
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ON THE SET OF ATTAINABILITY OF
NONLINEAR NONAUTONOMOUS CONTROL SYSTEMS*

D. REBHUHNY

Abstract. An important tool in optimal control theory is the Pontryagin maximum principle. A
necessary condition for optimality, the principle is an analytic description of a control whose response
stays in the boundary of the attainable set. See [2], [23]. It is useful to know that the attainable set has a

nonempty interior because the maximum principle gives no information otherwise.
If we consider nonlinear, nonautonomous control systems determined by the set ,5k of time

dependent C controllable vector fields on the m-dimensional manifold M in the Whitney Ck

topology and if k -_> 2m + 2, then a fe’w technical restrictions on the control system assure us that there is

an open dense subset (7 of ,,k such that for each F (7 the attainable set is contained in the closure of its
own interior.

1. Introduction. In this section we give some basic definitions and connect
the properties of a control system with the properties of its attainable sets.

DEFINITION 1.1. By a nonautonornous Ck time optimal control system, we
mean a collection (M, f, or, R, F) such that:

(i) M is a finite dimensional, Hausdorff, connected, second countable
manifold.

(ii) f is a Hausdorff topological space.
(iii) or: M --> 2n is a tracer function that assigns a subset of fto every point

of MxR.
(iv) q/, the set of controls, is an admissible set of regulated paths in 12. See [2]

for definitions of these terms. It will be sufficient for our purposes to consider to
be the set of piecewise constant paths in f.

(v) F is a Ck controllable vector field parametrized by f, that is,

F: Mxx f--> TN,

(x, t, w) -> F(x, t, w) TxM
such that the derivatives of F up to order k of F in (x, t) exist and are jointly
continuous in (x, t, w).

DEFINITION 1.2. Let x’, x" be elements of M. Let u R be a control. Let
Iu It’, t"] be an interval in [. If there is a path xu: Iu ->M such that

(i) Xu(t’)=x’,
(ii) xu(t")=x",
(iii) (d/dt)xu(t)= F(xu(t), t, u(t)) and u(t) tr(xu(t), t) for all except count-

ably many points of It’, t"],
then we say that u steers x’ to x". The path xu is called an Mresponse of u. There
may be no controls or there may be many controls steering x’ to x". We also say
that (x", t") is attainable from (x’, t’) in the positive time (t"-t’).

DEFINITION 1.3. A control u: Iu [t’, t]-> fl steering x’ to x" will be called
time optimal if , 1 dt t- t’ is a minimum over all controls starting at time t’ and

* Received by the editors August 14, 1975, and in final revised form October 12, 1976.

" Department of Mathematics, Vassar College, Poughkeepsie, New York 12601.
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steering x’ to x". It is possible to replace 1 by a function f: M [ f- R and to try
to minimize , f(xu (t), t, u (t) dt.

DEFINITION 1.4. We will call a tracer function admissible if it admits at least
two locally constant sections in a neighborhood of every point. By a section, we
mean a map s:Msuch that s(x, t)cr(x, t).

DEFINITION 1.5. A control u’ will be called acceptable at (x’, t’)M if
u’(T) tr(xu,(T), T) for all T_> t’. For each such u’, we will assume the existence of
an acceptable Ck vector field X with flow , defined on an open subset of M
such that:

(i) Whenever - is in the domain of x,, then ,((x’, t’), -) (x,(-), t’+ -).
(ii) If (x, t) is in the domain of X, then there is a control u acceptable at (x, t)

such that ,((x, t), -) (x, (’), + -) for - > 0 in the domain of u.
For example, if the tracer function o" is constant, for any point u o-(x, t), the

vector field

(F(X,lt, u ))
is acceptable. If tr(x, t) varies wildly from point to point, such a simple vector field
may not be acceptable. See [22]. Condition (ii) guarantees that if (x", t") is
attainable from (x’, t’) and if (x’, t’) is attainable from (x, t) with t"> t’> t, then
(x", t") is also attainable from (x, t). Conditions (i) and (ii) are geometric require-
ments for the existence of a maximum principle. See [15], [22] for more details.

If {X}s are the acceptable vector fields on N M with associated flows
,* and if il, i2," iqe and tl, t2," tq +, we get a mapping from an open
subset of N into N defined by

when the composition exists. If we let the q tuples (il, i2,"’,iq) and
(tl, t2, , tq) be represented by I and T respectively, then we will use the symbol
u(y) to represent the image of y under this mapping.

DEFINITION 1.6. The {Xi}is are said to define a localpolydynamical system
or P.D.S. on N M E. Each X is an element of the P.D.S., and the P.D.S. is
generated by its elements. This P.D.S. is called the P.D.S. associated to the time
optimal control system (M, l), tr, a//, F).

DEFXNITION 1.7. Consider the space q/of local vector fields onNspanned by
the {X}s and their successive Lie brackets whenever those are defined. If the
{X} were global and C, this space would be the Lie algebra they generate. If we
evaluate each element of 07/at y 6 N, we get generators for a subspace a//(y) of
TyN. The P.D.S. will be called regular at y if dim 0//(y)= dim N. If the P.D.S. is
regular at each point y 6 N, we will call it a regular P.D.S.

MMN RESULT 1.8. If tr is admissible, then the set of control systems whose
associated P.D.S. is regular is open and dense for a topology which will be
described in detail further on. See 2.

The interest of this result in control theory stems in part from Chow’s
theorem. Given y 6 N, let Gy [0, 6) be the set of all points attainable from y in any
time 0 -< t < 6. Chow’s theorem says if the P.D.S. associated to a control system is
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regular at y N, then Gy[0, 6) contains y in the closure of its interior. See Krener
[12] or Lobry [15] for a proof of this theorem.

It is only when a system has a regular P.D.S. that the maximum principle is of
any. use in choosing optimal controls. See [3], [14], [2], [23] for information about
the maximum principle. The main result is related to work of Lobry [15], [ 16] who
gets a similar result for simple autonomous control systems. Chow’s theorem has
been used in control theory by Hermann [8], Hermes [9], Jurdjevic and Sussmann
[10]. Sussmann calls regularity the "accessibility property" and he uses it in
realization theory. See [25].

When the attainable set is closed, the maximum principle actually picks out
an optimal control. It is not always true that the attainable set is closed. See [6].
Indeed, the situation of [6] is stable under perturbation of the control system.
Gronski [7] has classified closed sets of attainability in the plane and the author
[21] has some results on existence of closed sets of attainability in the plane.
Krener [11] has done some related work which has not yet been published.

2. The main theorem. Consider the set of all Ck controllable vector fields on
the manifold M. Since these vector fields are not differentiable in all variables, we
cannot consider them as topologized by the standard Whitney Ck topology.
Instead, we take our "k-jet bundle" to involve derivatives in M and I only. This
defines an analogous topology which we will call the Ck topology. We will use the
symbol k to denote the set of vector fields in this topology. Note that k is a
Baire space. See [18] or [17] for details.

From now on, we fix M, 1, or, q/and assume that o- is admissible.
THEOREM 2.1. Let m dimMand let k >= 2m + 2 be a finite integer. There is

an open dense subset6ofsgk such that, ifF , then the P.D.S. associated to (M,
r, all, F) is regular.

Proof. Since r is admissible, for any (x’, t’) in MI we have an open
neighborhood V’ of (x’,t’) and distinct w, w2 in f such that w a, w2
fq {r(x, t): (x, t) V’}. We wish to show that there is an open dense subset 6’ of
such that if F 6 6’, the vector fields Xa, X2 defined by

Xa(x t) (F(x, t, Wl)) 22(1 t) (F(x, t, w2))1 1

generate a regular P.D.S. on a neighborhood V V’ of (x’, t’). Second countabil-
ity ofM will then give us a residual subset of ,52k whose elements have regular
associated P.D.S.’s. It will follow from the construction of 6’ that our residual set
is actually open and dense.

There is no loss of generality in assuming V’, our neighborhood of (x’, t’), is
relatively compact and diffeomorphic to a relatively compact open subset of
’+l.We can describe (x, t) V’ by coordinates (Xl, 12,""’, x,,, t). Let W’ be a
relatively compact neighborhood of W and WE that is homeomorphic to a
relatively compact open subset of P. We do not ask that W’ be connected.
Indeed, since w WE, it may not be possible to find one coordinate neighborhood
containing both points. We need a neighborhood homeomorphic to a relatively
compact subset of P because we will want to apply approximation and extension
theorems of Whitney that are stated for Euclidean space.
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Let R be the set of m x (2m + 1) matrices. For 0-<j-< m- 1, let R be the
subset of R of matrices of rank j. For each ] in the given range, the codimension of
R is/’(3m + 1 -j) which is greater than m + 1. See [24] and [22] for further details.

Given F sk, we can define p(F) a C map from V’ to R as follows:
(i) Let X1, X2 be defined as before; define Y]= IX1, X2], and, inductively,

define Y= [X1, yh-l] for 2 =< h -< 2n + 1.
(ii) Note that the (m + 1)x (2m + 1) matrix

lYnx, t)Yx, t) Ym+l(x, t)]

whose columns are the Yhas a bottom row all of whose entries are zero.
This follows from the definition of Lie bracket and fact that the last
entries in X and X2 are constant.

(iii) We let

[zz. (x, t)p(F)(x, t) 2 Z2Fm+l]
where the columns of p(F)(x, t) are obtained from the columns of
lYnx, t)’’’ Ym+l(x, t)] by dropping the bottom zeros.

When the rank of p(F)(x, t) equals m, the P.D.S. generated by X and X2 is
regular at (x, t). The rank of p(F)(x, t) will equal m unless p(F)(x, t)R for
0 _-< =< m 1. Note that R is a manifold and that the codimension of R is greater
than m + 1 for each/’. Thus, p(F)(x, t) R if and only if p(F) is transversal to R at
(x, t). In other words, our problem reduces to finding an open dense subset 6’ of
4k and a neighborhood V" of (x, t) such that if F 6’ th6n p(F) is transversal to
each of the R on V".

For the definition of transversality or details on transversal mappings, see [ 1]
or [19].

We will modify the space we are considering so that we can apply a
transversality theorem from 1].

Let V, W be open subsets of M and 1" respectively such that {w 1, w2} =
W cl (W) = W’ and (x’, t’) V= cl (V) = V’. Here cl (W) and cl (V) indicate the
closures of W and V respectively.

We can get a modified Whitney Ck norm on F]vxwsklvxw by setting

IIFII w sup{ Ox (V,W) :(v, w)e Vx W,

1 <-j <-q, O<-_i <-_k, il +" "+im+l i.
For k finite, since cl (V W) is compact in M 12, any F 4klvw has a

finite norm. Furthermore, if we consider sgk[vw in the topology induced by this
norm, we can identify klvw with 4k[l(VW).

We could not identify these two spaces if we were using the topology of
uniform convergence on compact sets. The identification can be made because the
modified Ck sup norm on V W is the same as the modified Ck sup norm on
cl (V W) for any element of 4k. From now on, we will use the symbol k to
denote klvxw-’klcl(VxW)in the induced topology.

Note that the natural restriction map r: ,k ..k sending F ,5k to r(F)--
Flvxw (or to Flcl(Vxw) k is a continuous open surjection. Thus, given any open
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dense subset 6" of, there is a corresponding open dense subset 7’= r-(") of
M. If we can find an open dense subset " of * whose image under p is
transversal to R on a fixed neighborhood of (x’, t’) in V, then r-a(") is the open
dense subset of M* that we are looking for.

LEMMA 2.2. * is a Banach space.
Proof. Since is a normed space, we will be done if we can show is

complete.
We identify V’ W’ with an open, relatively compact subset of ’/a/P. Thus

we automatically have an identification of V W with an open subset of
such that cl(V W) V’ W’. By a result of Whitney [27], a function defined on a
closed subset cl (V W) of "/a/P can be extended to a differentiable function on
an open subset of cl (V W) if and only if the function on the closed set is
differentiable in the sense of Whitney.

We observe that a Cauchy sequence of functions in *, by our choice of
norms, must converge to a limit function which is differentiable in the sense of
Whitney on cl (V W).

Thus if F is the limit of a Cauchy sequence in, then F must be an element
of and the lemma is proven.

We have reduced the problem to finding a neighborhood W’ of (x’, t’) and an
open subset 6" of k such that if F (7", then p(F) is transversal to the R on W’.
This would guarantee that the P.D.S. associated to F is regular on V" whenever
F ".

Let V" be an open neighborhood of (x’, t’) such that cl (V")= V.
We will demonstrate the existence of 6" in two steps.
(i) We will show that for each/’, 0 =<f _-< m 1, the set 6 {F ’O(F) is

transversal to R on V} is a residual subset of .
(ii) We will show that the set 6"= {F :p(F) is transversal to all of the R

on cl (V")} is an open subset of .
Note that 6" contains the intersection of all the 6i for 0 _-< =< rn 1. Since

is a Banach space, this shows us that 6" is open and contains a dense subset of.
Let us now demonstrate (i). By the transversal density theorem of [ 1], the set

6 of elementsF of such that p(F) is transversal to R on V is residual in if:
(a) and V are second countable;
(b) O is a C representation for some s > max (0, dim V-codim R);
(c) evo is transversal to R on V for each between zero and rn- 1.
Recall that if is a Hausdorff manifold, and c(M, N) is the set of C maps

]rom M into N, then p" - c(M, N) is a C representation if the map evo
M N defined by evo (x, y)= p(x)(y) is a C map.

In particular, if @ and p is the map we defined earlier, then p is a
representation of in (V, R).

Since V is an open subset of m+a, it is clear that V is second countable. We
must check three things, that Yd is second countable, that p is a C representation
(remember, dim V-codim R < 0), and that ev, is transversal to R on V.

LEMMA 2.3. ’ is second countable.
Proof. To show that k is second countable, we give coordinate representa-

tions of its elements in some chart. We then use the Weierstrass approximation
theorem (see [19] or [27]) to show that the elements ofk can be approximated as
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closely as we wish by functions whose coordinates are polynomials with rational
coefficients.

LEMMA 2.4. The map p is a C representation.
Proof. Because k _-> 2m + 2, any map of the kind that sends (F, (x, t)) k V

to Dix, F(x, t, wi) is at least C for i= 1, 2,/’= 1, 2,..., 2m +1. Here, D
indicates the jth derivative of F with respect to (x, t). For verification that these
maps are Ca, see [1, 10].

The columns of p(F)(x, t), namely Z(x, t),... ,zm/I(x, t) are analytic
functions in the coordinate entries of the Dix,t)F. This makes evp the composition
of an analytic function with a C function. The map p is a C representation and
the lemma is proven.

LEMMA 2.5. The map evo is transversal to R on V.
Proof. Note that the space k V is the product of a Banach space with an

open subset of m/l. Thus the tangent space to Y3k V at any point is just
k ,,/. Similarly, the tangent space to R at a point is R itself.

We will prove the lemma by showing that if (F, (x, t))3k V, then
D(F,.x,t))evt, is a split surjection.

We will show that D(F,(x,t))evo is a surjection by constructing C paths
fl,e

_
ydk V such that fl,e (0) (F, (x, t)) and such that

-s =oeVofl,e(s) y,e

where the y,e span R. Indeed y,e will be an m (2m + 1) matrix with all columns
before the gth column identically zero. The th column itself will have one
nonzero entryprecisely in the ’th row. It is an elementary exercise to check that
the 3/’e span R.

Let: M N Nbe a C function with compact support in V that is identical
to one on a neighborhood of (x, t).

Let ’ N be a continuous function with compact support in W such that

’ is identical to one on a neighborhood of w and identical to zero on a
neighborhood of w2. If

w")

F(x", t", w")=

\F, (x", t", w’)

we set ’e(s)= F’e((s), (x, t)) where

F’e(s)(x ", t", w")

FI(X", t", w")

F)(x", t", w") + sdP(x", t")OP’(w")(t"- t)

Fm(X",t", W")
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It is a matter of calculus and the definition of Lie bracket to verify that the gth

column of (d/ds)[s=oevo’e(s)is"
0

,/th row----, !d(x, t)(w

0

This demonstrates that D(F,(,t)evo is a surjection.
Because the image of D(F,(,oevo is finite dimensional, the kernel has finite

codimension and splits k X m+l. Thus the lemma is proven and we know that
evo is transversal to R on V for any 0-<_j-_<m- 1. Thus we know that (i)
holds,,

It is much easier to see that (ii) holds. If F ik such that p(F) is transversal to
the R on cl (V"), then p (F) cl (V") does not intersect U {R" 0 _-< j _-< m 1} which
is a closed set. It follows from the continuity of evo and the compactness of cl (V")
that there is a 6 >0 such that if G k and IIG-Fll" <6, then p(G)( cl (V")) does
not intersect U {Ri" 0-</" =< m- 1} either.

Thus we have an open dense subset ?" of Y9 k whose extensions to M l
form an open dense subset of gk with associated P.D.S.’s regular on V". We can
thus conclude from prior reasoning that we have a residual subset 6 of Mk whose
elements have regular P.D.S.’s associated to them.

From our choice of topology, 6 is actually open in sk and Theorem 2.1 has
been proved.

3. Conclusions. Theorem 2.1 is really a theorem about approximation. If
F k and the P.D.S. associated to F is not regular, the theorem shows that there
is a G k arbitrarily close to F in the Whitney Ck topology such that the P.D.S.
associated to G is regular.

Whenf 1, that is when we have a general Ck optimal control system, we get
a similar result by considering the set gk of pairs (f, F) in the Whitney Ck

topology. Heref is a Ck cost function, andF is a controllable Ck vector field on M.
THEOREM 3.1. Iftr is an admissible tracerfunction and ifk >-_ 2m + 3 is a fixed

finite integer, then there is an open dense subset of k whose elements have regular
dssociated P.D.S.’s.

Proof. The proof is almost word for word the same as the proof of Theorem
2.1, the corresponding result for time optimal control systems. We merely
substitute ck for k and replace R by the space of (m + 1)x (2m + 2) matrices.

As a result about approximations, Theorem 3.1 is less satisfactory than
Theorem 2.1. In Theorem 3.1, we may have to perturb the pair (f, F) to a pair
(g, G) in order to get a regular P.D.S. There is no guarantee that we can get a
regular P.D.S. without changing the cost function.

There is a theorem of Lobry connected to Theorems 2.1 and 3.1. See [15].
Lobry considered C vector fields on a manifold N in the Whitney Ck topology
for k finite. He showed, using stratifications, that if k is a sufficiently large integer,
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then there is an open dense subset of the set of pairs of such vector fields in the
product topology such that the elements of the open dense set generate a regular
P.D.S. on N.

Two questions arise naturally at this point. What happens when tr is not
admissible, and what happens when F is Ck, but k <- 2m + 1? The second question
is, perhaps, the more important of the two. In many important examples, the set
tr(x, t) is fixed for all (x, t) 6M .

Both [4] and [26] consider controllability and "accessibility" questions. The
"accessibility" property in some sense CO stable and this is closely related to the
last question.

The need for so much differentiability in Theorems 2.1 and 3.1 arises because
they are theorems about attaining a set of nonempty interior in a high dimensional
manifold using only two lector fields. Clearly, the bigger the dimension of the
manifold, the more we must ask of the two vector fields. If we could use more
vector fields, we would not need so much differentiability for the controllable
vector fields.

DEFINITION 3.2. The tracer function o" will be called extremely admissible if,
for any (x’,t’)MR, there is a neighborhood V of (x’,t’) and distinct
Wl,’’’, w2,,+211 such that wi f’l{o-(x, t): (x,t) V}, l_-<i_-<2m +2.

Recall that 2 is the set of controllable C2 vector fields on M.
PROPOSITION 3.3. If tr is extremely admissible, then there is an open dense

subset of g2 whose elements each have a regular associated P.D.S.
Proof. The proof is very like the proof of Theorem 2.1 but the columns of the

matrix p(F)(x, t) will be replaced by what is obtained when the terminal zero is
dropped from

Zx’ t) [ (F(x’ lt’ Wh)) (F(x, t, W2m+2))]1

There will also be a corresponding modification of the y,e.
Even if is not admissible, we would like to know something about

approximating the acceptable vector fields of a control system by vector fields on
M R that generate a regular P.D.S.

Consider the set of Ck time-dependent vector fields onM in the Whitney Ck

topology. Let us denote the set of pairs of such vector fields in the product
topology by -k.

PROPOSITION 3.4. Let rn dimensionMbe greater than one. Ifk >- 2m + 2 isa

finite integer, there is an open dense subset of-k such that if (X1, X2) is any element

othe open dense subset, then and generate a regularP.D.S. onM x .
Proof. This follows from the proof of the main theorem (Theorem 2.1). In

fact, in the main theorem, things were much more complicated because acceptable
vector fields were not necessarily globally defined as they are here.

There is a much simpler and more direct proof of Proposition 3.4 parallel to
the work of [15]. We do not include that proof here.

We remark that in some ways the results of this section are unsatisfactory. For
example, if F happens to be autonomous, a controllable vector field that
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does not depend explicitly on time, it would be of interest to know that we could
approximate F arbitrarily closely by another autonomous controllable vector
field whose associated P.D.S. is regular. By the results of this section, we could find
a nonautonomous approximation to F whose associated P.D.S. was regular, but
that is not a strong enough result.

Let k be the set of Ck autonomous controllable vector fields. An attempt to
substitute ygk for 3 k in the proof of the main theorem shows that the proof fails at
Lemma 2.5. The paths fl .,e we constructed in Lemma 2.5 lie in k_ ygk.
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A DECOMPOSITION THEORY FOR DIFFERENTIABLE SYSTEMS*
ARTHUR J. KRENER"

Abstract. A theory analogous to the Krohn-Rhodes theory of finite automata is developed for
systems described by a finite dimensional ordinary differential equation. It is shown that every such
system with a finite dimensional Lie algebra can be decomposed into the cascade of systems with
simple or one dimensional algebras. Moreover, in some sense these systems admit no further
decomposition. No knowledge of Krohn-Rhodes theory is assumed of the reader.

Introduction. The Krohn-Rhodes theory [1] of finite automata is a very
elegant way of describing how a machine can be decomposed as the cascade of two
or more simpler machines. Moreover it gives a complete classification of the
fundamental building blocks of such cascades. We refer the reader to [2] and [3]
for extensive treatment of this and related topics. This paper develops as far as
possible a similar theory for differentiable systems, i.e., control systems defined by
a nonlinear ordinary differential equation on a finite dimensional manifold.

The first step in this program is to view each constant input as not affecting a
particular state but all possible states, that is, to consider the state transition map
defined by the input. The family of these maps forms a semigroup which acts on
the state space in the obviousfashion and this semigroup has a natural completion
to a group. One can try to lift the dynamics from the state space to the group. For a
finite state machine, this can always be done resulting in another finite state
machine, but for a differentiable system the group of state transition maps need
not be finite dimensional. This is a major difference between the two theories.

For a differentiable system it is natural to consider the infinitesimal version of
this group, the Lie algebra of vector fields corresponding to constant inputs. This
algebra, which has no analogue in Krohn-Rhodes theory, determines the local
dynamics of the system. We shall show that if the algebra can be split into an ideal
and finite dimensional subalgebra then the system can be split into a cascade. It
follows that every system with finite dimensional Lie algebra can be decomposed
into a cascade of systems with simple or one dimensional algebras. It is also shown
that such systems admit no further decomposition into systems with less compli-
cated Lie algebras. They do however admit decompositions where the controls are
split between the elements of the cascade.

1. Nonlinear control systems. In the last few years it has become apparent
through the work of Sussman, Brockett, Hermes, Elliott, Lobry, and others that
the appropriate state space for nonlinear systems is not n. For this paper we
adopt a terminology and notation similar to that introduced by Sussmann in his
important papers on the existence and uniqueness of minimal realizations of
nonlinear systems [4], [5]. We restrict our discussion to real analytic systems for
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consistency of the hypothesis although many of the results hold for C or even Ck

systems.
A control system is a 4-tuple E (M, l), f, a//) consisting of state space M,

control set l-l, dynamics f and class of admissible inputs .
The state spaceM is a real analytic manifold (all manifolds are assumed to be

connected and parcompact) of dimension n whose points are denoted by x. The
control set l is a subset of Rk whose points are denoted by u.

The dynamics f is a map whose domain is Mxl such that for each
(x, u)eM, f(x, u) is a tangent vector to M at x. Blurring the distinction
between the points of M and their local coordinates allows us to express the
dynamics by the familiar differential equation

f(x, u).

We require that f be a real analytic function of x, continuous in u, which
satisfies a local Lipschitz condition in x uniformly in u. (That is, for every compact
subset l-I

_
12 and VXo eM there exists a neighborhood V with coordinates x and

a constant K such that

If(x, u)-f(x2, u)l Klxx x2l
Vxg e V and ’u lc). If the dynamics is not autonomous f =f(t, x, u) we adjoin
time as an extra state variable to make the system autonomous.

As for the class of inputs, consider the space a//, of all bounded measurable
maps u (.) [0, T] - 12 defined on any finite interval of the form [0, T], T-> 0. This
space can be regarded as a semigroup under concatenation, i.e., if ug(. :[0, Z]-

are controls in a//, for i-1,2, then we define the concatenation
ux u2(" ):[0, Tx+ T2]-fl also in a//, by Ul * u2(t)=Ul(t) for t[0, Tx] and
ux * Uz(t)= Uz(t- T1) for e (T, T1 + T2].

The class a//, of all piecewise constant controls (with at most a finite number
of jumps) is a subsemigroup of 0//,,. We assume that the class of admissible
controls ag is also a subsemigroup of ag,, satisfying, =. For example, ag
could be the space of all piecewise C controls.

An output system is a 6-tuple E (M, , f, ag, N, g) where (M, 1, f, ag) is a
control system, N R" for some n and g M N is a real analytic map. We call N
the output space and g the output map.

A system is initialized if there exists a distinguished state Xo eM at which
all trajectories start.

2. The Lie algebra, semigroup and group. A vector field h on M is a real
analytic function defined onM such that Vx M, h (x) is a tangent vector to M at
x. The set V(M) of all such vector shields forms an infinite dimensional vector
space over the reals with addition and scalar multiplication being defined point-
wise. Moreover if hi V(M) we can define a new vector field [h a, hE] V(M) by
means of the Jacobi bracket, expressed in local coordinates by

ahz(x[ha, hz](X)= (x)h2(x)---x )hi(x).
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It is easy to verify that this definition is independent of coordinates. Often the
bracket is defined as the negative of the above but we have chosen this definition
to agree with the commutator of two matrices.

The bracket is a noncommutative and nonassociative multiplication which
instead satisfies the skewsymmetry and Jacobi relations,

[h, h2] -[h,h],

[hi[h2, h3]] [[hl, h2]h3]+[h2[h, h3]].

This makes V(M) into an infinite dimensional real Lie algebra. It is conve-
nient to introduce the notation

ad(h)ha(x) ha(x),

adl(h)h2(x) =[h, adl-(hl)ha](x).

Given a system E (M, 12, f, q/) for each u e l we define a vector field f(., u)
and define the Lie algebra L of E as the smallest subalgebra of V(M) which
contains all such vector fields.

To each vector field h(. )e V(M) there exists a flow qb(t, x) defined as the
family of solutions of the differential equation

d
-c(t, x)= h(qb(t, x))

satisfying the intial condition

,(0, x) x.

Solutions of this equation could possibly escape fromM in finite time and so
the map b is defined locally, i.e., for Xo M there exists a compact neighborhood
K cM containing Xo and an interval I c R containing 0 such that b" I x K M is
well defined. If b :R MM can be defined, the vector field h(. is said to be
complete.

Let Diff (M) be the group of all analytic diffeomorphisms of M, i.e., b
Diff (M), if b :MM is 1-1, onto and both b and b- are analytic. On Diff (M)
we put the topology of uniform convergence on compacta of a map and its
derivatives. (A sequence bn Diff (M) converges to b Diff (M) if every sequ-
ence of partial derivatives of bn including b, itself converges to the corresponding
partial derivative of b uniformly on every compact subset of M.) If h(. is
complete then for each the map qb(t,. ):MM is in Diff (M).

The system E is complete if every vector field h (.) L is complete. Palais [6,
p. 95] has shown that if the Lie algebra L of E is finite dimensional and f(., u) is
complete for each constant u E then E is complete. Henceforth we shall assume
that E is complete.

Each constant control u 12 generates a flow bu (t, x) which can be viewed as a
group homomorphism of the additive group into Diff (M) in light of the
following identity"

tu(tl + t2, x) Cbu(tl, bu (t2, x)) bu(t2, cbu(t, x)).
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This allows us to define a semigroup homomorphism from Op into Diff (M)
in the obvious fashion. The range of.this homomorphism is a subsemigroup S of
Diff (M) and we refer to this as the semigroup of the system ,. The smallest
subgroup G of Diff (M) containing S is called the group of the system.

Given a point Xo M, we can consider the orbits of Xo under the semigroup S
and group G respectively

S(xo) ((Xo) s},

G(xo) {(Xo) 6 G}.

S(xo) is often referred to as the set of points accessible from Xo under by controls
in q/pc. Because we have assumed f(x, u) to be analytic in x it can be shown using
the Hermann-Nagano theorem [17], [7] that G(xo) is an analytic submanifold of
M. In some sense G(xo) is the natural submanifold ofM on which to consider the
problem for it contains all trajectories of the system emanating from Xo. Chow’s
theorem [8] tells us that every point in G(xo) can be reached from x0 along
trajectories of the system going both forward and backward in time. Moreover it is
of minimal dimension among submanifolds of M containing $(Xo) because S(xo)
has a nonempty interior in the topology of G(xo) [9], [10]. (Note the topology of
G(xo) is not necessarily its relative topology inherited from M.) If S(xo)
M(G(xo) M) then the system is said to be controllable (weakly controllable),
see [ 18]. If G(xo) M then we redefine the Lie algebra L of to be the smallest
subalgebra of V(Gxo) which contains all the vector fields f(., u), u l.

Let u (.) e q/,,; then given any Xo eMthere exists a compact neighborhoodK
of Xo, an open interval I containing 0 and a map bu" I xK M satisfying

-ffqb(t, x)=f(Cu(t, x), u(t)),

.(0, x) =x.

Since u(. is only a bounded measurable function the curve t--4u(t, x) is
generally only absolutely continuous. For each el the map G(t," ):KM is
1-1 and analytic. If it can be defined on all of M then it is an element of Diff (M).
Since we have assumed that is complete, if u (.) q/pc then bu can be defined on
x M. However if u (.) ag, q/pc this need not be true. (See Sussmann [4, p. 14]

for a counterexample). The effect of u(. ) q/, can always be approximated by
piecewise constant controls.

APPROXIMATION LEMMA [4]. Let u (’) all,, and 4u :I xK Mbe its flow.
Suppose {u( )} is a sequence of piecewise constant controls such that
ui(t) u(t) for almost all I. If 4i( is the flow.of u( and J is a compact
subinterval ofI then 4 4u uniformly on J x K.

The above lemma indicates why S and G can be defined without regard to the
class of admissible inputs, 07/as long as

The semigroup 6: plays a similar role in the theory of ditterentiable systems as
the semigroup of a machine in the theory of finite automata. They both describe
the action of the semigroup of inputs on all states of the system/machine. There
are some important distinctions however; one is the problem of finite escape time.
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Another is that the state transition map bu (t, is always in Diff (M) for differenti-
able systems and hence S can naturally be extended to a subgroup G of Diff (M).
On the other hand the state transition maps of a finite automaton are not
necessarily invertible. The group of the machine is generated by the invertible
ones and may not contain the semigroup of the machine.
The Lie algebra L has no analogue in the theory of finite automata; it is an

infinitesimal version of G. By this we mean L completely determines qbu(t, for
small t.

In both theories it is desirable to lift the dynamics from the state space to the
group/semigroup of the system/machine. That is, we view inputs as not affecting a
particular state but rather affecting all possible states. In the case of a finite
automaton this results in the semigroup of the machine becoming the new state
space. This state space is again finite and hence the new machine is again a finite
automaton.

In the case of a differentiable system, G is not always a finite dimensional
manifold and therefore the dynamics lifted to G is not described by a finite
dimensional differential equation. We define to be finite dimensional if L is
finite dimensional. In this case G can be given the structure of a finite dimensional
real analytic manifold compatible with the group operation (Palais [6]). This
makes G into a Lie group and L can be viewed as the Lie algebra of right invariant
vector fields on G. This allows us to lift the dynamics from the state spaceMwhere
they are given by

=/(x, u), x (0) Xo

to a new state space G where they are given locally by a matrix differential
equation.

We shall elaborate on this in the next section but first we illustrate these
points with some familiar examples, the first of which is a linear system.

: Let the state space M Nn, the control set II Rk, the initial point be Xo
and the dynamics be given by

k

(2.2) 2 Ax + uibi
i=1

where A is n x n real matrix and bi are n-vectors.
The Lie bracket is given by

lAx, bi] Abi,

ad (Ax)bi A lbi,
[bi, bj]= O,

[bi, ad (Ax)bj] 0

and so the Lie algebra is finite dimensional with a particularly simple form which
characterizes a locally linear system, [11]. The zero control defines a matrix
differential equation

(t) A d(t)

with (0) I the identity matrix. The solution is (t) exp (tA). For any control
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u (.)e O//m the flow bu is given by the variation of constants formula

Cu(t, x) P(t)x + P(t-s) , ui(s)bi ds,

which for fixed defines an invertible affine map ,(t, :" - [". S and G are the
smallest subsemigroup and subgroup of the group of invertible affine motions of

" which contain all such (t,. ), >= 0. Lifting the dynamics from the state space

" to G means replacing the vector differential equation (2.2) by the matrix
differential equation

=AX+(.uibi"" F. u,b,).
Now consider a bilinear system
E: Let the state space beM n, the control set be D Rk, the initial point be

Xo and the dynamics be given by

(2.3) 2 =(A +.uB)x.
when A and B are n n real matrices.

If C and D are n n real matrices the Lie bracket of the vector fields Cx and
Dx is given by the commutator [C, D] CD-DC,

[Cx, Dx]=[C,D]x.

Therefore, L is isomorphic to the smallest subalgebra of gl(n, ) (the Lie
algebra of all n x n real matrices) containing A and Bi: Each control u(.
defines a matrix differential equation

(2.4) ,(t) (A +u(t)B)dPu(t)
where u(t) GL(n, ff), the Lie group of invertible matrices in gl(n, ) and

qb(t, x) (t)x.

S and G are the smallest subsemigroup and subgroup of GL (n, ) containing u
for each u l). Lifting the dynamics from M to G again means replacing the
vector differential equation (2.3) by the matrix differential equation (2.4). The
finiteness of the Lie algebra locally characterizes bilinear systems [12].

It is well known that every linear control system can be turned into a bilinear
system by .the addition of an extra coordinate which is identically one, so
henceforth when we refer to bilinear systems we include linear ones.

3. Simulation. Given an initialized system I (M, f, f, ag, N, g, Xo) let Txl
denote the space of all absolutely continuous functions x(. ):[0, T] M for any
T_>-0 such that x(0)= x l. Similarly define xl as the space of all absolutely
continuous functions y(. ):[0, T]N for any T->_0 such that y(0) g(xl). Given
any x M the system defines a pair of maps x, 0?/ x,. and ( 0?/ x, in
the obvious fashion:

x(U(t)) qbu(t, Xl) and qd,c,(u(t)) g(6u(t, Xl)).
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Two points Xx, X2 M are said to be indistinguishable if xl(U(t)) x2(u(t)) for all
u(. ) q/pc. The system is observable if xx and x2 indistinguishable implies that
X x2. The system is minimal if it is weakly controllable and observable.

Given a pair of initialized systems

_,i (Mi, ,i, fi, .[i, Ni,.gi, xio) for 1, 2,

the maps /g and dig describe the state space and input/output behavior of the
systems. A question of some importance is when the behavior of one system
simulates the behavior of the other in either of the above senses. There are several
alternative ways of approaching this problem. In the classical theory of minimal
realizations of linear systems one assumes that fl =-fl2, N N2 and studies when
two input-output equivalent systems differ by a homomorphism or isomorphism
of the state space, R. A similar theory has been developed by H. Sussmann for
nonlinear systems which we shall discuss in a moment.

In the theory of finite automata the input and output spaces are allowed to
differ by encoding and decoding functions. One wishes to know when an automa-
ton can be made to simulate the input-output behavior of another automaton by a
suitable choice of encoder and decoder. For algebraic reasons it is considerably
easier to discuss when the state behavior of an automaton can be simulated by
another automaton. We describe a similar theory for nonlinear systems.

Given a pair of initialized systems i and functions a’ fl2--> fl1,/" NX->N2

with a continuous and fl analytic we obtain induced maps (also denoted by a and
fl) a" 0//2 _> q/1 and fl" lg..> x2g in the obvious fashion"

a(u(. ))(t) a(u(t)) and /(y(. ))(t) =/(y(t)).

1 simulates E2 with encoder a and decoder fl if the following diagram commutes:

02 2

_,1 is equivalent to 2 if .1 simulates .2 with a "l)2= l) and fl "NI=N2 the
identity maps.

Suppose x is weakly controllable, i.e., G(x) M1. Given a pair a" fI2-+ fi
arl(l T :MX +M2 with a continuous and y analytic we say that x is homomorphic
to 2 if the following diagram commutes:

1 is isomorphic to ,2 if ,_,1 is homomorphic to 2 with a ,1 -2 the identity and

3"M -+ M2 a diffeomorphism. If y_,x is not weakly controllable it is sufficient to
find 3" G(x)-+M2 such that the appropriate diagram commutes.
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There is also a local form of the above definitions. For example suppose E is
weakly controllable, define q/ {u (.)e q/r "u(" defined on [0, t] when _-< T}.
El is locally homomorphic to E2 if there exists T>0, a neighborhood V of x in
M and a map ,: V M2 such that the appropriate diagram commutes.

It is difficult to give conditions for 1 to simulate E2 becaase of the complica-
tions caused by the presence of the encoder and decoder. However if one is
interested in equivalence these difficulties are somewhat mitigated and H. Suss-
mann has proved the following generalization of the existence and uniqueness
theorem for minimal realization of linear systems.

SUSSMAN’S THEOREM [5]. Every initialized analytic system is equivalent to a
minimal system. Any two equivalent minimal systems are isomorphic. For related
results see [ 18].

We now focus in one the question of when E is homomorphic to E, Suppose
E has the accessibility property and is homomorphic to E. Then it is easy to show
that the Jacobian ,.

o-2("
must define a homomorphism ,. :Ll L: of the Lie algebras L of Ei. Further-
more, the maps a and "r’,(x l) must satisfy the following commutative diagram

l
f(x’"

T.xM

f2(y(X 1),"
)2 _)TxM2

where TxiM is the tangent space to M at X io
Suppose Uo, Ul, , U ,2 such that

fl(xl (Uo))_. /dl(x 1, Ol(Ui)).
i=1

then the linearity of 3,,(x 1) implies that

f:(/(xl), Uo)= Z /d2(qI(xl), Ui)"
i=1

In particular if a(Uo) a(Ul) then fZ(x2, Uo) =fZ(x2, Ul) for every x 2 GZ(x). It
follows that the map f(:, Ce(U))->f2( U) has a well-defined linear extension
from span {fl(., a(u)):u f12} to span {f2(., u):u

Let a(L 2) denote the subalgebra of L generated by fl(., a(u)) for each
u f12. Let Lo denote the isotropy subalgebra of L at Xo, i.e.,

i__Lo {h(.)6L "h(xo)=O}
and let a(L2)o=La(L:).

If L and L2 are arbitrary Lie algebras we say that L 2 dividesL if there exists
a subalgebra L L and a Lie algebra homomorphism of L onto L2. If L is the
Lie algebra of system ; we say L: G-divides L if there exists a continuous map
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a :l12f such that the map fl(., a(u))...)f2(., u) generates a Lie algebra
homomorphism of a(L2) onto L 2. If in addition this homomorphism carries
a(L2)o into L then we say L

THEOREM 1 (Krener [11]). E is locally homomorphic to 2 if L2 E-divides
L 1. Moreover if L2 E-divides L and Gl(x) is simply connected then 1 is
homomorphic to E2.

Suppose L2 E-divides L but Gl(x) is not simply connected; then we can ask
if there is any way to lift E to a system that is simply connected. The answer is yes;
suppose for convenience Gl(x)=M1. Then M has a unique simply connected
covering manifoldMwith covering map or"M M1. Given any x Mwe can find
a sufficiently small neighborhood V of x such that the map r" VM is a
diffeomorphism, and so the Jacobian r, is invertible. This allows us to lift the
dynamics from M to M by defining

fix, u)= r:(x)(r(x), u)

for x M and u f fl. We choose any initial point Xo r-l(Xo) and by Chow’s
theorem we know that G(xo) M. The result is a system (M, fl, f, x0) which is
called the simply connected cover of
the identity and r"M M the covering map. If 1 is locally homomorphic to 2
then

For example consider the following system: 1.M S the unit circle with
angular coordinate 0, f R, 0= 0 and t u. The simply connected covering
space of S is and so the simply.connected cover of Ea is :M , f , x 0
and 2 u.

Suppose L G-divides L but does not E-divide L 1, then we can ask if there is
any way to lift E1 to a different system such that L2 E-divides L. The answer is yes
if the Lie algebra L of 1 is finite dimensional. The group G of 1 is then a finite
dimensional Lie group (Palais [6]) and by Ado’s theorem L is isomorphic to some
subalgebra L of gl(m,
(For bilinear systems L is already a subalgebra of gl(n 1, R).) For each u fl, let
F(u) be the matrix corresponding to fl(., u) under this isomorphism. Let H be
the subgroup of GL(m, ) corresponding to L; then some neighborhood of the
identity in G is isomorphic as a Lie group to some neighborhood of the identity in
H. This isomorphism can be viewed as defining H-valued local coordinates on G
in which the dynamics of 1 is described by

(3.1) 2=F(u)X
where X Hc GL(m, ).

ifH and G are globally isomorphic as in the case of bilinear systems then the
matrix differential equation describes the lifted dynamics throughout G 1. For
bilinear systems the action of G1=H on the state space M =N" is the natural
linear action, however H and G globally isomorphic does not necessarily imply
that the action of G c Ditt (M1) on M is linear in any coordinates.

If H and G are only locally isomorphic then this isomorphism can be used to
define H-valued coordinates in a neighborhood of every b G 1. In these coordi-
nates the dynamics is locally given by a matrix differential equation similar to
(3.1). We define a new system ;=(M, f,f, bo) where M=G1, f=fl, the
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dynamics f is given locally by (3.1) and o is the identity of G 1, i.e., bo:M -)M
the identity map. E is called the group cover of EI.

E is homomorphic to E under a :1 f the identity and ,: a M given
by ,() (Xo) for G 1. Notice that the Lie algebra L if E is isomorphic to the
Lie algebra L of _1 but. the isotropy subalgebras need not be. If L 2 G-divides L
then L2 E-divides L for Lo- 0.

Recall that G is the not necessarily closed subgroup of Diff (M) generated by
the flows of constant controls. Suppose u (.) o//and for some t, the map , (t,
defined by (2.1) is a ditteomorphism of M1. The Approximation Lemma implies
that Cu(t, ) closure G1; however by lifting the dynamics to G we have shown
that ,(t,. ) G 1.

Finally suppose L2 divides L but does not G-divide L 1, then we can ask if
there is any way to lift 1 to a different system Z such that L: G-divides L. The
answer is again yes provided L is finite dimensional. Let Z (M, ll, f, x0) where
M=M1, =L1, Xo=X andf(x,h(. )) h(x) for xM and h(. )L 1. Define
O:’1-’)’ by a(u)=fl(.,u) and "y:M-M the identity; then clearly E is
homomorphic to 1. 1 is called the fully controllable cover of 1 and if 1 then
1 is said to be fully controllable. Notice that in a fully controllable system the
dynamics is linear in the controls.

4. Cascades. Suppose E (Mi, i, fi, Xio) are control systems for 1, 2.
Henceforth we assume i= q//m and therefore do not mention it explicitly. Let
v :Mixfl lq: be an analytic map of xl, continuous with respect to ul. We
define the cascade E1 @v Ea of these two systems with linking map v as the
system

where
(M xM, [1, fl vf2, (X, X))

fl @,f2(xl, x u)._ (fl(x 1, ul),f2(x 2, v(x 1, U 1))).
0 22 is a parallel cascade if v is a function of u alone and a series cascade if v

only depends on x 1.
Cascades are a way of combining two or more systems to obtain a more

complicated system. We would like to study when this technique can be used to
represent a given system as the homomorphic image of a cascade of "simpler"
systems. Of course any system is the homomorphic image of a cascade consisting
of itself followed by an arbitrary system but this can hardly be called a cascade of
"simpler" systems.

We must make rigorous the notion of "simpler"; the obvious choice is that i
is "simpler" than E if E is homomorphic to Ei. However this is not the appropriate
definition for if E is actually a cascade, E @v .,2, then it is easy to see that is
homomorphic to E but it need not be homomorphic to X:. Therefore we are
forced to a weaker definitionE is "simpler" than if is not a homomorphic
image of Ei. A similar definition is used by Krohn and Rhodes.

A system E has a nontrivial cascade decomposition if there exists 5:1, 2 and v
such that E @ E: is homomorphic to X but neither E nor E2 alone is
homomorphic to E.

We leave it to the reader to verify the following.
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LEMMA. Suppose , is homomorphic to l(z-2); then Y, @w Y,(Y, @w Y,) is
homomorphic to Y,a @ y,2 ]:or some linking map w.

COROLLARY. Suppose Y, @ 2 is homomorphic to Y, and ,3 @w _4 is
homomorphic to , (2). Then .3 Ow .,,4 Ov __.2 (,z_l v 3 @w ,4) is homo-
morphic to .

We describe a way for decomposing a system into cascades which is based on
a technique used by E. Wichmann [13] and K. T. Chen [19] and originally due to S.
Lie [20]. Let (M, l], , Xo) and suppose the Lie algebra L of f is a semidirect
sum,

L =L+L.
(L is a semidirectsum of L and L2 if L is a subalgebra of L, L2 is an ideal of L and
L is the direct sum of L and L2 as vector spaces. We exclude the trivial case where
either is 0.) For each u f, define fl(., u) L and g(., u) L 2 by requiring that

l’(" ,u)=f’( u)+g(. ,u).

Consider the control system 1__ (M1, -1, f, X) where M =M, -1 - and
x- Xo. Let G be the group of 1. Clearly the Lie algebra of 1 is L .

Define a second system (M2, f2, f2, x) where M2 M, f2 G f,
x- Xo and

f2(x, b, U)= -I(x)g((X), U),

for x M, b G and u f. There is a problem with this definition for in general
the control set f2 is not finite dimensional since G is not. However if we assume
that L is finite dimensional then G is embeddable in some R by the Whitney
theorem and hence is a control system according to our definition..

Moreover if L is finite dimensional then we can redefine so it equals its
group cover. This allows us to form the cascade @ where the linking map
V a x -. -2 is the identity.

For a fixed control u(. ) ag, let x(t) be the trajectory in , b(t, be the
trajectory in E and x(t) be the trajectory in 2. We claim x (t) b(t, x2(t)) and we
show this by noting that x(0)= Xo b(0, x2(0)) and using (2.1) we see that both
satisfy the same differential equation

d
d--b(t, x2(t))= fl(b(t, x2(t)), u(t))+ b,(t, x2(t))x2(t)

fl(ch(t, xe(t)), u(t))+ g(b(t, xe(t)), u(t))

f(qb(t, x(t)), u(t)).

Therefore @ _2 is homomorphic to ; under a 1 f, the identity, and
T: G M2 M given by y(b, x) b(x). Since the Lie algebras of ;1 and 2 are
La and L2 it follows that neither system is homomorphic to : and hence the
cascade decomposition is nontrivial.

If g(., u) is independent of u then1 @ _,2 is a series cascade. On the other
hand suppose L is a direct sum of L and L2 (that is, both are ideals of L). From
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[L1, L2]cLIL2=O it follows that for every bG1, f2(X,,b/)-
k-l(x)g(d(x), u)= g(x,u). Therefore f2 is independent of b and 1 @v 2 is a
parallel cascade. We sum this up in the following:

THEOREM 2. If the Lie algebra of a system is the semidirect sum o[ a finite
dimensional subalgebra and an ideal then it has a nontrivial cascade decomposi-
tion. Ifit is the directsum oftwo ideals, then it has a parallelcascade decomposition.

A particular application of the above result is when the system is finite
dimensional, as in the case of a bilinear system. By Levi’s theorem L is a
semidirect sum of semisimple subalgebra L and a maximal solvable ideal L2.
Therefore has a cascade decomposition 2.

Every finite dimensional semisimple Lie algebra L is a direct sum

L=LI+. .+L it

of simple ideals L i. Therefore by repeated application of the above theorem E
can be decomposed into the parallel cascade of a family of systems 1i,
1, , l, each with a simple Lie algebra, L*. Recall a Lie algebra is simple if it is
not Abelian and contains no nontrivial ideals; therefore the EI admit no further
decomposition using Theorem 2. However as we show by example in a moment
systems whose Lie algebra is simple can admit nontrivial cascade decompositions.

We now turn to the system 2 whose Lie algebra L2 is solvable. This implies
that [L 2, L2] is a proper ideal of L2 and hence one can find a linear subspace L22 of
codimension one in L2 which contains [L, L2]. Since L22 contains [L2, L2] it is an
ideal of L 2, and since it is of codimension one any vector field in LZ\L22 generates
a one dimensional subalgebra L2 such that L L2 +L22 is a semidirect sum.

Using Theorem 2, 2 can be decomposed into the cascade of a one dimen-
sional system _21 and a system 22 with solvable Lie algebra of one lower
dimension. By induction 2 is cascade decomposition of a family of one dimen-
sional systems.

Moreover there are, up to isomorphism, only two one dimensional systems,
those on the circle and line described in 3. Therefore we have shown the
following.

THEOREM 3. If the Lie algebra L of , is finite dimensional then admits a
decomposition into the parallelcascade ofsystems with simple Lie algebrasfollowed
by a cascade of one dimensional systems.

This result is somewhat stronger than that of Brockett [14] since all the
component systems of Theorem 3 are either simple or one dimensional. In
Brockett’s work the component systems are reductive. The one dimensional
algebra and all simple algebras are reductive but gl(n, ) is not simple but
reductive.

Theorem 3 is highly reminescent of the Krohn-Rhodes theorem which states
that every finite state machine can be broken up as a cascade of machines with
simple groups and flip-flops. The system with simple Lie algebras are analogous to
machines with simple groups but the analogy breaks down between one dimen-
sional systems and flip-flop machines, since flip-flops correspond to the nongroup
part of the machine.

Recall that in 1 we suggested that time varying systems be made autonom-
ous by the introduction of time as another state variable. Unfortunately this can
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make the Lie algebra of a time varying bilinear system infinite, dimensional and
therefore not amenable to the application of Theorem 3. Instead suppose we
consider time as another control variable and view the time varying bilinear
system as the cascade of a trivial system and the bilinear system with the time
control.

E:" :=1,
k

E2. 2 A (uo)x 2 + uiBi(uo)x 2

i=1

where the linking map is Uo x 1. Then we can see Theorem 3 to decompose E2
since its Lie algebra is contained in gl(n, ) and hence is finite dimensional.

Actually the above technique can be used to generate a cascade decomposi-
tion even if L is not a semidirect sum. (For example see 19].) Instead of splitting
the Lie algebra of E between :1 and E2, we split the controls. Let K denote the
subspace of V(M) which is the span {f(., u) u e f} and supposeK admits a direct
sum decomposition (as a real vector space)

K=KI+K2.
For each u e , define fl( ", u)e K and g(., u)K2 by requiring that

f(", u)=fl( ,u)+g(’,u).

Define E1 as before; if its Lie algebra L generated byK is finite dimensional then
we can also define E2 and the cascade 5; @v :2. The same argument as before
shows that E @ E2 is homomorphic to :.

We ask whether this is a nontrivial cascade decomposition. The Lie algebras
L and L2 could each be equal to L so we must check if E is homomorphic to E. If
the decomposition ofK is nontrivial thenK is a proper subset ofK so L could not
possibly G-divide L 1. This implies [hat :1 is not homomorphic to E.

On the other hand the generators of L2 are contained in the orbit ofK2 under
the group G acting by conjugation. The Campbell-Baker-Hausdorff formula
shows that this is equal to the orbit of K2 under the Lie algebra L acting by
bracketing. Therefore if this orbit does not containK then we can conclude that L
does not G-divide L2 and hence E2 is not homomorphic to E.

THZORZM 4. Let K be the linear span of the vector fields corresponding to
constant controls ofa system E and supposeKis a direct sum oflinear subspacesK
andK2. If the Lie algebra L generated by K is finite dimensional and orbit ofK
under L does not include K then E admits a nontrivial cascade decomposition.

Now we use this theorem to exhibit a system whose Lie algebra is simple but
admits a nontrivial cascade decomposiition. 5;: LetM SL(2, ) the group of real
2 x 2 matrices of determinant 1, R3, the initial point be any identity matrix and
the dynamics be given by

where

3

i=1

1
O’
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The Lie brackets are given by [B1, B2] 2B2, [B1, B3] 2B3 and [B2, B3] Ba.
If we letK be the span of BaX andK2 be the span of B2X and BaXthen Theorem
4 applies and we obtain the nontrivial cascade decomposition

a UlBaXa,
2-= (Xa)-a(uzB. + uB)XaXz

where

X=XX2.
Notice that if we defined K to be the span of B2X and the K to be the span of
BaX and B3X the corresponding cascade decomposition would be trivial because
the orbit of K under K contains K.

A similar cascade decomposition is possible for the fully controllable system
on SO(3). The familiar polar decomposition of a matrix differential equation is
another example of a cascade using Theorem 4.

5. Indecomposable systems. Krohn and Rhodes not only showed that every
finite state machine can be decomposed into a cascade of flip-flops and machines
with simple groups, but also that these building blocks are irreducible in a certain
sense (see [3, p. 307]).

In this section we show that a similar result holds for the decomposition
described in Theorem 3. (We use the term indecomposable since irreducible
already has a well defined meaning in the context of Lie algebras.)

A finite dimensional system E is indecomposable if whenever E admits a finite
dimensional cascade decomposition E @v E2 of finite dimensional systems E
then L divides at least one Li. This is weaker than requiring that E admit only
trivial cascade decompositions, and perhaps some words of explanation are in
order.

Since E has a finite dimensional Lie algebra it is reasonable to require the
same of the E’s and Ea @v E2. The Lie algebra L of an indecomposable system
need only divide L rather than the stronger condition that E be homomorphic to
E. This rules out decompositions based on splitting the controls which do not split
the algebra, as in the SL(2, R) example of 4. Moreover, the one dimensional
system on the line is indecomposable under the former condition while it is not
under the latter as we now show.

E is the one dimensional system on R and E1, E2 are both the one dimensional
system on S described in {} 3. We define a parallel cascade a @ 2 with the
linking map v(O a, u)= cu where c is an irrational constant. Let G @ G2 denote
the group of the cascade, the orbit G @, G2(0, 0) is a dense winding line on the
torus T2 S x S and can be mapped in a standard fashion onto . This defines a
homomorphism of a @ 2 onto . On the other hand there is no map of the
state space of onto the state space of so clearlyi is not homomorphic to .

Theorem 3 allowed us to split up a finite dimensional system into a cascade of
one dimensional systems and those with simple Lie algebras. The next theorem
tells us that this is in some sense the best we can do.

THEOREM 5. Suppose is a finite dimensionalsystem; then is indecomposa-
ble iff the Lie algebra of Y is one dimensional or simple.
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Proof. One way follows from Theorem 3, so suppose the Lie algebra L of is
one dimensional or simple. Let ;1 @ 5;2 be a finite cascade decomposition of E
where the Ei’s are finite dimensionable systems. If L is one dimensional then it
clearly divides any nontrivial Lie algebra and at least one L must be nontrivial.
Therefore we restrict to the case where L is simple.

If is simulated by E @ 2 then E can be simulated by the cascade of the
fully controllable covers of E and ;2 using the above lemma (in 4). Since Ei and
its fully controllable cover have the same Lie algebra L it is with no loss of
generality that we assume that each Ei is fully controllable. Therefore the controls
of ; enter linearly and the dynamics of the cascade must look like

21 Euiai(x

r,v (u,

For each u l) and each/’, vi(u,. is a scalar-valued function of x and any
vector field h 1(. L acts on it by partial differentiation. Let P denote the orbit
of {vj(u, :’q’/" and u l’l} under the action of L 1. In general this is a real infinite
dimensional vector space.

Consider the product P (R) L2 consisting of all finite linear combinations of
elements of L 2 with coefficients from P. In an obvious fashion this can be identified
with the subalgebra of V(M M2) consisting of vector fields whose projection in
the M direction are identically zero. Similarly L can be identified with the
subalgebra of V(MIM2) consisting of vector fields whose projections in M2

direction are identically zero. It follows that

L @,L2LI+P(R)L2

where the right side is the semidirect sum of the subalgebra L and ideal P (R) L 2.
Let O denote the subspace of P consisting of all functions which actually

appear in the expansion of a vector field of L @Lz. Each such vector field
involves only a finite number of functions of P and since L @L2 is finite
dimensional it follows that O is also finite dimensional. Moreover

L @,L2LI+O(R)L2.

Since O is a finite dimensional space of functions onM and L is a Lie algebra of
vector fields onM:, O (R) L 2, as a Lie algebra, is a direct sum of a finite number of
copies of L2.

Since the cascade is homomorphic to 5; there exists a Lie algebra
homomorphism 3’." L @o L2-L. Let r. denote the projection r." L ,.
Q(L2

_
L ’, by restricting zr. we obtain the following diagram:

L

Let I ker 7r. restricted to L @vL2 and J ,/.(I); these are ideals in L @oL2
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and L respectively. Since L is simple there are only two possibilities, J 0 or
J=L.

Suppose J=0; then ker 7r. c ker y.. The first homomorphism theorem
implies that there exists a natural homomorphism of r.(L )L2) onto L, i.e.,
L divides Li.

Suppose J L; then we can conclude that y. :I-L is onto. Moreover
I Q (R) L 2 so we conclude’that L divides Q (R) L 2. Since this is a direct sum of a
finite number of copies of L2, using the first homomorphism theorem as before
shows that L divides L2. Q.E.D.

Remark. For the reader familiar with Krohn-Rhodes theory, L + Q (R) L2
plays the role of the wreath product. Notice that the choice of Q depends on the
linking map and there is not one choice that works for all possible linking maps.

6. Conclusion. We would like to suggest two areas where extension of the
current line of research might prove fruitful. One nice thing about cascade
decomposition of systems is that it exposes the dynamic relations between the
state variables. For example from Theorem 3 we know that a system with a finite
dimensional solvable Lie algebra admits a cascade decomposition of one dimen-
sional systems. When described in local coordinates this amounts to a lower
triangular form for the dynamics. Kelley [15] has suggested that this form would
be useful in applying.singular perturbation techniques to nonlinear problems.

A second area of research would be in introducing dynamic compensation or
state variable feedback as has been done in the linear case by numerous authors.
(We refer the reader to [16] for an excellent treatment and bibliography.)

The feedback law v Mx fl--> 1) would in general be a nonlinear function so
that the dynamics becomes

=f(x, v(x, u)).

To a certain extent we have already considered this by allowing the control
law of the second system of the cascade to depend on the control and state of the
first system, that is, we have allowed state variable feedforward.

Such a dynamic compensator v completely changes the Lie algebra of the
system as we have defined it. (IlL were redefined as the Lie algebra generated by
f(., u (.)) for all analytic u :M--> fl it would not change.) it would be of interest to
know when two systems are equivalent under dynamic compensation or when a
given system is equivalent to a simpler type of system, i.e., cascade, a bilinear, or a
linear system.

Acknowledgment. I would like to thank Roger Brockett for introducing me
to Krohn-Rhodes theory and acknowledge the help he gave me while writing this
paper.
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SOME REMARKS ON INFINITE-DIMENSIONAL NONLINEAR
CONTROL WITHOUT CONVEXITY*

GREG. KNOWLES?

Abstract. The time-optimal control of certain nonlinear distributed systems is considered, and
existence and bang-bangness of optimal controls is proven without convexity assumptions on the set of
admissible controls.

Introduction. The time-optimal control problems considered in [6] are taken
up again in this paper, but with the aim of applying these results to problems where
the control appears nonlinearly, and the set of admissible controls is not assumed
convex. This work could be regarded as a partial extension to infinite dimensions
of the article of C. Olech [10], the main difference being, however, that the
"normality" of the systems considered here guarantees that the optimal controls
belong to the extreme points of the set of admissible controls, thus avoiding the
use of some infinite-dimensional extension of Lyapunov’s theorem (which in fact
need not hold for the problem, e.g. [6, 5]). These results are applied to nonlinear
control of parabolic equations.

Firstly the general situation in [5] is reconsidered, this time for integrably
bounded set-valued functions whose values are compact, convex sets.

1. Control systems. In order to avoid excessive repetition we refer to [5] and
[6] for most of the notation used in this note. X will denote a quasi-complete
1.c.t.v.s., T a set, 5 a o--algebra of subsets of T and rn (m) a control system of
vector measures m: O--> X, 1, 2, . The family of compact, convex (respec-
tively compact) subsets of X will be denoted by CCX (respectively CX). A
set-valued function F: T-->CR is called measurable if for each x’ 6(R)’, the
function

t->sup {(x’, x): x F(t)}, T,

is measurable. In the case considered here, T is a Lebesgue measurable subset of
R’, 0 is the r-algebra of Lebesgue sets on T and is Lebesgue measurable on ,
F: T--> CR" is measurable in the above sense if and only if F is/-measurable in the
sense of Castaing. (See [5, Lemma VII.8.2] and [1, Thm. 3.2]). We shall assume
this fact whenever the implicit function theorem in 1] ([ 1, Cor. 5.2’]) is used in this
note.

The set-valued function F is bounded if its values are contained in a bounded
set in R, and F is called m-integrably bounded (or just integrably bounded if it
does not cause confusion), if there exists a real-valued measurable function h on
T, such that

hdmiX, for any set E 5, i=1,2,
i=1
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and a bounded set R, with F(t) 6. h(t), t T. By virtue of [5, Lemma
IX.9.1] (and the fact that m is a control system) we can suppose h(t) O, T.

For an m-integrably bounded set-valued function F, define

and

LF(R, m) {f: f= (f)6PI(R, 9), f(t)6F(t), T}

AF(m) { f fdm,’f=(f,)eL(R% m)}.
i=1

Then we have
THEOREM 1. /fm (mi) is a control system, F: T-CCR is a measurable,

m-integrably bounded set-valued function, then AF(m) is a weakly compact,
convex set in X.

Proof. Let h be the function bounding F and satisfying the integrability
assumptions above. Then the set-valued function H: T-CCR defined by

H(t) F(t)/h(t), T,

is well-defined, bounded, and measurable. Define vector measures ni: X, by
hi(E) =[.z h dmi (by definition, h is m integrable, for every i= 1, 2,...). Each
such measure is dosed, ([5, Thm. IV.7.2]) and for any sets E e 6e, 1, 2, , we
have

Y n (Ei h dmi X,
i=1

by the properties of h. In other words, n (n), is a control system, so by [5, Thm.
IX.I.1.], An(n) is weakly compact and convex in X. The result follows as
AF(m)=An(n).

Finally we consider some properties of the extreme points of the attainable
set which will be of use in the next section. Suppose n (hi) is a control system and
F: T-, CCR an n-integrably bounded, measurable set-valued function. We say
F and n have the extreme point property if n (f) ex AF(rt), f LF(R, rt), implies
that f ELexF(R,n). By virtue of [5, Thm. VIII.4.1], for any f6
LF(R, n)/LexF(R, n), there exists a measurable function v: TR, not n-
null, such thatf + v LF(R o, n). Clearly F and n have the extreme point property
if this function v can be chosen with n(v) O.

If F and n have the extreme point property for any control system n, then for
simplicity, we say that F has the.extreme point property, it follows from [1, Thm.
4] that if F(t) is a product of intervals, for each 6 T, then it has the extreme point
property, and from the proof of [5, Lemma VIII.4.1], any measurable, bounded
F: T- CCR has the extreme point property. This latter case will be the situation
considered in the examples in this note. In fact both these cases are a consequence
of the following geometric property of the set F(t). We say a set Yc R has
property (B) if for every x (xi) Y, x C: ex Y, there exists a nonzero number u
(which may depend on x) such that for some coordinate ix, (x 1, ",xx + u, .)
Y. (Alternatively, this says that the boundary of Y doesn’t contain any oblique
line segments.) Then we have
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LEMMA 1. ffF(t) has property (B) for each T, then F has the extreme point
property.

Proof. The proof is similar to that of [5, Thm. VIII.4.1], and so we only sketch
the differences.

Suppose m (mi) is a control system, and/6 LF(R, m)/LexF(R, m). Let

Bi {t T: =i u 0 with (fl(t), fi(t) +/- u, ]+l(t),"" ")6 F(t)}

1, 2,..., and assume each Bi is mi-null. Define

(t) {x F(t)" Xk fk (t) for every k such that Bk }

t 6 T, and let {ek}=l be the usual coordinate functionals on R, and it(t) the
lexicographic maximum of/(t) ordered by {ek} [5, VIII.2], t 6 T. Then ]r is
6e-measurable and ]r(t) ex (t), 6 T. However, by property (B), (t) ex F(t),
and since f and r are m-equivalent, we must have f LexF(R, m), a contradic-
tion. Consequently, some B is not mo-negligible, and by following the proof of
[5, Thm. VIII.4.1] we can find a measurable (real-valued) function u on T, not
m/o-null, with (fl(t),’’’, fo(t)+/-u(t),’" .)6F(t), T. As u is not m/o-null, there
exists a set E 6e such that E u dmo : O. Letting

v(t)= (0, , u(t)XE(t), 0,...), t T,
io

it is easy to see v is not m-null, f+/-v LF(R, n) and re(v) mio(UX) O. Hence
F has the extreme point property.

Taking T [0, 1], 6e the Borel sets on T, the Lebesgue measure on , and
defining F(t)={(x,x): O<-x <- 1}, 6 T, and

m(E) l(E f) [0, 1/2))-l(E n [1/2,1]),

m2(E) I(E f’) [0, 1/2))+I(E f’l [1/2, 1]),

gives an example of a set-valued function F not having the extreme point
property.

2. Normal systems. In this section the situation discussed in [6] is recon-
sidered, and applied to some problems in nonlinear control.

Suppose 11 is a set in R" (possibly empty) and for every E [0, to], a given time
interval, 6e is a t-algebra of subsets of x [0, to]. For each E [0, to] we are also
given a control system re(t) (m(t)), m(t): ,9 X, 1, 2. The control system is
called essentially normal in X if for every (nonzero) x’ EX’, mi(t)<< (x’, mi(t)),

1, 2,. ., t[0, to].
In this situation a set-valued function F" [0, to] - CR is called integrably

bounded if the bounding function h (cf. {} 1) satisfies

(1) Y h(to, r)dm(t)(to, r)X,
i=1

for any measurable set E t, i-1, 2,..., and any [0, to). For such a
set-valued function, define for ] (]i) LF(R, m (t)), and t [0, to]

(2) m(t, f)--,"1= fi(tO, r)dmi(t)(to, r).
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The integral boundedness of F guarantees that m(t, f) X.
For the remainder of this section we suppose such an F is given and consider

the problem of steering the system, whose output is described by (2), where the
control function f(w, z) (f (o, z)) is restricted to be measurable and take values
in F(o, z), (o, z) 1 x [0, to], to reach a fixed closed convex set W of X, with
nonempty interior, in minimum time. (We adopt the convention, as in [6], that
when we are interested in the output of the system up to a specified time < to, we
consider the controls as functions on only [0, t].) Then we have

THEOREM 2. Suppose F: [0, to]- CR is measurable, integrably bounded,
and

(i) AeaF(m(O))fq W= ,
(ii) for some tl > 0, AeaF(m(ta))fq W ( (we can clearly assume tl < to),
(iii) for each f LF(R, m (to)), the function m (t, f), 0 < < to, is con-

tinuous into the given topology on X,
(iv) ]’or each x’ X’, and for each (0, to),

sup {l(x’, m (t, f) m (t*, f))l" f L(Roo, rn (to))}- 0

as $ t*,
(v) for any (nonzero) x’ X’ and t (0, to), UF and (x’, re(t)) have the

extreme point property,
(vi) m (t), t (0, to) is essentially normal in X.

Then Wis reached in minimum time t* > 0 by an essentially unique optimal control
f* with f*(o, z) ex F(w, ), (o, -) fl (0, t*). Also, there exists a nonzero x’ X’
such that

(3) Iot*I mi(t*))< Iot* ff fid(xZ fid(x’, mi(t*)) =<(x’, w)
i=1 i=1

for all f LF(R, m(t*)) and all w W.
Proof. We firstly show that the problem of reaching W in minimum time by

controls taking values in 6-6 F has a unique optimal solution. The essential
normality of the system will then imply that this solution is in fact a solution of the
original problem.

Consequently, define as in Theorem 1, the bounded measurable set-valued
function H: x [0, to] CCR by H(o, r) U6F(w, r)/(h (o, ’)) (where h is the
function bounding F in (1), chosen to be nonzero) and the control system
n(t)=(n(t)) where n(t) is the indefinite integral of h with respect to m(t),
t [0, to], 1, 2,. .. As the measures m(t) and n(t), 1, 2,..., are equiva-
lent, and An(n(t))= Aeav(m (t)), 6 [0, to], the problem of minimizing the time t
for which Av(m(t))(3 W# is equivalent to the problem of minimizing the
time for which An(n(t))fq W# . This latter problem has a solution by [6,
Lemma 1], as the conditions (A) and (C) there, follow from (ii) and (iii) above, and
(B) is a consequence of (iv) above, for

sup {l(x’, n(t, q)-n(t*, q))[" q 6Ln(R, n (to))}

sup {[(x’, m (t, f) m (t*, f))[" f Leav(R oo, m (to))}

for any x’ X’ and t, t* [0, to].
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Accordingly let t* be the minimum time, and f*6Ll(R,m(t*)) an
optimal control. As in [6, Lemma 2] there exists a nonzero x’ X’ such that (3)
holds, and consequently

f*d(x’, mi(t*)) - ex A-v((x’, mi(t*))).

By the extreme point property (v) f* Lex(v)(R, ((x’, mi(t*))))=
Lex(v)(R, re(t*)), as re(t*) is essentially normal. Hence f* is an essentially
unique optimal control and we may choose f*(w, z)ex F(w, z), (w, -)
12 (0, t*). However the sets -6 F(w, z), and F(w, z) are compact, and so by [2,
Lemma V.8.5] ex 6-6F(w, z)

_
ex F(w, z), (o, z) 1 (0, t*), that is, f* is, in fact,

the essentially unique optimal control for the original problem.
As an example of the application of this theorem to nonlinear control,

consider the following parabolic control problems.
Suppose f is a bounded domain in R", a--(a 1,". an) and Ds=

D,;1 s.D,, where Dj O/Oxj, and set lal al +" .+a,. For a positive integer m
consider the parabolic differential operator

(4) Lu =- Ou_A (x, t, D)u
Ou

as (x, t)DSu.
Ot Ot Isl<2m

We assume that the boundary of f and the coefficients as are sufficiently
smooth (in a sense to be made precise later) and that L is parabolic in the sense of
Petrowski in l) [0, ).

Firstly take the case m 1 and consider the second order boundary control
problem

(5)

(6)

(7)

Lu g in 12 (0, to),

u (x, 0) (x), x

Ou/Ov + a (x, t)u (x, t, p(x, t)), (x, t) e 0f (0, to),

where O/Ov is the outward transversal derivative along the lateral boundary (e.g.
[4]), g and (P are fixed smooth functions, p is regarded as the control function
chosen to be measurable and have values in a compact (not necessarily convex) set
Uc R, and : 0f (0, to) U--> R is a (fixed) measurable function which, for
each u U, is Lebesgue measurable in (x, t), and for each (x, t) 01 (0, to) is
continuous in u. Suppose also that a q > 1 and a function h Lq (0I) are given and
for which [(x, t, u)] _-< h (x), for all (x, t, u) 01) (0, to) U.

If q > n 1, choose a number s [ 1, o) and let W be a closed, convex subset
of L (f [0, to]) with nonempty interior such that W. Suppose also that W is

(0, to in the sense that there exists a measurable functionreached in some time
p for which (x, t, p(x, t)) U6 {(x, t, v): v 6 U}, (x, t) 6 0O (0, tl), and if u is the
solution of (5), (6), (7) for this function p, then u (., tl) W. In this case we have

THEORE 3. If a (x, t) and the coefficients ofL are analytic functions, and
is an analytic manifold, then under the above assumptions on W, W is reached in
minimum time t* by an optimal control p*, with

(8) (x, t, p*(x, t)) e ex {(x, t, v)" v e U}, (x, t) e 01 (0, t*).
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Proof. As in [6, Thm. 5], we can represent the solution of (5), (6), (7) in the
form

u(x, t)= (w, ’, p(w, ’)) dm(t)(w, -),

(x, t) 0f x [0, to), where m (t): 9, -L () is the vector measure derived from the
Green’s function G for this problem (see [6, 5]) and 5e, is the usual o--algebra of
subsets of 012 [0, t]. (Each measure m (t) takes values in L () by [3, Lemma 1].)
It is also a consequence of [6, Lemma 5] that m(t) is normal in L() for any
0 < t to, and the assumptions on s imply that h is m(t)-integrable, 0 < t to, and
that u L ( [0, to)) [3, Lemma 1].

Define the measurable set-valued function F: 0 (0, t0) - CR by F(w, )
(w, r, U) {(w, z, v): v U}, and apply Theorem 2 to this set-valued fuqction

and the vector measures m (t), 0 < < t0. The set-valued functions F and F are
integrably bounded by h, conditions (i) and (ii) hold from our initial assumptions,
and (v) by the remarks above. We next prove (iii) and (iv).

Suppose (0, t0) is given. Then for f LF(R, m (t0)) and p > 0

Im(t+p,)-m(t,)(aN G(. t+p, ,)(, ) dl () d
a LS(a)

(9)

fot Io [G(., +p, , ’)-G(’, t, sc, ’)]f(:, ’) dA (sc) dr

where A is the usual surface measure on 012. To prove (iii) and (iv) of Theorem 2
we will only show that

sup [G(.,t+p,,’)-G(.,t,,’)]f(,’)dA()d" "f,
f LS(f)

]f(sc, ’)1 -< h (sc) a.e.} 0 as p $ 0,

as the convergence of the other integral in (9) follows similarly.
Since 1 =< s < oo, the result will follow by dominated convergence, if we can

show that for each x f,

(10) Ip(x)= IG(x,t+p,,-)-G(x,t,,-)lh()dA()d-O

as p $ 0, and

(11) Ip (x) _-< K, K some constant,

for all x f and p sufficiently small.
Firstly we will prove that the function

(12) 7" - f. IG(x, , , r)lh(#) dz (), r 6 [0, t],

is integrable over [0, t] for each (fixed) [ [t, +p] and each (fixed) x fl. From the
properties of the Green’s function it clearly suffices to suppose that x lies in a
sufficiently small neighbourhood of 011 and : lies in a neighborhood of x. That is, if

’ is some (n 1)-dimensional domain, then (using the estimate [3, (2.3)] for G) it
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suffices to show that, for .each x’ f’ and each s [0, So], say, the function

1 [ (x’- :,)2,
_

.) h ’(sc’) d’(13) O(x’,s,r)= (_r),/eexpk -:)exp
is integrable as a function of r over [0, t], where h’e Lq(O’). We may further
suppose s 0 in (13). Then by H61der’s inequality with exponents q, r (1/q +
/r=),

and substituting 0 Ix -l/-r, we have

(14) IQ(x’, O,

where (nr/2-(n 1)/2). (l/r), and c is independent of x and p. Asq > n 1,
< 1, and Q is integrable.
Now suppose x e O is fixed and e > 0. The integrability of the function (12)

allows us to find a t, (0, t) such that for all p suciently small (say p < 1)

(15) IG(x,t+p,,,)-a(x,t,,r)lh()dX()dr<e.

However, the function

is continuous in p and so there exists a e < such that for p < the integral (16)
is less than e. Assertion (10) follows by adding the inequalities (15), (16), and
assertion (11) can be proved similarly, as the constant c in (14) is independent of x
and p.

By Theorem 2 the optimal time t* exists, and there is an (m (t*)-) essentially
unique optimal controlf* e Lx(R, re(t*)), and a nonzero x’ e (L (O))’ such that

(17)
t*

re(t*))fd(x’, m(t*)) <-

for any fLF(R,m(t*)). By redefining f* on an m(t*)-null set, we have
f*(to, -) e ex F(to, -), (to, -) e 01) x [0, t*], and then by [ 1, Cor. 5.2’] there exists an
admissible control p* such that (to, -, p*(to, -))= ]’*(to, -) all (to, -). Clearly this
function p* is an optimal control with the desired properties.

Remark 1. If, as in the proof of Lemma 5 in [6], we write the measure
(x’,m(t*))(E)=jIEK(to, -)dA(to)dr, where A is the surface measure on 012.
E e t, and K is a nonzero integrable function, then (17) becomes,

0

t*

I0 (to, r, p(to, ’))K(to, ’) d, (to) dr

<__fot*fo .(o, r, p *(oo, r))K(o, r)dX(oo)dr
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for all admissible controls p. It is then a consequence of [10, Thm. 7.1(i)], that
there exists a nonzero real number for which

(18) r/ (w, z, p*(to, z))K(to, z)= max (r/ (to, z, v)K(to, z))

for almost all (to, z) 0f x [0, t*]. Equation (18) could be regarded as an analogue
of the Pontryagin maximum principle. As f* is unique (a.e.), the optimal control
p* will be unique (a.e.), if the function v (to, z, v), v e U, is invertible, for
almost all (to, -).

Next we consider the action of distributed control, that is in (7) is kept fixed
(and assumed to be smooth) and condition (5) is replaced by

(19) Lu(x,t)=g(x,t,p(x,t)), (x,t)eOx(O, to),

where p is regarded as the control function, measurable and taking its values in a

compact set U c R, and g has analogous continuity and measurability assump-
tions to in Theorem 3, with the bounding function h eLq(), for some q.
Suppose the target set W is a closed convex subset of LS(12) with nonempty
interior, where 1 <_-s < oo if q > n/2 and 1 -<s -<q if q <-n/2, W is reached (in an
analogous sense to that used in Theorem 3) in some time tl e (0, to],. and W.
For this problem the regularity assumptions on the coefficients of L can be
considerably weakened.

THEOREM 4. Suppose a(x, t) is smooth, the coefficients of L are
q 2n + 2[(n + 1)/2]+ 11, and L* has the weak backward uniqueness property [4,
Chap. 9]. Then under the above assumptions on W, Wis reached in minimum time
t*> 0 by an optimal control p*, and g(x, t, p*(x, t))6 ex {g(x, t, v): v U} a.e.

Proof. As in [6, Thm. 6] we represent the solution of (19), (6), (7) in terms of
the Green’s function, G, for this system. Namely,

(20) u (x, t) (x, t) + G(x, t, to, -)g(to, -, p(to, -)) dto dr

for (x, t) f [0, to], where/3 is a fixed smooth function which, without loss of
generality, we take as zero. Define vector measures re(t): t-LS(f),t the
Lebesgue measurable subsets of f [0, to], by

m(t)(E)= ff G( t, to, z) dtodz, E G,-t,
JJE

and represent the solution (20) as

u( t)= g(o, r, p(o, r)) dm(t)(oo, z).

Then a similar argument to Theorem 3 shows u e L(lIx[0, to]), h is m(t)-
integrable, 0 -< t -< to, and (iii), (iv) of Theorem 2 hold. To complete the proof we
will show the measures m(t), 0< _-<to, are normal in L (1)). This amounts to
proving (see [6, 5]), that for each t* (0, to], and each x’ [L (12)]’, x’ 0, the



function

K(oo, ’)= In x’(x)G(x, t*, oo, ’) dx, (o, ) e a x (0, t*),

is nonzero almost everywhere.
Suppose t* is fixed, and K is zero on some nonnull set E c 11 x [0, t*). Then

for t sufficiently close to t* (t < t*) K must also be zero on D f x [0, t)E.
Hence by Fubini’s theorem, there exists a set A c (0, t) of positive measure, such
that for each -e A, D’= {o9: (, -)eD} has nonzero n-dimensional Lebesgue
measure. By the properties of the Green’s function, L*K(w, -)= 0 on f x [0, t),
and so by [7, Thm. 5] (and the remarks preceding this theorem), K 0 a.e. on
f x A. Then, by weak backward uniqueness [4, Chap. 9], K 0 a.e. on I x [0, t).
Taking a sequence ’[ t*, we see that x’(x)= 0 a.e. on , which contradicts our
initial assumption.

Remark 2. The result of Theorem 4 holds for the general parabolic equation
(4) with more general boundary conditions provided the coefficients of L and of
the boundary operators are analytic, and 0f is an analytic manifold. For exact
details see [6, Thm. 6].

An analogue of the maximum principle also holds for this problem (el.
Remark 1), as do theuniqueness properties mentioned there.

The above examples have considered problems with only one control vari-
able; however, problems with more than one boundary control or with boundary
and distributed control can be solved using Theorem 2 (when condition (v) there
holds), as the solution of such problems can be represented as a sum of the type
(2), with, in general, as many terms in the summation as there are control
variables. The verification of the other conditions of Theorem 2 follows as in the
examples above.

The above considerations also extend to control governed by other per-
formance indexes. For example consider the problem of minimizing the cost
functional

I(p) lu(x, to, p)-za(x) dx

where to is a fixed time, za L2() is a given function and u(., to, p) is the solution
at time to of (5), (6) and the boundary condition

(Ou/Ov)(x, t, p)= (x, t, p(x, t)), (x, t) OI x (0, to).

The function p is the control function admissible if it is measurable and takes
values in a compact set Uc R, and is a measurable function: 0O (0, to) U-
R satisfying the Carath6odory conditions of Theorem 3 and also [(x, t, v)] _-<
h (x, t), (x, t, v) Of x (0, to) x U, for some function h 6 L2(0" (0, to)). We further
suppose I(f) > 0 for all measurable functions f with f(x, t) -d-d q(x, t, U), (x, t)
OO x (0, to).
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THEOREM 5. If the coefficients of L, and Ol, are analytic, then an optimal
control, p*, for the above problem exists and is characterized by

and

L*y(p*) 0 inl(O, to),

(Oy/Ov)(p*)=O inOfl(O, to),

y (x, to, p*) u (x, to, p *) Za (x),

Io foty(w’ r,p*)((w, r,p*(w, 7.))-(w, r,p(w, 7.))) dwd7.>-O

for all admissible controls p. The optimal control p*(w, 7.) ex (w, 7., U) a.e.
Proof. As before, set F(w, 7.)= (w, 7., U) (0, -) 0fl (0, to). Then by the

implicit function argument used previously, the above problem is equivalent to
minimizing I(f), f LF {f: f measurable, f(w, z) F(o, r), (w, z) 0f (0, to)},
where u (x, t, f) is defined as the solution of

(21) Lu g in 12 (0, to)

(22) u (x, O, f) (x), x e f,

(23) (Ou/Ov)(x, t, f) f(x, t), (x, t) Ofl (O, to).

The set L-v is, by our assumptions, a bounded subset of L2(012 (0, to)), and it is
easy to show it is, also, closed and convex. Hence the problem of minimizing I(f)
over all functions fLI subject to (21), (22), (23) has an optimal solution, f*,
which is characterized by the adjoint problem [9, III.2.2],

and

(24)

for all f L-fF.

L*y (f*) 0 in f (0, to),

(Oy/Ov)(f*) 0 on 012 (0, to),

y (x, to, f*) u (x, to, f*) Zd (X),

t*

fo y (w, 7., f*)(f*(w, 7")-f(w, 7")) dw de" >- 0

As za u (., to, f*) the analyticity assumptions guarantee that y (f*) is non-
zero a.e. in 12 (0, to) (cf. Theorem 3 or [9, Lemma III.3.1]). From (24), f*
exLv-Lexv _Lexv, by our earlier remarks. The implicit function theorem
then gives an admissible control p* such that f*(w, 7.)=(e0, z, p*(w, 7.)) a.e.,
(w, 7.) 012 (0, to), and it is easily seen that p* is the desired optimal control.

In problems with only one (real-valued) control function (e.g., Theorems 3, 4,
5) for which the set U (where the admissible controls take their values) is compact
and convex, the existence of an optimal control can be proven without assuming
normality or int W . For example, in Theorem 3, the assumed properties of
the function imply that the set F(w, 7")= (o, 7", U) is pathwise connected for
each (w, 7"), but as this set is contained in R, it must be actually convex. The
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existence of an optimal control (even if int W- ) follows under conditions (ii)
and (iv) of Theorem 2 (cf. [6, Lemma 1]), and if int W and (iii) holds, the
necessary condition (17) also holds. Of course, this optimal control cannot be
guaranteed to be bang-bang or unique.

Lastly we remark that all of the previous results extend to the case the set
U U(o), -) varies with (o, -). For this it is sufficient to assume that the correspon-
dence (0, -)-- U(o), -) is a measurable, compact-valued, set-valued function.

Acknowledgment. I would like to thank Professor Frehse for his help in some
aspects of this work.
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DIFFERENTIAL SEARCH GAMES WITH MOBILE HIDER*

JOE G. FOREMAN,"

Abstract. In differential search games with a mobile hider of the princess and the monster type
formulated by Isaacs, two blind players P, the pursuer, and E, the evader, are initially distributed in a
playing space S and may move therein on paths determined by their control variables, P being
constrained to move no faster than a given maximum speed. The game terminates at a given time T,
and the payoff is the capture probability which P maximizes and E minimizes.

Two such games are analyzed; in the first S is a circle, and in the second S is a region of the plane.
The game where S is a circle is solved for very general initial relative distributions of the players in S
and all termination times T.

The game where S is a region of the plane is solved for the equiprobable relative initial
distribution of the two players in a region far from the boundary of S relative to the distance that P can
travel in time T (that is for situations in which the boundary is sufficiently far away as to make no
difference).

1. Introduction. Differential search games with a mobile hider are examples
of games with limited information and as such differ considerably from the
differential games with perfect information that have been successfully analyzed
[ 1]. Games with limited information differ in that mixed strategies are required for
optimal play. These games occur frequently and have practical value; yet there is
no systematic method for their solution.

A representative search game with mobile hider that embodies the quintes-
sence of the problem is due to Isaacs [1, Chap. 12].

The princess and the monster. The monster P searches for the princess E, the
time required being the payoff. They are both in a totally dark room (of any
shape), but they are each cognizant of its boundary (possibly through small
light-admitting performations high in the walls). Capture means the distance
PE =< l, a quantity small in comparison with the dimension of the room. The
monster, supposed highly intelligent, moves at a known fixed speed. We permit
the princess full freedom of locomotion.

The version of the princess and the monster game that is of concern here is the
one in which P has a given maximum speed which we normalized to unity, and the
game terminates at time T if capture has not occurred (such a game is said to have
a fuel constraint), and the payoff is the probability of capture. In 3 this game is
analyzed where the players are initially distributed equiprobably in a region of the
plane far from the boundary. The game for large T (in which the boundaries play a
role) is unsolved.

Literature. As an aid toward the solution of the princess and the monster
game Isaacs also introduced [1, Chap. 12] the one-dimensional game on the
(boundary of) the circle. The continuous version of this game has been studied [2],
[3] for the case in which the players are distributed equiprobably on the circle at
the start, and the payoff is the expected length of the game. In a discrete version of
this game [1, Chap. 12], each player at the start occupies one of N(->3) points
on the circle, and on each move the players move one point clockwise or

* Received by the editors June 16, 1975, and in revised form July 27, 1976.

" Space Systems Division, Naval Research Laboratory, Washington, D.C. 20375.
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counterclockwise. Capture occurs when the players occupy the same point or
exchange positions during a move. The discrete game has been studied for the case
where the payoff is the expected length of the game [4], [5]. In [4] the game is
analyzed for the case in which both players know the starting positions of each.

The name search game or search-hide game is used to distinguish the subject
matter from search optimization problems or one-player games. Frequently this
distinction has not been made in the literature and the term search theory has been
applied to various search problems including two-player games. During World
War II a large amount of work was done in the general area of search theory, but
for the most part this work was not approached from a game theoretic point of
view. The results of this early work are summarized in the works of Bernard O.
Koopman. A bibliography of the literature through 1965 is available [6]. A
min-max pursuit problem (not actually a game, but similar to the present
problem) in which the evader knows the itinerary of the pursuer has been studied
[7].

The payoff structure and the differential nature of the game. The first payoff
structure to be considered is the one in which a partie (a partie is a particular
playing of the game) of the game terminates only when capture occurs, and the
payoff is the expected length of the game. For the discrete game this payoff is

(1.1) pay (b, )= Z cap (i, b, )
i=1

where is the move number and cap (i, 4, ) is the probability that capture occurs
on the ith move, given the strategies 4 and q for P and E respectively. Here and
throughout this paperP is the maximizing player andE is the minimizing player.

This payoff is a particular case of the more general payoff

(1.2) pay (b, if)= Z U(i) cap (i, b, )
i=1

where U(i) is the weight to be given to capture on the ith move. In some games
with payoff (1.2) the optimum strategies are independent of the function U. This is
the case if, for example, there exists strategies 4 for P and for E such that

(1.3) cap (i, 4, )= cap (i, b, )= ki

for every 4 and 0. Then 4 and are optimum strategies, the value of the game
V- ,= U(i)k, and the payoff V if either P uses b or E uses q.

Another case in which the optimum strategies are independent of the U
function occurs in a continuous game on the circle within which the players are
initially equiprobably distributed [3]. In this game the continuous version of (1.3)
does not hold since E can, by playing poorly, do worse than the value of the game.
Furthermore, in this game the optimum strategies are no longer independent of
U(i) for more general initial distributions.

The discrete game which terminates after a given number n of moves (fuel
constraint) and in which the payoff is the capture probability also fits into the
general scheme (1.2). For this case we have U(i) 1 for 1 -< =< n, and U(i) 0 for
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> n. The payoff is

(1.4)
pay (b, O)= Z cap (i, b, )

i=1

Cap (n, b, 0)

the cumulative probability of capture. In the following sections we are concerned
with games whose payoffs are continuous versions of (1.4).

We are generally concerned here with differential search games in which both
players may move at finite speeds to adjacent parts of the playing space. This
playing space may be discrete, continuous, or a combination of both. It is the
constraint on the motion of the players induced by the connectedness of the
playing space that makes many of these problems difficult to solve.

For example, consider the "completely connected" discrete game in which to
start the game both players move into one of N discrete cells and capture occurs if
they choose the same cell: If capture does not occur on the first move, then for the
second move the players may again move into any of the N cells, and so on until
capture occurs. If the payoff is given by (1.2), then the optimum strategy for both
players is to move equiprobably to each cell on each turn regardless of the values
of U(i). This is because each move is independent of the previous move. In this
game k (1/N) (1 1/N)-1.

However, if the N cells are arranged on, say, a rectangular grid and the
players are permitted to move only to one of the at most 5 adjacent cells (counting
the position of the player before the move) on each turn, then the game has
become a discrete princess and monster game. Different games are obtained
depending on the shape of the playing space. The boundaries of the playing space
produce particular difficulties in obtaining solutions. Other factors in the defini-
tion of a game are the payoff structure, the initial starting conditions, and the
speed constraints.

Initial conditions. A game has not been defined until the initial placement of
the players in the playing space and the information given to each about the
other’s whereabouts has been specified (usually probabilistically). We always
assume that, once the game starts, no further information is given the players,
although each is constantly aware of his own position. The game may be started by
al.lowing the players to select their starting positions or such may be governed by a
prescribed probability distribution. The amount of information granted to the
players about the other’s initial placement may vary from none at all to exact
information. A case sufficiently general for us is the one in which the players are
given that the initial positions are chosen from a joint probability distribution.
Then at the start of the partie each player, knowing his own position, can calculate
the conditions probability distribution of the other.

In the game on the circle of 2 it is assumed that the players are distributed
independently in their initial placement on the circle. Thus, due to the symmetry
of the problem, only the relative positions of the players matter, and a single
variate distribution is sufficient to describe the relative initial placement. In 3 the
game in the plane is analyzed with an equiprobable initial distribution.
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A game in which no information is given to each player about the location of
the other may not have optimum strategies or value; the payoff matrix cannot, be
contructed. However, in some cases, such as a game treated in 2, the game may
have optimum strategies and value because the optimum strategies are optimum
for every initial distribtition.

Kinematic constraints and allowable pure strategies. In the continuous games
analyzed in the following section, the pursuer is contrained to a maximum possible
speed (normalized to unity) and the evader is unconstrained. If the evader is
constrained to move no faster than a maximum speed which is less than the
pursuer’s, the game is changed considerably. The extreme case where the evader
cannot move at all (immobile hider) has been analyzed by Isaacs [1, Chap. 12].

A pure strategy for E is required to be continuous and have a finite forward
derivative at each [0, T]. The class of all such is denoted by F. A pure strategy
for P has the further requirement that the forward time derivative is -<1 in
absolute value. This class of pure strategies is denoted F1.

The motivation for the above class of pure strategies is that the motion of the
players is determined by the velocity controls. However, the results obtained here
remain valid if a pure strategy for E is allowed to be continuous and for P is
allowed to be Lipschitzian with Lipschitz constant 1.

2. The continuous game on the circle with fuel constraint. This section
concerns the continuous game on the circle S with termination time Tand given
arbitrary initial distributions. It will be shown that the solution breaks up.into two
parts, termed a global part and a local part. The global part of the optimal
strategies is a sequence of cohato (or nearly so) moves. The cohato or coin-half-
tour move is the equiprobable selection of proceeding clockwise or counterclock-
wise around the circle from the starting position to the opposite pole.

2.1. General description of games on the circle with fuel constraint. Two
blind players, the pursuer Pand the evader E, are allowed to move on a circle $ in a
continuous manner by choosing an instantaneous velocity (forward time deriva-
tive). The player P has a given maximum speed while E is allowed any speed.
Capture occurs when the two players occupy the same point. The partie
terminates when capture occurs or at a given time T,whichever occurs first. The
payoff is the probability of capture, which P maximizes and E minimizes. We
normalize the problem by taking P’s maximum speed as unity and the circumfer-
ence of S as 2.

We assume that the players are initially distributed on S independently; thus
due to the symmetry of the problem, we may replace the two probability functions
by a single variate function giving the relative initial positions of the two players.
Furthermore, we take a coordinate system in S with P initially at the origin; then
E’s initial position is specified by a probability function C on S. That is, the
probability that E is initially in a given set A

_
S is C(A).

Pure strategies ]’or P and E. We adopt the convention that the counterclock-
wise direction, which we also call right, is positive, and thus a pure strategy e for E
is a function whose value e(t) is the displacement of E at time from E’s initial
position E0 S. Here E0 is the random variable with probability distribution C.
Similarly, a function p whose value p(t) gives P’s displacement is a pure strategy



DIFFERENTIAL SEARCH GAMES 845

for P. Note that this makes p(t) P’s actual position in S at time t. We have
p(0) e(0) 0 since neither player has yet moved at time t 0. The points of S are
reckoned modulo the circumference 2. Thus, for example, e(t)=t, [0, T]
means that E, starting from E0, goes right at speed 1 until the termination time (or
capture occurs) which may be several trips around S if T is sufficiently large.

For a-< b, by the cyclic (closed) interval [a, b we mean [a, b in the usual
sense if a =< b < a + 2 and S if b => a + 2. That is [a, b] is not to be enhanced by
redundant overlaps. Accordingly [a + n, b + n] [a, b] for every even intger n.
Open and half-open intervals are denoted similarly. Furthermore, we frequently
represent a point X S by any of its coordinates x {reals}.

The capture probability. For pure strategies p for P and e for E let

(2.1) w(t) =p(t)-e(t),

(2.2) a (t) min w (’) =< 0, b (t) max w (’) -> 0,
"rt t

(2.3) A (t) [a(t), b (t)].

LEMMA. The probability that capture has occurred at time t is

(2.4) Cap (t)- C(A ()).

Proof. Let eo (0, 2) be a coordinate of the initial position of E in S. The
distance right from P to E at is

O()=e()+eo-p().

Capture occurs at the earliest time - such that either D(-)-<0 or D(r)>-2. Thus
capture has occurred by time if

minD(-)_<-0 or max D(-) >- 2.
.r=<t

The first relation becomes e0 =< b(t), and the second becomes eo => a(t)+ 2. Thus
capture has occurred if E is initially in the interval [a (t), b(t)]. This probability is
given by (2.4). I-I

For the case in which the initial placement may be described by a density
function r, we have

(2.4a) C(A (t)) f dx.
aA

Example partie. Figure 1 shows three different graphical presentations of an
example partie of the game with T= 1.5. Part (a) of the figure shows pure
strategies p for P and e for E assuming that E’s initial position was at e0 shown. In
this example capture occurs at the time indicated by the arrow. Part (b) of the
figure shows p, -e, the resultant w p e, and the set A in S. In this case since e0,

the indicated initial position of E, is contained in A (-) we see that capture occurs
by time T. When P and E both use the same pure strategies as shown, the
probability that capture occurs by time T depends on the distribution function of
e0 and is given by (2.4). The portion of the curve x(t) w(t) above the line x 1 is
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FIG. 1. Three differentgraphicalpresentations ofan examplepattie

shown in a dotted line and its image in the region -1 =< x _-< 1 is shown as a solid
line. Part (c) of the figure shows the same situation as (a) and (b) but on the circle
without time as an explicit coordinate.

The reduced space II. The problem as stated is now replaced by an equivalent
problem in a reduced space II which, like S, is a circle of circumference 2. A single
point W moves in II, with coordinate w(t) given by (2.1), corresponding to the
motion of P and E in S. Here the coordinate system in II is like the coordinate
system in S, and points are reckoned modulo 2. In this formulation of the problem
we no longer regard capture as an event which terminates the game; rather the
game terminates at time T and the payoff is Cap (T) given by (2.2), (2.3), and (2.4)
where A (t) II is the interval swept out by the motion of W in II. The probability
of escape, that is the probability that capture has not occurred, is given by

(2.5) Esc (t) C(II A (t)) 1 C(A (t)).
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The state of the game. The triplet (t, w(t), A (t)) constitutes the state of the
game. The entire state of the game is of course unknown by the players since each
knows only his own contribution.

2.2. The cohato move and games with initial distribution given as a
probability density iunction.

The cohato move. Consider the two pure strategies that are half-tours of the
circle (in realistic space) traveling either left or right at speed unity from the initial
position to the opposite pole of the circle. The coin half-tour (cohato) move is the
mixed strategy which is the equiprobable selection of the left or right half-tour.
When used, the cohato move causes the escape probability to decrease by a factor
of at least 1/2, and as such is an important element of P’s optimum strategy when
T_>_I.

The cohato move is also an important element of E’s optimum strategy when
the initial distribution can be represented using a density function as in (2.4a). We
first state a theorem about the cohato move; then we analyze games in which
(2.4a) holds.

The cohato Theorem.
THEOREM 2.1. Given that the game is in state (s, w(s), A (s)) then:
1) If P makes a cohato move at maximal speed then

(2.6) Esc (s + 1) _-< 1/2 Esc (s)

and if E’s speed <-i, and (2.4a) holds, we have the equality

(2.7) Esc (s + 1) 1/2 Esc (s).

2) ff (2.4a) holds andE makes a cohato move at speed unity, then the equality
(2.7) is satisfied.

Proof. The proof of this theorem is given in [8]. However this proof may be
simplified by shifting the time scale so that s 0 and the state is (0, w(0), A (0)),
and further simplified by rotating the coordinate system so that w(0)= 0, the
origin of the new coordinate system for II; A (0) is still the same set in H.

The value ofthe game. Let V(T) denote the value of the game (the probability
of capture under optimum play) with termination time T. Write T n + r/where n
is a nonnegative integer and 0 -< r/< 1. If V(rt) and optimum strategies exist, then
the game with termination time T may be reduced to a game with termination
time

THEOREM 2.2. If (2.4a) holds, then an optimum strategy for a game with
termination time l becomes an optimum strategy for the game with termination time
T n + rl if it is followed by n cohato moves. The value of the game (probability of
capture)

(2.8) V(T) 1 (1/2)" + (1/2)" V(r/).

Let V(t) 1- V(t), the probability of escape under optimum play by both players;
then (2.8) is equivalent to

(2.9) ff’(T) (1/2)" Q(r/)
which is in a form frequently more convenient.
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Proof. We prove the theorem by showing (2.9).
1) Let P play the strategy of the theorem so that at time r/, Esc (r/)=< Q(r/).

Then from Theorem 2.1

Esc (T) _-< (1/2)" Esc () _-< (1/2)" I7"(
or 17"(T) _-< (1/2)().

2) On the other hand, if E plays the strategy of the theorem, then Esc (/)
V() and from eorem 2.1

Esc (T) ()" Esc (n) ()" Q(n)
or (T) ()(n).

We have then that the value of the game with termination time T and
arbitrary distribution r, is between 1-()" and 1-()+ which gives a good
approximation for large n.
e local problem. The original problem on the circle with distribution r and

termination time T= n+ has now been reduced to solving the game for
termination time B. at is, we have reduced the global game where the searcher
has time to search at least half the realistic space to the local game where the
searcher has less than enough time to search half the space. The solution to the
local game depends on the given function r.

A particular distribution. A particular distribution r for which the game can be
solved exactly is

rl forx [0, 2r/],
r2 for x [-2r/, 0].

That is, r(x) is constant for a distance 2r on each side of the origin.
THEOREM 2.3. For the given distribution, an optimum strategy for P is a mix

with probabilities r2/(rl + r2) and rl/(rl + r2) of the two pure strategies which have
velocities + 1 and -1 respectively. An optimum strategy for E is also a mix of the
two, speed 1, constant velocity, pure strategies; but, going left with probability
r2/(rl + rE) and right with probability rl/(rl + r2). The value of the game

(2.10) V(n) 2rlr2rl/(ra + r2).

Proof. Suppose P uses the strategy b of the theorem, and E uses any pure
strategy e; then the probability of capture is

(2.11) Cap (b, e)=(r2/(ra +r2))C(I(e))+(ra/(rl +r2))C(I2(e))
where Ia(e) is the interval swept out if P goes right and I2(e) is the interval swept
out if P goes left.

Let

Then

(2.12)
C(I1)>=rlL([I),
C(I2) -> r2L (2)



DIFFERENTIAL SEARCH GAMES 849

where L(.) is the function on intervals whose value is the length of the interval.
From (2.9) and the following relations, the probability of capture

Cap (T) ->_ rlr2[L(l(e)) + L(2(e))]/(rl + r2) rlr2L( [.J -’)/(rl + r2)

> 2rlr2rl/(rl + r2).

Thus V(t) >-_2rlrz/(ra + r).
Now suppose that E uses the strategy ff of the theorem and P uses any pure

strategy p; then since P’s speed =< 1, the two possible intervals swept out by w
(corresponding to the right and left motion of E) intersect only at the origin
and we have

Cap (p, q)= 2rrz’O/(rl + r2).

Thus (2.10) holds because both players may achieve the value of the game. l!
The equiprobable distribution.
THEOREM 2.4. For the equiprobable distribution r(x) 1/2, for all x, the value of

the game V(I) 1/2q. Thus for termination time T

v(73 a (1/2)" + (1/2)" +

An optimum strategy forP is the partial cohato move going right or left equiprobably
until time q followed by n cohato moves. This strategy is also optimum ]:or E, butE
may substitute for the partial cohato move any strategy which is an equal mix of the
pure strategy e(t) at or -at for [0, rt] where a 6[0, 1]. Note that this includes
the pure strategy e(t)= O.

Furthermore, we state without proof that the players may interchange the
order in which the n + 1 segments of the move are performed. For example, an
optimum move for E is a cohato move followed by remaining stationary until time
1 + r/followed by n- 1 cohato moves.

Proof. The value of the game, and the fact that an optimum strategy for both
players is the partial cohato move followed by n cohato moves is obtained from
Theorem 2.3. That an equal mix of pure strategies of the form e(t)= at or -at
where c [0, 1] is also optimum for E is shown in the standard manner. [3

2.3. The game with exact initial information. We now consider a game in
which (2.4a) does not hold, that is, the initial distribution has a "spike". Specific-
ally, we consider the game with exact initial information. In this game the cohato
move is still an element of an optimal strategy for P, but the corresponding move
for E is a modified cohato move. A modified (or e-modified) cohato move is like
the cohato move in that the player proceeds at speed 1 toward his polar point but
stops a distance e from his polar point and then remains stationary for time e. The
cohato move will not be an element of E’s optimal strategy for the game because
using the cohato move, E arrives at his polar point at time t 1, and P could
guarantee capture by being there then. It is this aspect which makes games with a
spike in the initial distribution more complicated than games in which (2.4a)
holds.

In this game the initial positions of both players in S are known by each, and it
is clear thatE can avoid capture until time t < 1 by staying closer to P’s polar point
than P can achieve. This maneuver constitutes the local part of an optimum
strategy for E. For games with termination time T-> 1 we need a theorem
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comparable to Theorem 2.1. Combining this result with the solution for the game
with termination time t < 1 gives the solution for games with termination time

for t=<l-e,
e(t)=

1-e for 1-e_-<t=<l.

Then E’s e-modified cohato move is the equiprobable selection of one of the pure
strategies e(. or -e (.).

THEOREM 2.5. Suppose the game is in a state such that E is at least distance
60 (0, 1] from P. IfE makes an e -modified cohato move with e 1/26o, then at time
1 the probability is at least 1/2 thatE has escaped with 61 >-- 1/260, where 6 is the distance
between P and E at time 1.

Proof. Figure 2 shows an e-modified cohato move for E in which for
convenience E is initially taken to be at the origin of the coordinate system. Both
the L (left) and the R (right) paths for E are shown, and the diagram allows us to
analyze the outcome for both possible paths simultaneously. Also shown in the
figure is a possible starting position for P (P0 60) and P’s two extreme paths
(dotted lines) starting from there. From the figure it can be seen that if P starts at
least distance e 1/20 away from E at time 0, it is impossible for his trajectory
to intersect both the R and L paths for E since due to P’s speed constraint the
slope of P’s trajectory must be =< 1 in magnitude. Furthermore, if P starts, at least
distance 60 away from E at time t 0 it is impossible for P to intersect one of the
two paths (R or L) and end up closer than distance 1/2d0 from one of the paths, fi

-1

L y //

+1

FG. 2. The e-modified cohato move
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Combining results for termination time < 1 and Theorem 2.5 we obtain
THEOREM 2.6. The value of the game with exact initial information is

V(73 -(1/2)".
An optimum strategy forP is any strategy containing n cohato moves. An optimum
strategy ]:or E is to avoid capture until time l, then make n modified cohato moves
with e 1/260 where 60 is the closest distance that P can obtain to E at time 1, and

Ei+ 1/2i 1/2Ei, i=l,...,n.

Proof. Certainly V(T) => 1 -(1/2)n since from Theorem 2.1 the n cohato moves
guarantee at least the payoff 1- (1/2)n.

To show V(T) -< 1 (1/2) we observe that ifE uses the strategy of the theorem,
then Esc (r/)= 1 and repeated application of Theorem 2.5 yields Esc (T) >-

3. The game in the plane without boundaries.
The game. In this section we are concerned with the following princess and

monster game. Two blind players P andE may move in the playing space S, which
is a region of the plane; P moves with a maximum speed normalized to unity. The
game terminates at a given time T. Each player is initially distributed equi-
probably relative to the other in a region of the playing space far enough from any
boundaries so that the boundaries play no role. Capture means that the distance
PE =< l, a quantity small in comparison to the dimension of S; in other words, there
is a capture disk of radius about P. The payoff is the probability of capture with P
maximizing and E minimizing.

We note that the requirement that each player is distributed equiprobably
relative to the other is not equivalent to distributing the players independently and
equiprobably in a region B _c S since, if a player found himself placed near or on
the boundary of B, he would know that the other is not outside B and thus not
equiprobably around him. Initially then, E0 is distributed with constant density z
in the annulus with center at P0, inside radius l, and outside radius 2T+ I. Thus if B
is a set contained in the annulus, then

Prob (E0 B) - Area (B).

By far from the boundary, we mean far relative to the distance that the
slowest player P can travel in time T. Thus the boundaries play no role in
determing the value and optimal strategies. Such might be the case for games
involving ships and/or aircraft at sea.

In one sense then the game above is a local game (T small), whereas for games
on the circle ( 2) we were able to obtain solutions for global games (T large
relative to the dimensions of the playing space).

Coordinates. Since only the relative positions of the players matter in this
game with symmetric distributions and information, we may pick a coordinate
system with P at the origin. A pure strategy for P is a vector function p(. that
gives P’s position p(t) at time t. A pure strategy for E is similarly a vector function
e(- ), but e(t) is E’s position at time relative to E’s starting position E0. Thus
p(0) e(0)= 0 as in 2.



852 JOE G. FOREMAN

The fatal set. Suppose that P selects a pure strategy p, and E selects a pure
strategy e; consider the set of points in S such that if E starts in this set, the
combined motion of the players causes capture to occur. This set of possible initial
positions for E is a function of p and e and is called the fatal set. The fatal set is
vacuous only if p e.

In a partie of the game (given p and e), the probability that capture occurs is
just the probability that E starts in the fatal set. If the fatal set lies entirely within
the region of uniform density r (which will certainly be the case if E does not
excxeed speed 1) then the probability of capture is just the area of the fatal set
times r.

Figure 3(a) shows an example of the fatal set in S. In this example P uses the
speed 1 constant velocity strategy going right in the figure; E uses the speed 1
constant velocity strategy going downward in the figure. The fatal set is the tubular
area. If E’s initial position e0 is anywhere in this fatal set, capture will occur to the
right of P’s initial position and below E’s initial position. The figure shows P’s
velocity vector/, and E’s velocity vector drawn from two representative starting
positions.

The reduced space II. It is convenient to work in a reduced space II similar to
the one used for the game on the circle. Corresponding to the motion of P andE in
the realistic space, a single point W moves in II with position vector

(3.2) w(t) =p(t)-e(t)

and w:[0, T] H is the path of W in II.
The curve corresponding to the path w is denoted by I(w)a= I(w, T) where

I(w, t)= {w(-)l-s [0, t]}. It is clear that there are many different paths w corres-
ponding to the same set of points or curve I(w).

In the reduced space we regard E as remaining stationary and capture occurs
if the disk around the moving point W overlaps E0. The fatal set in S corresponds
to the set in II swept out by the moving disk around W. This set of points in II is

S

l(-e)

(a) (b)

FIG. 3. An examplepartie showing thefatalset in S, and the correspondingset (the swath ofw) in II
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called the swath of the path of W. Figure 3(b) shows the swath in H swept out by
the disk around W for the same example partie as was shown in Figure 3(a) in $.

Figure 3(b) shows the curves I(p), I(-e), and I(w) as well as the swath of W.
We denote the swath area of curve I byA (I) where the area of the initial disk

around W0 is not included in A (I). The area of this initial disk is excluded because
it is assumed that E is not in this disk (i.e., capture has not occurred before motion
of the players). Furthermore, this convention prevents the area of this disk from
being counted twice when a curve is regarded as being composed of two sections.
Thus if the curve I is composed of I1 followed by I2 we have

A (I) <-A (I1) +A (I2)

and the equality holds provided that the radius of curvature of I is ->l in a
sufficiently large neighborhood of the point where 12 joins I1 and that the swath of
I1 does not intersect the swath of I2 at other portions of the curve.

As long as the swath of Win H remains within the region of constant density r,
the problem of determining the capture probability reduces to determining the
area of this swath; P desires to maximize and E to minimize this area. We denote
the swath area by A (w, t) and when t T we write cap (T) rA (w, T) rA (w).
The use of the symbol A as a function of curves and as a function of paths should
cause no confusion.

If w is smooth and the radius of curvature of w is ->l thoughout, and the swath
of w does not cut back upon itself, then A (w) 21L(w) where L(w) is the length
of the path w. However, for more general paths w, the swath area is not so simply
related to the path length, and we have in general

(3.3) A (w) <- 21L(w).

We now state a useful theorem about the minimum swath area between two
points.

THEOREM 3.1. Among all the curves I between two fixed points, the one with
minimum swath area is the curve I* consisting of the straight line segment between
the two fixed points. All other curves have swaths o] larger area.

Proof. This theorem seems intuitively obvious, but due to possible overlaps
in the swath of w, the proof cannot rely upon the length L(w).

Figure 4 shows the straight line curve I* and another curve I between the two
fixed points on the X-axis. We define h*(s) and h (s#) as the distances across the

x

FIG. 4. The curves IandI* and theirswaths in II
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swaths of I* and L In case the swath of I "doubles back" as in the figure at :1, the
distance h(:a) is the sum of more than one segment length. We have h(:)>=
h*()-> 0 for all :. Now since

we have

(3.4)

h(x) dx >= h*(x) dx

A(I)>-A(I*).

To show the strict inequality when I I* we observe that at a point on I
where the slope of the curve is nonzero we have that h (:)> h*(:) in a neighbor-
hood. Thus

(3.4a) A (I) >A (I*)

for I I*. [:]
We observe that a translation of a path w by a constant vector c to path w / c

preserves the swath area of the path. That is

(3.5) A (w + c, t) A (w, t)

where we still retain the convention of omitting the initil area of the capture disk.
The solution. It is clear at the outset that the value of the game (if it exists) is no

greater than 21rT since E can prevent the probability of capture from being
greater than this by remaining stationary. Thus

(3.6) V<=21rT.

It remains to show that P can guarantee achieving this probability of capture.
THEOREM 3.2. The value of the game is 21rT. An optimum strategy for P is

any mixed strategy which is the equiprobable selection ofthe pure strategiesp and -p
where p is any full-speed, constant velocity strategy. That is, p is such that

(3.7) p(t) =p(T)t/T and Ip(T)I- T.

The optimum strategy for E is to remain stationary.
Proof. We need only show

(3.8) V>=21rT

since we have shown the other inequality (3.6). Assume that P uses the strategy
of the theorem, and let e be any pure strategy for E. Then

pay (, e)=1/2rA(p-e)+1/2rA(-p-e)

if the paths p e and -p e remain in the region of constant density r. For the case
in which E moves so far and fast as to cause either p(t)- e(t) or -p(t)- e(t) to exit
the region of constant density then at least one of A (p e) or A (-p e) is -> 41T
and thus (3.8) holds for this case.

For the case in which both paths p-e and -p-e remain in the region of
constant density we have A(-p-e)=A(p+e) since the path -(p+e) is a
reflection of p+e through the origin. From (3.4), A(p-e)=
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A(p(T)+e(T)+p-e) since p(T)+e(T) is a constant vector. We have

pay (b, e) 1/2rA (p + e)+ 1/2rA (p(T) + e(T) +p -e).

The two paths p+e and p(T)+e(T)+p-e taken successively form two legs of
a "triangular" path between the origin and the point 2p(T). See Figure 5.

From Theorem 3.1, the path 2p is a path of minimum swath area between the
origin and the point 2p(T). Thus

A(p + e)+A(p(T)+ e(T)+p e) >-A (2p) 41T.

And pay (4), e)_-> 1/2r(41T)= 2rlT so that (3.8) is satisfied.
We notice that if E’s motion is parallel to P’s line of travel and E’s speed _<-1,

then pay(4), e)= 2rIT. On the other hand, if E has a component of motion
perpendicular to P’s line of travel, the strict inequality holds pay (4), e)> 2rlT.
Thus the strategy 4) of Theorem 3.2 does not necessarily penalize E for moving.
However, the strategy for P that is the equiprobable selection of all p that satisfy
(3.7) is optimum since it is a mixture of optimum strategies, and at the same time
any motion by E whatsoever will increase the payoff.

Comparison to game on circle. In the game on the circle analyzed in 2 we
found that with the equiprobable initial distribution, E’s optimum strategy for
termination time r/< 1, was not unique. One of E’s optimum strategies was to
remain stationary until time r/. For the game in the plane that we have just
analyzed, however, E does not have a choice of optimum strategies. E’s only
optimum strategy is to remain stationary.

Extensions of results. It is clear that the results of this section also apply in
N-space. However, the difficulties due to the boundary of the playing space $ still
remain. It is also clear that the results apply where S is a region of the sphere, but
global results have not been obtained.

It is conjectured that for the game on the sphere, a result similar to (2.6)
holds. That is, with optimum play, the probability of escape decreases by a factor
of g < 1 in the time required to search out g of the space.

Memory and information. For the class of pure strategies allowed, a player
needs to have the capability of "remembering" a trajectory of length T in order
to be able to employ any of the pure strategies. He need not have an alternate plan
about what to do if a certain region has been explored and capture has not
occurred; he simply continues searching along the prescribed path. However, in

p(T)+e(T)

I(p+e) (T)+e(T)+p-e)

/(2p) ’"--’k,2p (T)
0

FIG. 5. The "triangle" through O, p(T) + e(T),.and 2p(T)
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situations in which the pure strategies that make up the optimal strategy mix are a
small subset of the set of allowed pure strategies the players may be able to
perform an optimal strategy with considerably less memory. For example in the
game on the circle with large T the players need only a memory large enough to
hold a short initial maneuver plus a sequence of decisions about which way to go at
"nodal" times (times at which the cohato moves are initiated). Furthermore, the
decisions as to which way to go at nodal times can be generated and stored before
the game starts or be generated by a random device at the nodal times, eliminating
the need for that storage.

In games with "blind" players, no more information about the state of the
game is ever obtained than was initially given. In fact the players know less,
generally speaking, as the game developes since each player is unaware of the
maneuvers of the other. The current state of the game is a myriad of possible initial
positions together with possible trajectories of the opponent.
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dissertation, Johns Hopkins University, Baltimore, MD, 1974. The author
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COMMENTS ON "GENERALIZED PREDICTION-CORRECTION
ESTIMATION"*

L. B. WEINER"

Abstract. A recently discovered error in’the original paper (this Journal, 1969) leads to incorrect
results and numerical instability in the application discussed in Example 2. A correct approximation
yielding a stable algorithm is suggested.

The paper by Krasnakevitch and Haddad [1] correctly and properly derives a
technique to reject second order bias resulting from applying local linearization to
nonlinear filter problems. However, inconsistent accounting of higher order terms
in the Taylor series expansions in Example 2 (also in [2] and [3, 3]) yields an
incorrect equation, which is likely to produce numerical instability in repeated
iteration. As discussed in conversation with the authors, the approximation given
in [3, 6], matching the approximation represented by (8) below, is valid and will
reduce the likelihood of numerical instability. This error was discovered recently
during the study of the application of the methodology presented to the problem
of tracking maneuvering vehicles reentering the Earth’s atmosphere.

The error occurs in combining the equation (107) where fourth order terms in
e(k 1/k 1) are neglected in the formulation of P(k), with (95)where the fourth
order term E{e(k/k- 1)}E{e’(k/k- 1)} is subtracted. To demonstrate the effect
of this omission, consider the scalar case where (102) becomes:

(1) e(k/k- 1)= A (k)e(k- 1/k- 1)+ B(k)[e(k- 1/k- 1)]2
+C(k)[e(k- 1/k- 1)]3 +J(k)

where J(k) contains terms of order 4 and higher. Then, to fourth order (with
e(k 1/k 1) considered to be zero mean Gaussian with variance crY,_1), equation
(106) still holds true as:

(2) E{e(k/k 1)}= B(k)cr,_l
to second order.

P(k), computed correct to fourth order, proceeds as follows, with P(k) still
defined by (84)"

(3)

or

P(k) E{[e(k/k 1)]2}

P(k) E{A 2(k)[e(k 1/k 1)]2+ 2A (k)B(k)[e(k 1/k- 1)]3

(4) +B2(k)[e(k 1/k 1)]4 + 2A (k)C(k)[e(k 1/k 1)]4 + G(k)}
where G(k) contains terms at order 5 and above.

Then, equivalent to (107), with the term for u (k) suppressed for simplicity"

(5) P(k) A2(k)o-_ -t- 3[BZ(k) + 2A (k)C(k)]o’_

* Received by the editors April 23, 1976, and in revised form October 13, 1976.

" Teledyne Brown Engineering, Huntsville, Alabama 35807.
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and combining with (95) yields, correct to fourth order:

(6) Cov {e(k/k-1)}=A2(k)o_l +2B2(k)o_l +6A(k)C(k)o"_l.
This compares to the authors’ equations (95) and the incorrect equation (107)

combined to give"

(7) Cov{e(k/k-1)}=A2(k)o’_l-B2(k)tr_l.
While the difference in the original incorrect form (7) and the correct form (6)

is of second order, the iteration of the incorrect equations thousands of times as in
the suggested maneuvering reentry vehicle tracking application can, and indeed
does, render the Cov {e(k/k 1)} nonpositive definite through repeated subtrac-
tion of the small quantity B2(k)tr_l, yielding incorrect results and numerical
instability in the filter equations.

Approximating of (6) by its second order approximation:

(8) Cov {e(k/k- 1)}--A 2(k)tr,_l
as used in linearized Kalman filtering, or justifying deleting the term
6A (k)C(k)tr,_a to eliminate computation of the matrices of third partials, merits
further study for specific applications. The. approximation represented by the
original (107) combined with (95) is, however, invalid for the reasons demon-
strated by the example:
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SURVEY OF MEASURABLE SELECTION THEOREMS*
DANIEL H. W.AGNER?

Abstract. Suppose (T, 5/) is a measurable space, X is a topological space, and F(t) X for
t T. Denote Gr F= {(t, x): x F(t)}. The problem surveyed (reviewing work of others) is that of
existence of f: TX such that f(t)6F(t) for t T and f-a(U)St for open UcX. The principal
conditions that yield such f are (i) X is Polish, each F(t) is closed, and {t: F(t) f3 U = } d,/ whenever
UcX is open (Kuratowski and Ryll-Nardzewski and, under stronger assumption, Castaing), or (ii) T
is a Hausdorff space, Gr F is a continuous image of a Polish space, and M is the tr-algebra of sets
measurable with respect to an outer measure, among which are the open sets of T (primarily von
Neumann). The latter result follows from the former by lifting F in a natural way to a map into the
closed sets of a Polish space. This procedure leads to the theory of set-valued functions of Suslin type
(Leese), which extends the result (i) to comprehend a considerable portion of the results on the
problem surveyed. Among the topics addressed, measurable implicit functions and the case whereX is
a linear space and each F(t) is convex and compact are particularly important to control theory, for
example. With T X [0, 1] and Gr F Borel, an elegant partition of Gr F into Lebesgue measurable
maps from T to X, parameterized by Borel functions, has been found (Wesley) via Cohen forcing
methods. Other topics discussed include pointwise optimal selections, selections of partitions,
uniformization, non-or-algebras in place of 5/, Lusin measurability, and set-valued measures. Substan-
tial historical comments and an extensive bibliography are included. (See addenda (i)-(iii).)

1. Introduction. This paper surveys the subject of existence of a measurable
function which is a selection of a given set-valued function mapping a measurable
space into subsets of a topological space. The subject has undergone considerable
development in the past decade. We attempt to review the principal results
currently available and to give a history of prior work, dating primarily from a
1949 lemma of yon Neumann [NE] and from precursors on the subject by Lusin
[LS], Novikov [NO1], and others of the 1930 era. (See addenda (i), (ii).)

Measurable selection problems arise in a variety of ways in control theory,
mathematical economics, probability theory, statistics, and operator theory,
among other fields. For example Aumann’s influential 1965 paper [AU1] was
motivated by economics. Numerous applications are given in the referenced
papers. Although we will have little to say about applications, let us note two
exam.pies.

Suppose d" R 2 --> R" and D(q) fR d(t, q(t)) dt for all q" R --> R for which the
(Lebesgue) integral is finite. Suppose it is known that A R" and q* have the
property that

(1.1) A D(q*) _-> A D (q) for all admissible q,

the dot being ordinary inner product. Do we then have

(1.2) A.d(t,q*(t))_->A.d(t,y) fory6R, a.e. t6R?

In other words, does satisfaction of a functional multiplier rule imply satisfaction
of a pointwise multiplier rule? The answer was shown by Aumann and Perles

* Received by the editors June 21, 1976, and in revised form December 14, 1976.
? Daniel H. Wagner, Associates, Paoli, Pennsylvania 19301. This work was supported in part by

the Office of Naval Research under Contract N 00014-70-C-0232.
OAdditional credit to Jankov [JN], Novikov [NO2], and Rokhlin [RK2], and other recent

information are given in addenda in proof at the end of the paper.
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[AP], and in more generality by Wagner and Stone [WS], to be affirmative
providing d is a Borel function. An example in [WS] also shows that it does not
suffice for d to be Lebesgue measurable. In this application, one defines the
set-valued function F by

F(t)=(x:xR andA.d(t,x)>A.d(t,q*(t))} fortR.

If (1.2) fails, one finds a Borel Tc R of positive measure such that F(t) for
t T. Since d is a Borel function, von Neumann’s theorem mentioned above (e.g.,
Corollary 5.2 below) assures the existence of a Lebesgue measurable function/ on
Tsuch thatf(t) 6 F(t) for 6 T, i.e., ]’ is a measurable selection ofF T, from which a
contradiction to (1.1) is easily deduced.

As the second example, consider the problem of generalizing the LaSalle
bang-bang principle of control theory: Any output attainable via an admissible
control function is attainable by a control which utilizes only extreme points of
each instantaneous (compact convex) set of possible choices. Proving such state-
ments usually involves recognizing that each such choice is a convex combination
of extreme points, and one needs to find such a representation in a measurable
way (see 8 below, [WG1], [AU1], [CA5], [HV5], or [VA3], for example).

The preliminaries in 2 include some instructive counterexamples due to
Dauer and Van Vleck and to Kaniewski. Early history is discussed in 3, primarily
work of Lusin, Novik0v, and Saks.

The main fundamentals of measurable selections are given in 4 on closed-
valued functions, 5 on set-valued functions with measurable graph, 6 on
set-valued functions of Suslin type, and 7 on implicit functions. Of foremost
importance is pioneering work of von Neumann, Kuratowski and Ryll-
Nardzewski, and Castaing. Prominent in these sections is the prolific work of
Castaing, Himmelberg and Van Vleck, and Leese. Section 6, based on work of
Leese, unifies much of the developments in 4, 5, and 7. Numerous additional
authors have contributed to these developments. In particular, the papers on
graph-conditioned theorems by Aumann and Sainte-Beuve are quite interesting
and some expositions by Rockafellar and Himmelberg are especially helpful. The
initial contribution to the implicit function topic of 7 was Filippov’s.

Convex-valued functions are discussed in 8, notably Valadier’s work on
scalarly measurable selections and results of Himmelberg and Van Vleck and of
Leese on extreme point selections. We note applications of selection theory for
convex-valued functions to bang-bang problems and, primarily by Rockafellar, to
optimization of.convex integral functionals by duality methods. In 9 we review
results on pointwise optimal measurable selections, initiated by Dubins and
Savage.

In 10 we discuss decomposition of the graph of a set-valued function into
measurable selections, notably an elegant result of Wesley which appears to be the
most profound result to date in measurable selection theory, judging by its proof
via Cohen forcing methods.

Regarding a partition of a set as a set-valued function, in 11 we have an
alternative approach to selection problems, used in early results by Mackey and
Dixmier and later more extensively by Hoffman-J0rgensen, Kuratowski, Maitra,
and Rao, among others. The subject of uniformization, discussed in 12, usually
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treats selections with emphasis on their properties as subsets of a product space;
this subject is older than that of emphasizingfunction properties of selections, and
our coverage here is less complete than that of most topics discussed. It includes
theorems relating these two types of properties. Replacing the r-algebra of the
measurable space with other structures is discussed in 13. Lusin measurability is
reviewed in 14, including generalizations of Lusin’s theorem involving set-
valued functions. In 15, we discuss work on set-valued measures, led by
Godet-Thobie and Artstein. A few works which do not come directly under our
other topic headings are noted in 16; the final work discussed is the very recent
"measurable fields" approach by Delode, Arino, and Penot, which appears to be
quite promising.

A sequence of recommended initial reading is given in 17msome readers
may wish to turn to this first.

Numerous results come under more than one of these topic headings. We
have tried to give or discuss each in the section where its greatest interest appears
to lie.

A significant special topic that we do not discuss is that of differential
equations involving set-valued functions, in particular orientor fields. Our only
discussion of continuous selections, an important topic related to measurable
selections, is to cite a few general references in 13.

An extensive bibliography is provided, categorized as described in its intro-
duction.

An acknowledgement to several sources of help is given at the end. Regard-
ing accreditation, let us emphasize the well-known fact that "superseded" results
have usually contributed to the development of the subject by their earlier
appearance. By including considerable historical comments, we have tried to do
some justice to this point, but certainly very inadequately. Indeed even with fairly
recent literature, the heavy volume of results on the subject has required that
much excellent work be reviewed in only a superficial way, e.g., our discussion of
set-valued measures in 15.

2. Preliminaries. For every set S we define (S) {A: A c S}. Wheno
is a set of sets, by oT we mean the set of countable unions of members of. If S is
topologized, by Y3 (S) we mean the o--algebra of Borel sets of S, i.e., that generated
by the open sets of S, and for A c S, by cl A we mean the closure of A. IfM and
are o’-algebras, by M(R) we mean the smallest r-algebra containing {A D: A
M and D }. We denote the set of real numbers by R and Euclidean n-space by
R n"

We make considerable use of fixed notations denoting fundamental objects
in the structure of the problem. Definitions stated with respect to T, Ix, d//, X, or F
as fixed below apply in obvious ways to counterpart other objects.

We fix T as a set, not necessarily topologized, and Ix as a nonnegative
(possibly infinite) measure over T. Measurability always refers to tx unless stated
otherwise. Often we specify that Ix is an outer measure, meaning that Ix(S) is
defined for each $ T and Ix is countably sub-additive; then measurability of
S T is defined by Carath6odory’s criterion [FE, 2.12] and the set of measura-
ble sets is a o--algebra. At other times Ix is merely defined on a given or-algebra,
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i.e., the family of measurable sets, and is countably additive. Often it will not
matter which of these measure concepts is used. In all cases we lix as the
o’-algebra of measurable sets. If Z is a topological space and f: T--> Z, we sayf is a
measurable [unction if f- (U) whenever Uc Z is open. (Many of the results
reviewed here are taken from papers based on the measure foundations of
Bourbaki [BO2] who defines an integral as a linear functional and the measure of
a set as the integral of its characteristic function.)

It should be recognized that our measure conventions include the case where
no measure is present, i.e., when one is dealing with a measurable space (T, ),
meaning is an arbitrary r-algebra of subsets of T and T ; one may let/x be
the trivial measure given by tz(S)=0 for S to bring this case into our
framework. For theorem statements which do not mention properties of , in fact,
one may just as well consider that tx is not present.

We fix X as a topological space (except in Theorems 5.8 and 12.1), and we
reserve F to mean F: T-> (X), i.e., F is a set-valued function (also alled
multifunction, multivalued function, in French, multiapplication, or in German,
Multiabbildung).

We say F is (adjective)-valued if F(t) is (adjective) for T, and we apply
operations on sets to operations on set-valued functions in an obvious fashion,
e.g., if G: T-(X), then (Ff3G)(t)=F(t)fDG(t) for t T.

A selection (also called selector, section, uniformization, or, in German,
Schnitt) of F is a function f: T-->X such that f(t) F(t) for T. We denote

0(F) {f: f is a measurable selection of F}.

We sayf is an a.e. measurable selection of F if for some S M,/x (T\S) 0 and f is
a measurable selection of F]S. The problems considered here are: when does one
have (F) (i.e., there exists a measurable selection of F) or when does there
exist at least an a.e. measurable selection of F? Of course, from the axiom of
choice, every set-valued function has a selection.

Following [RC6], we say {fl, f2,’" "} is a Castaing representation of F if
fi 5(F) for 1, 2,. ., and {fx(t), f2(t), ’} is dense in F(t) for t 6 T. Under
weak conditions (see Theorem 4.2 below), existence of a Castaing representation,
which is an additional problem of interest, is equivalent to measurability of F as
defined next; this fact lends itself to manipulation of closed-valued functions in
ways which help to solve our primary problem of proving 5(F) 3, as shown
particularly well by Rockafellar [RC2, 6]. (See addenda (ii), (v).)

ForA c X, we define F-(A) T (q {t: F(t) (q A # }. We sayF is measurable,
as a set-valued functidn, if F-(K) whenever K X is closed, and weakly
measurable if F-(U)M whenever U X is open. Early uses of variations on
these concepts of measurability were made by Rokhlin IRK2], Berge [BG],
Pli [PL1], Debreu [DE], and Kuratowski and Ryll-Nardzewski [KRN]. The
definition of a measurable set-valued function was formalized and exploited by
Castaing in his thesis [CA4, 5]. The term "weak measurability" (although not the
concept) was introduced by Himmelberg, Jacobs, and Van Vleck [HJV].

We define the graph of F, denoted Gr F, by

Gr F= (TX) 0 {(t, x): x 6 F(t)}.
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FOr a function f: T X we do not refer to the graph of f (which we regard as the
same as f). It should be clear when we are referring to properties off as a subset of
T X (such as being a Borel set) or as a map on T to X (such as being a Borel
function). If Y and Z are topological spaces, we say f: T Y-Z is a
Carathdodory map if f(t, is continuous for T and f(., x) is measurable for
x Y. We denote 7rr(t, x) t and 7rx(t, x) x for T, x X.

If T is topologized and F is closed-valued, we say F is upper{lower} semi-
continuous, abbreviated usc{lsc}, as a set-valued function, if for each closed{open}
A c X, F-(A) is closed{open} (see [KU1, Chap. 1, 18]); F is usc implies Gr F is
closed. One says F is continuous if F is usc and lsc. The abbreviations usc and lsc
are also applied to f" T R.

When F is compact-valued and X is separable metric, measurability and
continuity of F as a set-valued function are respectively equivalent to measurabil-
ity and continuity as a "point-valued" function with respect to the Hausdorff
metric on the set of compact subsets of X. This is applied, e.g., by Castaing
[CA4, 5, Chap. 4] and in earlier work by Debreu [DE].

An excellent source for measurability properties of set-valued functions is
Himmelberg [HM2]; see also Rockafellar [RC6, 2, 3] and Castaing [CA5]. Sev-
eral references in the bibliography are additional sources; those marked with a
single prime are included because, in this respect, they augment the unprimed
references (sources on existence of measurable selections), in some cases
peripherally. Debreu’s [DE] (1965) was a pioneering paper on measurability
properties of F, without going into selection questions.

If every closed subset ofX is a G (e.g., ifX is metrizable), then measurability
of F implies weak measurability; the converse fails as shown by Example 2.4
below. We cannot omit the condition on X: Let T X R, M {, T}, the open
sets of X be the open right half-lines, and F(t)= {x:x <= t} for T. In most
theorems below where F is weakly measurable, we also have X metrizable, so
measurability may be substituted for weak measurability in those cases.

If F/" T- (X) is {weakly} measurable for 1, 2,. , then so is U ie= f/.
Unfortunately the same cannot be said for intersectionssee Example 2.3 below.
However, if each F is weakly measurable and closed-valued, and either (i) X is
r-compact and metric, (ii) X is separable metric and for T, for some i, F (t) is
compact, (iii) X has a countable base and for some i, F/ is measurable and
compact-valued, or (iv) X R ", then (q 1F/is measurable [HM2], [LE3], [RC6].

The principal additional properties of closed-valued F are summarized in
Theorem 4.2 below.

By a Polish space is meant a (not necessarily complete) homeomorph of a
complete separable metric space. We say that S is a Suslin{Lusin} space if S is
topologized as a Hausdorff space and there exist a Polish space P and a continuous
surjective {bijective} q" P- S. We define a weakly Suslin space in the same way
without the Hausdorff requirement. A {weakly} Suslin set in a topological space is
a subset which is a {weakly} Suslin space. Suslin sets play important roles in
measurable selection theory. Probably the most thorough treatment of them is
[HJ]. Other excellent references include [FE, 2], [KU1, Chap. III, 38], [BO1,
Chap. IX, 6], and [CH]. A subset of a Hausdorff space which is a Lusin space is a
Borel subset, and in a Polish space the converse holds [FE, 2.2.10]. A Borel
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subset of a Suslin space is a Suslin set [HV3, Lem.]. If/x is an outer measure, T is
Hausdorff and :g contains the open sets of T, then :g contains the Suslin sets of T
[FE, 2.2.12]. Any Suslin space is a continuous image of the set of irrational
numbers.

The definition of Suslin set given here is more general than that given in
[KU1] (there called analytic set) and [BO1] and less general than that given in
[FE]. It is important to note that [BO1] requires Suslin spaces and Lusin spaces to
be metrizable by definition, but we are advised that a forthcoming edition of
[BOll will use the definitions employed here. Note that Castaing and his
colleagues at l’Universit6 du Languedoc, Montpellier, have consistently consid-
ered Suslin spaces to be Hausdorff, not necessarily metrizable, although that has
not been explicit in their earlier publications. What we term Suslin and Lusin
spaces are respectively called analytic and standard spaces in [HJ], [CH], and
[MG]. Not much can be said about properties of weakly Suslin sets ([LE5] calls
them "classical analytic")mthat definition merely affords a weaker hypothesis
which suffices for some theorems in non-Hausdorff spaces. Still weaker hypoth-
eses, related variations under the term "analytic," are used in, e.g., [LE3, 5] and
[SN] (see below: Theorem 4.11, remarks before Theorem 5.6, and Theorem
12.3).

One says/x is complete if S’ c S 6 and/x (S) 0 imply S’ 6 /(always true if
/x is an outer measure). We say S c T is universally measurable (w.r.t. t/ and
without reference to /x) if S is measurable for each bounded (equivalently,
r-finite) outer (equivalently, complete) measure whose set of measurable sets
contains //. If //contains all of its universally measurable sets, it is said to be
complete. Of course, if/x is o--finite and complete, then / is complete.

We shall frequently employ an assumption that is weaker than being
complete, viz., that t/is a Suslin family, defined next. This definition employs the
Suslin operation, which has been central to the classical development of the theory
of Suslin sets. We make little use of the Suslin operation other than to define
"Suslin family"; however, it is used in several papers to prove results cited below.

We fix o//. and o//.. as the respective sets of infinite and finite sequences of
positive integers. Let . be a family of sets, and A:*. For cr o//., denote
(era," ", o-,) by o’ln, following [RG]. Then

o’n=l

is said to be obtainedfrom by the Suslin operation. If every set obtained from in
this way is also in , we say is a Suslin family ([RB] and [LE2-5], for example,
say admits the Suslin operation, and [DL] and [DAP2] say is "souslinienne").
We always have {D:D is obtained from by the Suslin operation} is a Suslin
family ("generated by ") [HF, 19]. In a Hausdorff space, each Suslin set is in
the Suslin family generated by the set of closed sets [RGW, Theorem 2]; in a
Suslin space the converse holds (adapt the proof in [KU1, 39, II]).

If is an outer measure, then is a Suslin family, e.g., [SK, p. 50].
Consequently, if t is complete, is a Suslin family. Also, as noted in [LE2], if/x
is a Radon measure on a locally compact Hausdorff space, then it follows from
[KU1, p. 95] that :g is a Suslin family. These observations obviate most of the
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complication which appears to be introduced by considering the Suslin operation,
in contrast to consideration of continuous images of Polish spaces.

Let us consider some cases where measurable selections do not exist, i.e.,
5(F) . The most elementary example is the case where f" T-X is not a
measurable function and F(t)= {f(t)} for t T. Then f is obviously the only
selection of F. Suppose in particular that T X [0, 1], /z is outer Lebesgue
measure over T, T Sg, and f is the characteristic function of S. Now GrF is
measurable with respect to 2-dimensional (outer) Lebesgue measure, since it has
measure 0 (but Gr F is not Borel). Thus, one can have 5(F) even when Gr F
has fairly nice measurability.

We shall see in Theorem 5.3, for example, that if Gr F is a Borel, or even
Suslin, subset of R 2, then F has a selection which is a Lebesgue measurable
function, and which will also (by Lusin’s theorem, Theorem 14.1 below) be a.e.
equal to a Borel function. However, with Gr F Borel in R 2 there need not exist
a selection of F which is a Borel function on all of T, i.e., if /= (T), we may
have 5(F) . This was shown by an example given in Novikov’s [NO1] and in
[LS] (see 3) and a later example by Blackwell [BL].

Where assumptions on Gr F are not made, it helps for F to be measurable
and to have closed values. The following three examples of Dauer and Van
Vleck [DV] illustrate some bad behavior of measurable set-valued functions
which are not closed valued. For Examples 2.1, 2.2, and 2.3, we let T=X=
[0, 1],/z be outer Lebesgue measure and S T have inner measure 0 and outer
measure 1.

Example 2.1 [DV]. Let Q, Q’ be disjoint dense countable subsets of [0, 1].
Let F(t) Q for 6 S and F(t) Q’ for T\S. Then F is not measurable, since
F-({a }) S for a Q. However, F is weakly measurable, since F-(U) is or Tfor
open U= X. Also, F is countable-valued. In [DV] it is shown that 6(F)=.

Example 2.2 [DV]. Let F(t) X\{t} if S and F(t) X if T\S. Then F is
measurable but GrF (R) (X).

Example 2.3 [DV]. Let F be as in Example 2.2 and let G(t) {t, 1} for T.
Then (Ff3 G)(t) {1} for tS and (Ff’)G)(t)={t, 1} for t T\S. While F and G
are measurable, F f’)G is not even weakly measurable.

The following example of Kaniewski (privately communicated via
Kuratowski and Himmelberg) shows that a weakly measurable closed-valued
function need not be measurable, even when T and X are Polish. Leese [LE3, p.
73, Example (vi)] had independently shown that this is true (with the same T and
) without exhibiting an example.

Example 2.4 (Kaniewski). Let T [0, 1], Z be the set of irrationals, X
TZ, p(t,n)=t for (t,n)X,F=p-1, and t/= (T). Since p is an open map-
ping, F is weakly measurable, in fact lsc. ThatF is not measurable is seen by taking
a closed K cX such that p(K) is not Borel.

3. Pre-1949 history. A reasonable starting point for an historical discussion
of measurable selections appears to be Lusin’s 1930 book [LS, Chap. IV] and
Novikov’s 1931 paper [NO1]. Reference [LS] is a classic treatment of the theory
of Suslin sets in R n, the early development of which is primarily due to Suslin,

Typographical error in [DV].
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Sierpinski, and Lusin. Both [LS] and [NO1] make nonspecific reference to the
other author’s work, but neither cites these references. Both treat implicit
functions in a way which constitutes a setting for the subject of Borel function
selections. They consider a Borel/: R Rp Rq from which one may define (we
are rendering usages)

F(t)=RP fq{y: f(t, y)=O} for teR

E R f’) {t: F(t) ;}.
Both showed the following:

(i) If each F(t) is countable, then E is a Borel set and FIE has a Borel
function selection.

(if) Without the requirement that F be countable-valued, E need not be a
Borel set and FIE need not have a Borel function selection.

in giving (i), Lusin showed more, by way of decomposing Gr F--see 10. Note
that the assumption that F is countable-valued is a severe restriction. Achieve-
ment of (if) centered on showing that there exist disjoint complementary Suslin
(i.e., CA) sets which cannot be separated by Bofel sets, the original demonstration
of which Lusin credits to Novikov. Incidentally, since Gr F is Borel, we now know
that F has a Lebesgue measurable selection (Corollary 5.2 below), which by other
work of Lusin (Theorem 14.1 below) agrees a.e. with a Borel function.

Lusin also addressed the question: Given g: E-Rp such thatf(t, g(t))= 0for
E, does there exist a Borel h: R Rp such that g h]E? This is a case of the

extension problem noted in 16 below and discussed in [HM2].
The usages "uniforme" (i.e., single-valued) and "multiforme" (i.e., multi-

valued) functions in [LS], [NO1], and earlier works appear to have given rise to
the term "uniformization," which is conceptually the same as "selection," but
with a different emphasis on properties of the selections. This topic affords
additional early historymsee 12.

Another early result is the following of Saks [SK, Lem. 7.1, p. 282] (first
edition was 1933): If Xc R is compact, and f: X- T is continuous, then there
exists a Borel A cX such that f(A) f(X) and f]A is one-to-one. Then [f[A j--1 is
a Borel function selection of F =f-lmsee Kuratowski [KU1, Chap. III, 39, V,
Thm. 3] (first edition was 1933). Also X could be any compact metric space, since
such is a continuous image of a Cantor set. Saks’ lemma was generalized to
Lebesgue measurable f by Federer and Morse [FM] (1943), but in a way which
does not appear to generalize the measurable selection consequence just stated.
Mackey [MC1, Lem. 1.13] (1952) applied [FM] as noted in 11 below. Baker
[BA, Lem. 3] (1965) adapted Mackey’s argument with [FM] to generalize Saks’
lemma to the case where T and X each have a topology with countable base and
are "almost Hausdorff" as defined in Theorem 12.4 below; the same Borel
selection consequence follows.

The earliest result on existence of measurable selections without assuming
countability or compactness of the values of F is von Neumann’s in 1949, which
we will come to in 5. (See addenda (i), (if).)

4. Closed-valued functions. In this section we survey selection results whenF
is closed-valued, generally without assumptions on Gr F. We remind the reader
that (see 2)/z is a measure over T for which is the tr-algebra of measurable
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sets, X is topologized, F(t) cX for 6 T, and ff’(F) is the set of measurable
selections of F.

The assumption that F is closed-valued is not as restrictive as might first
appear. For example, if T is topologized as a T1 space, f: X T is continuous, and
F f-a, then F is automatically closed-valued. We shall see in the next section
how this observation may be used to derive graph-conditioned selection results
from results of the sort given in this section.

Probably the most important result to date in the entire theory of measurable
selections is the following theorem. Its hypotheses are sufficiently weak that it
suffices for most applications, and numerous measurable selection results have
been derived from it, including the earlier result of von Neumann [NE], Theorem
5.1 below. It has also been generalized somewhat.

THEOREM 4.1. IfF is weakly measurable and closed-valued andX is Polish,
then St(F) .

Because Theorem 1 is so important, we discuss its origin in detail. This result
was given in 1965, by Kuratowski and Ryll-Nardzewski in stronger form as
Theorem 1 of [KRN] (see also [KU2, p. 74]), and independently by Castaing in
more restricted form as Th6or6me 3 of [CA1]. In [KRN], is permitted to be,
where is a field (i.e., Boolean algebra) of subsets of T; this hypothesis is weaker
than the requirement that be a o--algebra. Castaing’s statement in [CAll is an
announcement, with proof deferred to Th6or6me 3 of [CA2] (1966) and
Th6or6me 5.2 of his thesis [CA4, 5] (1967). In [CA1, 2, 4, 5] the assumption is
made and utilized in proof that F is measurable, not just weakly measurable.
Characteristic of Bourbaki measure foundations, it is also hypothesized that/z is a
Radon measure on T, a locally compact space (in [CA1, 2] a compact space), but
the method of proof (which uses a sifting, i.e., "criblage," of X) requires neither a
topology nor a measure on T. The proofs in [KRN] and [CA2, 4, 5] construct in
different ways a Cauchy sequence of functions which converges uniformly to a
selection. Castaing was the first to show, by Th6or6me 5.4 of [CA4, 5] (same
hypothesis as Th6or6me 5.2), that one can in fact obtain what has been termed a
Castaing representation of F--see Theorem 4.2 below. (See addendum (ii).)

Subsequent to the appearance of [KRN] and [CA5], workers in the field
became aware of the existence of Rokhlin’s 1949 statement [RK2, 2.9, Lem. 2]
which was similar to Theorem 4.1 except that was specialized to be isomorphic
to the o--algebra generated by the Lebesgue measurable subsets of [0, 1] and a
countable family of atoms. In recent years Rokhlin has often been credited with
the 6rigination of, in effect, Theorem 4.1. However, although the statement in
IRK2] is correct, the proof is not--the recursive construction does not satisfy
(10n).2 (See addendum (iii).)

A special variant of Theorem 4.1 was given in 1962 by Dixmier [DI, Lem. 2]:
assuming also T X, J//= (T), and {F(t): T} is a partition of T, he obtained a
selection f of F with range f Borel (Corollary 11.2(ii) below). Now there is a fairly
easy metric argument in [HM2, Theorem 3.3] showing that where X is separable
metric, F is weakly measurable only if Gr cl F (R)5 (X). This argument may be
used (i) to deduce from [DI], Theorem 4.1 with the added conditions that T is

For confirming our finding on this point we are indebted to Roman Pol and Pawel Szeptycki, who
reviewed the original Russian version, and to Fred Van Vleck who reviewed the English translation.
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Polish and YJ(T) (by applying [DI] to the partition {{t} x F(t): t T} of Gr F),
and (ii) to deduce this special case of Theorem 4.1 from von Neumann’s earlier
theorem, discussed in 5 below. Dixmier used sifting methods. Plausibly [DI,
Lem. 1] could be used with Castaing’s argument to prove [CA4, 5, Thm. 5.2] with
F weakly measurable rather than measurable.

An additional source for the proof of Kuratowski and Ryll-Nardzewski of
Theorem 4.1 is [PR1], the first text on measurable selections.

That a closed-valued F is well-behaved is seen in the following theorem,
which summarizes properties of such F given by Castaing [CA9], Rockafellar
[RC3], Himmelberg [HM2], Himmelberg and Van Vleck [HV6], Leese [LE3],
and Delode, Arino, and Penot [DAP2].

THEOREM 4.2. Suppose F is closed-valued. Consider the following:
(i) F-(B) l for B (X);
(ii) F-(K) eft for closed K X, i.e., F is measurable;
(iii) F-(U) for open U X, i.e., F is weakly measurable;
(iv) for some metric d on X, d(x, F(. )) is a measurable function for x X;
(v) Gr F (R)Y3 (X);
(vi) Gr F is the Suslin family generated by ett(R)3 (X);

(vii) zr(A Gr F) for A (R) Y3 (X);
(viii) r(A f3 Gr F) :tt for A in the Suslin family generated by :tt(R) (X);
(ix) F has a Castaing representation;
(x) there exists a measurable j: T-X for i=1,2,...,such that

(f(t), f2(t), .} f3 F(t) is dense in F(t) for t Tand T f3 {t: fi(t) F(t)} is
measurable for 1, 2,. .;

(xi) F-(C) l for compact C X.
We then have the following:

(a) (ix):(x).
(b) IfX has a countable base, then (iii) (v).
(c) IfX is regular and a continuous image of a space with a countable base,

then (ii) : (v).
(d) IfX is separable metric, then (ii) =), (iii):(iv): (xi), (iii): (v), and (ix)

(xi). If also X is r-compact, then (ii): (iii):(ix):(xi).
(e) IfX is separable metric and F is complete-valued, then (iii):(ix)cz(xi).
(f) If is a Suslin family and X is regular and a weakly Suslin space, then

(ii): (v): (ix).
(g) If is a Suslin family and X is metric Suslin, then (i) through (x) are

equivalent.
Proof. The proof of [RC6, Thm. 1B] proves (a); (b) and (e) are given as [LE3,

Thms. 3.6 and 3.7]; (d) and (e) come from [HM2, Thms. 3.5 and 5.6] and [HV6,
Thm. 1’]; (f) follows from Theorem 6.1 below and [LE3, Thm. 3.9], observing
that F is of Suslin type.

It remains to prove (g). From what has been proved and obvious observa-
tions, (viii) =), (vii) (i) =), (ii) =), (iii) =), (iv) (v) (vi) and (ix)c:(x). The proof
of [RC6, Thm. 1B] shows (ix) (ii). Leese (personal communication) has deduced
(ix) and (viii) from (vi) as follows. One shows that (R)J(X) and hence the Suslin
family generated by (R)(X) are contained in the Suslin family generated by
{S x K: S and K cX is closed}. Hence (vi) implies (viii) by [LE5, Thm. 5.5]. It
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also follows that (vi) implies that F is of Suslin type by [LE2, Thm. 6], from which
(ix) follows by Theorem 6.1 below; thus (vi):ff (ix).

The most comprehensive cortclusion in Theorem 4.2 is (g). For tr-finite
complete/x and Polish X, Castaing [CA9, Lem. 1] gave (i):> (iii) :> (iv) Cz> (v):>
(ix) (and (iv)= (ii):: (iii) is elementary). Rockafellar [RC3, Thm. 1] added that
these are equivalent to (x). Very recently, Delode, Arino, and Penot [DAP2]
added (vi), (vii), and (viii) to the equivalence and weakened the requirement on/x
to t/being a Suslin family. Leese (and subsequently Delode [DL, 2.9]) observed
that Polish X could be weakened to metric Suslin X. Under separable metric X,
Himmelberg [HM2] has given (b), (c), (d), (e), and various related facts.

The equivalence (iii):> (ix) in Theorem 4.2(e) is useful in both directions. For
example, Rockafellar [RC2] applies this equivalence with X=R to show
measurability of the intersection and the closed vector sum of measurable
closed-valued functions. He gives a more comprehensive treatment of related
manipulations in [RC6]. (An even more powerful manipulative tool is Leese’s
theory of Suslin typesee 6.) The set values involved in Rockafellar’s [RC1-6]
are primarily epigraphs of convex real-valued functions on a separable reflexive
Banach space, parameterized on a complete tr-finite measure space. Measurabil-
ity of the epigraph-valued function is a key criterion for a convex "integrand" to
be "normal" (see [RC3, 6]). The above (iii)<=> (ix) is used in showing, for instance,
that a convex integrand which is a finite Carath6odory map is normal, and that
conjugation of convex normal integrands is reflexive. These facts are, in turn,
useful to optimization of convex integral functionals by duality methods. Follow-
ing is an application of (iii) <=> (x). (See addendum (v).)

COROLLARY 4.3 (Rockafellar [RC6, Cor. 1D]). Suppose J/t is a Suslin family,
X is Polish, and for a.e. T, F(t)= cl interior F(t) (as is true, for instance, if
X R and F(t) is an n-dimensional closed convex set). Then F is measurable iff
F-({x}) is measurable for x X.

In the remainder of this section we give a chronological review of additional
results with closed-valued F.

Himmelberg and Van Vleck [HV2, Thm. 5] observed that the completeness
requirement in Theorem 4.1 could be put on the values ofF (as in Theorem 4.2(e))
rather than on a homeomorph of X. They obtained a precursor to [HV3] (see 5)
with X a metric Lusin space, and various results pertaining to (xi) in Theorem 4.2
and to being merely a o--ring. Reference [HV2] supersedes [HV1].

In extending Scorza-Dragoni’s generalization of Lusin’s theorem (see 14),
Cas’taing [CA13, Thm. 5] gave a result to the effect that if T is compact,/x is
Radon, X is metric, and F is "approximately lower semi-continuous" and
complete-valued, then F has an a.e. measurable selection. Jacobs [JC1] and
Himmelberg, Jacobs, and Van Vleck [HJV] gave related results.

In the following theorem, Castaing has substituted existence of a suitable
sifting [BO1, Chap. IX, 6.5] of X for some of the assumptions in Theorem 4.2,
motivated by his proof of [CA5, Thm. 5.2].

THEOREM 4.4 [CA15, 16, Thm. 1]. Suppose X is a Hausdorff space,
((C1, pl, rpl), (Ca, p2, rp2),’’ ") is a sifting of X, F-(rp,(c))/t ]’or c C, and n
1, 2,..., and F is closed-valued. Then there exists a selection of F which is a
pointwise limit of measurable ]’unctions on T to X with countable range.



870 DANIEL H. WAGNER

Following is a corollary to this theorem.
Migerl [MG, Kapitel IV, Korollar 2.4] independently obtained 5(F);

under the bracketed hypothesis of Corollary 4.5. Valadier [VA4, 5, Lem. 1]
obtained the conclusion of Theorem 4.4 in Castaing representation form assum-
ing F is closed-valued, Gr F(R)(X), X is Suslin, and is complete and
o--finite.

COROLLARY 4.5 [CA16, Cor. 6] Suppose X is a Suslin {Lusin} space, F is
closed-valued, and F-(A)6l for every Suslin {Borel} A c X. Then F has a
Castaing representation.

Following is a novel theorem of Robertson [RB] using a "left set," i.e., the set
A. Theorem 2 of [RB] is an antecedent to the "Suslin type" development of his
student S. J. Leese (see 6).

THEOREM 4.6 [RB, Thm. 4]. Suppose F is measurable and closed-valued and
X is a continuous image of a set A c R with the property that inf D A ]’or
( D c A. Then (F) .

The next theorem is a generalization by Leese (personal communication) of
Kuratowski’s [KU4, Thm. 5.2]. The latter has T and X metric Suslin and
concludes 9(F) ;.

THEOREM 4.7. Suppose T is topologized and let be the Suslin family
generated by the closed sets of T. Supposel ,Xis regular and weakly Suslin, F
is closed-valued, andF-(A for closedA = X. Then Fis ofSuslin type (see 6)
and hence F has a Castaing representation.

Proof. Note 6 and follow the proof of [RB, Lemma 1]. [5]
Maitra and Rao have weakened the separability ofX in Theorem 4.1, adding

other restrictions, as follows.
THEOREM 4.8 [MR1, Cor. 4]. Assume the Zermelo-Frankel axioms, the

axiom of choice, and Martin’s axiom. Suppose T R, /l is the set of Lebesgue
measurable subsets of R or the set of subsets of R having the Baire property, X is
complete metric with base of cardinality less than 2, and F is closed-valued and
weakly measurable. Then 3(F) ;.

Artstein [AR2, Prop. 4.12] has shown that-under conditions resembling
those of Theorem 4.9 given next, if for 1, 2,..., (F1, F2," ") "converges
weakly" to F, and f e 5(F), then there exists fi e 5(F) for 1, 2,. , such that
(fl, f2," ") converges weakly to f.

THEOREM 4.9 JAR2, Thm. 2.7]. Suppose T [0, 1], is Lebesgue measure,
X R", and F is closed-valued. Then there exists a closed-valued G: T-)(X)
such that Gr G is Borel, G(t) F(t) for a.e. T, and the a.e. measurable selections
ofF coincide with those of G.

Many selection results make the strong assumption that F is compact-valued.
Following is such a result by Leese which has weak assumptions in other respects.
Combined with Theorem 4.11, we have a rather general selection result for
closed-valued F. Theorem 4.10 is given in [LE5] under kindsof generalizations
mentioned in 13 below. As observed by Leese, 4.10(i) implies [RB, Thm. 1],
which assumes X is a Hausdorff continuous image of a separable metric space.

THEOREM 4.10 [LE5, Thms. 4.1 and 4.2]. Suppose F is compact-valued and
measurable. Then (F) providing one of the following holds:

(i) there exist closed K1, K2, Xsuch thatfor each distinctpair ofpoints in
X, some K, contains one and not both (Leese’s Condition (S)); or



MEASURABLE SELECTION THEOREMS 871

(ii) 3 (X) is generated by afamily ofclosed sets whose cardinality is at most the
first uncountable cardinal (Leese’s Condition (B )).

THEOREM 4.11 [LE3, Thm. 8.6]. Suppose /[ is a Suslin family, X is regular
and analytic in the sense of being a continuous image of a countable intersection of
countable unions of closed compact subsets of some topological space, and F is
measurable and closed-valued. Then there exists a measurable compact-valued
G: T-(X) such that G(t) c F(t) forte T.

5. Graph-conditioned theorems. In this section we recount the development
of selection theorems based on properties of Gr F rather than on conditions on the
values of F. The two topics are linked, as shown in Theorem 4.2, in the proof of
Theorem 5.3, and, more extensively, in 6. We again remind the reader (for the
last time) that T, ://,/x, X, F and 6(F) are fixed in 2. (See addendum (i).)

The present topic begins with the 1949 selection result of von Neumann (also
given with same proof in [PR1]).

THEOREM 5.1 [NE, Lem. 5]. Suppose T R, X is a Suslin subset of a Polish
space, f: X--> T is continuous and surjective, F f-l, and Iz arises from a non-
decreasing right-continuous bounded g R --> R. Then fie(F)

Proof (outline). Represent X as a continuous image of to ’, topologized
homeomorphic to the irrationals, where to {1, 2,. .}. For each t e T, select the
lexicographic minimum in to of the counterimage of F(t) and map this back to
F(t). [3

This in effect is what von Neumann stated. His proof is still valid if the
conditions on T and/x are replaced by the condition that T be Hausdorff and
contain the Suslin sets of T. In this generality we note a corollary of a form (Suslin
graph) in which von Neumann’s theorem is often given. Recall that when T is
Hausdorff, contains the Suslin sets of T if, in particular, = 9(T) and is an
outer measure.

COROLLARY 5.2. Suppose TandXare Polish, Gr Fis Suslin, andl contains
the Suslin sets of T. Then 5(F)

Proof. Let f 7rT and, replacingX by T X, apply Theorem 5.1 (generalized
as noted). I-]

Von Neumann’s result seems to have been little known until around 1965
when it surfaced separately in mathematical economics, notably in Aumann’s
[AU1, 2], and in control theory, although it was referenced and used by Mackey
[M.C2] in 1957, for example. (We know of three leaders in measure theory who
were unaware of it in 1971.) Ironically, one suspects that its recognition suffered
from submergence under the prolific output of a giant.

We now depart from chronology to note how graph-conditioned theorems,
including 5.1 and 5.2 just given, can be derived from a closed-valued result such as
Theorem 4.1. Castaing [CA4, p. 123] was the first to do this--one lifts a set-valued
function with Suslin graph to a measurable closed-valued function into a Polish
space. This idea was used by Himmelberg and Van Vleck in [HV3] to prove a
version of Theorem 5.3 in a more direct way than in [CA4]. It has been exploited
more extensively by Leese in his "Suslin type" approachsee 6.

The following theorem and proof are largely given by Leese [LE5, Thm. 7.4].
Both Theorem 5.3 and Corollary 5.4 were for the most part contained in a
personal communication we received from Castaing in 1972 under the stronger
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assumption that T andX are Suslin spaces (see also [SB3, Thm. 2] and [HJ, Thm.
111.9.6]). Here it is assumed what seems just enough to make the proof of
Theorem 5.3 workmthe method is closer to that of [HV3] than to Castaing’s.

THEOREM 5.3. Suppose T is topologized as a T1 space, Gr F is weakly Suslin,
and contains each weakly Suslin subset of T. Then Fhas a Castaing representa-
tion.

Proof. Take a Polish space P and a continuous surjective q" P Gr F. Let
G (rT 0)-1. Since 7r7-o 0 is continuous and T is a T1 space, G is closed-
valued. Also, G is measurable, 15ecause for closed A c p, G-(A)= 7rT-(q (A)) so
G-(A) is a continuous image of the Polish space A, whence G-(A). By
Theorem 4.2(e), G has a Castaing representation {ga, g2,’" "}. Then for
1, 2," ",/ zrx q g 00(F), and {fl(t),f2(t),’’ "} is dense in F(t) for
tT.

COROLLARY 5.4. Suppose TandXare Suslin spaces, contains each Suslin
subset of T, f: X T is continuous and surjective, and F =f-. Then F has a
Castaing representation.

Proof. Sincef is continuous, Gr F is closed in T X, and hence is Suslin [HV3,
Lem.]. Thus, Theorem 5.3 applies. [3

Christensen and Jayne have shown [CH, Thm. 4.3] that a continuous map on
a Polish space onto a compact metric space need not have a Borel function
inverse; of course, w.hen :t/= (T), :t/will not ordinarily contain all Suslin sets of
T.

Hoffman-JOrgensen has obtained a Borel function inverse of a B0rel func-
tion, as follows (a somewhat related result in [CH, Thm. 4.3] is a specialization of
Theorem 6.1 below).

THEOREM 5.5 [HJ Thms. III.11.B. 8-11]. Suppose TandXare Suslin spaces,
f: X- Tis a Borelfunction, F f-I, and T). Then (F) providing one
of the following holds:

(i) Fis weakly measurable and eitherFis compact-valued or Gr Fis Polish
(ii) Gr F is g-compact;
(iii) Gr F is Lusin and F is countable-valued.
M/igerl’s [MG, Kapitel III, Satze 2.6, 2.7] follow from Theorem 5.3 by letting

T be Hausdortt and/x be an outer measure for Satz 2.6 and T be locally compact
Hausdortt and/z be Radon for Satz 2.7.

Returning to chronology, the first generalization of von Neumann’s result
was the following by Sion in 1960. Sion’s paper has been well known in
uniformization theory, but belatedly known in measurable selection theory; it
does not reference [NE]. Note that his condition onX is satisfied whenX is Polish.
He made a weaker assumption on Gr F than that given here, viz., that Gr F is
"analytic" in T xX, by which he means a continuous image of a countable
intersection of countable unions of compact subsets of a Hausdorff space. In [SN,
Cor. 4.4], the assumption on is omitted, but is generated by the "analytic"
subsets of T.

THEORE 5.6 [SN, Cor. 4.5]. Suppose T is Hausdorff, Ix is an outer measure,
(T), X is a regular Hausdorff Lindelbf space with a base of cardinality no

greater than N1, and Gr F is Suslin. Then 5f(F) # .
The next graph-conditioned theorem to appear was the following of Black-

well and Ryll-Nardzewski in 1962. It is unusual in imposing measure-theoretic
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conditions on X. Its motivation was to prove that if kt is a probability measure, f is
a real random variable on T, and range f is not Borel, then there does not exist an
everywhere proper conditional distribution given f. It is applied again in [FU] and
[BD].

THEOREM .7 [BRN, Thin. 2]. Suppose T and X are Borel subsets of Polish
spaces, tilt T), d/t is countably generated, and Gr F tilt (R) (X). Suppose also
that there exists g" T (X) -R such that g(t, is a probability measure on (X)
fort T, g(., B) is a measurablefunctionforB (X), and g(t, F(t))Ofort T.
Then S(F) ;.

Aumann [AU3] in 1967 made a significant advance with the following
graph-conditioned theorem which involves no topological assumption, although
as observed by Sainte-Beuve in [SB3], one may just as well assume that X is a
Lusin space and Yd (X). Following [AU3], we say (X, ) is a standard space if

is a o--algebra of subsets ofX and there is a one-one correspondence betweenX
(not necessarily topologized)and R which induces a one-one, correspondence
between and (R).

THEOREM 5.8 [AU3]. Suppose tx is or-finite, (X, ) is a standard space, and
Gr F J//(R)4. Then there exist S J/l and a selection f ofFIS such that I(T\S) 0
and f- (A for A .

An example in [AU3] due to Lindenstrauss shows that one may not
let 4 be an arbitrary r-algebra on X and Aumann shows that r-finiteness
may not be omitted. Also given in [AU3] is an interesting discussion of
the question of whether a theorem such as 5.2 holds if Gr F is complementary
Suslin.

Complementary Suslin sets also arise in the following result of Castaing.
THEOREM 5.9 [CA8, Prop. 1]. Suppose Tis a Suslin space, Xis a metric Suslin

space, F is complete-valued, T\F-(A) is Suslin for every closed A X, and
rill T). Then Gr F is a Suslin space iffF has a Castaing representation.

Sainte-Beuve generalized Theorem 5.8 in [SB1, 2, 3]. She assumed d// is
complete (no assumption on/x) and X is Suslin instead of Lusin and obtained
fie(F) . Following is a .further generalization by Leese [LE2, Cor. to Thm. 7]
yielded by Theorem 6.1 below.

THEOREM 5.10. Suppose rill is a Suslin family, Xis a weakly Suslin space, and
Gr F 6 d/t(R)N (X). Then F has a Castaing representation.

To see that this, and similarly [SB 1, 2, 3], generalize Theorem 5.8, extend the
/x of Theorem 5.8 to an outer measure/z* so that each/z* measurable set differs
from a/x measurable set by a set contained in a set of/x measure zero; the
tr-algebra of/x* measurable sets is a Suslin family. Apply Theorem 5.10 and
check the counterimages of a countable base of X.

Dauer and Van Vleck have shown how measurable selections of cl F can be
approximated by those of F. A metric on X induces the essential supremum
pseudometric in 5(F) and in Theorem 5.11 we topologize 5e(F) with this. A
similar conclusion is in [LE3, Thm. 8.7], assumingF is weakly measurable instead
of Gr F is Suslin.

THEOREM 5.11 [DV, Thms. 1, 2]. Suppose T is locally compact separable
metric, tx is Radon, Xis metric Suslin and Gr Fis Suslin. Then 5(cl F) cl 5(F)./f
instead the hypothesis of Theorem 5.8 is satisfied, then this conclusion holdsfor a.e.
selections.
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When is Borel regular and r-finite, von Neumann’s theorem yields an a.e.
selection of F which is a Boref function, by application of Lusin’s theorem. The
following version proved by Federer [WS, Thm. 4.1] obtains a Borel selection on
most of Twithout assuming Borel regularity of/x. This version may also be proved
by von Neumann’s argument in Theorem 5.1 or, as Castaing has pointed out, by
observing that every Suslin space is a Radon space [BO2, Chap. IX, 3.3] and
applying Theorem 5.3.

THEOREM 5.12. Suppose T is Hausdorff, ill 3 (T), tz is a bounded outer
measure, X is a Suslin subset of a Polish space, h X- T is continuous and
sur]ective, F h-1, and e > O. Then there exist a compact C T and f 5’(F[ C)
such. that tx T\C) < e and f is a Borel function.

We close this section with what seem to be the main graph-conditioned
results of Leese’s [LE5]. He generalizes in the following directions not shown
here: (a) a "partial uniformization," i.e., existence of a well-behaved compact-
valued subfunction of F, as in Theorem 4.11, is given, (b) properties are given of
the T-projection of Gr F (F not necessarily defined on all of T), (c) X weakly
Suslin as defined here, is sometimes weakened to X "analytic" and (d) non-or-
algebras are sometimes employed in place of (see 13).

THEOREM 5.13 [LE5, Thm. 5.5]. Suppose tt is a Suslin family, Gr F is in the
Suslin family generated by {S x K: S M and K cX is closed}, and X is weakly
Suslin. Then 5(F) .

THEOREM 5.14 [LE5, Thm. 6.2 or 6.3]. Suppose Tis topologized, tt contains
the Suslin family generated by the closed sets of T, Xis weakly Suslin and Gr Fis in
the Suslin family generated by the closed sets of T x X. Then 5(F) .

6. Set-valued functions of Suslin type. We summarize in this section Leese’s
Suslin type approach, given in [LE2]. Theorem 6.1 is a succinct statement from
which a great deal of the above results and of those in 7 may be readily deduced.
The theme of lifting F to a well-behaved map into the subsets of a Polish space,
which underlies this development, has antecedents in work of Castaing [CA4],
Himmelberg and Van Vleck [HV3], and Robertson [RB], as noted in 4 and 5.

We follow Leese [LE2], and add the bracketed "weak" version in the
definition and associated theorems, in saying F is of {weak) Suslin type if there
exist a Polish space P, a continuous : P-X, and a {weakly} measurable closed-
valued G: T(P) such that F(t) q(G(t)) for T. (Note that the significance
of the word "weak" here differs from its significance in the definition of weak
Suslin space.) The F in Kaniewski’s Example 2.4 is of weak Suslin type but not of
Suslin type. When F is of Suslin type, it is of weak Suslin type.

By Theorem 4.2(e) and the proof of Theorem 5.3, one easily obtains the
following.

THEOREM 6.1 [LE2, Thm. 7]. IfFis ofweak Suslin type, thenFhas a Castaing
representation, so 5(F) .

By. itself, Theorem 6.1 adds little to prior knowledge. The usefulness of
Leese’s [LE2], which is considerable, lies in showing that many kinds of F are of
Suslin type, and in giving additional properties of such F; this development holds
for weak Suslin type also.

The following result of Robertson shows that Suslin type and weak Suslin
type are the same thing in an important case.
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THEOREM 6.2 [RB, Thm. 3]. Suppose All is a Suslin family, X is a metrizable
Suslin space, and F is closed-valued. Then F is measurable iff F is weakly
measurable.

COROLLARY 6.3. IfJ/l is a Suslin family, then Fis ofSuslin type iffFis ofweak
Suslin type.

Proof. Apply Theorem 6.2 to the G of the above definition. [3
If X is Hausdorff and F is of weak Suslin type, then Gr F is in the Suslin

family generated by {A x B: A eg andB cXis closed}. The proof in ILL2, Thm.
5] must be modified with "weak" by using an open sifting and, as Leese has
pointed out, by adding details to show x q(y) on page 405.

Suppose is a Suslin family andX is Hausdortt. Then the class of set-valued
functions of Suslin type is a Suslin family (operating pointwise on T), in particular
it is closed under countable union and intersection. It is also closed under
countable Cartesian product. If also X is a topological vector space, then this class
is closed under vector addition, multiplication by a measurable scaIar function,
and formation of closed convex hulls. These properties are in [LE2].

In each of the following cases F is of {weak} Suslin type (largely in [-LE2]-
[LE4] corrects the proof of [LE2, Thm. 6]):

(i) X is Polish and F is closed-valued and {weakly} measurable;
(ii) G" T- (X) is compact-valued and {weakly} easurable, X is separa-

ble metric with completion X, embeds X in X, and F G;
(iii) At is a Suslin family, X is a regular space and a Suslin space, and F is

{weakly} measurable and closed-valued;
(iv) is a Suslin family, X is a weakly Suslin space, and Gr F 4//(R) (X);
(v) T is a T1 space, J// contains each weakly Suslin subset of T, and Gr F is

weakly Suslin.
With these observations and other hints in [LE2], one may readily deduce

from Theorem 6.1 all of 4.1 (the primary basis of 6.1), 4.2(f)(g) [(ii) =:) (ix)], 4.5,
4.7, 5.1, 5.2, 5.3, 5.4, 5.6, 5.8, 5.10, and also 7.1 and 7.2 of the next section.

7. Measurable implicit functions. In this section we fix a topological space Y,
a function g:GrF Y, and a measurable function h: T- Y such that h(t)
g({t} F(t)) for T. We are concerned with whether there exists f 6(F) such
that h g(., f(. )); such an f is a measurable implicit function pertaining to this
structure. If we define

(7.1) G(t)=Xf’){x: g(t,x)=h(t)} fort6T,

this becomes the question of whether 6e(F f-) G) . Results on this question have
been quite numerous, apparently because many applications, notably in control
theory, arise naturally in this form. They are sometimes called Filippov type
theorems, recalling the lemma of [FI], which was the first selection result of this
kind.

Theorems 7.1 and 7.2, due to Leese, 7.3, due to Hoffman-Jgrgensen, and 7.4,
due largely to Castaing and Himmelberg, are rather general theorems of the sort
sought. (Theorem 7.4(i) was given by Castaing [CA9, Corollaire] under Polish X
and o--finite complete/.) They treat the respective cases where g is (R)(X)
measurable (i.e., g-(U)(R)(X) for open Uc X), continuous, Borel, and a
Carath6odory map. Under the latter condition, Lemma 7.5 (which generalizes
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[HM2, Thm. 6.1 and KU1, p. 378]) further facilitates application of Theorem 7.1.
In Theorems 7.1 and 7.2, .4/must be a Suslin family ( 2), which is weak enough
for most applications. Set-valued functions of Suslin type are defined in 6. Lusin
measurability of a function is defined in 14; it implies ordinary measurability,
and when the range space is separable metric and/z is o--finite, the converse
holds.

The statement of Theorem 7.2 in [LE2, Thm. 9] also assumes that X is
regular, but Leese has shown [LE3, p. 82] that this assumption may be omitted.

In [HM2, Thm. 7.1] separability of Y is omitted. However, Leese has pointed
out, and Himmelberg concurs (both in personal correspondence), that the argu-
ment fails with this omission; if Y is not separable,.p" T Y and q" T Y are
measurable, and r(t)= (p(t), q(t)) for T, then r need not be measurable. The
same difficulty arises in [HM2, Thms. 7.2 and 7.4]. The validity of these three
theorems of [HM2] without separability of Y is an open question.

THEOREM 7.1 [LE2, Thm. 8].3 Suppose is a Suslinfamily, Xis Hausdorff, Y
is separable metric, 1: is o[ Suslin type, and g is l(R)(X) measurable. Then there
exists [ (F) such that h g( f( )).

THEOREM 7.2 [LE2, Thm. 9] and [LE3, p. 82]. Suppose T is locally compact
Hausdorff, tz is Radon, Xand Yare Hausdorff, F is of Suslin type, g is continuous,
and h is Lusin measurable (see 14). Then there exists f Se(F) such that
h =g(.,f(.)).

THEOREM 7.3 [HJ, Thm. III. 16.10].3 Suppose T, X, Y, and Gr Fare Suslin, g
is a Borel function, and either (i) is generated by the Suslin subsets of T, or (ii)
l (T) and I is (r-finite and complete. Then there exists f 9(F) such that
h =g(.,f(.)).

THEOREM 7.4. Suppose Y is separable metric, and g is a Carathdodory map.
Then there exists f 5(F) such that h g(., f(. )), providing one of the following
holds:

(i) is a Suslin family, X is weakly Suslin, and Gr F e /(R)9 (X); or
(ii) //is a Suslin family, X is Hausdorff, and F is of Suslin type; or

(iii) [HM2, Thm. 7.1] X is separable metric, F is measurable, and either F is
compact-valued or F is closed-valued and X is or-compact.

Proof. Under (ii), the definition of Suslin type lets us confine to a Suslin
subspace of X. By Lemma 7.5 given next, g is(R)(X) measurable. Somewhat as
in [HM2, Thm. 7.4], let @(t, x) (g(t, x), h(t)) for t T, x eX. Since Y is
separable metric, 9(Y Y) (Y) (R) (Y). Hence @ is (R)9 (X) measurable.
With G as in (7.1), Gr G q-l({(y, y): y e y})e(R) (X), so G isof Suslin type
(6), hence so is Ff3G. By Theorem 6.1, (Ff3G)#. The proof under (i) is
similar, using (iv) at the end of 6.

Leese has observed that "Y is separable metric" in Theorem 7.1 may be weakened to "Y
satisfies Condition (S)" (see Theorem 4.10): Then

(TX)\Gr G= U [g-a(K,)fq(h-l(Y\K,)X)]e(R)Og(X),

where {K1, Kz, "} is the separating family and G is as in (7.1), whence Ff3 G is of Suslin type. From
this, Theorem 7.3(ii) follows from Theorem 7.1.



MEASURABLE SELECTION THEOREMS 877

LEMMA 7.5 [LE3, Lem. 14.1]. If X has a countable base, Y is perfectly
normal, i.e., if Yis normal and each open set of Yis an F, and g is a Carathdodory
map, then g is 5l (R) (X) measurable.

If in implicit function results of this form we specialize g so that each g(., x)
is constant, replacing it with k" X Y, we obtain a lifting theorem, i.e., assurance
of existence of f 5(F) such that h k f. Theorems 7.1-7.4 yield fairly general
statements of this nature. An additional lifting result is the following, suggested by
Leese.

THEOREM 7.6. Suppose F is of weak Suslin type, l is a Suslin family, Y is a

Hausdorff space, k: X- Y is continuous, and h (t) k (F(t)) for t T. Then there
exists f (F) such that h k f.

Himmelberg and Van Vleck [HV2] give lifting results with measurability of
F, h, and ]’ defined to mean that inverse images of compact sets are measurable
((xi) of Theorem 4.2) and also with t/being a tr-ring rather than a tr-algebra.
McShane and Warfield [MW] (see also [YO]) gave early results in lifting form;
these are generalized by [HV2].

Hottman-Jorgensen [HJ, III. 11] has given such lifting results, not involving
F, and also results on the symmetric problem: Given p: Z-Xand q: Z- T, find a
"nice" f: T-X such that f q p.

Under measurability of inverse images of compact sets, Himmelberg and Van
Vleck have given an implicit function result as [HV6, Thm. 4(ii)]. Part (i) of that
theorem follows from Theorem 7.2, above.

We now review various other results on measurable implicit functions, all of
which may be readily deduced from the foregoing, most from Theorem 7.1.

In Filippov’s highly influential 1959 lemma [FI], T, X, and Y are in Euclidean
spaces, g is continuous, and F is compact-valued and usc, among other restric-
tions. Another early result is Wazewski’s [WZ] (1961), heavily conditioned by
compactness. Aronszayn in 1964 permitted F to be G-valued, but constant,
reported in [SV]. Olech [OL] in 1965 had g a Carath6odory map with X
com,pacthe obtained a selection by lexicographic minimization, which has
componentwise recursiveness in common with Filippov’s approach. All of these
were directly motivated by control theory applications.

Castaing [CA1] in 1965 (proof in [CA2]) was somewhat more general withX
Polish, T compact metric, Y Hausdorff, and F closed-valued with Suslin graph,
but with g continuous and/x Radon. Generalizations in similar vein were given in
[C.A4, 5, 5] (with weaker assumptions on T) and by Jacobs [JC1, Thm. 2.2; JC2,
Thms. 2.5, 2.5’]. Himmelberg, Jacobs, and Van Vleck [HJV, Theorems 3, 3’] put
completeness on the values of F instead of on X.

In [HV3, Thms. 2, 3, 4], Himmelberg and Van Vleck primarily assume Gr F
is weakly Suslin; Theorems 2 and 3 are implicit function theorems and Theorem 4
is a lifting theorem.

Furukawa’s [FU, Lem. 4.6] is a special case of Theorem 7.4 (iii) above with
Xc R compact, Y Rm, T a Borel subset of a Polish space, and B (T).

Dauer and Van Vleck [-DV] apply Aumann’s Theorem 5.8 above, assuming
in part/z o’-finite, X Lusin, and g measurable, to obtain an a.e. measurable
implicit function. This is generalized independently by Sainte-Beuve [SB3] in
fashion similar to her generalization of Theorem 5.8.
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Migerl [MA, Kapitel III, Satz 3.1] has Tr-compact, T and X Hausdorff,
Radon, Y separable metric, Gr F Suslin, and g a Borel function.

G6tz [GZ] has given a schematic tabular summary of measurable implicit
function results (and of general measurable selection results and bang-bang
results).. Convex-valued tunctions. In this section we assume that X is a linear
space and usually that F is convex-valued. Separate topics are discussed, not
ordered by chronology or supersession.

We define X’ to be the dual of X, (., to be the pairing on X’X, and for

q (x’, C) sup {(x’, x): x 6 C} for x’ 6 X’;

thus q (., C) is the support function of C.
When F is compact-convex-valued, we say F is scalarly measurable if for

x’6X, q(x’,F(. )) is a measurable function. A function f: T-X is scalarly
measurable if for x’X’, (x’,f(.)) is measurable. Thus named by Valadier
[VA1], the concept of scalar measurability was (see [VA3, pp. 270-271]) intro-
duced by KudB [KD] and subsequently used by Richter [RI] and then Kellerer
[KE] and Olech [OL] to obtain measurability of the lexicographic maximum of F
withX R" (generalized by Leese [LE3, Thm. 16.15]). Debreu [DE, (5.10)] and
Castaing [CA 4, 5, Chap. 6] gave early results relating measurability of F to scalar
measurability of F. The following selection theorem was given by Valadier (for
earlier versions see [VA1, 2]).

THEOREM 8.1 [VA3, Props. 7, 8]. Suppose Xis locally convex Hausdorff, Fis
compact-convex-valued and scalarly measurable, and either (i) Xis separated by a
countable subset of X’ or (ii) F(t)c g(t)Q for T, for some convex compact
metrizable Q Xand measurable g: T- R. Then Fhas a Castaing representation
consisting of scalarly measurable selections.

Castaing [CA15, 16, Thm. 2] obtained this conclusion assuming instead of (i)
or (ii) that/x is a complete probability measure, X is a Lusin space and each F(t) is
weakly locally compact and line-free. Benemara [BN1, Lem. 2] also obtained this
conclusion, collateral to characterizing extreme scalarly measurable selections of
F. Castaing [CA17, 18] treats a scalarly measurable convex-compact-valued F,
parameterized on [0, 1] in an absolutely continuous manner, and he obtains
parameterized well-behaved selections. Additional results on existence of scalarly
measurable selections have been given by Ekelund and Valadier [EV] (see 10)
and Valadier [VA6] (see 16). In [CA20] Castaing shows that the set of scalarly
measurable selections (identified under a.e. equality) is nonempty and compact,
when the support functions of F belong to a K6the space and X is Suslin, among
other assumptions.

Suppose X R" and h is a selection of co F, where co F(t) is the convex hull
of F(t) for t6 T. Then by Carath6odory’s theorem, for t T, there exist
A0(t), ", An (t) >- 0, and go(t)," ", g, (t) F(t) such that=o Ai(t) 1 and h(t)
=0 A(t)gi(t). If such Ai’s and gi’s can be chosen a.e. as measurable functions, we
say h has a measurable Carathdodory representation. Existence of such a represen-
tation is a key to proving various versions of the LaSalle bang-bang principle of
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control theory. We have stated the desired, choice of Ai’s and gi’s as a measurable
selection problem. It is solved, of course, by applying more general selection
theorems. Consider the follow!ng theorem given by Wagner. Under (ii) it is
essentially [CA6, Thm. 3]; under (i) or (iii) one picks a natural G: T(R(n+12)
somewhat as in [AU1, Thm. 3] and [CA5, Thm. 7.1], proves G is of Muslin type by
remarks in 6, and applies Theorem 6.1. Theorem 4.2(g) affords alternative
hypotheses equivalent to (i). Still earlier versions were given by Sonneborn and
Van Vleck [SV], who applied Aronszajn’s generalization of Filippov’s lemma, and
in [CA3]. A related result for constant F is given as [HJ, Thm. III. 16.14], credited
to Hermes [HE1 ].

THEOREM 8.2 [WG1, Lem. 2.5(a)]. Suppose Ix is a or-finite outer measure,
X R n, h 0(co F), and either (i) F is measurable and closed-valued; or (ii) co F
is measurable and compact-valued; or (iii) Gr FAI(R)(X). Then h has a
measurable Carathdodory representation.

In [CA22, Thms. 1, 2], Castaing obtains Carath6odory map selections of a
suitably parametrized closed-convex-valued function into a separable Banach
space or the weak dual of such.

In discussing Theorem 4.2, we have noted Rockafellar’s [RC1-6] use of
measurable convex-valued functions in the form of epigraph functions associated
with convex normal integrands. In this work, explicit results on existence of
measurable selections are mainly those referenced in Theorem 4.2 and its proof;
however, in additional various ways he uses the equivalence (iii)<=> (ix) in Theorem
4.2(e) to obtain and apply Castaing representations. (See addendum (v).)

Let (t) be the set of extreme points of F(t) (the profile of F(t)) for t T.
Himmelberg and Van Vleck have treated measurability properties of i/ in [HV5].
Their Theorem 4(a) is a finite-dimensional version of the first of the following two
theorems of Leese, who notes that their methods may be used to prove it. The
Muslin type conclusion of Theorem 8.3 affords a ge..neralization of [HV5, Thm. 3],
which includes implicit function results (note thatF need not be closed-valued).

THEOREM 8.3 [LE3, Thm. 16.10]. Suppose X is a separable metrizable
topological vector space and F is measurable and compact-convex-valued. Then,
Gr/ / (R) (X). Hence if also is a Muslinfamily andXis a Muslin space, then
is of Muslin type.

THEOREM 8.4 [LE3, Thms. 16.13, 16.16, 16.18]. Suppose X is a Hausdorff
locally convex real vector space, Fis measurable and convex-valued, and one of the
following holds:

(i) J//is a Muslin family, X is Muslin, and F is compact’-valued;
(ii) X is separated by a countable subset ofX’ and F is compact-valued; or
(iii) X is separable metric and F is weakly-compact-valued.

Then there existfl, f2, "() such thatfor T, F(t) is the closed convex hull of
{fl(t), f2(t), "}. Hence under (i) or (iii), F has a Castaing representation.

Leese has given the following two theorems in [LE1, 6]. In [LE6] the
r-algebra M is replaced by more general structures (see 13). Related results on
conjugate Banach spaces and some unsolved problems are also given in
[LE6, 4]. Under the hypothesis of Theorem 8.5, each compact convex set has a
unique element closest to the origin [LE3, p. 54], and under the hypothesis of
Theorem 8.6 this is true for closed convex sets [LE3, Lem. 9.5].
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THEOREM 8.5 [LE1, Thm. 1; LE6, Thm. 2.3]. Suppose Xhas a strictly convex
norm and F is compact-convex-valued and weakly measurable. Then (F) #.

THEOREM 8.6 [LE1, Thm. 2; LE6, Thm. 3.3]. Suppose X is a Banach space
and has a uniform norm I1" (i.e., Ilx, ll_< 1, IlY, ll_-< 1, and IIx. / y, - 2 implies
IIx-y.ll-0), and F is closed-convex-valued and weakly measurable. Then

Cole [CL1, 2] has shown that ifX is a separable reflexive Banach space, andF
is convex-closed-bounded-valued on T=[0, 1] and obeys a condition like
Cesari’s Q (e.g., ICE]), thenF has a strongly measurable selection (pointwise limit
of simple functions), and the set of such selections is weakly compact in itself. An
earlier result of Himmelberg, Jacobs, and Van Vleck [HJV, Thm. 4] has some
hypotheses in common with [CL1]. In [CA7, Cor. 4], Castaing obtains a Lusin
measurable selection of F (see 14), without separability of X.

9. Pointwise optimal measurable selections. Here we consider the existence
of a measurable selection of F such that a real-valued function on Gr F is
maximized pointwise: We suppose u: GrFR is (R)(X) measurable and
u(t, ..) is usc on F(t) for t T, andwe let v(t)=sup{u(t, x): x 6 F(t)} for 6 T. Our
concern is whether there exists f 5e(F) such that u (., f(. )) v, and to this end,
whether v is measurable. These results are sometimes called Dubins-Savage type
theorems, after [DS, Lem. 6] (1965). (See addendum (vii).)

The strongest result to date appears to be the following, which combines
Leese’s [LE3, Prop. 14.8], [HPV, Thm. 2] of Himmelberg, Parthasarathy, and
Van Vleck, and Schil [SC1, Thm. 2; SC2, Prop. 9.4 and Thm. 12.1].

THEOREM 9.1. Suppose F is compact-valued, and either
(i) /is a Suslin .family, X is Hausdorff and F is of Suslin type; or
(ii) TandXare Borel subsets ofPolish spaces, l T), and Fis measura-

ble; or
(iii) X is separable metric, F is measurable, and u is the limit of a decreasing

sequence of Carathodory maps.
Then v is measurable and" there exists f (F) such that u( f( ))= v.

Under (i), this is proved in [LE3] by showing, without assuming that F is
compact-valued or that each u(t,. is usc, that GIS is of Suslin type, where
G(t) F(t) f) {x: u(t, x) v(t)} for T and S T f-) {t: .G(t) # Q3}. Under (ii), it is
proved in [HPV] via the "Kunugui-Novikov" theorem. Under (iii) one puts
together the cited statements of Schfil (brought to our attention by Robert Kertz).

Various facts related to the condition on u given in Theorem 9.1 (iii) are given
in [SC2, 11]. If this condition were implied by the hypothesis of Theorem 9.1 (ii)
(which includes that u is M(R)(X) measurable and each u(t,. is usc), then 9.1 (ii)
would follow from 9.1 (iii); this appears to be an open question.

Castaing [CA17, Lem.] gave a version of Theorem 9.1 (i) with X a Lusin
space and/ complete. Furukawa [FU, Thm. 4.1] obtained Theorem 9.1 (ii) with
the added assumptions that X is compact, XR", and u is a bounded
Carath6odory map. Darst [DR, Thm. 1] obtained a Borel selection as in (ii),
assumingX is compact metric, T is Polish, and u (and not just each u (t, )) is usc.
Dubins and Savage made the stronger assumption that F s usc, as did Maitra
[MT], and Hinderer [HD1, 2] in separate generalizations of [DS]. Debreu [DE,
(4.5)] (1965) obtained measurability of v and G mentioned above.



MEASURABLE SELECTION THEOREMS 881

Brown and Purves have given a related result whenF is o--compact-valued.
THEOREM 9.2 [BP, Cor. 1]. Suppose T is a Borel subset of a Polish space,
(T), X is Polish, F is r-compact-valued, Gr F is Borel, I ={t: for some

x F(t), u(t,x)=v(t)}, and e >0. Then I is a Borel set and there existsf6e(F)
such that

u(t, f(t))= v(t) when t I,

u(t,f(t))>=v(t)-e when tI and v(t),

u (t, f(t)) >=-1 when I and v (t) .
The problem of findingf 5e(F) such that u(., f(. )) => v(. )-e(. is treated

by Schil [SC1], Strauch [ST], and Furukawa [FU], for example.

10. Decomposition of GrFinto measurable selections. For the problem of
decomposing Gr Finto measurable selections, we cite principally a 1930 result of
Lusin [LS] on countably-valued F, from the early beginnings of measurable
selection theory, and a theorem from Wesley’s thesis [WE1] which is probably the
most profound result to date in measurable selections.

THEOREM 10.1 [LS, p. 244]. Suppose T R ", X R, F(t) is countable for
t T, and Gr F is Borel. Then there exists a Borel map f: T-X for i=
1, 2,. ., such that Gr Fc t_J i lfi and for i, 1, 2,. ., we have ](t) <f(t) for
t T or f(t) <f/(t) for t T.

COROLLARY 10.2. Under the hypothesis of Theorem 10.1 with ell (T),
there exist g, g, (F) such that Gr F t.Jg. If each F(t) is infinite, the
gi’s may be taken to be distinct.

Wesley [WE1, Thm. 1] obtained a version of Corollary 10.2 (wherein the
selections are Lebesgue measurable), having belatedly learned of Lusin’s results
as indicated by his footnote. We conjecture, but have not verified, that Corollary
10.2 holds for arbitrary (T, ) and separable metrix X. Himmelberg has shown
this when F is finite-valued [HM2, Thm. 5.4].

For certain F having uncountable values, Wesley has given a nice partitioning
of Gr F into measurable selections, as stated next. In [WE2] he has applied his
methods to mathematical economics, i.e., to showing existence of a well-behaved
representation of continuous preference orders parameterized in Borel fashion
over 2 traders; he avoids connectedness assumptions made by Aumann [AU3].

THEOREM 10.3 [WE1, Thm. 2]. Suppose T and X are Lusin spaces, I is the
completion of a r-finite measure on N(T), /(T) >0, Gr F is Borel, and F(t) is
uncountable for t T. Let be the tr-algebra of Lebesgue measurable subsets of
[0, 1]. Then there exists h: Tx [0, 1] - Gr Fsuch that:

(a) for t T, h (t,.) is a one-to-one Borel function on [0, 1] onto F(t);
(b) for y [0, 1], h(., y) 9(F);
(c) h is an l(R) measurable function.
Wesley’s statement of Theorem 10.3 has T X [0, 1] and /=. The

generalization to Lusin spaces is straightforward, as pointed out to us by Aumann,
by taking isomorphisms between the measurable spaces ([0, 1 ], ) and (T,) via,
e.g., [AS, Lem. 6.2], and between ([0, 1], ([0, 1])) and (X, (X)) (one also
needs (TxX) d(T)(R)(X), e.g., via [HJ, Props. 1.6.A.4 and 1.5.B.7]).
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Wesley’s proofs of [WE1, Thms. 1, 2] are based on the Cohen forcing
methods of mathematical logic, which, without implying doubt, we do not
understand. He recommends (personal communication) explanations in [WE2]
for better understanding of [WE1]. He also states that by modifying his proof,
conclusions (b) and (c) may be strengthened to assert universal measurability, i.e.,
measurability with respect to any r-finite complete measure whose set of measur-
able sets includes the Borel sets. (See addendum (viii).)

It would be desirable to prove Theorem 10.3 without the use of
metamathematics. This problem appears to be quite difficult. Wesley poses the
problem of proving his result without the Zermelo-Frankel replacement axiom.

Ekeland and Valadier [EV] have given decomposition results in the vein of
this section, in the form of representing a compact-convex-valued function which
is a Carath6odory map (see 2). The following is taken from their Corollary 5 and
Theorem 2.

THEOREM 10.4. Let X be a compact metrizable subset of a locally convex
topological vector space, Z be a topological space, and G: Tx Z-(X) be
compact-convex-valued and a Carathdodory map (with respect to the Hausdorff
metric on the set of compact subsets of X). Then there exists a Carathdodory map
f: T (Z x X) Xsuch that

G(t,z)={f(t,z,x):xeX} forteT, zeZ,

and such that if g: T-Zis strongly measurable, and h T-Xis scalarly measura-
ble and with h (t) G(t, g(t)) ]:or T, then there exists a measurable u: T-Xfor
which

h (t) f(t, g(t), u (t)) for 6 T.

Of course, the decomposition of Gr G provided byf in this theorem need not
be a partitioning of Gr G, i.e., we might have f(., , x) andf(., , x’) overlapping
and unequal. Included here is a measurable implicit function result. In lEVI, these
results are given for G more general than being a Carath6odory map.

Larman’s result [LA1, 2] noted in 12 below provides an uncountable
disjoint family of selections of F which are Borel setsmit is not asserted that these
exhaust Gr F.

11. Selections of partitions. In this section we suppose that is a partition of
T. A selection of is a set S c T such that S f)E is singletonic whenever E .
Here we let T X andFbe given by the requirement that F(t) for T. We
see that a selection of is the range of a selection f of F; however, f must also be
constant on each F(t). Note that the members of 22 are closed iff F is closed-
valued, and that this situation is associated naturally with the inverse of a
continuous map. Also, to any G: T (X) (without T X) corresponds a natural
partition of Gr G, viz., {{t} G(t): s T}, so that the results of this section are also
relevant to the next section on uniformization. We let be a family of subsets
of T.

Early results on Borel selections of partitions were obtained by Mackey
[MC1] in 1952 (Theorem 11.6 below) and Dixmier [DI] in 1962 (Corollary
11.2(ii) below--see also remarks in 3 and following 4.1 and 11.6).
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We begin with .1970 results of Hoffman-J0rgensen [HJ]. Although the
hypothesis of the following rather general theorem seems complicated, all selec-
tion results of [HJ] cited in this survey are derived from it. Conditions somewhat
similar to those of Theorem 11.1 are given at the end of [LE5, 3], in a selection
statement (not referring to partitions per se).

THEOREM 11.1 [HJ, Thm. 11.6.1; or CH, Thm. 4.1]. Suppose , is
closed under countable union and countable intersection, and there exists A"
/l (see 2) such that"

(i) T- n=lA(n);
(ii) A(,,;..,)- U =A(,...,,,,) for o" , k 1, 2,. .;
(iii) for o" and T, letting D F(t) f’l AI for k 1, 2,. ., we have

k= D is singletonic or for some k, D
(iv) F-(AI) for cr , k 1, 2," .

Then has a selection S such that T\S
The following two corollaries are given in [HJ]; Corollary 11.2 (ii) was

previously given by Dixmier [DI] (cited in [HJ]). Dixmier applied his results to
show the Borel nature of equivalence classes of factorial representations of a
separable involutive Banach algebra and to give a converse of a result of Mackey
[MC2].

COROLLARY 11.2 [HJ, Thms. III. 8.3-8.6]. If Tis topologized, ( 3 (t), and
Fis closed-valued, then has a selection S [providing one ofthefollowing holds"

(i) distinct points of T are separable by continuous functions into [0, 1], T is
Suslin, and F is weakly measurable and compact-valued;

(ii) T is Polish and F is weakly measurable;
(iii) F is measurable, T is a countable union of closed Polish subspaces, and

Usa(SxS)(TxT); or
(iv) T is a Lusin space and F-(B) Y3 (T) for B 3 T).
COROLLARY 11.3 [HJ, Thm. III. 8.7]. Suppose Fis closed-valued, Tis Suslin,

is closed under countable union and countable intersection, and containsA and
F-(A whenever A c T is Suslin. Then has a selection S such that T\S

Christensen has further applied Theorem 11.1 to the Effros r-algebra over
the set of closed subsets of T, when T is metric Suslin [CH, Thm. 4.2]. As noted in
4, Theorem 11.2 (ii) constitutes a special case of Theorem 4.1 above, with

(T).
Turning next to work of Kuratowski, Maitra, and Rao, following [KMT] we

say is an - partition {an o5’+ partition} of T if F-(A) for each open
A T{T\F-(A) for each closed A T}, with F as above. Kuratowski and
Maitra have given the following.

THEOREM 11.4 [KMT, 3]. Suppose is a Boolean algebra (i.e., field), T is
Polish, the open sets of Tbelong to (see 2), each member of is closed, and is
an o+ or SL- partition. Then there is a selection S of such that T\S

One application of this in [KMT] is to find a Borel set selection of which
intersects each member of an analytic set of compact sets of T.

Special cases of Theorem 11.4, when is a r-algebra, have been given in
[KU4, Thm. B] and [KU5, Thm. 7.1].

Maitra and Rao [MR2] have taken a different approach, utilizing a linear
order on T induced by a continuous open map from the irrationals with lexico-
graphic ordering. Their main result follows.
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THEOREM 11.5 [MR2, Thm. 4.1]. Suppose T is Polish, is a g-lattice

containing the closed subsets of T, each member of
partition. Then there is a selection S of such that T\S

Both [KMT] and [MR2] apply their results to the case where is the
g-additive lattice of subsets of T of additive class a, with [MR2] having stronger
results. Also given in [MR2] are several examples showing that the latter results
cannot be improved in certain ways. They cite a 1927 antecedent by Mazurkiewicz
[MK].

We conclude this section with results on topological groups.
THEOREM 11.6. Suppose T is a locally compact topological group. H is a

metrizable closed subgroup of T, and {Ht: T}. Then has a Borel set
selection.

This result was obtained by Mackey [MC1, Lem. 1.1] in 1952 with metriza-
bility of H strengthened to separability (the latter implies the former in this
context), using in the proof [FM, Thm. 5.1] of Federer and Morse. It was obtained
as given here by Feldman and Greenleaf [FG, Thm. 1]. Weaker versions were
given as [HJ, Thm. III. 16.6] and earlier as [DI, Lem. 3].

The selection of obtained in Theorem 11.6 determines a selection f of p-1
where p: T- T/H is canonical; in [FG] it is added that f-l(c) is in the tr-algebra
generated by the compact sets of T/M for compact C T, and that if T has an
open subgroup U.H such that p(U) is tr-compact, then f may be obtained to be
measurable w.r.t. (T/H).

Greenleaf has applied Theorem 11.6 in [GR] to prove that a closed
subgroup of an amenable group is amenable (a locally compact group G is called
amenable if there is a left invariant positive linear functional M on L(G) such
that M(h)= 1 if h(g)= 1 for g 6 G).

In 1965, Baker [BA, Thm. 2] and Effros [EF, Thm. 2.9] independently
showed that several conditions previously shown to be equivalent by Glimm [GL]
were also equivalent to the existence of a Borel set selection of the partitioning of
an "almost Hausdorff" space M (see Theorem 12.4 below) into orbits of a locally
compact Hausdorff group G of transformations acting continuously on M, when
G andM each have countable base; one of these conditions is merely that M/G is
a To space. This has recently been applied by Bondar [BR].

One cannot omit "H is closed" in Theorem 11.6 [HJ, p. 177]: Let T be the
additive reals and H be the rationals. Then has no Lebesgue measurable
selection (the selections of are the examples usually given of non-Lebesgue-
measurable sets). This has been generalized by Kuratowski [KU6]. The following
remarkable converse has been pointed out by Bondar (who brought Theorem
11.6 to our attention) as a consequence of [BA, Thm. 2] and [MC2, Thm. 7.2]: If T
is Polish, and has a Borel set selection, then H is closed.

12. Unitormization. The term "uniformization" is a synonym for "selec-
tion." One usually refers to uniformizations of Gr F rather than of F, and
with interest in properties of a selection as a subset of product space (such as
being a Borel set) rather than properties of mappings (such as being a Borel
function). It dates from the era of [LS] and [NO1], as noted in 3, or perhaps
earlier.
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An early result is the following, proved independently by Lusin [LS2] and
Sierpinski [SP1]. If T=X R and Gr F is Borel in R 2, then F has a selection
(uniformization)f such that (T X)\f is Suslin, that is, f is a complementary Suslin
(i.e., CA) subset of R . This was improved by Kond6 [KN] in permitting Gr F to
be complementary Suslin and in other ways (see Sampei [SM] or Suzuki [SZ] for a
later proof). Kond6’s results were further generalized by Rogers and Willmott
[RW], [WI]. Related results are given by Kuratowski [KU6]. A variation is
claimed by Hottman-J0rgensen [HJ, Thm. 111.9.5] under Suslin T, X, and Gr F;
Leese finds the supporting argument incomplete. Jankov [JN] has shown that a
Suslin subset of R 2 has a uniformization which is in the g-algebra generated bythe
Suslin sets of R 2.

Results on G uniformizations of F have been given by Braun [BR, Thm. 1]
(she also showed that a closed subset of R 2 need not have an F uniformization),
Engelking [EN], and Michael [MI].

Larman’s main theorem of [LA1, 2] yields an uncountable disjoint family of
Borel set uniformizations of F, requiring that each F(t)be .an uncountable
tr-compact G, among other c6nditions. Brown and Purves [BP] show that if X
and T are Polish, Gr F is Borel, F is tr-compact-valued, and ://= (T), then there
exists f 6e(F) (this much follows from Sion [SN]) such that f is a Borel subset of
T X; they thereby generalize a result of Stschegolkow, given in [AL]. A similar
result with different conditions on the values of F has been given by Sarbadhikari
[SR].

To relate measurable selection results to uniformization results, one wishes
to know when certain properties of f: T-->X as a subset of TxX imply that f is a
measurable function, and conversely. Following are some facts of this kind. See
also [LE5, Appendix to 6].

THEOREM 12.1 (Hoffman-J0rgensen [HJ, pp. 8-9]). Suppose Wis a tr-algebra
overX (Xnot necessarily topologized), some countably generated sub-g-algebra of

separatesX (equivalently, {(x, x): x X} Ac (R) Jr), f: T X, andf-l(A) lfor
A c. Thenfl/l(R)A.

This very general statement implies, in particular, [KUS, 2, Thin. 8]. It is
also given, essentially, as [SB3, Prop. 2].

THEOREM 12.2 (Leesepersonal communication). Suppose l is a Suslin
family, X is eakly Suslin, f: T-X, and f l(R) (X). Then f is a measurable
function.

Proof. Note (iv) at the end of 6. [:]
THEOREM 12.3 (Leesepersonal communication). Suppose Tis topologized,

l contain the Suslin family generated by the closed ets of T, X is analytic in the
sense that there exist a Polish space P and a compact-valued u.s.c. G: P--> (X)
such thatX G(P), f: T--> X, and f is in the Sulin family generated by the closed
set of T X. Then f is a measurable function.

Proof. Apply [LES, Thin. 8.2], originally due to Rogers and Willmott.
THEOREM 12.4 (Baker [BA, Lem. 4]). Suppose Tis topologized and TandX

each have a countable base and are almost Hausdorff, i.e., are locally compact To
spaces with every nonvoid locally compactsubspace containing a nonvoid relatively
open Hausdorffsubspace. Suppose B T), f:B -X, andf (TX). Thenfis
a Borel function.
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THEOREM 12.5 (Hottman-J0rgensen [HJ, Thm. III. 4.1]). Suppose Tand X
are Suslin and.f: T--> X. Thenfis a Borelfunction.iffC’is a Borelsubset ofTx Xifffis
a Suslin subset of T x X.

THEOREM 12.6 (Lehn [LN2]). Suppose (T, J/l, I) is the completion of the
measure space (T, o, ), (T, o) and (X, 2f) are countably separated Blackwell
spaces (see [HJ]), f: T--> X, and 1 (R) . Then f- (A /[ for A oV.

Valadier [VA4, Cor.] relates scalar measurability of f: T-->X (withX locally
convex) to ]’ e(R)(X).

In [HJ, III. 1 6.3, 5] examples are given where (a) X is R 2, T is topologized but
not Suslin, g: X--> T is continuous and bijective, g-1 is a Borel subset of Tx X, and
g-1 is not a Borel function; and (b) f: R--> R is not a Lebesgue measurable
function but 1" is a complementary Suslin subset of R x R and hence a Lebesgue
measurable set ((b) assumes axiom of constructibilitymsee also [AU3]).

13. Measurability with other structures. In this section we replace the role of
with a family of subsets of T not necessarily a r-algebra and we define as a

similar family of subsets of X. Our interest is in selections f of F which are (, )
measurable in the sense that f-1(A) for A 2. Measurability of F is defined
similarly. No role is played by/x in this section.

Let { and be the respective families, of closed and open subsets of X, and,
when T is topologized, let be the family of closed subsets of T.

The most important case where is not a r-algebra is when 5f and .. are both
topologies. This is the subject of continuous selections, i.e., (, Y{’) measurable
selections in the above terminology. This topic has extensive literature which
is essentially topological, rather than measure-theoretical, in character, and
which we do not review here. We merely cite three general references, [MIll,
[FL], and the first half of [PR1], where numerous additional references may be
found.

We have noted that Kuratowski and Ryll-Nardzewski [KRN] have shown
that Theorem 4.1 holds with , where 5f is a Boolean algebra. This
generality enables them to obtain selections which are continuous, continuous
modulo first category sets, or of additive class c (i.e., f-l(U) is Borel of additive
class a for open Uc X). Leese [LE5, Thm. 3.2] has sharpened this slightly: Let
be closed under finite union and intersection,4 , and @ {A \B: A, B w};
then if X is Polish and F is closed-valued and (, ) measurable, there exists a
(@, ) measurable selection of F. In fact several of Leese’s results given above
have been stated by him in this kind of generality, generalizing the r-algebra
differently in the hypothesis and the conclusion, i.e., Theorems 4.10 [LE5, Thms.
4.1 and 4.2], 5.13 [LE5, Thm. 5.5], 5.14 [LE5, Thm. 6.2 or 6.3], 8.5 [LE6, Thm.
2.3], and 8.6 [LE6, Thm. 3.3]. Here is a companion result (when is a r-algebra
and a Suslin family this is included in Theorem 5.13).

THEOREM 13.1 [LE5, Thm. 5.2]. Suppose (g, X is Polish, =
{S x K: S 6L, K 27{}, GrFis in the Suslinfamily generated by,s {A: A c Tis
in the Suslin family generated by }, and {A \A’: A, A s}. Then there exists
a selection ] o[F such that f-a(U) @ ]:or U fg.

4 Leese has pointed out that [LE5, Thm. 3.2] should include the requirement that be closed
under finite intersection.
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Engelking [EN, Thm. 1] obtains an (, ) measurable selection of F; here T
is compact and perfectly normal, X is metrized, and F is usc and complete-
separable-valued. If "usc" is replaced by "lsc," then "separability" may be
omitted, as proved independently by (oban. (oban [CB1, 2] gives numerous
theorems on (, ) measurable selections, and related selection results. In [CB3]
he gives a variation on Theorem 4.1 with F-(U) a kind of complementary Suslin
set for open UcX and with the selection obtained a kind of Borel function.
Rogers and Willmott [RGW, Thm. 20] find a selection f of F such that for open
Uc X,f-l(U) is the T projection of a complementary Suslin subset ofTX; here
Gr F is complementary Suslin among other conditions.

Maitra and Rao give the following result.
THEOREM 13.2 [MR2, Thm. 2]. Suppose , T , and is closed under

countable union and finite intersection. Let’ {T\D D }. Then the following
are equivalent:

(a) Whenever A, B and A (-I B there exists D L ’ such that
A D and B T\D (i.e., ’ satisfies the first principle of separation,
equivalently the weak reduction principle).

(b) IfXis compact metric, then any (, c) measurable closed-valued G: T-
(X) has an ( ’) measurable selection.

Their. Theorem 1 generalizes this statement to the use of higher ordinals and
cardinals in the union closedness condition and in the weak reduction principle
and to avoiding compactness in (b), thereby extending Theorem 4.1. From this
Theorem 1, [MR2] further deduces, in addition to some known results, Theorem
4.8 above and a selection result (Theorem 6) which assumes that F is a countable
union of weakly measurable closed-valued functions and that an "N1 weak
reduction principle" holds for the "measurable" sets of T.

Kaniewski and Pol give the following result, which does not assume separa-
bility of X. They also present some related examples and pose some unsolved
problems.

THEOREM 13.3 [KP, Thm. 2]. Suppose Tis an absolutely analytic [HN] andF
is compact-valued and (, c) measurable, where ={S: S T is a Borel of
additive class a } with 0 < < o 1. Then there exists an (, ) measurable selection
ore.

Whitt [WH] gives conclusions in terms of (-, c) measurable selections and
of selections of third Baire class.

14. Lusin measurable set-valued functions and selections. Let us recall
Lusin’s theorem as given in [FE, 2.3.4 and 2.3.6].

THEOREM 14.1. Suppose tx is an outer measure. Suppose also tz is Borel regular
and T is metric { is Radon and T is locally compact Hausdorff}, X is separable
metric, ]:: T-.X is measurable, /x(T)<, and e >0. Then there is a closed
{compact} C Tsuch that I (T\C) < e and flC is continuous. If also p is it-finite, f
is a.e. equal to a Borel function.

We note three related directions in which Lusin’s theorem has been
generalized.

First, there are formulations of Lusin’s theorem for set-valued maps. Plig

[PL1] (1961) and Castaing [CA1, 2, 4, 5] have given such for compact-valued
maps, in which case the Hausdorff metric is a natural tool. Extensions to
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closed-valued maps have been given by Jacobs [JC2], Himmelberg, Jacobs and
Van Vleck [HJV], and Castaing [CA8]. In [HJV] and [CA8] the restricted maps
obtained are semi-continuous; Castaing uses the term "approximately semi-
continuous" maps.

Second, one may formulate Lusin type theorems for g: T Y X, where Y is
a topological space and g is a Carath6odory map. These are called Scorza-Dragoni
theorems, after [SD] (1948), the first result of this type. Van Vleck has pointed out
to us that I(rasnosel’skii’s [KR] (first edition 1956) also gave such a result as
Lemma 3.2. Subsequent generalizations have been given by Castaing [CA4, 5, 8],
Goodman [GD], and Jacobs [JC1].

Third, we have Scorza-Dragoni type results for set-valued maps. Results of
this kind have been given by Jacobs [JC2], Castaing [CA8, 13], Himmelberg,
Jacobs, and Van Vleck [HJV], Brunovsk, [BV], Himmelberg [HM1], and Him-
melberg and Van Vleck [HV4, 9], usually having the restricted set-valued map
semi-continuous.

For the rest of this section, we assume T is topologized as a Hausdorff space
and/x is an outer measure and is o--finite and Radon. Castaing has defined F to be
Lusin measurable if for some partition {S, Ca, C2,’" "} of T,/z(S)=0 and for

1, 2,. ., C/is compact and FIC/is usc. If f: T X and F(t) {f(t)} for T,
Lusin measurability of F coincides with "/x measurability" of f, here called Lusin
measurability of f, as defined in [BO2, Chap. IV, 5.1], since F is then usc iff f is
continuous. If f: T X is Lusin measurable, it is measurable as defined in 2. If
the hypothesis of Theorem 14.1 holds, then f is Lusin measurable.

As Th6orme 8.4 of [CA4], Castaing has given the following selection result
and a corollary (there not restricted to positive measure).

THEOREM 14.2. Suppose T is locally compact, X is separated by a sequence of
continuous real-valuedfunctions, and Fis Lusin measurable and compact-valued.
Then (F)

Castaing has given results on existence of Lusin measurable selections in
[CA7, Cors. 1-4], with X a reflexive Banach space, not necessarily separable.
Leese’s Theorem 7.2 above uses a Lusin measurability hypothesis. In general, the
main usefulness of Lusin measurability seems to be in dealing with nonseparable
spaces.

15. Set-valued measures. Loosely speaking, one calls a set-valued mea-
sure if X is (at least) an Abelian topological group and : (X) is suitably
countably additive. Central to the approaches that have been taken appear to be
the definitions of convergence of an infinite sum in (X). Our interest here is in
the existence of a selection of such a which is a measure on T.

Set-valued measures appear to have originated with Brooks’ work [BK] on a
finitely additive function on into the set of bounded convex sets of a real
Banach space. From this point of departure, Godet-Thobie has developed the
subject extensively during 1970-75 in a series of papers [GT1-4] and, with Pham
The Lai, [GTP], culminating in her thesis [GT5]. She has X a Frechet space in
[GT1], X a Banach space in [GT2], and closed-bounded-convex-valued in
both. In [GT3, 4], X is a locally convex Hausdorff real vector space; here a
convex-compact-valued : (X) is called a set-valued measure ("multimes-
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ure," in [PB2] "multi-mesure faible") if for each point in the dual of X, the
associated support function of is a (not necessarily positive) measure. Appar-
ently, [GT4] supersedes I-GT1]. Her results are further generalized and unified in
[GT5], where, with substantially more abstraction and embedding, X is an
Abelian topological group.

Artstein [AR1] (1972) deals withX R n, and his results seem more accessi-
ble. In JAR1], : ///--> (X) is a set-valued measure if (Uj=ISj) =j=I(Sj)
whenever $1, $2, are mutually disjoint; the sum of a sequence of subsets
of R is the set of absolutely convergent sums of selections of the sequence. His
main selection result follows.

THEOREM 15.1 [AR1, Theorem 8.1]. Suppose I (T) <, X R, d is a
set-valued measure with convex values, <</x, i.e., tx (A)- 0 implies (A)= {0},
S t, and x d(S). Then there exists a selection 0 of d such that 0 is a
(vector-valued) measure on [ and O(S) x.

Neither the convexity condition nor the condition <</ may be omitted, as
shown in [AR1]. However, the conditions on and the convexity condition may
be replaced by (T) being bounded JAR1, Theorem 8.3]. The boundary condi-
tion O(S)= x in this type of selection result originated in JAR1].

Pallu de la Barrire [PB1, Th6orme 3] considers a compact-convex-valued
withX a reflexive vector space topologized compatibly with its dual; he uses the

Hausdortt metric to define the above summation. With no further assumption he
obtains the conclusion of Theorem 15.1.

Cost6’s [CS1, Thm. 1.2] is in the vein of [GT3, 4] with less assumption on X,
but with locally compact line-free values of . In [CS 1, Thm. 2.1], [CS3, Thms. 1,
3], and [CS7, Thm.], X is a Banach space and results in the vein of Theorem 15.1
are given; is closed-bounded-valued (and convex-valued in [CS7]) and the
conclusion is of the form x cl {0(T): 0 is a selection measure of }. A similar
conclusion is attained in [CS6, Thm. 2-1] with "g-additive" and . In [CS6,
Thm. 1-3], he generalizes [PB 1, Thm. 3] to finitely additive and selections of ,
with a Boolean algebra. He further obtains in [CS2, Prop. 1] a Radon selection
of a compact-valued with X a complete Hausdorff locally convex space.

Thiam [TH1] requires to have positive values as determined by a fixed cone
in X, a vector space. For a minimal extremal point x of (T), by methods of [PB 1],
he finds a selection measure 0 such that O(T) x and O(A) is minimal extremal in
(A) for A s At. When X is locally convex Hausdorff and is weakly-compact-

valued such that sup (A) exists for A s :g, applying [CS 6], for x s (T) he finds
a selection measure 0 such that O(T) x. In [TH2], he treats an additive function
on a clan of subsets of T into a semi-group ofsubsets of X, assumed locally convex
Hausdorff; additive selections are obtained.

In [GT-4, 5, 6], Godel-Thobie considers set-valued transition measures, i.e.,
set-valued measures measurably parameterized with respect to a second measure
space. Selections are found in the form of transition measures analogous to those
of Markov processes.

Selection results for set-valued measures are applied in JAR1, 9], [GT2, 5],
[CS1], and [CP1] to obtain Radon-Nikodym type results, extending earlier
results of Debreu and Schmeidler [DES]. A counterexample to JAR1, Thm. 9.1]
is asserted in [CP2].
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16. Special topics. We note a few treatments of existence of measurable
selections which do not come directly under our above topic headings.

Theorem 4.1, for example, may be used as follows to find a measurable
extension of a measurable f: S X where S (e.g., see Maitra and Rao [MR2,
Cor. 6]). For extension results without assuming S:g, see Himmelberg
[HM2, 8].

THEOREM 16.1. Suppose S l, f: S -Xis measurable andXis a Lusin space.
Then there exists a measurable g: T-Xsuch that glS =f.

Proof. Let F(t) {f(t)} for S and F(t) X for T\S. Take a Polish space
P, a continuous bijective q: P-X, and, by Theorem 4.1, h 65(q-1o F). Let
g=qoh.

Garnir and Garnir-Monjoie [GGM; GM] treat T R", X R, and F such
that for some S J//,/(S) 0 and Gr[F[(T\S)] is Suslin. Measurable selections are
readily found from known results.

Maritz’ thesis [MZ] gives, first of all, an excellent history of the theory of
set-valued functions, with an extensive bibliography. He develops a comprehen-
sive treatment of the subject under F and/x having values in Banach spaces,
including generalizations in this context of known selection results.

Niirnberger’s thesis [NU] treats T X and F of the form

F(t)={x: d(t,A)=d(x,A)} fort6T,

where d is a metric on X and A X is fixed. For such F, called a projection, he
finds Borel function selections in Theorems 4, 5, 6, and 8.

In [VA6, Lem. 3 and Thm. 2], as a tool to generalizing Strassen’s theorem,
Valadier finds a "pseudo-selection" of F, i.e., a scalarly measurable (see 8)
tr: T-X’* such that

(x’, tr(t)) _-< sup {(x’, z): z 6 F(t)} for a.e. 6 T,

for x’ X’. In fact, existence of tr for which equality holds is shown. Here X is a
locally convex Hausdorff vector space, X’ is its topological dual, X’* is the
algebraic dual of X’, and F is convex-compact-valued with all of its support
functions finitely integrable. Theorems 3 and 4 relate pseudo-selections to
selections.

Blackwell and Dubins obtain the following result related to Theorem 5.7
(from [BRN]). When (X), the selection obtained is trivially the identity
map of X, so the interest arises when is a coarser r-algebra than (X).

THEORE 16.2 [BD, Thm. 4]. Suppose T= X, X is a Borel subset of a Polish
space, All (X), and there exists g: X (X) --> R such thatg(x, is a probability
measure on{X) [or x T, and g( B) is a measurable function for B (X).
Then there exists a measurable f: X->Xsuch that f(x S whenever x

A structure more general than ours has been treated very recently by Delode
[DL], using as foundation slightly earlier work (which generalizes on separable
metrix X) by Delode, Arino, and Penot [DAP1, 2]. Suppose p" E -> T is surjec-
tive, p-(t) is topologized for e T (E as a whole need not be topologized), is a
tr-algebra on E which induces (p-l(/)) on p-a(t) for T, and p-l(s) for
S ///. Then (E, g, T, //, p) is called a measurable field of topological spaces. It is
Suslin if there exists another such object (E’, ’, T, J//, p’) such that p-a(t) is a
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Suslin space for t T and f: E’ --> E such that p’= p f, flp’-l(t) is continuous for
T and f-l(B) ’ for B . This structure specializes to ours by letting

E Gr F and p 7rTIGr F. (Beyond this specialization [DL] and [DAP2] give
examples in various spaces of interest in functional analysis.) In this specialization,
a Suslin field (as a subfield of T X) is the graph of a set-valued function of Suslin
type ( 6). In [DAP1, 2], each p-l(t) is metric (usually separable) and existence of
a subset of 6e(p-1) satisfying certain axioms is assumed. Relevance of [DAP2] and
[DL] to Theorem 4.2(g) above is noted following Theorem 4.2.

17. Recommended introductory reading. We briefly outline a recommended
sequence of reading for someone who is fairly new to the subject of measurable
selections and who would like to acquire at least a moderately general knowledge.

The best starting point is Rockafellar’s [RC2]. This hasX R and takes one
through several important fundamentals in an easily readable way. A comprehen-
sive exposition of closed-valued F: T-> (R n) is given in his forthcoming [RC6,

1], also easily readable.
We recommend next Himmelberg’s [HM2]. This gives the principal funda-

mental results on measurable selections and related properties of measurable
sive exposition of closed-valued F: T-(R) is given in his [RC6, 1], also
easily readable.

Recommended next are Kuratowski’s and Ryll-Nardzewski’s [KRN], whose
main theorem and proof have not been greatly improved upon, and the main
published portion of Castaing’s widely referenced thesis [CA5]. The latter is the
first comprehensive treatment of measurable set-valued functions and is still
worthy of careful review. We emphasize that is is more easily read if preceded by
[RC2] and [HM2]. (A comment in [RC2] to the effect that [CA5] primarily treats
compact-valued functions is not applicable to the measurable selection portion of
[CA5]). One expects that [CA5] will be superseded by the forthcoming Castaing-
Valadier text [CV2]. (See addendum (iii).)

We consider that Leese’s [LE2] on set-valued functions of Suslin type has
considerable unifying effect and we recommend it next accordingly.

This much should give the reader a rather good general knowledge. A
graduation piece for an ambitious reader is Wesley’s [WEll profound proof of his
easily stated result, Theorem 10.3 above (see also [WE2]). (See addendum (viii).)

Needless to say, a very considerable amount of excellent work on measurable
selections is not included in this short list. A general knowledge afforded by these
recommended papers can be substantially illuminated in terms of historical
development and of specialization in several directions, as may be surmised from
the diversity of topics addressed in this survey. It is hoped that the survey itself will
give guidance to such further reading, for which the survey is certainly no
substitute.
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Addenda in proof. In the above, coverage of Russian contributions to
measurable selection theory is inadequate. Items (i), (ii), and (iii) below were
brought to our attention very recently by A. D. Ioffe via Rockafellar. We had just
previously learned of item (i) from E. B. Dynkin via Aumann. It is hoped that
Russian contributions will be further surveyed in subsequent publications by Ioffe
and perhaps others.

Items (iv) through (xi), given in order of the sections to which they relate, note
various additional matters of which we have recently learned. Of these, we
consider the announcement by Cenzer and Mauldin in (viii) most important.

(i) Our comment in 12 on Jankov’s [JN] is particularly inadequate.
(Henceforth, we transliterate "Yankov.") Statement (3) in the proof of his
theorem is the main content of what has been widely called the "yon Neumann
selection theorem" (5.1 and 5.2 above). In our usages it says: if T-X-R and
Gr F is Suslin, then F has a selection which is a Lebesgue measurable function.
(This does not follow from his theorem statement, which is given in 12, by reason
of the last sentence in 12.) To understand the proof in [JN] (also given in [AL,
Satz 32]) recourse must be made to usages of [LS], to which he refers, as follows
(we are grateful to R. D. Mauldin, A. A. Yukevi, and J. C. Oxtoby for clarifying
these points): (a) all real domains are identified with the irrationals in (0, 1),
further identified with to as usual (e.g., see 5.1 above); (b) an "elementary G" is
(the graph of) a continuous map on to; and (c) "inferior point" means lexicog-
raphic minimum. He should probably have stated that k 8/k k tk (easily
obtained), although that appears to be implicit in the definitions from [LS].
Reference in [JN] to the Baire property is redundant since the o--algebra gener-
ated by the Suslin subsets ofR is contained in the family of Baire property sets.

Yankov’s [JN] was published in 1941 and was presented in 1940. Von
Neumann’s [NE] appeared in 1949, having been submitted in 1948; it states at the
outset that the paper was written in 1937-38 and publication was delayed to make
certain changes which are itemized and which do not pertain to the selection
result, Lemma 5. Both authors obtained the same selection (lexicographic
minimum), by different constructions. We have no doubt that these two works
were independent of each other, having moreover consulted two former col-
laborators of von Neumann’s, F. J. Murray and H. H. Goldstine. Murray observes
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that Lemma 5 is of central importance to [NE] ("without it there is no paper"). He
recalls a prewar conversation in which von Neumann spoke with pride over
solving this selection problem (although it is not spotlighted in [NE] and was little
known for several years). Of course, Yankov was the first to publish.

We conclude that a statement of the form of 5.1 or 5.2 above is appropriately
called a "Yankov-von Neumann theorem." Subsequent improvements by
Aumann, Sainte-Beuve, and Leese have resulted in 5.10 above.

In Russian literature (e.g., [AL, 11], [NA, 40.3 and App. IV], [IT1],
[IT2]) statements such as 5.2 have been referred to as the "Lusin-Yankov
theorem"; [RK1] credits Yankov. Having reviewed [LS2], which evidently
inspired [JN], we do not conclude that Lusin should be credited with this result,
despite his eminent pioneering contributions to the foundations of the subject
(e.g., see 3 above). It does appear that the construction on page 57 of [LS2]
(which differs from those of [JN] and [NE]) if specialized in the most natural way,
yields the Yankov-von Neumann selection. However, [LS2] does not prove that
his selection is a Lebesgue measurablefunction, in fact, in contrast to [NE], neither
he nor Yankov appeared to seek that kind of result. Again, Yankov did state and
prove a measurable function result during his proof Of his theorem.

(ii) A second important omission, pointed out by Ioffe, is Novikov’s [NO2,
Cor. 2] (1939), also quoted in [AL, 14], which we render: if T-X-R, F is
closed-valued, and Gr F is Borel, thenF has what has now been termed a Castaing
representation. Contrary to the end of 3 above, this is the first result on existence
of measurable selections without assuming countable or compact values.

(iii) Ioffe points out that Rokhlin’s argument in [RK2] (also given in
[RK1]), discussed in 4, becomes a valid proof if the following changes are made
(we concur): (a) replace 2 by 2-’+2 in (10,), and (b) redefine A to be

i--1Bi/[_J= B, where

Bi {x: r(Y, (x)) < 2-" and r(Y/, In-l(X)) ( 2-"+2}.

Moreover, this argument suffices for Theorem 4.1 as given above, without the
Lebesgue space assumption made by Rokhlin.

Ioffe feels that the error in IRK2] was "insignificant and easily correctible."
Were it only (a), we would agree. However, (b) is a substantive change, e.g., the
new Ai involves the approximating function q,-1 and in IRK2] it did not.
Therefore, we feel the argument in IRK2] should be regarded as incomplete.
Thanks to Ioffe, we now know that it is completable within the main ideas of
Rokhlin’s reasoning. Thus, Rokhlin gave in 1949 a statement of the essence of
Theorem 4.1 and the principal ideas of its proof.

From the. facts on the origin of Theorem 4.1 given after its statement and
from the observations just made, it appears that the credit for this result is
somewhat diffuse among, chronologically, Rokhlin IRK2], Kuratowski and Ryll-
Nardzewski [KRN], and Castaing [CA, 1, 2, 4]. Moreover, Novikov contributed a
significant special case (see (ii)) in 1939, albeit with the strong ssumption that
Gr F is Borel. We propose that Theorem 4.1 be given the impersonal name
"Fundamental Measurable Selection Theorem," which we believe is commensu-
rate with its importance.
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(iv) A new and fairly general exposition of measurable selections and
continuous selections is given by Kuratowski and Mostowski [KMS, Chap. XIV].
A briefer discussion in similar vein (in Polish) is given in [KU7].

(v) In 4 and 8 we have noted Rockafellar’s use of F such that F(t) is the
epigraph of a convex f(t,. for E T, where f: TXR U{oo,-oo} and/z is
complete and tr-finite. He points out (personal communication) that for the most
part, "convex" is weakened to "lsc" and "complete" is avoided in [RC6], which
supersedes most of the finite-dimensional parts of [RC1-5]. In [RC6], the key
condition for such anf to be normal, by definition, is thatF be measurable, and the
latter property is the focus of his manipulations, via Theorem 4.2(e) ((ii) :> (ix)).

With this approach, Rockafellar obtains in a relatively easy way, within
X R, variants of several results reviewed above, e.g., his result in (vii) below
and an implicit function result [RC6, Thm. 2J] in which the g constraint in 7 is
generalized to an infinite sequence of inequalities.

Evstigneev [ES] has applied Theorem 4.2(e) ((iii) <=> (ix)) to dynamic prog-
ramming problems, generalizing certain results of Rockafellar and West [RCW]
and of Dynkin.

(vi) Cenzer and Mauldin [CM1] give variants on Theorem 5.7 above from
[BRN]. In one they replace (X) by its completion. In another they assume Gr F
is complementary Suslin and obtain 2 distinct Borel function selections of F
(Larman [LA1, 2] obtained N with Fo--compact-valuedsee 12).

(vii) Schfil [SC3]has answered affirmatively the open question in 9. Shreve
and Bertsekas [SHB] have given a variant of a result of Brown and Purves [BP].
They assume GrF and, for a R, {(t,x): u(t,x)>a} are Suslin (u as in 9).
Rockafellar [RC6, Thm. 2K] gave the following variant on 9.1 with u and v as in
9: If X R",-u is normal (see (v)), F is measurable and closed-valued, and

G(t)=F(t)f-I{x: u(t, x)= v(t)} for T, then v and G are measurable, and since
also G is closed-valued, 6e(G) .

(viii) In [WE3], Wesley proves his universal measurability assertion in 10.
Cenzer and Mauldin announce (personal communication) an extension [CM2]
of this result and moreover a proof that uses only standard techniques of
descriptive set theory, not requiring forcing or other metamathematical methods:
In Theorem 10.3 they replace , M, and M (R) by the smaller r-algebras
S([0, 1]), S (T), and S(T x [0, 1]), where for a topological space Y, S(Y) is the
smallest r-algebra which is a Suslin family and contains N (Y).

(ix) Kallman and Mauldin [KAM] have extended Corollary 11.2(ii) (due to
Dixmier) as follows (under partition usages of 11): If X( T) is a Borel subset of
a Polish space, each F(t) is an F and a G in X, M Yd(T), and F is weakly
measurable, then (F) . Kaniewski [KA2] has obtained a Borel set selection
of a partition into compact sets of a Borel subset of a metric Suslin space; he also
generalizes Kunugui-Novikov [NO2].

(x) Kaniewski [KA1] has generalized Kond6’s theorem ( 12). Mauldin
points out that ZFC+MA+ not CH (without the constructibility axiom) denies (b)
at the end of 12 (this (b) is included in Aumann’s discussion [AU3] of Gr F
complementary Suslin.

(xi) Further contributions to selections of set-valued measures ( 15) have
been given by M. Rao IRA], Vincent-Smith [VS], and Talagrand [TA]. These
relate to Choquet theory.
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ERRATUM: STRUCTURAL STABILITY FOR THE RICCATI EQUATION*

R. S. BUCY]"

It was pointed out by Shohie Fujita [1] that the condition det(F,(R)I+
I(R)F,) 0 is not sufficient in Theorem 1, p. 750, as the condition does not imply
index (,(R)I+I(R),,)= (nl*, O, n*l). Replacing the condition by the following:

det (F, (R)I + I(R)F, + iw) # 0 for all real w

and leaving the proof as it stands correct the situation.
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* This Journal, 13 (1975), pp. 749-753. Received by the editors September 17, 1976.
f Aerospace Engineering Department, University of Southern California, Los Angeles, Califor-
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LEGENDRE DUALITY IN NONCONVEX OPTIMIZATION
AND CALCULUS OF VARIATIONS*

IVAR EKELAND?

Abstract. A general duality theory is given for smooth nonconvex optimization problems,
coveringboth the finite-dimensional case and the calculus of variations. The results are quite similar to
the convex case; in particular, with every problem () is associated a dual problem (*) having
opposite value. This is done at the expense of broadening the framework from smooth functions

1 to Lagrangian submanifolds of R x R x .
Introduction. Duality methods are nowadays an important tool in the study

of convex optimization problems. A systematic treatment within the framework
of convex analysis can be found in the books of R. T. Rockafellar [14] and
I. Ekeland and R. Temam [8]. However, it is easily forgotten that duality methods
have been in use for quite a long time in classical mechanics, where people are
used to stating a problem either in terms of x-phase variables, or of p-momentum
variables, the mapping x - p being the Legendre transformation. A major diffi-
culty lies in the fact that the Legendre transformation need not be one-to-one,
except of course in the convex case.

This paper aims to provide people used to convex optimization problems with
a systematic and updated treatment of duality theory for the smooth nonconvex
case. The first two sections set up the general framework. It turns out that the
framework of functions is not broad enough to cover our needs, because the
Legendre transform of a smooth nonconvex function need not be a function. So
we define Lagrangian submanifolds of [x [x as a better concept to work
with, because the Legendre transform of a Lagrangian submanifold is still a
Lagrangian submanifold, and because a Lagrangian submanifold comes very close
to being a function from " to N. Section 1 investigates the local properties of
Lagrangian submanifolds, and 2 studies the Legendre transform in this
framework.

The duality theorems then follow quite easily, either in 3 for the finite-
dimensional case, or in 4 for the calculus of variations. They are exactly what one
would expect from the convex case. References to the bibliography are relegated
to5.

1. Lagrangian submanffolds. Let f be a C real-valued function on Rn. We
can associate with f the following n-dimensional submanifold of [n x " E:

(1.1) Vf {(x, f(x), f(x))]x e "}.

* Received by the editors September 10, 1976.

" Mathematics Research Center, University of Wisconsin--Madison, Madison, Wisconsin. Now
at Centre de Recherche de Math6matiques de la Division, Universit6 de Paris IX Dauphine, Paris,
France. This work was supported by the United States Army under Contract No. DAAG29-75-C-
0024.
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This submanifold has the property of annihilating the differential form to

defined at any point (x, p, z) of R x Rn x N by the formula

(1.2) o) dz Y p dx.
i=1

Indeed, the restriction of w to Vf reduces to df-Y=l (Of/Oxi)dx which is
identically zero. This motivates the following definitions.

DEFINITION 1.1. A Lagrangian submanifold of Nnx NnxN is a closed
n-dimensional C-submanifold V such that

(1.3) i*vro =0
where iv" VN x R" x N is the canonical injection and i: T*(N" x N x N)
T*V the induced map of differential 1-forms. We shall say that N" is a critical
point of V and that z7 s N is a critical value whenever

(1.4) (;, 0, zT) V.

We shall associate with V a multivalued mapping Fv from Nn to R:

(1.5) Fv(x) {z [::! p " (x, p, z) V}

and call it the characteristic map of V.
In the following, we shall denote by r and r respectively the restriction to

V of the projections (x, p, z) - x and (x, p, z.) (x, z). The analogous notations %
and % will also be used. These maps send V into N and N"+a respectively; note
that:

(1.6) graph Fv r(V).

Particularly simple situations arise when these projections are proper. Recall
that a continuous map r" VN is proper at s R iff every sequence w, in V
such that r(w,) : is bounded. It is proper itt it is proper at every point se e N this
amounts to saying that r-(K) is compact in V whenever K is compact in N.

As a fundamental example of a Lagrangian submanifold, take the set V
associated with a C function f: N" - N by formula (1.1). Note that in this case r
is a diffeomorphism from V on ", and hence proper.

As a variant, consider a C function f defined on an open subset f of N, and
assume that [fix)[ oo whenever x converges to some point in the boundary of f.
Then the set V defined by

(1.7) Vf {(x, f’(x), f(x))lx f}

is a Lagrangian submanifold. Note tb.at in this case r is a ditteor o’.v,ism from V
on f, but no longer on N". Hence rx is no longer proper, but r is.

In both cases, the critical points/values of V are the critical points/values of
f, and the characteristic map Fv of V coincides with f:
(1.8) Vx Rn, Fv(x) {f(x)}.

We now seek a partial converse: describe, at least locally, a given Lagrangian
submanifold V, in terms of a smooth function f: N N. For that purpose, we
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introduce the set of points Nn such that the 1-forms i/dxl," ", i*v dxn are
linearly independent at every point (.f,/7, zT) of V projecting on

PROPOSITION 1.2. The subset \ has Lebesgue measure zero in Nn. For
every point there exist a (possibly empty) countable set of indices A, a family
ll, ce A, of neighborhoods of Y. in , a family fa: alia Of smooth functions,
such that

(1.9) r2a() c U 7/ V
aA

where

(1.10) 7/’,, {(x, f’(x), f(x))lx ql}.

Note that (1.9) implies that Fv(Y.)= {f (Y)la A }. Intuitively, the part of Fv
lying above is decomposed into smooth branches f,,, a e A, with z f (Y) and
Pa =f’(-g). TWO branches may intersect, but they must do so transversally" if
f (.g) f (?) with a fl, then f’() f().

Proo] of Proposition 1.2. To say that the 1-forms i*vdXl,"’, i*vdx, are
linearly independent at (,/7, z) V means that (, p, ) is a regular point for the
projection zr" V- N". The set 1"\ is just the set of critical values for zr, and it

follows from Sard’s theorem that it has measure zero.
Take a7 , and let {(f,/a, ZZa)]a A } be the (possibly empty) set of points of

V projecting on f. By the definition of , each (, Pa, Z-a), Ce A, is a regular point
for 7rx. By the implicit function theorem, there are neighborhoods a of and a
of (,/Ta, zTa) such that 7rx a a//a is a diffeomorphism. In other words, there are
real-valued C functions ]’a and gai, 1 =< i-< n, defined over q/a, such that

(1.11) (x, p, Z)e //’a z{X e //a, Z =]Ca(X), Pi gai(X)}.

The vanishing of i*vw means that

(1.12) dfa gai(X) dxi 0 over
i=1

which yields

L(x) Vxe%.(1.13) gai (X -X
Writing (1.13) in (1.11), we get formula (1.10), with formula (1.9) being satisfied
by construction. It only remains to prove that the set A is at most countable. For
this, notice that

(1.14) 7r-a(.g)

and hence that a (Y,p,). This shows that all points in r-a(Y)are
isolated; hence any compact subset of V can contain only a finite number of them.
As V is a closed subset of N2,+, it can be written as a countable union of compact
subsets, and the result follows.

In the special case where the map x is proper at Y, it is easily seen that the set
A has to be finite. Setting aA a, we get the following corollary.
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COROLLARY 1.3. Assume moreover the map rx is proper. Then is open in
", andfor every point2 there & a neighborhood R of2 and a (possibly empty)
finite family of smooth functions f: oR , a A, such that

(1.15) 7’/’;1(0/) [3 {(x, f’(x), f(x))[x all, a ca}.

We now have a description of r-1(2) which is valid whenever 2 5, i.e. for
almost every point 2 ". Points in "\ form a negligible subset, but they may
nevertheless turn out to be important, so we will attempt a partial description in
that case also.

PROPOSITION 1.4. Let t--(x(t), p(t), z(t)) be a C map from ]0, T] into V
such that x(t) 5 Vt>0. Assume that, when t-O,

dx
(1.16) x(t)-2 and -(t)(,
(1.17) z(t)-- e,
(1.18) lim inf []p(t)-fil[ O,

with (2, fi, ) an isolated point of zr-;z (2, ). Then

(1.19) p(t)-> fi,

dz
(t)p .(1.20) d-

Proof. As/ is an isolated point in zr-) (2, 2), there is a compact neighborhood
7///" of (2, , 2) in V such that

(1.21) (2, p, 2) Yg’(C)p =.
Assume p(t) does not converge to ft. Then there is an open neighborhood V

of (2, fi, 2), contained in 7/V, and a sequence t, - 0 such that

(1.22) (x(t,), p(t,), z(t,))e
Using (1.16) and (1.17), together with the fact that /4r\ is compact, we can

extract a subsequence converging to some point

(1.23) (2, p’, 2) II/’\

contradicting (1.21).
So p(t) has to converge to/5, yielding (1.19). Setting z(0)= 2, we define a

continuous real-valued functiontz(t) on [0, T]. It follows from Proposition 1.2
and the fact that x(t) 5 for >0 that this function is derivable on ]0, T] with
derivative:

dz(t)=p(t)dx(1.24) d- - (t).

When 0, the right-hand side converges to ft. , and so does the left-hand
side.
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Note that (dp/dt)(t) need not converge. Note also that (1.16) and (1.20) imply
that (d/x/dt)(O)=( and (d/z/dt)(O)= , with d//dt denoting the right-
derivative. Equation (1.20) can be written

d/z d/x
(.25) --7-(0) . (0)

which expresses the vanishing of dz-p dx above a point not in
Let us give a more accurate picture in a simple case"

PROPOSITION 1.5. Assume 7rx is proper and 7r-1(2,) is finite. Let a simply
connected subset f of be given in the following way:

(1.26) [I { + t]0 < < a, : S}

with S an open subset ofthe unit sphere +. +2 1. There is a (possibly empty)
finite family of C functions f" f t_J {,}--> , a A, such that

(1.27) 7r ( LI {Y}) {(x, f(x), f,, (x))lx 6 El LI {JT}, a 6 A }.

By a derivative of f at 2 we mean a linear functional f’(2) such that

(1.28)
ve >0, >0, IIx- ll n and x ef

By a C function on lqU{2} we mean a function f such that f’(x) is
well-defined and continuous on {?} U lq.

ProofofProposition 1.5. The set 7r-(x) has to be both compact (because 7rx is
proper) and discrete (because x t), so it is finite. By Proposition 1.2, the map

-1
7r" rx (lq)--> lq is a covering. As 12 is simply connected, the restriction of 7rx to
each connected component of 7r-(ll) is a diffeomorphism, hence the representa-
tion formula

(1.29) 7r-a(lq) {(x, f’(x ), f (x ))lx l-l, a A }.

Now fix a A and let x converge to J7 in f. As 7r is proper, (x, f’(x), f,, (x))
has cluster points (, p, z) 7r21(). As this set is finite, all its points are isolated.
As in the preceding proof, we conclude that f’(x)-> p, and f,,(x)--> z. Setting
f()= z and f’(JT)= p, we get a C function as desired. ]

Let us conclude this investigation of Lagrangian submanifolds by the follow-
ing remark, which throws some light on the case where 7r-l(JT) is not discrete. Let
t->(x(t),p(t),z(t)) be a C path drawn on V along which x(t) is constant:
x(t) JT, 0_-<t_-< T. Then z(t) has to be constant also: z(t)= zT, 0-<t=< T, so in fact
only p(t) varies. This follows easily from the vanishing of i*vw, which yields in this
case (dz/dt)(t)= i=a pi(dxi/dt)(t). In particular, if F is an open path-connected
subset of V projecting on aT, i.e. c 7r-(j), then 7/" is also contained in some
hyperplane H {(x, p, z)lx ?, z } as an open path-connected subset (open-
ness follows from the fact that dim V n dim H).
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2. The Legendre transformation. The mapping of "xx into itself
defined by

(x, p, z)= (x’, p’, z’),
(2.1)

x’ p, p’ x, z’ px z

is called the Legendre transformation. Note the following.
PROPOSITION 2.1. The Legendre transformation is a C involution"

(2.2) 2= Id.

Proof. Using notations (2.1), we set (x’, p’, z’) (x", p", z"), with

x"-p =x,

p" X’ p,

z" p’x’ z’ px (px z) z

hence we get the result.
The fundamental fact about the Legendre transformation is that it preserves

the 1-form to, up to a change of sign.
THEOREM 2.2. *tO --tO.

Proof. Using notations (2.1), we get

*to dz’-p’ dx’

=(xdp/pdx-dz)-xdp

=pdx-dz

COROLLARY 2.3. If V is a Lagrangian submanifold of "", then
so is V.

Proof. It follows from Proposition 2.1 that
E" onto itself. HenceV is a closed submanifold whenever V is. There only
remains to check that i.vW 0. To do that, we write the following diagram:

V---" x I" x I

(2.3) ’1

where 1 is the restriction of to V and j is the canonical injection. This diagram
commutes, and gives rise to another commutative diagram relating 1-forms"

(2.4)

T* V.--T*(n" x" x )

r*(v):-r*(n- x - x ).
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Taking o) in the lower right-hand corner, and using formula (1.3) and
Theorem 2.2, we get

(2.5) i* *(w) i*(-o)) -i*(o)) 0;

going the other way around the diagram, we get

(2.6) 0=1" f*(w).
As is a diffeomorphism, l* is an isomorphism, and (2.6) implies that/’*o9 0,

i.e. V is Lagrangian.
We now introduce a slight misuse of notations. Let V and W be Lagrangian

submanifolds of R" R" , with W V, and let Fv and Fw be the associated
characteristic maps. We shall write freely Fw Fv, and call Fw the Legendre
transform of Fv. For instance, if f: "+ is a C function, then f is the
multivalued map from " to R defined by

(2.7) f(x’) {z’l=! p’ ": (x’, p’, z’) V}.
Using (1.1) and (2.1), we get

(2.8) Lf(p {px f(x )l f’(x P}.

Several remarks are now in order. First of all, if f, in addition to being smooth,
is convex, then the function x--px-f(x) is concave, and the equation p =f’(x)
simply means that this function attains its maximum at x. Equation (2.8) then
becomes

(2.9) Sf(p) max {px -f(x)lx

Formula (2.9) shows that &of is single- or possibly empty-valued. In other
words, 5ff is a real-valued function defined on some subset of n. It is to be
compared with the classical Fenchel transform of convex analysis:

f*(p) sup {px -fix)Ix "}.

Formulas (2.9) and (2.10) coincide whenever the function x+px-f(x)
attains its maximum over N". Define the effective domain of f* as the set of points
where it is finite"

dom f* {Plf*(P) <

PROPOSITION 2.4. f(p) =f*(p) if and only iff* is subdifferentiable atp, i.e.
Of*(p) # 49. This is the case at every interior point p of dom f*:

(2.12) p e int dom f* f(p) f*(p).

Proof. Let us write down the definition of the subdifferential of f*"

(2.13) Of*(p) { "lp, f**(x) max}

where the notation maxx means that the left-hand side attains its maximum at
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But, as f is continuous and convex, it coincides with its biconjugate f**; hence

(2.14) Of*(p) { "[ pY-f(Y) max}

which proves the first part of the proposition.
It is a well-known fact from convex analysis that any convex function on R is

continuous, and hence subdifferentiable, on the interior of its effective domain.
Hence we have (2.12).

In the general (smooth, nonconvex) case, formula (2.8) sets .f(p) in one-to-
one correspondence with the sets of tangents to f having slope p.

PROPOSITION 2.5. z’ f(p) ifand only ifz px z’ is a tangent hyperplane
to graph f in " x .

Proof. The hyperplane z =px z’ in (x, z)-space is tangent to graph f if and
only if there exists e " such that f’(Y)=p and flY)= pY-z’. This reduces to
z’ f(p) by (2.8). V1

From Proposition 2.5 one sees instantly that ff can be multivalued. Indeed
5ff is a function, i.e. f(p) is empty or a singleton for every p, if and only if f has
only zero or one tangent of prescribed slope. In dimension n 1, this means
exactly that f is convex. In higher dimensions, this also happens in the non-
convex case: take for instance f(xa, x2) x21-x2, then (Xl, Xz)+(2xl, -2x2)
is one-to-one. But thefact remains that, in contrast with the convex case, in the
general case we have to deal with multivalued Legendre transforms. So. let us
attempt a description of f. We denote by V the Lagrangian submanifold (1.1) of
"x "x associated with f, and by A (x) the matrix of second derivatives of
fatx:

(2.15) A(x)=
\Ox Oxi

PROPOSITION 2.6. Assume A(Y) has full rank n. Then there exists a
neighborhood of (f’(Y), , Yf’()-f()) in Vprojecting onto a neighborhood all
off’() in ", and a local inverse q for f’ such that

(2.16) o//.= {(p, [wfj,(p), [f](p))[p O-ll }

with [wf](p)= pq(p)-f o(p). In particular, we have

(2.17) [wvf],(/) .
Proof. It follows from the implicit function theorem that the map x ,f’(x)

has a local inverse q defined on some neighborhood of ft. Setting

(2.18) T’= {(f’(x), x, xf’(x)-f(x))Ix

and using the definition of q, we get

(2.19) = {(p, 0 (p), po(p)-[o q(P))IP
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Computing the derivative of ’f, we get

[f]’(p) (,o (p)+ ’q’(p)p -tq’(p)f (.p(p)

(2.20) (p) + ’o’(p)p -’o’(p)p

and formula (2.19) reduces to (2.16). F1
,f is a smooth branch off lying above ft. Note that ff is a regular value for

f,: Nn + Nn if and only if it is a regular value for 7r,"V+ [". This is almost always
the case, by Sard’s theorem, and the part of f lying above ff then is a countable
union of smooth branches such as vf (this is a particular case of Proposition 1.2).
If moreover f’ is proper at/, then so is 7r,, and there are only a finite number of
branches off lying above ff (this is a particular case of Corollary 1.3).

We can of course apply Propositions 1.4 and 1.5 to get a description of ’f
above critical values of f’. But, in this particular case, we prefer another approach,
which has the advantage of directly relating the shape of the Legendre transform
above f(27) to the degeneracy of the matrix of second derivatives at 2?. We write the
Taylor expansion of f at :
(2.21) f(.f+)=f(.f)+ffc+1/2(A(.f)e,c)+P3(.f;l,..., :)/ o(l:l4)
where P3(.f; is a homogeneous polynomial of degree 3 in n variables. Using the
Euler formula, we may write

OP3P3(.; 1,"’", n)= 1/2 i’-"’-’. (3 1,""", n)"-"
i=10i i=1

where Bi($) is the matrix with elements 1/2 O3f/Oxi Ox Oxk, 1 <=], k <-n. Denote by
(B(g)& :) the n-vector with components (Bi(g):,

PROPOSITION 2.7. Assume that A () has rank (n- 1) and that

(2.22) : # 0,
1,’"’, :n) g: O,

eKerA(2?)=),
(B($):, )ImA(.f).

Then (possibly after reordering the linear coordinates (Pl,’ ", P,) in and
changing p, to -p,) there is a neighborhood of (f’($), , f’($)Y-f(Y)) in V, a
neighborhood ql ll’ all, of (1, , p--l, p-) in , Cfunctions kl, k2" all’
and h" ll - , such that 7r, is completely described by the set of conditions

(2.23)

(2.24)
with

(Pl, P,-I, P,,) //’ X ag,, and

z {z+(p), z_(p)},

z+(p) kz(pl,""’, pn-1)+(pn-kl)h(pl, Pn--1, /pn-kl),

z_(p) kz(pl, ", Pn-1) + (Pn kl)h(pl, ", en-1, --4Pn kl).

Moreover Oz/Opi xi, 1 <- <- n, along the hypersurface

(2.25) p,, kl(pl,’", p,,-1).
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Proof. The (Xl, Xn) are a system of coordinates in Vwith formula (2.8)
yielding (Pl, , Pn, z) in terms of (Xl, , xn). In particular,

(2.26) Of(x) Pi for 1 _-< _-< n.
Oxi

The rank assumption on the matrix A (g) implies that one of its (n- 1)x
(n 1) minors is invertible, for instance the one defined by the (n- 1) first rows
and the (n 1) first columns. Moreover, the nth row then is a linear combination of
the (n- 1) first rows.

It follows from the implicit function theorem that the (n 1) first equations of
system (2.26) can be solved locally for (Xl,’" ",xn-1). In other words,
(pl,’" ,p,-1, xn) can be used as coordinates in some neighborhood //’1 of
(/7, 2, 2) in V. Now consider the path w(t)= (p(t), x(t), z(t)) in 1 such that
pa(t)=fi,..., p,_l(t)=/7_1, x,(t)=2, + t. There is some T>0 such that w(t)is
well-defined for -T<=t <- T. Obviously w(0)= (p, x, px-f(Y)); we shall write :’
for (dx/dt)(O) and :" for (dZx/dt2)(O). Equations (2.26) are satisfied along w(t):

O[(Xl(t),... x,(t)) for 1-T<t < T.(2.27) pi(t) -x
Writing Taylor expansions into (2.27), we get

2

(2.28) p(t)-p tA(Y)(’+-[(B(Y)(’, (’)+A(Y)lj"]+O(t3).

But pi(t)-Pi =0 for l_-<i_-<n-1, so that both sides of the (n-1) first
equations of system (2.28) are identically zero on (-T, T). It follows that the
(n 1) first components of A ()( are zero, and, by the rank assumption, so is the
last one

(2.29) A (.g)sc’ 0.

Assumption (2.22) then yields

(2.30) (B (?)s’, s’) +A (?)(" # O.

But again, both sides of the (n 1) first equations (2.28) being identically zero
on (-T, T), the (n- 1) first components of vector (2.30) must be zero. It follows
that the nth component must be nonzero. We summarize our results so far by
stating that the nth equation of system (2.28) can be written as

(2.31) pn(t)-p =1/2antZ+o(t3), an #0.

Similarly, we compute the Taylor expansion of z(t) at 0. By definition, we
have

(2.32) z (t) f’[x (t)]x (t) -f[x (t)].

From now on we set/7 f’(g) and z7 =/5-f(2).
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Successive derivations yield

dz
(2.33) d-- (0) (A (.)’, sc’)

(2.34)
d2z
dt2 (0) 2(a ()s’, s’’) + P3(.; (, , (’,,).

But we have seen that A ff?):’ 0, so that (dz/dt)(O)= 0 and (dZz/dt2)(O)=
bn 0 by assumption (2.22). Finally we get

(2.35) z(t)-=1/2b,tz+o(t3), b, 0.

Now w’(0) is just the tangent vector (O/Ox,)(pl,. ", P--a, x,) associated with
the new coordinate systems. In other words, p, and z, considered as functions of
(Pl, ",p-l, x,) in 7/’a, satisfy

(2.36) x, (Pl, ",/5,_1, ?,) 0,

OZpn
(2.37) x (/Sa,...,/-1, Yn) 0,

(2.38)
Ox,

(Pa, P,-1, x,) O,

022
(2.39) xx(/l,...

But other points (p, x, z) in V1 enjoy the property that A(x) is of rank
(n 1) and satisfies (2.22). Indeed, consider the Jacobian determinant

D(pl,’", p,-l, p,,) 2

A(p, ,p,_,x,)=
D(pl,

(2.40)
Op____--Oxn(Pl, ,pn-l,Xn)

by a simple computation. Clearly rank A(xl,’",x,)<n if and only if
A(Pa,’ ",P,-a, x,) 0. But A= 0 and (OA/Ox,) (OZp,/Ox2) 0 at point
(Pl, ",/5,_1, ?,). By the implicit function theorem, there are neighborhoods
of 1," , ,6,-a) and /g’l of ,, and C map g: //1 7g’1 such that

(2.41) A(pl, ., Pn-a, xn) 0:x, g(Pl," ", p-l)V(pl, ’, x,,) /1X c1.

Conversely, x, g(Pl,’", Pn-1) implies rank A(xl,"’, x,,)<n. By a con-
tinuity argument, we can shrink 0 and c to 0g2 and 7//22 so that rank
A (Xl,""’, x,) is exactly n- 1 and assumption (2.22) is satisfied whenever x,
g(px, , P,-I) in //2 x 7/#2. We may even include in the bargain the fact that the
first minor ofA (x) is invertible, so that (pl, ",P,,-I, Xn) enjoys all the properties
Of (ffl, fin-i, -n). By (2.36) and (2.39), it follows that Op,/Ox, 0, 02pn/DX2 7

Recall that D(fl,’", fn)/D(Xl,"’, Xn) denotes the determinant
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O, OZ/OX O, 02Z/OX2, 0 at every point (Pl,""", P,-1, x,) 02 X c2 such that
x,=g(pl, ,p,-).

It follows that

(2.42) p, kl(pl,’’", p,-1)+[x,-g(pl, p,-1)]2hl(pl, p,-1, x,),

(2.43) z k2(pl,""", p,_a) +[x, -g(p,’", p,_)]Zh2(pl,’.’, p,_a, x,)

with

(2.44) x,=g(p,... ,p,-)zh(pl,’" ,p,-x,x,)hz(pl,"", p,-1, x,) - 0.

The point of V defined by (pa,...,p,_,x, =g(pl,...,p,)) yields p,
k(pa,. , pn-1) and z k.(pl," ", p,-1), so that ka and k2 are Coo functions. It
follows from the C division theorem of Malgrange that h and h2 can be chosen
to be C functions also.

Assume that h(pa,... ,p-,_l, x-,)>0. Then we can define
and use (px,..., p,_a, y,) as a new system of local coordinates in some smaller
neighborhood 2 of (/7, J, ) corresponding to (Pl, , p,-1, y,)e 0//3 x 7g’3.
Equations (2.42) and (2.43) become

2(2.45) p,-kl(p,’", p,,-1) yn,

(2.46) z kz(p, Pn-1) yZn h3(pl, P,-1,

with (p,’.., p,_l)e 3 and y, e /423. This implies that p,-k is nonnegative.
Conversely, whenever p, _-> kl, we can solve (2.45) by y, :t:x/p, kl, getting two
distinct values whenever the inequality is strict; possibly shrinking a//3 to ag4, we
can arrange that both those values are in /4#3, so that (2.46) becomes

(2.47) z k2 (p, kl)h(p, ", p,-a, +/p, k)

which, together with (pl, ’, Pn-) 4, completely describes r2.
If ha(p, ’, P-n-l, )n) should be negative, then we simply reverse p, to -p,,

and we are back to the preceding case. So formulae (2.23) and (2.24) are proved.
For the sake of convenience, denote by f the set of points (pa, , p,) such

that p, > k l, and by its boundary, the equation of which is p,- kl. Formula
(2.24) yields along Z

OZ+ OZ_ Ok2 1<i<=n-1
Opi Opi Opi

(2.48)
Oz+ Oz_

Op

It follows also from formula (2.24) that with any p Y-- and any vector
n--1

r’= (r, , r’) pointing to the interior of f (i.e. r,- Y=l (Ok/Op)r >0) we
can associate two continuous paths (p(t), x(t), z+(t)) and - (p(t), x(t), z_(t))
inVstarting at (p, x, z) and satisfying (dp/dt)(t) r’ as -0. From Proposition
1.4 (taking care that x- and p-coordinates are interchanged) it follows that, when

dz+ r’
dz_

(2.49)
dt

(t) --> x and -d--(t) --> x r’.
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But from formula (2.48) we get directly

dz+(t)(2.50)
dt

Oz
and

Oz_
(t)

Ot Op

where Oz/Op denotes the common value of the n-vectors (2.48). This yields
(Oz/Op) r’ x 7r’ for every vector 7r’ in some half-space, and hence the desired
formula x Oz/Op.

In other words, f is not defined locally for Pn < kl(pa,’", Pn-1). In the
region p, >= k(pl," , P,-a), there are two well-defined branches for ’f. Along
the boundary they coincide and have the same tangent hyperplane, and their
shape away from the boundary is given by the following result.

COaOLLAa 2.8. We keep the assumptions and notations ofProposition 2.7,
and we setq, p, kl(pl, ", Pn-1). Thenfcan be expanded near the boundary
qn 0 as

(2.51)
z kz(pl,’’’, P,-a)+ q,[ao(pl,’’’, P,-1)

+aa(Pa, p,-a)4q] + O(q3,/)
where the functions k2, ao, a are C. Moreover

(2.52) ---0k2 (Pl, p,-1) x for 1 <- <- n 1,
pi

(2.53) ao(pa,’", p,-1) =x,.

The proof consists simply of replacing h by its Taylor expansion in formula
(2.24). We see that the two branches only intersect at the boundary p, k of the
admissible domain p >-k (this is true even in the special case where a 0,
because then the third order term +a3q3,,/2 takes precedence). This is the classical
"cusp" situation, so that Proposition 2.7 can be loosely stated as follows" a simple
inflection point of f gives rise to a simple cusp of f.

Of course, more degenerate inflection points of f give rise to more compli-
cated situations in f. A classification can be attempted along the lines of
Proposition 2.7, but we are not going to conduct it any further. Let us only point
out that, for all functions f , where is a dense G subset of C(") in the
Whitney topology, the space [n can be partitioned as Eo U ;1 t0 E2 where:

E0 consists of all points x where A (x) is nondegenerate; it is an open subset
of

E1 consists of all points x where A (x) has rank (n 1) and satisfies (2.22); it is
a codimension one submanifold.

E2 consists of all other points; it is a stratified subset of codimension -->2.
Without going into details, this follows from Thom’s transversality theorems.

So, for most functions, the analysis performed thus far describes everything up to
codimension two. In the one-dimensional case, n- 1, that means precisely
everything. Let us conclude by a simple example.

Define a function f on the real line by

(2.54) f(x) (x + x2)2.
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We want to know what f looks like. We need some data on f which are
summarized in the following"

f’(x)=4x(x + 1)(x +1/2)=4x3+6x2+2x,
f"(x) 12x2+ 12x + 2,

x f(x) p=f’(x) f"(x) z=f’(x)x-f(x)
-oo +oo -oo

-1 0 0 * 0

-0.7887 3 0.19245 0 -0.1796

-0.2113 3G -0.19245 0 0.0129

0 0 0 * 0

We now can draw the graphs of f andf (Figs. 1 and 2.) Note that the z-axis
p 0 intersects f at the simple point z --6 and the double point z -0. This
means that there are two distinct tangents to f with slope p- 0: the first one is
tangent to f at x -1/2 only, the second one is tangent to f both at x -1 and x 0.
From formula (2.17), the tangent to f at (p 0, z --6) has slope -1/2, and the
two branches of 6ff which intersect at (p- 0, z- 0) have distinct tangents of
slopes 1 and 0 respectively.

Moreover f features two cusps at (0.1945, -0.1796) and (-0.1945,
0.0129). By Proposition 2.7, the tangents at those cusps are well-defined, and
have slopes-0.7887 and-0.2113 respectively.

f(x)

-0.7887 1/2 -0.2113 0 x

0.01

FIG. 1. x -f(x). Scale" -0.1
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L[(p)

0.0129

-0.1945

-0.1796

0.02

FIG2. p---f(p). Scale" "’ O.02

Note the parameteric equations for f"
p=2x(x+l)(2x+l),

(2.55)
z=x(x+l)(3x2+x).

Thus the graph of 5ff is the semi-algebraic set obtained by writing that the two

algebraic equations (2.55) have a common solution in x, i.e. by eliminating x
between the two equations.

3. Extremization problems and duality. Whenever Vis a subset of " x n x
N, we shall denote by

(P) ext V

the problem of determining all couples (x, z) N" x N such that

(3.1) (x, 0, z) e V.

() will be termed an extremization problem, and any couple (x, z) satisfying
(3.1) will be called a solution of (). The value of (), denoted by (ext }, will be
the set of all z N such that there is an x Nn with (3.1) satisfied.

An important special case occurs when V is the Lagrangian submanifold
associated with some C function f: N -R(3.2) V= {(x, f’(x), f(x))lx "}.

In that case formula (3.1) becomes

(3.3) f’(x) O, z =f(x)
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so that () is simply the problem of determining the critical points and values of f.
We shall write it

() ext f(x)

and call it an unconstrained smooth extremization problem.
Another important special case occurs when

(3.4) V= x,f’(x)-2 Aig(x),f(x) Igi(x)=O, Ai6R, l<-j<-k
/=1

where f and the gj, 1 _<-/" <- k, are C functions on R". We set

(3.5) S=zrxV={xlgi(x)=O, l<-j<-k}.

LEMMA 3.1. If the gj(x), 1 <-_ j <= k, are linearly independent at every x S,
x S, then S is a closed submanifold of " and V is a Lagrangian submanifold of

Pro@ Sh fact that S and I/are closed (n- k)- and n-dimensional sub-
manifolds follows easil from the implicit function theorem. W chck condition
(1.3)/or V:

i*voo df(x)-(f’(x) Z A.g(x)) dx
(3.6)

(d[(x) f(x) dx) +X ag(x) dx.

The first term vanishes identically, and along V we have g.(x) dx 0 since

gi(x) is a constant. ?l
The solutions of () are all couples (x, f(x)) such that

k

(3.7) x e S and ,1, ", ,k" f’(x)-- Y. ,ig(x) O.
j=l

If the g’.(x), 1 <j < k, are linearly independent at every point x e S, condition
(3.7) means that x is a critical point of fls, the restriction of f to S. For that reason,
we shall write () as

ext f(x),

g.(x) 0, l_-<]_-<k,

and call it a constrained smooth extremization problem.
Any critical point of a smooth convex (or concave) function is a minimum (or

a maximum). For that reason, the various extremization problems we stated
reduce to optimization problems when f is convex (or concave) and the gi linear.
So extremization is a natural generalization of optimization to the nonconvex
case. Now it is a well-known fact that there is a duality theory of convex
optimization problems, and we want to extend it to nonconvex extremization
problems.

From now on we are given a linear map A" N" N". We shall denote by
x, p, y, q the vectors of N, (N")*, R’, (N")* respectively. With any subset V of
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Rn+, x n+’ E we associate the subset VA of " " defined by

(3.8) VA={(x,p+A*q,z)[(x, Ax;p,q;z) V}.

Applying this definition to the transpose A*: (E")*(E")*,3 and to any
subset V* of "+’ n+m E, we get

(3.9) V’A, {(q, y+Ax, z)l(A*q,q;x, y;z)6 V*}c ’ ’ .
We now state the main result of this section.
TI-IEOrEM 3.2. LetA " - m, be a linear map and Vany subset of +" x

+" . Consider the extremization problems

ext VA,

ext (,V)_A

()

(*)
The formulae

(3.10)

(3.11)

(x, Ax;-A*q,q;z) V, z’=-z,

(-A *q, q; x, Ax z’) V, z -z’

are equivalent. Whenever (x, z) is a solution of (), the set of (q, z’) satisfying
(3.11) or (3.10) is nonempty, and all ofthem are solutions of (*). Whenever (q, z’)
is a solution of (*), the setof (x, z) satisfying (3.11) or (3.10) is nonempty, and all
of them are solutions of ().

Proof. To say that (x, z) is a solution of () means that there exists (p, q) such
that

(3.12) (x, Ax; p, q; z) V, p+A*q =0

which we may write in a more symmetric form:

(3.13) (x, y;p,q;z) V, y-Ax=O, p+A*q=O.

Applying the Legendre transformation, we obtain

(3.14) (p,q;x,y;px+qy-z)V, y-Ax=O, p+A*q=O.

The last two equations imply that

(3.15) z’=px +qy-z =-A*q x +q Ax-z =-z

and formula (3.14) becomes

(3.16) (p,q;x, y;-z)V, y-Ax=O, p+A*q=O.

Breaking the symmetry, we get

(3.17) (-A*q,q;x, y; -z) ,V, y-Ax =0

which means precisely that (q,-z) is a solution of (*). Since the Legendre
transformation is an involution, formulae (3.12) and (3.17) are equivalent, and set
up a one-to-one pairing between solutions (x, z)of () and (q,-z) of (*). But
(3.12) is just (3.10), and (3.17) is (3.11). lq

From now on we shall omit the star.
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The following is an easy consequence of the fact that the Legendre transfor-
mation &o and the operation A -A* are involutions.

COROLLARY 3.3. (**) ().
Problems () and (*) will be said to be dual to each other. Another easy

consequence of Theorem 3.2 is the following.
COROLLARY 3.4. {ext } -{ext *}.
Theorem 3.2 is more readily understandable in the case of unconstrained

smooth extremization problems. It reads as follows.
PROPOSITION 3.5. Let A: -’ be a linear map and f: +" a C

function. Consider the extremization problems:

() ext f(x, Ax),

(*) ext f(-A *q, q).
q

(3.18)

The formulae

-A *q f’(x, Ax), q f’y(x, Ax), z’ -f(x, Ax)

set up a one-to-one pairing between solutions (x, f(x, Ax)) of () and (q, z’) of
(*). Whenever the matrix of second derivatives f" has rank (n + m) at (x, Ax),
there is a neighborhood ql of (-A *q, q) and a C selectionfoffover ll such
that

(3.19) f(x, Ax) -(f)(-A *q, q),

(3.20) x (f)’p(-A *q, q), Ax (uf)’o(-A *q, q).

This follows easily from taking V= Vr, the Lagrangian submanifold
associated with f, in Theorem 3.2. The last part is a consequence of Proposition
2.6. Note that relations analogous to (3.20) hold whenever (f)’ can be defined in
a consistent way at (p, q; z’); this would be the case for tle cusp points described in
Proposition 2.7.

Let us give an important special case.
COROLLARY 3.6. Let q: - and O: " be C functions, and consider

the extremization problems

() ext q(x)+ O(Ax),

(*) extq(-A *q +O(q ).
q

Then {ext } -{ext l’*}, and there is a one-to-one pairing between solutions
(x, q(x)+ O(Ax)) of () and (q*, z’) of (*), described by the relation

(3.21) -A *q p’(x), q O’(Ax), -z’= q(x)+ O(Ax).

Whenever q" has rank n atx and 0" has rank m atAx, there are neighborhoods
and q12 of -A *q and q, selectionsuq anduOofq andOover qll and 2,
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such that

(3.22) u((-A *q +ug/(q q (x + (Ax ),

(3.23) x (()’(-A*q), Ax (O)’(q).

We now give two examples of applications of Theorem 3.2. They are both
related to the problem of finding the eigenvectors and eigenvalues of a self-adjoint
operator: we write it as an extremization problem in two different ways, and
dualize both of them.

Let us start with the constrained smooth extremization problem

ext [[axll2
()

Ilxl12 1.

A solution to () is a couple (x, z) such that

(3.24) Ilxll2= 1, =! , : A *ax -ax O,

(3.25) z Ilaxll= a,
i.e. x is an eigenvector of A*A and z is the corresponding eigenvalue.

Consider the subset Vc n+, n+,, defined by

(3.26) V= {(x, y.; -2Ax, 2y ;[lyl12)l [Ixll2 1, A }.

By Lemma 3.1 it is a Lagrangian submanifold. It is clear that problem () is
simply ext VA. For the sake of convenience we will cut out part of V; indeed, it is
apparent from formula (3.25) that , _->0 for any solution (x, z) of . So we
introduce the "Lagrangian submanifold with boundary"

(3.27) V’= {(x, y; -2,x, 2y; Ilyl12)l Ilxl[2 1, A ->_ 0}

and we state problem () as

() ext V..
The Legendre transform of V’ is again a Lagrangian submanifold with

boundary. Going through the computations, we write it as a disjoint union
5FV f U F, where F is the boundary

(3:.28) f {(P, q;-p/llpll, q/Z;-Ilpll / Ilql12/4)lp # 0},

(3.29) F= {(0, q;(, q/2; 1]q]12/4)111ll== 1}.

V is clearly associated with the function (p, q)--llpll+llqll/4. The func-
tion p -Ilpl[ is not differentiable at the origin, but let us agree that

d
(3.30) (-Ilpll)l--o { "111ll2 1).

This being agreed upon, we can now state the dual problem (*) in the
following way"

(*) ext-IlA*qll + Ilqll/4.
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Theorem 3.2 implies that whenever (q, -I]a *qll+llq[12/4)is a solution to (*),
all couples (x, IIAxll2) given by

(3.31) x=a*q/lla*q][ ifa*q#0, ax=q/2, IIx[I2=l,
(3.32) ][Axl[= IIm*qll-llqll2/4
are solutions to (); in other words x is an eigenvector of A*A with norm one,
and [IA*qll-]]qllZ/4 is the corresponding eigenvalue. For instance, formula (3.30)
shows us that (0, 0) is a solution to (*) provided there exist 6 " with I1112 1
and Ase 0. Formulae (3.31) and (3.32) then yield the trivial fact that every such (
is an eigenvector of A*A with eigenvalue 0. Note as a conclusion that -{ext *} is
just the spectrum of A*A.

We now treat the same problem in another way. We define a subset W of

It can be checked that W is a Lagrangian submanifold. We asociate with it the
extremization problem

() ext Wa

which we state somewhat loosely as

() ext I[Axll2/llxll2.
Of course, solving () is just looking for the eigenspaces of A*A. We now

construct the dual problem (*). A simple computation yields

(3.34) 5W= {(p, q; -2p/[lqll2, 2qllpll/llq][4 -Ilpl]2/l[q[12)lq o}

t_J {0, 0; r, 0; 0)[r "}.
The dual problem (*), which is ext W-a., will be stated somewhat loosely as

(3.35) ext -IIA *qll2/llqll2.

We leave it to the reader to see what becomes of formulae (3.10)-(3.11).
They tell us essentially that the eigenvalues of A*A and AA* coincide--a trivial
fact.

We conclude this section by pointing out a technicality: even if V is a
Lagrangian submanifold of n+m X n+m X , the set VA need not be a Lagrangian
submanifold of E"x mx . Indeed, it need neither be closed nor be a sub-
manifold. As a simple example, take

(3.36) V= {(x, y; -y/x 2, /x; y/x)l 0}

a Lagrangian submanifold of x x . Setting A" x mx, we get

(3.37) VA {(X, 0, m)lx 0}

which is not closed in x x .
However, we have the following.
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LEMMA 3.7. If V is a Lagrangian submanifold and if VA is a closed
submanifold, then Va is Lagrangian.

Proof. We check condition (1.3) for Va"

(3.38)
i*vo) dz (p +A *q) dx

dz -p dx -qd(Ax)

which is zero since (x, Ax; p, q; z) V, and the restriction of w to Vvanishes. V]

Note also that if V is the Lagrangian submanifold associated with a Coo
function F’R R" + E, then VA is the Lagrangian submanifold associated with
the C functionx f(x, Ax) from n to ma fact we have used repeatedly in this
section.

4. Applications to the calculus of variations. From now on, I) c " will be an
n-dimensional Coo-submanifold with boundary F. We set f= -F, an open
subset of "; we endow 12 with the Lebesgue measure do) and F with the induced
(n- 1)-dimensional measure dy.

We consider a continuous linear map A" V--> E, where E L2(.,; m) and V
is some Hilbertian subspace of H L2(’]; Rk) (i.e. V is a linear subspace of H
endowed with some Hilbertian structure such that the inclusion mapping V-->H is
continuous). We assume that there is some Hilbert space T and some continuous
liner map r" V-> T such that r is surjective and Vo r-l(0) is dense in H. In
practical examples, A will be some differential operator, Vo will be @(fl), the
closure in V of the set of Coo functions with compact support in lq, and T will
associate with every function in V its "trace" on the boundary F. We shall state an
abstract Green’s formula for later use.

THEORFM 4.1. There exist a Hilbertian subspace V* of E, and continuous
linear maps A *" V* Hand r*: V* - T’, the topological dual o[ T, such that, ]’or
every x Vand q V*, we have

(4.1) (q, Ax)-(A*q,x)=(r*q, rx)

where (., denotes scalar product in L2 and (., denotes the duality pairing
between T’ and T.

We now turn to extremization problems in the calculus of variations. From
now on, we are given a family Wo,, o)sfl, of Lagrangian submanifolds of
k+,, k+,, , and we denote by Fo, (x, y) the associated characteristic maps.
Moreover, we are given a convex lower semi-continuous function " T-->
U { + }; as usual in convex analysis, its subdifferential will be denoted by 0.

We now state.
DEFINITION 4.2. The calculus of variations problem4

() ext f F(x(o)) ax(o))) do) +(rx)
V ,lf

consists in looking for all mappings o)+(x(o)), q(o)), z(o))) from f to

Henceforth denoted by C.V. problem.
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Rk+" x Nk+" N such that

(4.2) x V, q V*, zL,
(4.3) (x(o), Ax(o)); -A*q(oo), q(o); z(w)) Wo for a.e. o) f,

(4.4) -*q -O(’x).

Any pair (x, z)e Vx L such that there exists q e V* satisfying (4.2)-(4.4)
will be called an extremal of (). The number sr defined by

In z (w) do) + (’x(4.5)

will be the associated value of (). The set of values of problem () will be
denoted by {ext }.

The motivation for this definition is clear. In the case where F,o(:, *7)=
f(w; , rt), a function which is C in (:, ) for almost every o) D, and measurable
in o for every ((, rt) x [’, then (4.2)-(4.6) become

(4.6) f(w x(w), Ax(w)) + A*f’(oo ;, x(oo), Ax(w)) 0 a.e.,

(4.7) ’*[f(x, Ax)] -Orb(x).

Equation (4.6) is the Euler-Lagrange equation on iq associated with the
integral

(4.8) In
and formula (4.7) yields the so-called transversality conditions on the boundary F.
In the case where f is convex in ((, r/) for every to, those are necessary and
sufficient conditions for optimality. If f is not convex, but satisfies some growth
condition at infinity, we get the first-order conditions for stationarity.

We now state the duality theorem.
THEOREM 4.3. Consider the C. V. problems

() ext f Fo,(x(oo),Ax(w))doo+cb(-x),
xV

(*) ext f Foo(-A*q(w), q(w)) do)-*(--*q).S
q V*

Let (x, z) be an extremal of (3) with value (; then, for any q satisfying
(4.2)-(4.4), (q, -xA*q +qAx-z) is an extremal of (3*) with value -(. Con-
versely, let (q, z’) e V* x L be an extremal of (*) with value (’; then, for any x V
satisfying

(4.9) (-A*q(w),q(to);x(to),Ax(oo);z’(to))eWoo fora.e.oea,

(4.10) ’x e 0*(-’*q),

, is the Fenchel conjugate of in the sense of convex analysis:

*(6’) sup {<6, 6’)-(6)16 T} V6’ T’.
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(X, qAx-xA*q- z’) is an extremal of () with value -(’. Hence

(4.11) {ext } -{ext *}.

Proof. The pointwise equation

(4.12) (x (to), Ax (to); -A*q(w), q(o); z(w))

can be written

(4.13)
(-A *q(w ), q(to); x (to), Ax(w -x (w)A *q (w +Ax (w )q (w z (w LPW.

Moreover, formula (4.4) an also be written

(4.14) ’x O*(-’*q).

But equations (4.13) and (4.14), together with x V, q V*, z L 1, simply
mean that (q,-xA*q +Axq- z) is an extremal of (*). The associated value is

(4.15) (’= Ia (-x(eo)A*q(o)+Ax(eo)q(eo)-z(o)) doo-*(-’*q).

Using Green’s formula we have

(4.16) (’= -Ia z(o)) d +(7"*q, ’x)-*(-’*q).

Making use of (4.14), this becomes

(4.17) (’=-fa z(oo) do)-(,rx)=

Hence the first part of the theorem is proved. The converse is proved along
the same lines.

Typical instances of such a mapping A"VE are

(4.18) grad" Ha(I))- L2(-; n),

(4.19) A: H2(I))L2(I); N).

In the first case, T is Ha/z(F), and Green’s formula reads

Ia (grad x. + x. div )do) Iv r/. qx(4.20)

In the second case, T is H3/z(F), and Green’s formula reads

In both cases, we could define as

j" 0 if 6 6o,
(4.22) (6)

+oo otherwise
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which gives a Dirichlet condition (fixed boundary values). We could also define

(4.23) q(6) { 0 iflr 8=0,
+c otherwise

which is a kind of periodicity condition.
Let us give an example:

ext In f(w; x(o)), grad x(w)) dw,

X E HI(), IF X(T) dy 0

has the following dual:

ext Ja f(o); -div q(o)), q(o))) do),

q E H(f; div), q const, on F

where H(f, div)= {u s L2(f, ")[div u s L2(f, Nn)}. The task of rewriting (4.2)-
(4.4) and (4.9)-(4.11) is left to the reader.

We are now going to show that we can get simultaneously the extremals (x, z)
of () and the extremals (q, z’) of (*) from the extremals of a single C.V.
problem.

PROPOSITION 4.4. Consider the C. V. problems

ext In [-A*q(o)). x(o))+q(o))y(o))-F,o(x(o)) y(o)))]do)-,I,*(--*q),
(x,y,q)
VEx V*

(*) ext
(x,p,q)
VxEx V*

Ia [p(o))x(oo)+q(oo) Ax(o))-F,o(p(o)), q(o)))] do) +(rx).

The following are equivalent statements:
(a) (x, y, q, z’) is an extremal of ( ),
(b) (x, p, q, z) is an extremal of (*),
(c) (x, q, z) satisfy (4.2)-(4.4),
(d) (q,, x, z’) satisfy (4.9)-(4.10) and z’ L ,

with z +z =-A*q.x +q. Ax. In particular (x, z) is an extremal of () and
(q, z’) an extremal of (*).

Proof. We have already shown that (c) and (d) are equivalent. We shall be
content with proving that (a) and (c) are equivalent; the proof that (b) and (d) are
equivalent goes along the same lines.

Problem (2) can be written as

(R) ext
(x,y,q)
VxEx V*

o%o, (x(o)), y (o)), -A *q(o)), q (o9)) do)
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where o is the characteristic map associated wth the Lagrangian submanifold
o/g., of [2k+2m X [2k+2m X [ defined by

(4.24) 7///’,,., {(, ’r/, ’rr,.p; ,rr-o’, p-r, , r/; ,rrz+p’O-()l,rr e R,
We now apply Definition 4.2 to the Hilbert space 7/" V E x V* and the

map sO: 7#->E defined by sO(x, y, q)=-A*q;itsadjointwill be the map sO*" V
H E Hdefined by *(x’) (0, 0, -Ax’). Conditions (4.2)-(4.4) then become

(4.25) xeV, yeE, qeV*, x’eV, z’eL 1,
(4.26) (x(w), y(oo),-A*q(w),q(w); O, O,x’(w),Ax’(w);z’(w))e 7/ a.e.,

(4.27) rx’ e O*(-rq).

So (x’y, q, z’)e VE V*L is an extremal of () if and only if there
exists x’ e V such that (4.26) and (4.27) are satisfied. Now, comparing (4.26) with
(4.24), we get

(4.28) -a*q(w) r,

(4.29) q(o)) ,
(4.30) x’(o)) x (o9),

(4.31) Ax’(w) y(w),

(4.32) z’(w)=-A*q(oo) x(w)+q(w)y(w)-(,

(4.33) x(w), y(w); r, ’; ()e W,,.

All this boils down to

(4.34) (x(w), Ax(w); -A*q(w), q(w); z(w)) e W a.e.

with z(o))+z’(oo)=-A*q(w).x(w)+q(oo).Ax(w). With (4.30) taken into
account, (4.27) becomes

(4.35) rx Orb*(-*q)

which can be inverted to

(4.36) -’*q e OdP(7"x).

But (4.34) and (4.36) are just (c), and we have proved our claim.
Proposition 4.4 can be considered a smooth version of the saddle-point

property for Lagrange multipliers in convex optimization. Note that in the case
where F,o (:, r/)= f(w; , r/), measurable in w, C in (, rt), problem (*) involves
f(w; , rt) which typically is multivalued and cusped; working with problem (2)
is a way of circumventing this inconvenience at the cost of increasing the
dimension.

We now apply this idea of "smoothing out" Legendre transforms to another
example.
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PROPOSITION 4.5. We are given a C function q: [0, T] x n _> , a measura-
blefunctionf: [0, T] --> ", and a pointo ". We consider the differential equation

d-- + q ’( t, x) f a.e. on [0, T], x (0)= :o,

and the C. V. problems

ext Ion" [q (t,

()
x Hi(0, T;R"), x(0) Xo;

eXt loT"[q(t, x)-q(t, y)+(t-)(x y)] dt,

x s Hi(o, T; "), y s Hi(O, T; "), x(O)= y(O)= (o.

ff () has no solution, then problems () and () have no extremals. If () has
a solution Y,, then problem () has a unique extremal (Y,, 0), and problem () has a
unique extremal (, , 0).

Proof. Problem () arises from problem () by replacing q(f-(dx/dt)) by
y(f-(dx/dt))-q(y), i.e. by smoothing out that part of the integrand which is a
Legendre transform. Proposition 4.4 does not readily apply to this case, so we give
a direct proof.

An extremal (x, y, z) of () is defined by the Euler equations

(4.37)
dx d

p ’(t, x +- f - x y

(4.38) -o’dt, y)--+f 0

and the boundary conditions x (0) y (0) Xo. Together, they yield the system of
differential equations on [0, T]

dy
(4.39)

dt - q(t, x) f, y(0) Xo,

dx
(4.40)

dt - qdt, y) =f, x(O) Xo.

Now this is to be compared with equation

dx
()

dt - q(t, x) =f, x(O) Xo.

The assumptions on q imply that both system (4.39)-(4.40) and equation ()
have at most one solution. If ,f is the solution of (), obviously (,f, Y) is the solution
of (4.39)-(4.40). Conversely, if (,f, 7) is a solution of (4.39)-(4.40), ther so is
07, ,f); from the uniqueness, it follows that ,f 7, obviously the solution of (q).
Writing x Y 7 y in the integrand, we see that it is identically zero. We have
proved the equivalence of equation () and problem ().
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The equivalence of problems () and () goes along the lines set up
in Proposition 4.4. Indeed, (4.38) means simply that

(4.41) -o(t, y)- -- y=Zgq t;f--
and the integrands in () and (R) become equal. With x y, formula (4.41) yields,
with a slight misuse of notations,

(4.42) [o] t, f-- x

and the Euler equation for () turns out to be exactly equation ().
Note that we have defined directly the extremals of a problem in the calculus

of variations, without refelnce to any extremization problem. This is because the
natural extremization problem involved is infinite-dimensional, and the results of
the preceding sections do not extend readily to this case; indeed, smoothness
assumptions which are natural in finite dimensions become preposterous in this
new setting. In some particular cases, however, it can be made to work. Let us give
an example, which will be recognized as an infinite-dimensional version of the
example concluding 3.

We consider the space V Hol() and the function

(4.43) f: V{0} x L2(’) ---) ,
(4.44) f(x, y)--

with I" denoting the L2-norm. Obviously f is a C function, with

p -f’x(X, y)- -2xlyl2/]xl4

q =f’y(x, y)= 2y/Ix] 2 L(fl)".

(4.45)

(4.46)

We now set

(4.47) y grad x

to get the extremization problem

ext Igrad x]Z/[x] 2,
()

x 6 Ho(l)), x # 0.

Let us write out the equation for a critical point, taking into account the fact
that the transpose of grad: H()- L2(i))" is -div" L2() H-1(1):
(4.48) O=p-divq=-Z(x]gradx[2/]x[Z+div gradx)/[xl2.

Note that [grad x] cannot be zero unless x is, so (4.48) becomes

(4.49) x -]grad x]2 Ax, x 0.

In other words, the solutions of () are the pairs (x, l/A) where -A is a
nonzero eigenvalue of the Laplacian under homogeneous boundary conditions,
and x any nonzero eigenvector.
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To get the dual problem, we note that (4.45) and (4.46) are invertible
whey,ever y 0; this yields

(4.50) x =-2p/Iql2, y 2qlp]Z/[ql4,
so we are in the particularly simple case where the Legendre transformation is
one-to-one. Equations (4.48) and (4.47) become

(4.51) p div q e L2,
(4.52) 2(q]pl2/[q]2 + grad div q)/lql2 O.

But this means exactly that q # 0 is a critical point of the function q-->
-]div q]Z/]ql2 over the space

(4.53) H(f; div)- {q L2(l)n ]div q L 2,(f)}.
Finally, we get the dual problem

ext-ldivq[2/]ql,
(*)

q 6 H(E; div)

with the usual relationship (4.45)-(4.46) or (4.50). Note in particular that

(4.54) {ext } -{ext *}.

5. Comments. The notion of a Lagrangian submanifold is central to the
theory of Fourier integral operators. It is attributed to V. Arnold 1] or V. Maslov
[13], and has been painstakingly investigated [11, especially 3], [16], [9].
However, these authors define a Lagrangian submanifold of a symplectic man-
ifold (dimension 2n, fundamental 2-form 12) as an n-dimensional submanifold on
which 12 pulls back to zero. In our framework, this would mean an n-dimensional
submanifold of En E" on which 1 Y,g=a dpi/x dxi pulls back to zero. Noting
to=dz-,i=pidx as in (1.3), we see that fl=dw. It follows that if
V E E" E is a Lagrangian submanifold in the sense of Definition 1.1, if the
projection 7r," V-E" E" is proper and if its tangent map TTr," TV-
T(En E") has rank n everywhere, then 7r,V is a Lagrangian submanifold of
E" E" in the preceding sense. Our definition has the advantage of incorporating
z, which is very useful for practical purposes.

For basic information about proper maps, we refer to any book on general
topology, e.g. [4, Chaps. 1 and 2]. Sard’s theorem in the C case, as well as
basic information on submanifolds and the implicit function theorem, can be
found in [12].

The definition (2.1) of the Legendre transformation is given in [6] as a
particular case of a contact transformation. The contact transformation associated
with a given C function H(x, z; x’, z’) on " E x " is the mapping which
associates with any point (x, p, z) En x E" E the point (x’, p’, z’) defined by the
formulae

H(x’,z’;x,z)=O,

aH/Ox’ +p’ aH/Oz’= O,

oH/ox +p oH/oz--o.
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From the two last equations it follows (formally) that p =Oz/Ox and p’=
Oz’/Ox’. It follows (still formally) from the first one that dz’ +p’ dx’ 0 if and only
if dz +p dx 0. In other words, if we have no trouble with cusps or closedness, a
contact transformation will send a Lagrangian manifold onto a Lagrangian
manifold. It need not be involutive. In the special case where H(x’, z’; x, z)-
Z "bZ’ XX we get the Legendre transformation.

Also related to the Legendre transform is the notion of dual varieties in
algebraic geometry. Let a projective variety C be given by its equation
P(XI, Xn) 0, where P is a homogeneous polynomial of degree d. The dual
variety, ’ is the set of tangents to C; its equation P(ul, ., un) 0 has as zeros all
(Ul,’", un) such that the hyperplane ulXx+" .+u,,X,, is tangent to C. In
particular, C C. For instance, if f: " - is a polynomial, setting

Xn+ Xi
Z

an+2
X,

an+2
as is usual in projective geometry yields

graph f- (X1, , Xn+2) X2+2 f 2’ "’ X7+2
The dual variety is simply the graph of the Legendre transform

graph f graph f.
A particularly interesting case arises when n 1 and complex numbers are

used. It can be shown that if C (resp. O) is a complex algebraic curve of degree d
(resp. ), having r (resp. f) double points and s (resp. ) cusps, with no other
singularities, then we have the following symmetric relationship (Pliicker’s for-
mulae)

d=d(d-1)-2r-3s,
d (- 1)-2-3g,

g-s=3(d-d).

(I am indebted to P. Deligne for this elementary algebraic geometry.)
Now let us proceed to providing 2, 3, 4 with bibliographical references.
Fundamentals of convex analysis are given in [14] or [8]. Modern tools of

different topology, included the Malgrange division theorem, Thom’s transversal-
ity theorem and notions on stratifications, will be found in [15]; see [10] for a
textbook on the subject. Note that the proof of Proposition 2.7 for n 1 does not
require the C division theorem.

Condition (3.7) can be interpreted as a necessary condition for optimality in a
much broader context than indicated, i.e. the space need not be finite-
dimensional and the g’. need not be linearly independent" see [7] Duality theory
for finite-dimensional convex optimization problems will be found in [14].

Theorem 4.1 is due to J.-P. Aubin. Its proof will be found in [2-1 or [3]. Duality
theory for convex problems in the calculus of variations is treated in [8], but
here we follow rather the approach of [3]. Proposition 4.5 is a nonconvex
analogue of [5].



934 IVAR EKELAND

&cknoledgments. I am indebted to R. Temam for suggesting to me the
eigenvalue examples concluding 3 and 4. Also I wish to acknowledge long and
Numerous conversations with J.-P. Aubin and F. Clarke, and the expert typing of
Mrs. Sally Ross.

REFERENCES

1] V. I. ARNOLD, Characteristic class entering in quantization conditions, J. Functional Anal. Appl.,
(1967), pp. 1-13.

[2] J.-P. AUBIN, Approximation ofElliptic Boundary-value Problems, John Wiley, New York, 1972.
[3],Mathematical methods of game and economic theory, North-Holland Elsevier, Amster-

dam, to appear.
[4] N. BOURBAKI, Topologie Ggn&ale, 26me edition, Hermann, Paris, 1960.
[5] H. BREZIS AND I. EKELAND, Un principe variational associg certaines quations paraboliques,

C.R. Acad. Sci. Paris, S6r. A-B, 282 (1976), pp. 971-974 and 1197-1198.
[6] C. CARATHEODORY, Variations rechnung und partielle differentialgleichungen erster Ordnung,

Teubner, Leipzig, 1935.
[7] F. CLARKE, A new approach to Lagrange multipliers, Mathematics of Operations Res., (1976).
[8] I. EKELAND AND R. TEMAM, Convex Analysis and Variational Problems, North-Holland

Elsevier, Amsterdam, 1975.
[9] J. GUCKENHEIMER, Catastrophes and partial differential equations, Ann. Inst. Fourier

(Grenoble), 23 (1973), 2, pp. 31-59.
[10] M. GOLUBISTSKY AND V. GUILLEMIN, Stable Mappings and Their Singularities, Springer-

Verlag, Berlin, 1973.
[11] L. H3RMANDER, Fourier integral operators I, Acta Math., 127 (1971), pp. 79-183.
[12] S. LANG, Differentiable Manifolds, Addison-Wesley, Reading, MA, 1972.
[13] V. MASLOV, Theory of Perturbations and Asymptotic Methods, Moskov. Gos. Univ., Moscow,

1965. (In Russian.)
[14] R. T. ROCKAIELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1969.
[15] WALL, ed., Proceeding of the Liverpool Singularities Symposium I, Springer Lecture Notes in

Mathematics 192, Springer-Verlag, Berlin, 1971.
16] A. WEINSTEIN, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., 6

(1971), pp. 329-346.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 15, No. 6, November 1977

A CLASS OF NONLINEAR INTEGER PROGRAMS
SOLVABLE BY A SINGLE LINEAR PROGRAM*

R. R. MEYER?

Abstract. Although the addition of integrality constraints to the existing constraints of an
optimization problem will, in general,,make the determination of an optimal solution more difficult, we
consider here a class of nonlinear programs in which the imposition of integrality constraints on the
variables makes it possible to solve the problem by a single, easily-constructed linea program. The
class of problems addressed has a separable convex objective function and a totally unimodular
constraint matrix. Such problems arise in logistic and personnel assignment applications.

1. Introduction. Nonlinear integer programs of the form

min f/(xi)
i=1

(1.1) subject to xi r,
i=1

x (xl," , xn)r->0, xi integer (i 1, , n)

arise in logistic and personnel assignment applications and have been the subject
of a number of studies [3], [9], 13], 14], [ 16]. Here, we consider the broader class
of problems of the form

min f/(xi)
i=1

(1.2) subject to Ax b,

x -> 0, x integer,

where A is a totally unimodular (T.U.) m n matrix and b is integer, (in the
following, a vector is said to be integer if all its components are integer), and we
will show that a solution to the problem (1.2) may be obtained by solving a single
easily-constructed linear program provided that known bounds exist for the
feasible set of (1.2) and each fi is a convex function. This result thus also
generalizes the well-known property !-8] that, in the case that all the f are linear
(s9 that (1.2) is a linear integer program), the solution of (1.2) may be obtained by
solving a single linear program.

* Received by the editors April 2, 1976, and in revised form November 23, 1976.
Computer Sciences Department, University of Wisconsin--Madison, Madison, Wisconsin

53706. This research was sponsored by the National Science Foundation under contract DCR
74-20584.

Recall that a matrix is said to be totally unimodular if the determinant of each of its square
submatrices has value 0 or +/- 1. Totally unimodular matrices typically arise in optimization problems
defined on networks, but may also arise in other contexts such as bounds on sums or differences of
subsets of variables. Alth6ugh we assume here the equality constraints Ax b, analogous results hold
if Ax b is replaced by Ax <-_ b or by any combination of equations and inequalities whose aggregate
coefficient matrix is totally unimodular, since the conversion of such constraints to a set of equations
(by the addition of slack variableg) yields a new coefficient matrix that will also be totally unimodular.

935
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Finally, this result may also be thought of as a generalization of a method
suggested by Dantzig [5] for a class of transportation problems. (Although
single-commodity network problems with convex costs on their arcs can generally
be put in the form of (1.2), the study of the converse raises some interesting issues
that are discussed in 4.)

For the case in which bounds for the feasible set are not known, a column-
generation procedure is developed, and it is shown that, if an optimal solution to
(1.2) exists, this procedure will yield an optimal solution (and a proof of its
optimality) by the solution of a finite number of linear programs. This column-
generation procedure also has computational advantages in the bounded case if
the bounds are very large and/or one or more of the fg are "costly" to evaluate. It
differs from parametric procedures proposed by Beale [ 1] and Hu [7] for certain
convex network optimization problems in that it employs "global" rather than
"local" cost function approximations.

2. An equivalent linear program. In this section we will establish the
equivalence of the nonlinear integer program (1.2) to a linear program ((2.5)
below) under the following hypotheses"

(A) there exist nonnegative integers li, ui (i 1,..., n) such that F-=
{x [Ax b, x >-_ 0}_ {x [li Xi Ui, 1,’’’, n};

(B) F;
(C) the matrix A is an m n totally unimodular matrix and b is integer;
(D) (for 1,..., n) fi is a real-valued convex function on [li, ui]..

Note that under hypotheses (A) and (B), the nonlinear integer program (1.2) has
an optimal solution since the number of feasible points is finite and nonzero. (The
hypotheses (A) and (B) can, in fact, be deleted, as is shown in 5, but theproofs
for the more.general case are straightforward extensions of the results of this
section.) Let f denote the continuous piecewise-linear function defined on [l, u]
that coincides with f at the integer points in [l, u] and is linear between each pair
of adjacent integers.in [l, u]. It is easily seen that eachj is also convex. (In fact, it
is convexity of the that is crucial rather than convexity of the f.) The problem
(1.2) is therefore equivalent2 to

min j(x)
i=1

(2.1) subject to Ax b,

x -> 0, x integer,

since the objective functions of (1.2) and (2.1) coincide over their common
feasible set. (Put another way, the values of the objective function terms at
noninteger points are completely irrelevant to the optimization problem (1.2), so
we can take advantage of this fact by "simplifying" the form of the objective
function terms between consecutive integers.) We will now exploit properties of a

If integrality constraints were not present in (1.2), then the) would merely be approximations to
the f" but, given the integrality constraints, no "error" is incurred over the discrete domain by
replacingf by1. Thus in this context the) should not be thought of as "approximations," as is the case
when similar substitutions are done in the continuous variable case (see [2], [4]).
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particular representation of the j in order to get rid of the integrality constraints.
(The overall strategy is thus to exploit the integrality constraints to modify the
objective function, and then to exploit the modified objective function and total
unimodularity to get rid of the integrality constraints.)

It is a well-known result of separable program.rning (see [5]) that, for
xi [li, ui], we have the following representation for the] (R[ denotes the integers
in [li, ui ]):

fi(xi) min fi(j)Ai,j
Xi,j jR

(2.2) subject to jAi, xi,
jR

Aid 1; Aid >0.
jR

(In [10], which is an expan.ded version of this paper, it is shown that the
so-called "6-representation" of fi, namely

j(x,)=min fi(li)q- i,j[fi(j -+- l)-fi(j)]
i,j Ri

subject to
jRi

O<=ti,j<=l, jRi,

where Ri R i/{u }, may also be used to obtain analogous results. In this paper we
will concentrate on the "A-representation" (2.2), which turns out to be more

appropriate for a column-generation method to be discussed below.) Thus, the

problem (2.1) is equivalent to the problem

min CiA
A,x i=l

(2.3) subject to Ax b, x >= O,
DA=x, EA=e,

x integer,

A_>_0

, (i 1,’’’, Xn), Ci-- ffi(li),’’’, fi(Ui)),where e
(1, , 1), and the constraints DA x, EA e, A >= 0 represent the constraints of
(2.2) as ranges from 1 to n. The problem (1.2) has thus been transformed into an
equivalent linear mixed-integer program (2.3). Now if the constraint matrix of
(2.3) were totally unimodular, then the integrality constraints of (2.3) could be
deleted without affecting the optimal value. However, because D contains integer
entries other than 0 or +/- 1, the constraint matrix of (2.3) is not totally unimodular,
and if we consider the linear programming relaxation of (2.3)

min Cil
A,x i=1

(2.4) subject to Ax b, x >= 0,
DA=x, EA=e, A_->0,
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examples are easily constructed to show that the feasible set of (2.4) may have
noninteger extreme points. Moreover, if (A, 2) is an extreme point of (2.4) then 2
need not be an extreme point of F. (This reflects the fact that (1.2) may have a
unique optimal solution lying in the interior of F.) However, we will show that if
(, 2) is an extreme point of (2.4), then the vector 2 must be integer, and thus this
condition is sufficient to guarantee that the optimal value of (2.4) is equal to the
optimal value of (1.2). For notational convenience, we denote the equality
constraints of (2.4) as

(2.5) Ax b,

(2.6) DA =x,

(2.7) EA e.

THEOREM 2.1. If (, is an extreme point of (2.4), then is integer.
Proof. Let AB and xB be the basic variables corresponding to the extreme

point (, 2). It is easily seen from (2.6) and (2.7) that at least one and at most two
variables from each Ai must be in A. Let x-={xi]xi is basic and A contains
exactly one variable of A} and x={x]x is basic and A contains exactly two
variables of Ai}, with corresponding definitions for A and A . If xi is in x, let xi
denote the basic variable in Ai, so that (2.6) and (2.7) imply 2i 1 and 2i dii -di
for some integer di in. R [.

Thus, the variables x are all integer-valued, and we will now show that this is
the case for x also. For each variable xi in x, we let /xi be one of the
corresponding basic variables in A, so that the other basic variables in A can be
replaced by 1- xi because of (2.7). Denote the coefficient of the variable in (2.6)
corresponding to (1 -xi) as di and the coefficient of the other basic variable txi as
di+ hi (note that hi is a nonzero integer). Using the change of variable xi di + x’[,
we have from (2.6), di +x’[=di(1-i)+(di +hi)txi or x’[= hi,i, so that each such
xi is uniquely determined by x’[. We will now show that the columns of A
corresponding to x are linearly indepetdent. For, suppose that they were not,
and set all variables other than x and A to their values in the solution (, 2). If
the columns of A corresponding to x were linearly dependent, there would be
infinitely many sets of values of x for which (2.5) (with the other variables set to
their values in 2) would be satisfied, and for each such set of values, values of txi
could be determined so that (2.6) and (2.7) were also satisfied. This contradicts the
fact that the system (2.5)-(2.7) must have a unique solution when the nonbasics
are set to 0. Thus having shown that the columns of A corresponding to x are
linearly independent, we conclude from the T.U. of A that 2 is integer.

THEOREM 2.2. The optimal value of (2.4) is equal to the optimal value of (1.2),
and if (A *, x*) is an optimal extreme point of (2.4), then x* solves (1.2).

Proof. Since the feasible set of the linear program [LP] (2.4) is nonempty and
bounded, then (2.4) has an optimal solution. Thus, there exists an extreme point of
(2.4) that is optimal, and the x-coordinates of this extreme point must be optimal
for (1.2). F1

Thus, the original nonlinear integer program (1.2) can be solved by comput-
ing the values of each fi at the integer points in [li, ui] and solving the linear
program (2.4) by the simplex method, which will generate an optimal extreme
point.
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It should also be noted that Theorem 2.2 also implies that (1.2) and (2.4) have
the same optimal value as the problem obtained from (2.1) by deleting its
integrality constraints, namely

(2.8)

min E 1 (Xi)
i=l

subject to Ax b, x >-O.

The next two results show that optimal solutions can be obtained when each fi
is replaced by a piecewise-linear convex function that coincides with fi at some
rather than all of the integer points in the interval [li, ui]. These more general
results suggest the use of "column-generation" strategies in the event that
evaluation of the fi at all integer points in the intervals [li, ui] would be "costly".
(Details of these "column-generation"^procedures are given in 3).

COROLLARY 2.3. Let thefunctions fi (i 1, , n) be convex piecewise-linear
functions of the form

)(xi)=min Y. fi(j)Ai,y
Ai,j jR’]

(2.9) subject to 2 jli,j Xi,
eR’[

Aid 1, a, _>-- O,
eR’[

where each R’; is a finite, nonempty subset of the integers. If the optimal value of the
problem

(2.10)
min k i(Xi)

i=l

subject to Ax b, x >-_ 0, x integer

exists, then it is equal to the optimal value of

(2.11)

min i(Xi)
i=l

subject to Ax b, x >- O.

Proof. Since (2.10) is assumed to have an optimal solution, it is easily seen that
(2.11) must also have an optimal solution, and by an argument analogous to the
proof of Theorem 2.1, the LP equivalent to (2.11) must have an optimal solution
with x integer-valued.

In the case that the fi are affine, the equivalence of (2.10) and (2.11) follows
from the integrality of the extreme points of F, but note that the Corollary 2.3
cannot be based on this fact since the optimal solutions of (2.11) need not be
extreme points of F. It should be recognized, however, that the conclusions of
Corollary 2.3 need not hold if the fi are general convex functions or if the j] are
even piecewise-linear convex functions with "breakpoints" at noninteger points.
This is easily seen by letting the constraints Ax b be given by X + x2 1 (n 2)
and letting fi(xi)--(X __)2 or ]x --1/2[. Such convex functions must be replaced by
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"equivalent" piecewise-linear functions with integral breakpoints before the
integrality constraints may be deleted.

We will now show that the optimal value of the problem (2.11) coincides with
the optimal value of the nonlinear problem (1.2) if the index sets R’[ are
sufficiently "fine" near an integer optimal solution of (2.11). This result is
essentially equivalent to the fact that a local solution of (2.8) must also be a global
solution of (2.8).

THEOREM 2.4. If X** is an integer optimal solution of (2.11) and if R’[
_

{x/**- 1, x/**, x/** + 1} [/i, ui] for 1,..., n, then x** is an optimal solution of
the nonlinear integer program (1.2).

Proof. Since the feasible sets of (2.8) and (2.11) coincide, x** is feasible for
(2.8). Moreover, )(y) =(y) for y 6 Ix/**- 1, x/** + 1] f)[/i, ui], so x** must be a
local minimum of (2.8). Because of convexity, x** is also a global minimum of
(2.8), and the conclusion follows from Theorem 2.2 and the equivalence of (2.4)
and (2.8).

It should be noted that it is not sufficient for optimality to simply have
R’[

_
{x **} for all i, as may be seen from following example: consider the following

problem of the form (1.2)

min (Xl- 1)2 +(x2- 1)2

subject to xi + x2 2,

xi _-> 0 and integer,

and let li 0, ui 2, R’[ {0, 2} for 1, 2; then -= 1 on [0, 2], so that optimal
solutions for the corresponding approximating problem occur at x 0, X2 2 and
X 2, Xl 0, but the unique optimal solutioh of the original problem is x 1,
x2=l.

Finally, note that these results do not generalize to the case in which the xi are
vector variables rather than the scalar components of x. This may be seen from the
following example.

Example. Let f(Xl, X2, X3, X4)=fl(Xl, X2)+fz(X3, X4), where fl is any convex
function such that fl (0, 0) fl (1, 1) 1 and fl (0, 1) fl (1, 0) 1 (for example,
fl could be taken as 2(x1+x2- 1)2- 1 or as a convex piecewise-linear function
with those values), and f2 is any convex function such that f2(0, 0) -f2(1, 1) -1
and f2(0, 1)=f2(1, 0)= 1 (for example, f2 could be taken as 2(X3--X4)2- 1 or as a
convex piecewise-linear function with those values). Consider the problem:

min fl(X 1, X2)+f2(X3,/4)
subject to x -x3 0,

X2 --X4 O,

integer (i 1,..., 4).

It is easily seen that the constraint matrix is totally unimodular. The four feasible
points (0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1) all have objective function
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values of 0, and hence are all optimal solutions. Suppose, however, we replace the
fi by piecewise-linear convex functions fi that agree with the [i at (0, 0), (0, 1),
(1, 0), (1, 1), and delete the integrality constraints to obtain the problem

min fl (X 1, X2) - f-2(X3, X4)

subject to x -x3 0,

X2 --X4 0,

Ox 1 (i 1,’’’, 4).

It is easily seen that, as a result of convexity, the objective function of this new
problem has a value no greater than -2 at the point (1/2, 1/2, 1/2, 1/2), so that the deletion
of the integrality constraints results in a change in the optimal solution and the
optimal value.

3. Computational considerations. Theorem 2.4 establishes the validity of the
following column-generation procedure for solving the nonlinear integer program
(1.2) under the hypotheses (A)-(D) of 2:3
(3.1) Set the iteration index k =0, and select an initial set of breakpoints

R{li, ui} (i 1,’.’, n).

(3.2) Solve the LP (2.11) with R’[ R.
(3.3) If the optimal solution obtained for (2.11) satisfies the optimality condi-

tions of Theorem 2.4, then it also solves (1.2), and the algorithm termi-
nates; otherwise, increase k by i and add the breakpoints that would have
been required to satisfy the breakpoint hypotheses of Theorem 2.4 for the
solution obtained in (3.2) (thereby obtaining "finer" index sets R/) and
return to (3.2).

Since the maximum possible number of breakpoints is finite, and at least one
new breakpoint is added at each iteration, this procedure must terminate in a finite
number of iterations with an optimal solution of (1.2). As with other column-
generation procedures, each succeeding iteration can be started with the optimal
basis from the previous iteration. If function evaluations are much more "expen-
sive" than pivot operations, the procedure could be modified by selecting the
initial breakpoints close to an estimate of the optimal solution and adding only
some of the "missing" breakpoints in step (3.3).

Linear programming can also be used to establish a lower bound on the
optimal value of (1.2). (A lower bound may be useful if convergence is slow and
one is content to have a feasible-solution whose objective value is "close" to
optimal.) To compute a lower bound, the f are replaced by convex, piecewise-
linear functions f/* satisfying f*i(Xi) --<fi(xi) for xi -> 0 and integer. Such f/* may be

This procedure may also be used if hypothesis (B) is violated (i.e., F ;), since F if and
only if the feasible set of (1.2) is empty, and the first attempt to analyze an LP in (3.2) will establish
F if this is the case. The case in which hypothesis (A) is violated (i.e., F is unbounded) is dealt with
in 5, where it is shown that an analogous procedure will converge in a finite number of iterations if

(1.2) has an optimal solution.
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) c [1, ui 1]) by defining(k of integers (Riobtained from a finite, nonempty setR

f (xi) =- min zi
Zi,,.i,]

subject to Z >--fi(j)+Ai,y(fi(] + 1)-fi(j)),

X ---j 31-’Ai,j (j 6R}k)).
Replacing the fi by f/* and deleting the integrality constraints yields a linear
program whose optimal value is a lower bound on the optimal value of (1.2).
Conditions guaranteeing finiteness of this lower bound and further details and
refinements may be found in [11].

In the case of the problem (1.1), it should be noted that, when the &form
representation is used, the equivalent LP has such a simple structure that its
solution is obvious. In fact, rather than dealing with (1.1), we can consider the
more general class of problems of the form

min f (xi
i=1

(3.4) subject to X r,
i=1

li Xi Ui (i 1,’’’, n),

xi integer (i=l,...,n).

(Note that (1.1) is equivalent to a problem of the form (3.4) with li 0 and ui r
(i 1, , n).) Figure 1 shows the network that results after the arcs correspond-
ing to flows fixed at lower bounds have been accounted for by reducing the

cost for sending unit on arc

Demand =r-i=l li

unit available at each supply point

mi Ui --li

mi
i=l

FIG. 1. A network equivalentof (3.4)
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"demand" by i= li. (We assume that the condition = l -< r _-< i= u, which is
necessary and sufficient for feasibility, has been verified.) This network has t + m,
supply points, each of which can ship at most 1 unit to the demand point z, at which
the demand is q--r- i-- li. If q 0, the optimal solution is obtained by setting
xi l for all i; otherwise, the optimal solution is obtained by sending one unit
along each of the q "least expensive" arcs. Because of convexity, for each we
havefi(j)-fi(j- 1)<-_fi(j + 1)-/ (j) forj satisfying li _-<j- 1 -<j + 1 ui, and using
this property it may be shown that the determination of the q least expensive arcs
requires at most 2n + (r-= l)- 1 function evaluations. (For further details on
(1.1) see [9], [10], [13].)

4. Total unimodularity and networks. On the one hand, it is well-known that
the standard minimum cost single-commodity network problem gives rise to a
constraint matrix that is totally unimodular. In fact, in dealing with separable
convex functions defined on the arcs of a network, it is possible to mimic the
&formulation within the network context by replacing each arc by a set of arcs in a
manner similar to that of Fig. 1 (for details, see 10] or [11]). Given the efficiency
of special techniques for network optimization a network formulation will
generally be more efficiently solved by such techniques than by using the ordinary
simplex algorithm.

On the other hand, it is unclear whether, in all cases, network formulations
can be constructed for problems of the form (1.2) with A totally unimodular.
(Specifically, we would like to be able to construct from A and b a directed graph
with node-arc incidence matrix B and a (possibly unbounded) hyper-rectangle R
such that a vector x is feasible for (2.8) if and only if there exists a y such that the

pair ()satisfies B(x) O, ( x) R. Certain results in matroid theory (see, for
Y Y

example [12], [15]), while not addressing questions of quite this generality,
suggest that such a construction is not always possible.) In any event, the linear
programming approach of the previous sections makes conversion to a network
unnecessary, since it specifies the algebraic transformation of the original problem
that will yield an equivalent LP.

5. The unbounded case. The results of this section show that the hypotheses
regarding boundedness of the feasible set and finiteness of the number of
breakpoints can be deleted, provided that the conclusions are appropriately
generalized.

THEOREM 5.1. Let the function f (i 1,..., n) be continuous piecewise-
linear convex functions on [0, +oo) whose derivatives are also continuous except
possibly on subsets of the positive integers. Let A be an m x n totally unimodular
matrix, and b be an integer vector. Then the values

inf (xi)
i=1

subject to Ax b, x >-_ O, x integer
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and

inf (Xi)
i=1

(5.2)
subject to Ax b, x >= 0

coincide, and (5.1) has an optimal solution if and only if (5.2) has an optimal
solution. (The value is taken to be +oe when the constraints are infeasible.)

Proof. If (5.2) has a feasible solution, then the feasible set of (5.2) has an
extreme point, which is thus integer and therefore a feasible solution of (5.1).

The conclusions of the theorem are then easily proved by considering feasible
or optimal solutions of (5.1) and (5.2), adding appropriate bounds to both
problems, and applying the results of 2. 1

It should be noted that it is possible that (5.1) and (5.2) may have finite infima
that are not attained, and the theorem shows that if this is the case for one of these
problems, it must be true for the other also.

We now state the analogue of Theorem 2.4 in the absence of upper bounds.
THEOREM 5.2. If the hypotheses of Theorem 5.1 are satisfied, and x** is an

integer optimal solution of (5.2), then x** is an optimal solution of

inf 2 f (xi
i=1

(5.3)
subject to Ax b, x >= O, x integer

where, for i= 1,..., n, fi is any convex function that agrees with fi on the set
{x/** 1, x/**, x/** + 1} Cl {y ]y _-> 0}.

Proof. Suppose that there exists an 2 feasible for (5.3) such that i=1 fi(2i) <
Y.=I fi(x.*,*). Generate bounded variants of (5.2) and (5.3) by adding the con-
straints min {Yi, x/**} <-xi -<max {2i, x/**} (i 1,. , n). The bounded variant of
(5.3) must have an optimal solution x* such that 2i=1 fi(x*,)<2i=l fi(x**).
However, by applying Theorem 3.4 to the bounded variants of (5.2) and (5.3), we
obtain a contradiction. [-1

Finite convergence of an extension to the unbounded case of the column-
generation procedure of 3 follows in a straightforward fashion from the next
theorem, which applies to a broad class of integer programs, since total unimodu-
larity of the constraint matrix A is not required for the result. (For notational
convenience we define

f(X 2 f (Xi and
i=1

F {x lAx b, x >- O, x integer}.

Details of an algorithm for the unbounded case are discussed in [11].)
THEOREM 5.3. Iffi (i 1,’’’, n) are convex functions on [0, +oe) and if the

problem

(5.4)
inf fi (Xi)

i=1

subject to Ax b, x >- O, x integer
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has an optimal solution, then, for each real numberM, the set {f(x)[x FI} contains
a finite number (possibly O) of distinct values in the range (-, M].

Proof. Suppose the result is false, for some M and let {x (k)} be a sequence
contained in FI with the property that {f(x (k))} is a sequence of distinct values in
(-c, M]. Using the nonnegativity of the x (k), we shall construct an increasing
subsequence In of integers and a partition J’, J" of the index set {1,. ., n} such

(r) < (t) (s) with strict inequalitiesthat if r, s, In with r < s < t, then 0 _-< x}S)- x x x
holding for J". If {x(k)} is bounded, then there exists an integer 1 such that
x ]k) 1 for infinitely many k; in this case 1 J’ and we denote by I1 an increasing
infinite subsequence of {1, 2,- .} such that x(k> 1. If {xk)} is not bounded, 1 J"
and I1 is taken to be an increasing infinite subsequence of {1, 2,...} such that
r,s,tI1 implies O<X--xr<xt--Xs). Proceeding in an analogous fashion
with the sequence {x (2k)[ k I1}, we place the index 2 in J’ or J" and extract from 11 a
subsequence 12, and continue this process until all indices have been placed in J’ or
J" and In has been extracted from 1,-1. Clearly J’, J" and In have the required
properties, and note that {x}k>[k In} is constant for J’. J’ may be empty, but
J" since otherwise x (k> would be constant for k In, contradicting the
assumed distinctness of the elements of {f(x (k>)}.

Now {fix (k>)]k In} contains either a decreasing subsequence or an increas-
ing subsequence. If it contains a decreasing subsequence, choose p such that p In
and x*<-_x") for J". LetA--x("+X)-x (p), and note that A_->0 and AA=0, so
that (x* + A) Ft. However, using the convexity of f we have

f(x*)-f(x* + A)= [fi(xi*)-fi(xi* +
i=1

Z
J"

>- Z
J"

f(x(V))-f(x (p+l)) >0,

which contradicts the assumed optimality of x*. In the remaining case, {f(x (k)[k
In} contains an increasing sequence, and since this sequence is bounded from
above, there exist r, s, In such that r < s < and f(x () -f(x (s)) <f(x ()) --f(x(r)).
However, x(t-x(S>--x()-x(")>--O and the convexity and separability of f imply
f(x (t))-- f(x ()) >-- f(x (S))--f(x (r)), a contradiction.

It might be noted that a straightforward extension of this result to the convex,
nonseparable case is not possible, since it is easily seen that taking f(x, x2)=
(Xl-"/ X2) 2, A 0, b =0 satisfies all of the hypotheses of the theorem except
separability, but violates the conclusion of the theorem.

The following corollary, an immediate consequence of Theorem 5.3, estab-
lishes finite convergence for any "primal, nondegenerate" method for the class of
problems considered in that theorem.

COROLLARY 5.4. If the hypotheses of Theorem 5.3 hold, then any algorithm
for the problem (5.4) that yields feasible iterates x,
f(x 1) >... will generate an optimal solutionfor (5.4) in a finite numberofiterations.
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6. Conclusions. We have shown how optimal solutions to bounded non-
linear integer programs of the form (1.2) (with f convex, A totally unimodular,
and b integer) may be obtained by solving an easily-generated linear program-
ming problem. These results generalize certain results in (linear) integer program-
ming dealing with totally unimodular constraint matrices as well as results for
nonlinear integer programs of the form (1.1), and provide a rigorous and finite
approach for obtaining optimal solutions. Furthermore, in the case that known
bounds are not available for the variables in (1:2), it is shown that an appropriate
linear programming "column-generation" algorithm will yield an optimal solu-
tion in a finite number of iterations if (1.2) actually has an optimal solution.
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A WELL-POSED APPROXIMATE METHOD FOR INITIAL STATE
DETERMINATION OF DISCRETE-TIME DISTRIBUTED

PARAMETER SYSTEMS*

TOSHIHIRO KOBAYASHIt

Abstract. The purpose of this paper is to investigate the problem of initial state determination for
a discrete-time distributed parameter system described by a differential-difference equation. This

problem is not well-posed in general. After the problem formulation, a well-posed approximate
method is presented. This method uniquely gives an approximate initial state which depends
continuously on the measurement data. The method is analyzed on the assumption that the system is N
output controllable with respect to the initial state. An a posteriori error estimate is also given.

1. Introduction. From the physical viewpoint, the system state functions may
not be directly measurable. Only certain restricted measurements are actually
obtained. In order to construct feedback controls, however, complete knowledge
of the state functions is required. The system state has to be determined from the
restricted measurement data. Therefore the state determination problem is very
important from theoretical and practical points of view.

This problem is closely related to the concept of system observability. In a
distributed parameter system, observability ensures that an initial state can be
uniquely determined from the measurement data. As the space of initial states is
infinite-dimensional, observability does not generally ensure that the initial state
depends continuously on the measurement data. That is, the problem of initial
state determination for a distributed parameter system is not necessarily well-
posed; this is different from that for a lumped parameter system [6], [7]. Thus an
approximate method which reduces the non-well-posed problem to a well-posed
one is of great importance.

Difference equations arise and are of utmost importance in the fields of, for
example, numerical analysis and sample-data control systems [2], [8]. In the case
of discrete-time observations, the distributed parameter systems are not observa-
ble in general. Therefore we analyze the problem of initial state determination
without the assumption that the system is observable.

2. Problem statement. We shall use notations similar to those in Lions [3]. So
let H and V be two Hilbert spaces with

Vc H, V dense in H;

the sign c denotes both algebraic and topological inclusion. This means that the
identity mapping of V into H is continuous. We denote by (.,.)v (respectively,
(’,")n) and [1" [Iv (respectively, [1" [In) the scalar product in V (respectively, H)
and the norm on V (respectively, H). Let V’ be the dual of V: we identify H with
its dual so that

VcHc V’.

* Received by the editors December 11, 1975, and in final revised form October 15, 1976.
? Department of Control Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu,

Japan.
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If f V’, v V, (f, v) denotes their scalar product; if f H, it coincides with the
scalar product in H.

We are given a continuous bilinear form a (u, v) on V, having the following
properties" for any u, v V,

(2.1) [a(u, v)

where L is a constant independent of u, v.
For each fixed u in V, the linear form v- a(u, v) is continuous on V.

Therefore it may be written as

a(u, v)= (Au, v), Au V’.

We deduce also from (2.1) that for any u V,

(2.2)

where I1 I1, , is the dual norm of I1 I1 . Equation (2.2) defines A (V; V’) (the
space of continuous linear mappings from V into V’).

Now let a (u, v) be coercive, that is,

there exists a > 0 such that for any v V,
(2.3)

LFMMA 1 (see [3]). Under the hypotheses (2.1) and (2.3), for every f V’, the
equation

(2.4) Au =f
has a unique solution u Vwhich depends continuously on f. Furthermore, iff H,
the solution u belongs to a dense subspace WofH. Here Wis a Hilbert space with a
norm defined by

In this paper, we consider the discrete-time distributed parameter system
described by

Au =u_, k r={1,2, ,N},
(2.5;)

Uo sc sc given in H,

where u, is the state of the system at time k.
Remark 1. For example, we can obtain the discrete-time system (2.5) by

replacing du/dt with a backward difference (u- u_)/h in the evolution equa-
tion

du 1
+ (A -I)u(t) O,
at

u(0)=:,

where h is a sampling period and I is an identity operator.
From Lemma 1, there exists an operator U such that U e (H; W) and the

solution sequence of the system (2.5) is given by

(2.6) u Uu_, k r.
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It follows from (2.6) that for the initial state H,

(2.7) Uk uk, kEo’.

In physical situations, the space of observations K is finite-dimensional. We
are given an observation equation

(2.8) Zk Mug q- mk, k

where M is a continuous linear operator from W to K and mk K is a measure-
ment error at time k. The observed outputs Zk’S are written

(2.9) Zk Muk+ mk, k or.

By virtue of Lemma 1, it follows that the output sequence {Zk}k /2(O’; K).
Remark 2. /2(or; K) denotes the Hilbert space consisting of all sequences

{Pk}k,r with Pk K, k co" and with an inner product defined by: for p ={Pk},
q {qk } in/2(tr; K),

N

(P, q)12(;K) (Pk, qk).
k=l

The space 12(o’; K) is finite dimensional when N is a finite natural number.
We denote by J(/) a functional which measures the distance between the

observations z {Zk } and the output Mu {MUk} computed for each initial state t
from the system (2.5). Then, the initial state determination problem can be
formulated as that of minimizing J() with respect to under the constraint (2.5).
In the following, the functional J(/) is taken as the mean-square error:

N

(2.1 O) J(rl
k=l

3. N observability and N output controllability with respect to the initial
state. In this section, we investigate N observability and Noutput controllability
with respect to the initial state of the discrete-time system (2.5) with the
observation equation (2.8). We start with the following definition.

DEFINITION l. The system described by (2.5) with the observation equation
(2.8) is said to be Noutput controllable with respect to the initial state if {MUkTq}kcr
generates a dense subspace O(N) of the space/2(r; K), as r/is varied without any
constraints.

DEVINITION 2. The system (2.5) with (2.8) is said to be N observable if an
initial state sc can be uniquely determined from the observation

Let us define an operator T: H-->/2(o’; K) by

(3.1) Tr/= {MUkI}k

for any r/ H. We get T(H; 12(o’; K)). Let T* be the adjoint of T. Nowwe can
prove the following theorems.

THEOREM 1. The following three conditions are equivalent:
(i) the system (2.5) with (2.8) is Noutputcontrollable with respect to the initial

state
(ii) the nullspace of T* is {0};

(iii) TT* is positive.
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Proof. For any p {Pk}6 12(o-; K),
N

(Mu(r/), p)12(,r;K)= (T, p)12(r;K)= (MUk’o, Pg)K
k=l

(3.2) 7, (U)*M*P
k=l H

(r, r*p).

Here the adjoint operator T* of T is defined by
N

(3.3) T*p , (g)*M*p, if p 612(o-; K)
k=l

and T* belongs to (/2(o-; K); H). From (3.2), O(N) is dense in/2(o-; K) if and
only if the nullspace of T* is {0}.

On the other hand, since

]lT*pl[= (TT*p, P),2(;K, p 12(O’; K),

Null (T*)={0} if and only if TT* G 09(12(o-; K); 12(O’; K)) is a positive operator;
i.e., for any p 12(o’; K),

(TT*p, p)2(;K _--> 0 and (TT*p, p) 0 implies p 0.

THEOREM 2. The following three conditions are equivalent"
(i) the system (2.5) with (2.8) is N observable;
(ii) the nullspace of Tis {0};

(iii) T*Tispositive.
Proof. We can get the theorem from the calculation

N, (MU, MU’)K IITII,. ,, (T*T:,
k=l

Theorem 1 and Theorem 2 show that the concept ofN observability is dual to
that of N output controllability with respect to the initial state.

4. Minimization of J(l). We shall show that the minimizing solutions of J(r/)
exist if the system (2.5) with (2.8) is N output controllable with respect to the
initial state.

Since the operators Ug and M are continuous, the functional J(r/) is
differentiable and convex. Hence the necessary condition for optimality is

(4.1) J’()rt 0 for all r/6 H.

From this equation, we obtain

(4.2)

that is,

(4.3)

N

Z (MU- zk, MUn): 0,
k=t

(T*(T- z),
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Since (4.3) must hold for all r/ H, the minimizing solution sc must satisfy

(4.4) T*(T- z) O.

If the system (2.5) with (2.8) is N output controllable with respect to the initial
state, the nullspace of T* is {0}. Thus there exists at least one solution sc H such
that

(4.5) Tsc z in/2(o-; K).

Remark 3. The element sc T*(TT*)-lz satisfies (4.5) evidently.
Let X be the set of elements : H satisfying (4.5). X is a closed subset of H.

For st1, so2 X and for all r H,
J(sCg) _-< J(r/), k 1, 2.

Since J(r/) is a convex functional, for 0 e (0, 1),

J(( 1 0)sc, + 0so2) =< 1 0) J(sC,) + 0J(2) =< J(r ),

from which we get (1 0)sc + :2 X. ThereforeX is a closed convex subset of H.
Next suppose that the system (2.5) with (2.8) is N observable. From (4.4), the

initial state st is uniquely determined by

(4.6) sc (T’T)-’ T*z G T*z

from the observation z. Here G T*T is the observability operator. However the
discrete-time distributed parameter system (2.5) with (2.8) is not necessarily N
observable. Therefore, we cannot seek the unique initial state sc by (4.6) in
general. Moreover, even if the system (2.5) with (2.8) is N observable, : deter-
mined by (4.6) is meaningless in general. It is because G- is not always
continuous and the observation z has always errors which may be very small. The
fact that G-1 is not always continuous is due to the following theorem.

THEOREM 3. Suppose that an operator G defined on a Hilbert space H is
self-adjoint and positive. Then, its inverse G-1 is continuous if and only if G is
positive definite [1], [5]; that is, there exists a positive constant 3’ such that

(Gn, n).-->  llnll,2, for all q H.

Remark 4. IfH is finite dimensional, it is easily shown that a positive operator
is always positive definite. In this case, 3" is the minimum eigenvalue of G.

Now we should consider a new approximate method in order to determine
uniquely an approximate initial state which depends continuously on the meas-
urement data z.

5. A well-posed approximate method. In this section, by the method of
regularization [3], we shall present the approximate method which

(i) chooses a unique element sCo from X
and

(ii) gives a constructive procedure to obtain
This approximate method, from a different point of view, corresponds to approx-
imating the nonnegative observability operator G by a family of positive definite
ones.
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Remark 5. It should be noticed that the problem (i) is dual to that of
minimizing J(rt) (see [4]). An element T*(TT*)-Iz is well-defined and solves
the initial state determination problem when /2(tr; K) is a finite-dimensional
space. However, it is not easy and not practical in general that we solve the dual
problem to seek

To begin with, we consider the problem (i) on the assumption that the system
(2.5) with (2.8) is N output controllable with respect to the initial state.

Let g be an element of H and let A be an operator of (H; H) such that for
any /H and a positive constant

(5.1) (Art, rt)H --> KIIrt]l.

Then, there exists a unique element o X such that

(5.2) (Ao, o) => (g, o) for all X,

since X is a closed convex subset of H (see [3]). In the special case of A I
(identity operator in H) and g -0, o is the element having minimum norm in X
and o is given by

:0 T*(TT*)- lz.

Next let us consider the problem (ii). We introduce a regularized functional
J (rt) corresponding to J(rt):

(5.3) J (rt)= J(rt)+ e[(Art, rt)H-2(g, rt)H], e >0.

With similar arguments for J(rt), we can see that there exists a unique minimizing
solution s of J (rt) determined by

(5.4)
: (G + e A)-I(T*z + eg)

G-I(T*z + eg).

Since G is positive definite, G-1 is continuous from Theorem 3. Therefore
depends continuously on the measurement data z.

Now it should be noticed that o and are the minimizing solutions of J(rt)
and J (rt) respectively with the measurement error m {m}. Therefore o is not a
desired initial state. Let X be the set of elements H satisfying

(5.5) T z o z o {Mu, }

Then X is a closed convex subset of H. Define a unique element * of X by

(5.6) (A*, s*) _-> (g, : :*), : X.
Remark 6. If the system (2.5) with (2.8) is N observable, the element sc* is the

actual initial state.
We now proceed to prove the following theorem.
TI-IEOREM 4. (i) SC depends continuously on the measurement data z.

Suppose that the system (2.5) with (2.8) is N output controllable with respect to the
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initial state. Then

(5.7) (ii) lim_o [[s S0][H 0.
(iii) If the measurement error can be estimated by

(5,8) IIz oz IleK----< and goes to 0 as e O,

then

(5.9) lim I[: :*l[/_/= 0.
e,-->0

Proof. Theorem 3 and (5.4) give (i) immediately.
Next we show (ii). Combining (4.4) and (5.4), we obtain

(5.10) (G(-o),rl)+e(A,rl)n=e(g, rl) for any r/ H.

Putting r/=-0 and using the nonnegativeness of G, we have

(5. ) (A, o) (g, o),

or equivalently,

(5.12) (A,)uN--(g,o)n+(g+A*o,)u.

We obtain from (5.1) that for some constants Cl and c2,

which implies there exists a positive constant c3 such that

Thus we can extract a subsequence from every sequence of e 0 such that, w weakly in H. Equation (5.10) becomes

(G(w-o), )=0 for any H.

Taking w-o, we get

(G(w o), w o). 0

from which we have

T(w -sCo) 0 in 12(r; K).

This equation means w e X. As/x - 0, (5.11) becomes

(Aw, w o). --< (g, w o)..

On the other hand, putting sc w in (5.2), we obtain

(5.14) -(Aso, w o)n ----< --(g, W o)n.

From (5.13) and (5.14), adding, we have

(A(w :o), w o),, --< 0.
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Again using (5.1), we get

llw-oll_-<0
which implies w s%. Here {so,} is an arbitrary, weakly convergent subsequence
and its weak limit sCo does not depend on the subsequence. Therefore the
extraction of a subsequence is unnecessary and o weakly in H.

Moreover from (5.11), we get

(A(: &), : &) _-< (g, & o) (Mo, & :o).

This implies that - :o strongly in H.
Finally we evaluate I1: -:*lln in order to show (iii). Let us define :* by

(5.15) G* T*z+eg.
Then

(5.16) I1: SC*IIH =< IISc, SC *[IH + ]lsc* sc*ll-
For the second term on the right-hand side, we can apply the result (ii) in the case
of z z. Consequently we obtain

(5.17) lim Ilsc sc*l[, 0.
e0

As for the first term, we obtain

(5.18) G(sc-sc*) T*(z-z),
which means that the element (sc sc*) realizes the lower bound of the functional

I(n) IIz -z- Tr/ll2(;/) / e (At/, r/)H, r/(5.19)

Therefore

(5.20) I(: sc*) -< I(0) IIz z Ill (o’;K)"

From this, it follows that

(5.21)

If we can evaluate the measurement error by (5.8), we have

from (5.1) and (5.21). This becomes
6

(5.22) IIsc sc*ll, -<
/-

The right-hand side of (5.22) tends to 0 as e, 6 - 0 with a relation 6 o(e) (6 has
a higher order than vr-e). Thus we have shown (iii).

6. A posteriori estimate for IIs-*lltt- In this section, we shall give an

a posteriori estimate for I1 -*IIH by evaluating II(T*)-all in the case of g 0.
THEOREM 5. Suppose the system (2.5) with (2.8) is Noutput controllable with

respect to the initial state. Ife is chosen such that x/--llr*-Xll Ilmll > 0, the value
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I]sc- sc*[lH can be estimated by

where A is the minimum eigenvalue of the operator 77"*.
Proof. Let us put * sc + y in the identity Gsc* T*z o. Then we have

G(: + y)= T*z.
From this, it follows that

G, r*z +Gy eA( -y)+ T*(z -z) 0.

Since G,f T*z 0 from (5.4) in the case of g 0, we get

Gy eA( +y)-r*(z-z)=O.
This equation means that the element y realizes the lower bound of the functional

(6.2) (an,L(r) I[z z + e(T*)-IA( + y)- Tr + s

Here (T*)-1 exists if the system (2.5) with (2.8) is N output controllable with
respect to the initial state. Then

(6.3) L(y) <-_L(O)= Ilz-z + e (T*)-IA( +
We obtain from this

(6.4) e(Ay, Ye)H

By virtue of (5.1), (6.4) becomes

(6.5)

Moreover

Since the space/2(or; K)is finite dimensional in our case, we can evaluate I[(T*)-111.
Ffom Theorem 1, T-F* is a positive operator on /2(o-; K). There exists the
minimum eigenvalue h > 0 of TT* such that for any p /2(or; K)

IIT*pll (TZ*p, p)12(o.;K)

from Remark 4. Thus we obtain

(6.7) IlT*pll. >-_ x/llplll2(;:) if p /e(o’; K).

Furthermore for any r H,
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from (6.7). Therefore we get
1

(6.8)

If e is chosen as IIAIl> 0, the a posteriori error estimate (6.1)is
obtained from (6.6) and (6.8).

7. The system with pointwise observation. We shall apply the theory
developed in the preceding sections to the simple system with pointwise observa-
tions.

Consider the system described by the following differential difference equa-
tion"

(7.1) -a-x2+ q Ug(X)=Ug_l(x), k co’, x f=(0, 1),

where a is a positive constant and q -> 1. The boundary condition is given by

(7.2)
dug (0__.__) dug (1__._) 0, k 0, 1,..., N.
dx dx

The initial condition is

(7.3) Uo(X) ,(x),

As two Hilbert spaces H and V, we choose [3]

H=LZ(f);

{ axdVv= H’(a) v eL(ta) such that-z--e L2(f)

x [0, 1].

In this case, since

d2ug(x)
(Aug, Ug) a

dx 2 Uk (X dx +q u ,(x dx

-a-lob(dud’(x))dx
dx + q u ,(x dx,

(Aug, Ug)<-max (a,

Therefore the condition A (V; V’) is satisfied. Moreover a in (2.3) is a
rain (a, q).

Using the eigenvalues {A,,}={na.rrZa +q} and the eigenfunetions {4,(x)}
{1, / cos rx, cos 2rx,." .}, we can express the solution of the system (7.1)
and (7.2) by

(7.4) h,,4,,,(x),ug(x)= ,=o (-,ig k6tr,

h,, h(x)d,,(x) dx, n O, 1,...,
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for any initial state h L2(0, 1). Thus the right-hand side of (7.4) is Ukh.
Now let the observation equation be

(7.5) Zk Uk (Yk + mk, Yk [0, 1], k 6 o’.

Here Yk is an observation point at time k. In this case K is a one dimensional
Euclidean space. The operator M in (2.8) is defined by

(7.6) Mug 6(x-yg)ug(x) dx, ug 6Ha(O, 1).

Since 6(x--yk)(’)dx is a continuous linear functional on Ha(0, 1) and
Hi(0, 1) C(O, 1), the pointwise observation (7.6) is meaningful.

From (7.4) and (7.6), it follows that

(7.7)
h4, (yg)MUgh

n=0 (An)g

Thus we obtain

(7.8) Ug,M,zg= , b(yk)4,(x)
.--o (&) z.

In order to show that the system (7.1), (7.2) and (7.5) is N output controllable
with respect to the initial state, it is sufficient to show that T-F* is positive. TT* is
an N N symmetric matrix such as

(7.9) TT* ((tg)), tig E b. (yg)4). (Y)
.=o (a.)+

Define N vectors v a, v2, , vu by

/6o(Y) 61(Yg) T

(7.10) Vg \ (-0), (A1)g ’’’’]

j,k=l,...,N.

k=l,...,N.

Then TT* is the Gram matrix of V l, V2,’’" VN and tjg (I)], Vg)l
(j, k 1, , N). If the vectors v , v2, , vu are linearly independent, * is
nonsingular, that is, positive. Consider the case y Y2 yu =y*. If there
are at least N nonnegative integers n such as d,(y*)#0, the vectors
v, v2,"’, vu are linearly independent. In this case, the system (7.1), (7.2) and
(7.5) is N output controllable with respect to the initial state.

As for the a posteriori estimate (6.1), A in (6.1) is the minimum eigenvalue of
the N xN symmetric, positive matrix *.

Finally we show that G is not positive definite in this case. Let

(7.11) s inf
(Gh, h)n

hH (h, h)n

and then show s 0. Putting an eigenfunction 6, into h, we have

(7 12)
(Gh, h_ (G., .) E (MU., MU.) kZ1 (n)2k(h,h) 116. 1
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The right-hand side tends to zero as n oo. Thus G is not positive definite.
From the above facts, we should apply the well-posed approximate method

presented in 5 for the system (7.1), (7.2) and (7.3), in order to determine
uniquely an initial state dependent continuously on the measurement data.

8. Conclusions. In this paper, we have investigated the initial state determi-
nation problem for a discrete-time distributed parameter system. An approximate
method has been presented in order to determine the approximate initial state
continuously dependent on the measurement data. We have analyzed this method
on the assumption that the system is N output controllable with respect to the
initial state.

Lastly we state N observability for the system discussed in the last section.
This system is N observable if and only if for any hL2(l),
Y, h,,qb,,(yk)/(An)k 0 (k 1 2 N) implies hn 0 (n O, 1 ...) This fact
does not hold in general. However, it is expected that for any e > 0, there exists a
number N such that [h, [-< e (n 0, 1, , N- 1) under a suitable assumption on
the observation points. This is the concept of e, N-mode observability.
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SEMISMOOTH AND SEMICONVEX FUNCTIONS
IN CONSTRAINED OPTIMIZATION*

ROBERT MIFFLIN?

Abstract. We introduce semismooth and semiconvex functions and discuss their properties with

respect to nonsmooth nonconvex constrained optimization problems. These functions are locally
Lipschitz, and hence have generalized gradients. The author has given an optimization algorithm that
uses generalized gradients of the problem functions and converges to stationary points if the functions
are semismooth. If the functions are semiconvex and a constraint qualification is satisfied, then we
show that a stationary point is an optimal point.

We show that the pointwise maximum or minimum over a compact family of continuously
differentiable functions is a semismooth function and that the pointwise maximum over a compact
family of semiconvex functions is a semiconvex function. Furthermore, we show that a semismooth
composition of semismooth functions is semismooth and give a type of chain rule for generalized
gradients.

1. Introduction. In this paper we are interested in an inequality constrained
optimization problem where the functions need not be differentiable or convex.
More precisely, consider the problem of finding an x 6 R to

minimize f(x
subject to hi(x)-<0 fori=l, 2,...,m

where hi, h2," ", h,, and f are real-valued functions defined on
We utilize the "generalized gradient" introduced by Clarke [1], [2] for

"locally Lipschitz" functions. A necessary condition [2] (of the Karush [5J-John
[4] type) for optimality of a point 7 is that the zero vector is a certain convex
combination of generalized gradients of hi, h2," ", h,, and f at Y. in 5 of this
paper, this "stationarity" condition is concisely stated in terms of a map as given
by Merrill [10] depending on the problem function generalized gradients. Our
implementable algorithm for nonsmooth nonconvex optimization given in [11]
uses this map and converges to such stationary points if the problem functions are
"semismooth" as defined here in 2. This algorithm can be viewed as a modifica-
tion and extension of the "conjugate subgradient" type algorithms for non-
differentiable unconstrained optimization given by Lemarechal [8] and Wolfe
[16] for convex functions and by Feuer [3] for min-max objectives.

Semismooth functions possess a semicontinuous relationship between their
generalized gradients and directional derivatives. They are related to, but differ-
ent from, the "almost differentiable" functions of Shor [14]. Notable examples of
such functions are convex, concave and continuously differentiable functions.

In 2 we also define "semiconvex" functions. These functions are
"quasidifferentiable" (Pshenichnyi [12])and essentially "semiconvexe" in the
sense of Tuy [15] and, if also differentiable, are "pseudoconvex" (Mangasarian
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[9]). In 5 we show that the above stationarity condition is sufficient for optimality
if the problem functions are semiconvex and a constraint qualification is satisfied.
This is a nondifferentiable analogue of a sufficient optimality result in [9, Thm.
10.1.1].

In 3 and 4, we give some important properties of semismooth and
semiconvex functions. Starting from the work in [1] and [3] on min-max objec-
tives, we show that the pointwise maximum or minimum over a compact family of
continuously differentiable functions is a semismooth function. We also give an
example of a semismooth function that is an extremal combination not of
continuously differentiable functions, but of semismooth functions. This leads us
to show that a semismooth composition of semismooth functions is semismooth
and to give a type of "chain rule" for generalized gradients. Special cases of this
chain rule may be found in [2].

In 3 we also show that the pointwise maximum over a compact family of
semiconvex functions is a semiconvex function. Thus, semiconvex functions
behave as do convex functions with respect to the maximization operation, while
pseudoconvex functions do not because of the loss of differentiability due to this
nonsmooth operation.

2. Definitions and examples of semismooth and semiconvex functions. Let B
be an open subset of R and F: R R be Lipschitz on B: i.e. there exists a
positive number K Such that

IF(y) F(z)l <-- KIy z for all y, z B.

If F is Lipschitz on each bounded subset of R then F is called locally Lipschitz.
Let x B and d R n. As in Clarke [2], let

F(x; d)= lim sup [F(x +h +td)-F(x +h)]/t
h-0
t$0

and let OF(x) denote the generalized gradient of F at x defined by

OF(x) {g R (g, d) _-<F(x; d) for all d 6 Rn}.

The following two propositions collect together useful properties of F and OF
from Clarke [1], [2] and Lebourg [7], respectively.

PROPOSITION 1.
(a) OF(x) is a nonempty convex compact subset of R.
(b) F(x; d) max [(g, d): g OF(x)].
(c) Fis differentiable almost everywhere in B and OF(x) is the convex hull ofall

the points g o]’ the form

g lim VF(x)
koo

where {Xk } X and F has a gradient VF at each Xk B.
(d) If {Xk } B converges to x and gk OF(Xk) for each k then Igkl <---- Kand each

accumulation point g of {gk} satisfies g OF(x); i.e. OF is bounded on bounded
subsets ofB and OF is uppersemicontinuous on B.
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PROPOSITION 2. Let y and z be in a convex subset of B. Then there exists
A e (0, 1) and g OF(y + A (z y)) such that

F(z)-F(y)=(g,z-y);

i.e. a mean value result holds.
By combining part (d) of Proposition 1 with Proposition 2 one may easily

establish the following useful result:
LEMMA 1. Let {tk}0, {hk} 0 e R and F* be any accumulation point of

{[F(x +h + td)-F(x + h)]/t}.

Then there exists g OF(x) such that

F* (g, d).

If limt,o[F(x /td)-F(x)]/t exists it is denoted by F’(x; d) and called the
directional derivative of F at x in the direction d. If F’(x;d) exists and equals
F(x; d) for each d R then F is said to be quasidifferentiable at x (Pshenichnyi
[ 12]). Note that if F’(x d) exists then, by Lemma 1, there exists g OF(x) such that

F’(x d) (g, d}

and, if, in addition, F is quasidifferentiable at x, then, by parts (a) and (b) of
Proposition 1, g is a maximizer of {., d} over OF(x).

DEFINITION 1. F: RnR is semismooth at x R if
(a) F is Lipschitz on a ball about x and
(b) for each dR and for any sequences {tk}C R/, {Ok}C R and {gk}c R

such that

{tk},0, {Ok/tk}-OR and gk OF(x +tkd+Ok),

the sequence {(gk, d}} has exactly one accumulation point.
LEMMA 2. If F is semismooth at x then for each d R, F’(x d) exists and

equals limk_oo {gk, d} where {gk } is any sequence as in Definition 1.
Proof. Suppose {’k}$0. By Proposition 2, there exist tk (0, ’k) and gk

OF(x + tkd) such that

F(x + zkd) F(x ’k (gk, d}.

Then, by Definition 1 with Ok 0 R , since {tk},0,

lim [F(x +’kd)--F(x)]/’k lim (gk, d).
k k

Since {’k } is an arbitrary positive sequence converging to zero, F’(x; d) exists and
equals the desired limit.

DEFINITION 2. Let X be a subset of R . F: R -R is semiconvex at x X
(with respect to X) if

(a) F is Lipschitz on a ball about x,
(b) F is quasidifferentiable at x and
(c) x + d X and F’(x;d)>-0 imply F(x + d)>=F(x).
Tuy’s 15] earlier concept of semiconvexity does not include quasidifferentia-

bility, but we include it in order to obtain Theorems 8 and 9 given below. A
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semiconvex function that is also differentiable is called "pseudoconvex" (Man-
gasarian/-9, Chap. 9]).

We say that F is semismooth (quasidifferentiable, semiconvex) on Xc R if
F is semismooth (quasidifferentiable, semiconvex) at each x X. We denote the
convex hull of a set S by conv S.

From convex analysis [13, 23 and 24] and [2, Proposition 3] we have the
following:

PROPOSITION 3. If F: R R is convex (concave) then F(F) is locally
Lipschitz,

OF(x)={g Rn F(y)>-(<=)F(x)+(g, y-x)for ally R} foreachx R"
i.e. OF is the subdifferential of F, F(-F) is semiconvex on R" and F(F) is
semismooth on R.

From [2, Proposition 4] and the properties of continuously differentiable
functions we have the following:

PROPOSITION 4. If F: R --’> R is continuously differentiable then F is locally
Lipschitz, OF(x)= {VF(x)} for each x R, and F is quasidifferentiable and semi-
smooth on R.

An example of a locally Lipschitz function on R that is not semismooth (nor
quasidifferentiable) is the following differentiable function that is not continu-
ously differentiable:

x 2 sin (l/x) for x # 0,
F(x)

0 for x 0.

Note that F’(0; 1) 0 and OF(O) cony {-1, 1} is the setof possible accumulation
points of F’(x; 1) as x0.

An example of a function that is semiconvex and semismooth on R, but not
convex nor differentiable, is

where

F(x) log (1 + Ix l)

1/(1 +x) for x >0,

OF(x) conv {- 1, 1} for x 0,
!
(-1/(I-x) for x < 0.

Note that in a neighborhood of x 0

F(x) max [log (1 + x), log (1 x)];

i.e. F is a pointwise maximum of smooth functions. General functions of this type
are the subject of the next section.

3. Semismooth and semiconvex extremal-valued functions. In this section
we supplement developments in Feuer [3] and Clarke [1] to show that certain
extremal-valued functions E are semismooth and/or semiconvex.

Suppose E: R" --> R is defined on B, an open subset of R", as follows in terms
of f: R T-R where T is a topological space:
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Suppose there exists a sequentially compact subspace U of T such that
(a) f(x, u) is continuous for (x, u)e B x U,
(b) f(x, u) is Lipschitz for x B uniformly for u U,
(c) Of(x, u) is uppersemicontinuous for (x, u)eB x U

and for each x e B either
(d) E(x)= max If(x, u): u e U] and

0 x(e) L(x, u; cl) [x( u, cl) for all (u, d) U R"
or

(d’) E(x) min If(x, u)" u e U] and
(e’) f’(x, u; d) -f(x, u; -d) for all (u, d) e U x R n.

For each x e B let

A (x)= {u e U: E(x)= f(x, u)}.

Note that E and A are well defined by the continuity and compactness assump-
tions. Furthermore, for each x B, A (x) is compact and Off(x, is uppersemicon-
tinuous and bounded on U, and a direct consequence of [1, Thm. 2.1] is the
following:

THEOREM l. Let the above assumptions on E and f hold. Then E is Lipschitz
on B and for each x B

OE(x) =conv {Off(x, u): u 6 A (x)},

and for each d R

E’(x; d) E(x; d) max [(g, d): g Of(x, u), u A (x)]

if (d) and (e) hold, or

E’(x; d) -E(x -d) min [(g, d): g Oxf(X, u), u A (x)]

if (d’) and (e’) hold.
Remark. Feuer [3] shows the results of Theorem 1 under the stronger

assumptions of our next theorem and proves a result [3, p. 57] close to semi-
smoothness from which our next proof is adapted.

THEORFM 2. Suppose that (a) and (d) or (d’) hold and that f(., u) is

differentiable on B ]:or each u U and Vff(., is continuous and bounded on
B x U. Then E is semismooth on B.

Proof. Note that the additional assumption implies (b), (c), (e), and (e’) and
that 0 =Vff on B x U. Suppose E has the max form (d). (The proof of
semismoothness for the min form (d’) is similar.) Let x B, dR, xk
x +tkd+O and g eOE(x)where {t}{0 and {Ok/t}-OR. From Theorem 1
and Proposition 1 we have that

E’(x; d) E(x; d) max [(g, d)" g OE(x)]

and OE is bounded and uppersemicontinuous on a ball about x, so

lim sup (g, d) <-E’(x; d).
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Suppose

lim inf (gk, d) < E’(x d),
k

i.e. there is an e > 0 and a subsequence of {gk} such that on this subsequence

(3.1) {(gk, d)}- E’(x; d)-e.

For each k corresponding to this subsequence choose k OE(Xk) and Uk A (Xk)
such that

g V,f(x, u conv {V,f(x, u)" u A (x)} /(x)

and

(3.2) (, d) min [(g, d): g OE(xk)] _--< (gk, d).

Since Vf is continuous on B U, {x}- x and {Uk} is in the compact set U, {,}
and {u} have accumulation points and O, respectively, such that

g v,f(x, a).

Thus, by (3.1) and (3.2),

(VQ’(x, ti), d) (g, d) <-E’(x; d)- e.

Let u* A (x) be such that

E’(x; d)=E(x; d)= max [(V(x, u), d)" u 6a(x)]=(V(x, u*), d).

Then

(V(x, ti), d) -< (Vff(x, u*), d)-e

and, since (V,J’( , ), is continuous, there exist neighborhoods B(x), V(i) and
D(d) such that

(Vxf(z, u), 6)<=(Vxf(z, u*), 6)-e/2 for all (z, u, 6)B(x) V()D(d).

Choose k so large that Uk V(gt), tkldl + IOk is less than the radius of a ball about x
contained in B(x) and 210k/tk is less than the radius of a ball about d contained in
D(d). Then for all [0, tk],

and

Then

x(t)=-x +td +(t/tk)Zok 6B(x),

x’(t) d + 2(t/tk)(Ok/t) D(d).

(V,d’(x(t), u), x’(t)) <=(Vf(x(t), u*), x’(t))-e/2 forallt e[0, t].

Integrating from 0 to t gives

f(x(t), u)-f(x(O), uk)<-f(x(t), u*)-f(x(O), u*)-te/2.
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SO

and 4 A (x) implies

E(x)=f(x, 4),

E(x +d)>=f(x +d, 4)=>f(x, 4) E(x)

and the semiconvexity of E at x is established. [-]

The following function F is an example of a semismooth function on R 2

which is not an extremal-valued function in the sense of Theorem 2, because in
any ball about (0, 0) there is a point at which the value of F is neither the maximum
nor the minimum of the three underlying linear functions that define F:

F(x, x2) 2

for x2 >= 0 and x2 --> x > 0,
for x --> 0 and x -> X2 -> 0,
for xl _-<0 or x2_-<0.

Note that F(x 1, x2) max [0, min (x 1, x2)]. This raises the question of whether or
not a finite extremal composition of extremal-valued functions is a semismooth
function. This is indeed the case, as is shown in more generality in the next section.

4. Semismooth composition. In this section we show that a semismooth
composition of semismooth functions results in a semismooth function. In order to
prove this useful result we first establish a type of "chain rule" for generalized

CONSTRAINED OPTIMIZATION

But x (tk) xk, x (0) x, u A (x) and u * A (x), so

E(x)-f(x, u) <=f(xk, u*)-E(x)-te/2,

or

E(x)+E(x)<-_f(x, u*)+f(x, u)-tke/2.

But this leads to a contradiction, because f(x, u *) <=E(x ), f(x, u <-E(x ), t > 0
and e > 0. Thus, limk_,oo (g, d) E’(x; d), so E is semismooth at x. [51

THEOREM 3. LetXbe asubsetofB. Suppose that (a), (b), (c), (d), and (e) hold,
i.e. E is a max function, and suppose that f( u) is semiconvex at x X (with
respect to X) for each u U. Then E is semiconvex at x X (with respect to X).

Proof. By Theorem 1, E is Lipschitz on a ball about x, quasidifferentiable at x,
and for d R there exist 4 A (x) and g Oxf(X, 4) such that

E’(x; d)=(g,d)=max[(g,d): gOxf(x, u), u cA(x)].

Suppose x + d X and E’(x d) >= O. Then, by the quasidifferentiability of f(., 4)
at x, we have

x 0 xfx( 4; d)=fx( 4; d)= max [(g, d): g Oxf(X, a)] >(g, d)>0.

Thus, by the semiconvexity of f(., 4) at x,

f(x + d, 4)>--f(x, 4).

But x + d 6Xc B and assumption (d) imply

E(x+d)>-f(x+d, 4)
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gradient sets. For v 1, ) 2, V E R let [v iv 2
/3 denote that n x m matrix

whose ith column is v for 1, 2,. ., m.
THEOREM 4. Let fi" R _. R for 1, 2, , m and E" R _, R be locally

Lipschitz. For x R define

and

Y(x) (fl(x), fz(X), ", fm (X)),

F(x)=E(Y(x))

G(x)=conv{g6R n" g =[glg2... g’]w, g 6 Of(x), 1, 2,..., m,

w6oE(r(x))}.
Then F is locally Lipschitz and

(4.1) OF(x) c G(x) for each x R.
Remarks. Clarke [2] establishes (4.1) for the three cases where 1) E is

continuously differentiable and m 1, 2) E(yl, Y2) Yl -+-y2 and 3)
E(y) =max[yi: E{1, 2,..., m}] for y (Yl, Y2, Ym).

Note that the containment in (4.1) may be strict, because, as suggested to us
by M. J. D. Powell, for E(ya, yz)=yl-y2, x eR and f(x)=fz(X)=lxl, we have
OF(O) {0} and G(0) =conv {-2, 2}.

Proof. It is not difficult to show that F is locally Lipschitz and to show that G is
uppersemicontinuous. Hence, by part (c) of Proposition 1, F is differentiable
almost everywhere, and if we show

(4.2) VF(2) 6 G(g)

where g is any point of differentiability of F, then (4.1) follows from the convexity
and uppersemicontinuity of G.

In order to show (4.2), let VF(g) exist, d R and {tk}$0. Then

(4.3)
(VF(), d) F’(X; d)

lim [F(Y +td)-F(2)]/t
k

lim [E(Y( +td))-E(Y(g))]/t.
k

Choose a subsequence of {tk} such that for each 1, 2,. ., m
{[f (2 + tkd)-f(2)]/t}-f*

on the subsequence. By Lemma 1,

(4.4) [.*,=(gi, d) forsomeg 0f(i),

SO

{If, (Y + tkd)--fi(g)-- tk (gi, d)]/tk}- 0

on the subsequence. Let

(4.5) v (f*l f, ", f*,,) ((d, g 1), (d, g2), ", (d, gin)).
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Then

{[Y(g + tkd)-- Y(g) tkv]/tk} O e R

and, by Lipschitz continuity of E,

(4.6) {[E(Y(g +tkd))-E(Y()+tkv)]/tk}-*O

on the subsequence. Now choose a sub-subsequence of {tk} such that

(4.7) fiE(Y() + tkv E Y(Y))]/tk } -* E*

on this sub-subsequence. Then, by combining (4.6) and (4.7),

{[E(Y(X + tkd))-E(Y(X))]/tk}- E*

on the sub-subsequence and, by (4.3),

(4.8) (VF(), a)= E*.

From (4.7) and Lemma 1,

(4.9) E* (v, w)

Let

for some w OE(Y(,)).

g [glg2... gm]w
so that combining (4.8), (4.9), (4.5) and (4.4) and recalling the definition of G
yields

(7F(y), a)= E* (v, w)= (((d, gl), (a, gZ),..., (d, g’)), w)= (d, g)

where g G(). Since this result holds for each d R n, and G() is convex, we
have that the desired result (4.2) holds, for if not, then a strict separation theorem
[9, Thm. 3.2.6] gives a contradiction. [-]

THEOREM 5. Suppose, in addition to the assumptions of Theorem 4, thatf for
each 1, 2,. ., m is semismooth at x R and E is semismooth at Y(x R
Then F is semismooth at x.

Proof. Suppose xk x + tkd + Ok and gk OF(xk) where d R ", {tk}$0 and
{Ok/tk}OR n. Since F(xk)is contained in the compact convex set G(xk), by
minimizing and maximizing the linear function (., d) over G(xk), we may find, G(x such that

and

where

and

(&, d) -< (gk, d) =< (k, d)

k _.._[1-2kgk" gk

-i
gk, ,k ofi (Xk) for each 1, 2,. , m

if’k, ff’k OE(Y(Xk)).
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By the uppersemicontinuity and local boundedness of the various maps, {k} and
{k} are bounded and there are accumulation points g of {k} and of {k} and
corresponding accumulation points i of {g,} and i of {,} for each i=
1, 2,..., rn and of {} and } of {} such that

,,2g=[lg2 .g ], =[lg ...’]
and

(g, d) -< lim inf (gk, d) <-lim sup (gk, d) <-(, d).

By the semismoothness of each f, we have

(d, gi) (d, ,i) f;(x d);

so, by defining

we have

and

z (f] (x; d), f.(x d), , f’m(X d)),

(d, g)= (d, [192... gm]) (Z ),

(d, ) (d, [’2... m]) (Z, ),

(z, ff _-< lim inf (g, d) -< lim sup (gk, d) -< (z, if).

So, if we show that

(4.0) (z, }v)= (z, ),

then {(g, d)} has only one accumulation point and we are done.
To show (4.10) we will show that

(4.11) Y(x Y(x + tz +
where

(4.12) {/tk}ORm,
and then, since #, ON(Y(x)), we have, by the semismoothness of , that
{(#, z)} and {(, z)} have the same limit, which implies (4.10), because and
are accumulation points of {#} and {k}, respectively.

For each 1, 2,..., m let

=(x)-(x)-tg;(x; d),

so that (4.11) is satisfied with (&, ,. .,) and

/ ,(x (x -;(x; d).(4.3) )-f, )]/t

Note that, by using the definition of x and adding and subtracting (x + td), we
have

A(x Z, (x )l/t
(4.14)

(x + td + o)-(x + td)]/t + A(x + td)-(x)]/t.



CONSTRAINED OPTIMIZATION 969

As k - oo, the first term.of the right-hand side of (4.14) converges to zero, because
each f is Lipschitz and {O/t } - 0 R. The second term converges to f(x; d), so
we have that

{[f(x)-f(x)J/t}-f[(x; d),

which, by (4.13), implies (4.12) and completes the proof.. $llinril, ntl pfinmlily. Consider the following problem that is
equivalent to the optimization problem of 1:

minimize f(x)

subject to h(x)-< 0

where

h(x)= max hi(x) forx6R".
l--im

We say that x R is feasible if h (x) - 0 and strictly feasible if h (x) < 0. We
say that R is optimal if is feasible and f()-f(x) for all feasible x.

Let X be a subset of R and for each x R let

A(x) ={i 1, 2,..., m}: h(x) hi(x)).

Then, from Theorems 4,5,1 and 3, we have the following:
THEOREM 6. Suppose h 1, h2, ", hm are locally Lipschitz.
(a) Then h is locally Lipschitz and for each x R

Oh(x)conv {Ohi(x): cA(x)}.

(b) If h, h2, , h, are semismooth on X then h is semismooth on X.
(C) If hi, hz,’", hm are semiconvex (quasidifferentiable) on X then h is

semiconvex (quasidifferentiable) on X and for each x X

Oh (x) =conv {Ohi (x): e A (x)}.
A key idea for dealing with the above optimization problem is to define the

point-to-set map M: R" 2R" by

(Of(x) if h(x)<0
M(x) conv {Of(x) U Oh (x)} if h (x) 0 for x R n.

[.Oh (x) if h (x) > 0

This map was introduced and used by Merrill [10, Chap. 12] for problems with

di.fferentiable and/or convex functions, i.e. problems with functions having
gradients and/or subgradients. It is used by our algorithm in [11] for problems
with functions having generalized gradients.

We say that 6 R is stationary for the optimization problem if h(Y) _-<0 and
0M(Y). Our algorithm in [11] is shown to converge to stationary points for
problems with semismooth functions. The next result shows that stationarity is
necessary for optimality. It follows from a very general theorem in Clarke [2].
Here we give an independent proof using a strict separation theorem for convex
sets.
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THEOREM 7. Suppose f and h are locally Lipschitz. If is optimal then is
stationary.

Proof. Consider the case where h()= 0. Suppose, for contradiction pur-
poses, that Y is not stationary. Then 0 M(Y). Since Of(Y) and Oh. (Y) are compact,
M(Y) is closed and convex and, thus, from a strict separation theorem [9, Cot.
3.2.4], there exists a d R such that

(5.1) (g, d) <0 forallg6M(Y).

Since Y is optimal, it must be the case that either fo(y; d) >= 0 or h o(y; d) => 0, for if
not, we can find a > 0 such that f(Y + td) <f() and h (Y + td) < h () 0, which
contradicts the optimality of Y. Thus, by Proposition 1, there is a
(Of(Y) Oh (Y))c M(Y) such that (g, d)->_ 0. But this contradicts (5.1). So 0 M(Y).
We omit the proof of the case where h (Y)< 0 which is similar, but simpler.

Remark. This theorem, when specialized, gives two well-known necessary
optimality theorems. If hi, h2,’" ", hm and f are differentiable then the above
result combined with part (a) of Theorem 6 shows that an optimal solves the
Karush [5J-John [4] stationary point problem [9, p. 93]. Alternatively, if
hi, h2," , hm and f are convex then Theorems 6 and 7 and Proposition 3 show
that an optimal Y solves the corresponding saddle-point problem [9, p. 71].

As usual, in order to have stationarity be sufficient for optimality, we need
stronger assumptions on the problem functions. We now proceed to show that if
the problem functions are semiconvex and there is a strictly feasible point then
stationarity implies optimality. In order to demonstrate this we require the
following preliminary result for semiconvex functions on convex sets:

THEOREM 8. IfF is semiconvex on a convex set X R, x Xand x + d X
then

F(x +d)<-F(x) implies F’(x; d)<=O.

Proof. Suppose, for contradiction purposes, F(x + d) <=F(x) and F’(x d) > O.
Then there exists > 0 such that < 1 and F(x + td) > F(x). Let f (0, 1) maximize
the continuous function a(t) F(x + td) over 6 [0, 1]. Clearly, by the maximality
of ,
(5.2) a(1)=F(x +d)<=F(x)=a(O)<a()=F(x + d),

F’(x + d; d)<-O and F’(x + d;-d)<=O.

Now by the quasidifferentiability of F there exist g+OF(x +d) and g-
OF(x + fd) such that

and

0 >-_ F’(x + d; d) F(x + d; d) (g +, d) => (g-, d)

O >- F’(x + fd -d) F(x + fd -d) (g-,-d)>=(g+, -d).

F’(x + l:d d)= O,
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and, by the positive homogeneity of F’(x + d; ), since 1 t > 0, we have

F’(x + rd (1 r)d) (1 g)F’(x + rd d) O.

Then the semiconvexity of F implies

F(x + d)

which contradicts (5.2).
Remark. The above proof follows one in Mangasarian [9, pp. 143-144] and a

slight modification shows that a semiconvex function on a convex set is "strictly
quasiconvex" and, hence, "quasiconvex" [9, Chap. 9].

THEOREM 9. Suppose f and h are semiconvex on R and R is such that
OM().

(a) Ifh () >0 then h (x) ->h() > O for all x R , i.e. the optimization problem
has no feasible points.

(b) If h (X) <- 0 then at least one o]’ the following holds:
(i) is optimal,

(ii) h (x) >- 0 for all x R , i.e. the optimization problem has no strictly
feasible points.

Proof. If h()> 0 then O Oh() and it is clear from the semiconvexity of h
that minimizes h over R and the desired result (a) follows. If h()< 0 then
0 f() and similar reasoning shows that minimizes f over R which implies
(b)(i). Suppose h(X) O. Then there exist A [0, 1], Of(X) and Oh(X) such
that

A+(1-A) 0.

If A 0, then 0, Y minimizes h over R and (b)(ii) holds. Alternatively, if A > 0
then

g+[(-a)/;t] 0,

and for all x R"

(g, x ) + [( -;t)/;t ](, x -)= 0.

For all x R such that h(x)_-<O= h(Y), we have, by the semiconvexity of h,
Theorem 8 and the fact that Oh (), that

0_-> h’(Y; x -:) h(Y, x -X) _-> (, x -).

Thus, since [(1 A )/A _-> 0, we have that

(g, x -)) -> 0 for all x such that h (x) _-< 0.

So, by the semiconvexity of f, since g e Of(i), we have that

f’(x; x -x) f(x; x -x) => (g, x -)_->0

and, hence,

f(x)>=f() forallx such that h (x =< O.

Thus, is optimal and we have that A > 0 implies that (b)(i) holds.
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Remark. If h()= 0 and A > 0 in the above proof then, in order to show
optimality of , we need only assume that h is quasidifferentiable and satisfies the
conclusion of Theorem 8 rather than assume h is semiconvex. This observation
corresponds to a sufficient optimality theorem in Mangasarian [9, Thm. 10.1.1]
and says that if satisfies generalized Karush [5]-Kuhn-Tucker [6] conditions, f is
semiconvex and h is quasidifferentiable and "quasiconvex" [9, Chap. 9] then is
optimal. A constraint qualification that implies A > 0 is that 0 Oh().

Acknowledgment. I wish to thank Claude Lemarechal for his many helpful
suggestions.
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BOUNDARY VALUE CONTROL OF A CLASS OF HYPERBOLIC
EQUATIONS IN A GENERAL REGION*

JOHN LAGNESE

Abstract. Let c(t) be a real valued function which is analytic for => 0 and which is such that, for
some positive integer N-> 3, the operator

N 0 0

LN--i=IOX Ot
c(t)

satisfies Huygens’ principle in the sense of Hadamard’s "minor premise". Let be a smooth, bounded
domain in R n, n _-> 2. We show that control processes which are modeled by an equation Lnu 0 in the
cylindrical region El [0, o) are exactly controllable in any finite time T which exceeds the diameter of
1 by control forces applied on the wall of the cylinder.

1. Introduction. Let n _-> 2 be a positive integer and D, be a bounded, open,
connected region in R with a smooth boundary F. We denote by u(x) the
outward unit normal vector at each x F. Let c(t) be a real valued function which
is analytic for _-> 0 and define

{ )(1.1) L.u AnlA \ o 2 "+- c Ig An 0-"
Let Uo and v0 be functions defined in f and a,/3 be constants with

cfl _->0, and let T be a specified positive number. We consider the following
control problem: Does there exist a control function f defined on F x [0, T] such
that the solution of the problem

(1.2) Lnu 0, (x, t) 6 a x [0, T],

Ou
(.) u(x, o)= Uo(X), (x, o)= Vo(X), x a,

(1.4) cu (x, t) + (x, t) f(x, t) (x, t) 6 F x [0, T]

achieves a specified state

Obl
"X(.5) u(x, T)= u(x), ( T)= v(x), x a.

We shall show that this question has an affirmative answer for a certain class of
operators of the form (1.1) for initial and final states in H (O,) Hr-I(-), r 2,
and moreover, (1.5) can be achieved in any time T which exceeds the diameter of

* Received by the editors September 2, 1976.
? Department of Mathematics, Georgetown University, Washington, D.C. 20057.
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The particular class of operators Ln we shall consider consists of those for
which LN satisfies Huygens’ principle in the sense of Hadamard’s "minor prem-
ise" [6] for some N. Included in this class are the ordinary wave operators

U] =A Ot,

the EPD (Euler-Poisson-Darboux) operators in selfoadjoint form

k(k + 1)
F-ln+(at+b), ab>O, k 1,2,...,

and many others. For additional examples and detailed information about the
structure of such operators we refer to [8]-[10].

Boundary control problems for hyperbolic equations have been considered
by a number of authors, most notably D. L. Russell; see [ 11]-[ 14] and references
contained therein; also [2], [3], [5]. The results of this paper are most closely
related to those of [13]. In that paper it was proved, for processes governed by the
wave equation, that the set of controllable states includes H(f) H () and that,
if n is an odd positive integer, T can be taken as any number greater than the
diameter of f. The proof makes essential use of the fact that Huygens’ principle is
valid for such operators. That T also can be taken in this way for the wave
equation in even space dimensions has, as far as we know, been proved only when
the geometry off is of certain specific types, e.g., when 1 is a unit ball (see [5]).

The result we shall prove is the following
THEOREM. Let the initial state (uo, Vo) and final state (u!, v l) be given in

Hr(f) Hr-(f), r >-2. Suppose c (t) is analytic fort >-0 and thatLNiS a Huygens’
operatorfor some N. Let The any number greater than the diameter of f. Then there
exists a control function f H" (r x [0, r]) (s r -- if O, s r -1/2 if O) such
that the unique solution of (1.2)-(1.4) lies in H (f [0, T]) and satisfies (1.5).
Moreover, there is a constant K K(r, T) such that

(1.6) l[f]l’(rx0,T]> K(]IUoIIHr(I’) + u ]IHr(’) + ]I0]IHr- 1(’-’) + ’ II]Hr- 1(’))
We shall establish this result for the wave equation in even space dimensions

in the next section. The proof in the general case, which is considered in 3, is then
obtained by exploiting the fact that all operators of the specific type considered
here are transforms, in a certain sense, of the wave operator. This fact also allows
the determination of a boundary control for the operators L, in terms of a certain
boundary control for the wave operator.

2. The wave equation in even space dimensions. Because of the time
reversibility of the wave equation, it suffices to consider the case u=v=0.

Our proof is an extension of a method, used by Russell in [13], which may be
summarized as follows:

Set
V ()-H (f) x g-l(), V)(’) H;(f) x H;-l(f).

Let 6 > 0 and set

ft {x R"" Ilx 2 < 6 for some 2 )).
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Russell first extends (Uo, Vo) to a pair (ua, va)6 V(a) by a bounded linear
transformation. Setting these functions equal to zero outside of D,a, one then
solves

OZu
(2.1) A,u--= 0

in R" [0, oo) using (ua, va) for initial data. The solution wa (x, t) so obtained is in
C(a [To, oo)), where To is any fixed number which satisfies

To > 26 + diameter ().

Let 4 C()a) such that 4(x) 1 if x e . Let T=> To and define z(x, t) to be
the solution of (2.1) in R" (-az, T] which satisfies the terminal conditions

oz owz (x, T) d (x)wa (x, T), --07 (x, T) cb (x (x, T).
Ot

Let (to, 23o) be the restriction of (z(x, 0), (Oz/Ot)(x, 0)) to 11. (o, 3o) depends, of
course, on (Uo, Vo). Setting

u (x, t)= wa (x, t)-z (x, t)

and defining f to be the restriction of au +(Ou/Ov) to F x [0, T], one obtains a
solution of (1.2), (1.4)whose initial data is (Uo- to, Vo-23o)and whose final state is
zero at time T. The question is then whether (Uo rio, vo- to) spans all of V (D)
as (Uo, Vo) does the same.

To answer this question, Russell considers the map Kr" (uo, vo) -+ (to, 3o) and
proves that Kr is a linear contraction on Vr() for all sufficiently large T and
hence (I-KT)-1 exists as an everywhere defined bounded linear operator. Thus
the control problem is solved for such values of T.

As Russell notes in his paper, Kr is compact for each T_-> To. Let o be the
region of the complex plane given by

o={’=To+z,]argz]<--}.
Our extension of Russell’s proof consists of showing that the family {Kr" T>= To}
can be extended to a family {K’sr o} of compact operators which depend
holomorphically on (. One can then utilize a result of Atkinson [1] (see also [7, p.
370]) to the effect that either 1 is an eigenvalue of each of the operators K, sr e o,
or else (I-K)-1 exists for all but at most a finite number of values of sr in each
compact subset of o. This latter possibility must be the case since K is a
contraction for sufficiently large positive values of ’. Thus for all T_-> To with the
possible exception of a finite number of values, (I-Kr)-1 exists. The conclusions
of the theorem now follow for all such values as in [13]. One may then conclude
that the control problem is solvable for ev,ery T> To. In fact, for each such T one
may choose a number Tbetween To and T for which the problem (2.1), (1.3), (1.4)
has a solution u e H (11 [0, T]) satisfying

Ou
(2.2) u(x, T) -7(x, T) O, x ,
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this being true for every choice of (Uo, Vo)e V’(O). Extend u to a function
defined on f x [0, ] by setting,a 0 in f x T, ]. If t H (’ [0, ’]), the trace
]r of at + fl (0t/0v) on F x [0, T] is a boundary control of the proper type which
steers (Uo, Vo) to zero in time

To verify that ti 6H’(fx [0, ]) we note that (Oku/Otk)( t) GHr-k() for
each 6 [0, T], k 0, 1,..., r. This fact follows from standard energy estimates
(cf. [4, p. 652]). One may then use (2.1) and (2.2) to conclude that

Oku
(x, T) O, x, k=0,1 r,

Otk

which implies that t H ( x [(0, ]).
To obtain the holomorphic extension of the family {Kr" T_-> To} we examine

these operators in detail.
Let (u, v) V(f). For >_- To and x 6) define

2 {0( 1 )(n-2)/2 fO u(rt) drlw (x, t)=
1.3"" (n -1)o’,

(t2-llrl-Xll2) 1/2

where o-, is the surface area of the unit ball in R "+l. w is a solution of (2.1) on
R" x [To, o0). Let h > 0 satisfy

diam O+ 26
<a<l.

To
For t->To, r/eha and x
C(fi x [To, oo)) and all differentiations may be carried out beneath the integral.
There results, for example, that

w(x, t) 2(-1)/2+[ Ia u(rl) drl
(n- 1)o-,,

(a-n)t (t2_llr/_xl[2)(,+,)/2
(2.3)

fa v(r)dr ]+ (t2llrl-xll2)("-1)i2

OW(x’ t) 2(-1)/2+1[(n + 1)t2 ua (n) dn
at , (t2-11n-xll2)"+3v2

(2.4)

fa u( + tv( ]
as long as To and x . If p is a positive integer, one has the following estimate
(see [ 13]), valid for To"

, llOt
(2.5)

Ng(r, p, +
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Equations (2.3) and (2.4) define a linear mapping S(t): (ua, va)-+(w(., t),
(OwffOt)(., t)) of V(2) with W(12) which, in view of (2.5), is compact for each
t>-To.

Let T=> To and (ta, 31) V(Oa). Extend these functions to R" by setting
each equal to zero outside f, and let z(x, t) be the solution of (2.1) in R’x
(-oo, T] which assumes the terminal data

OZ
z(x, T)= al(X), --(X, T)=/31(x), X

If t _-< T- To and x 12 the solution z has a form similar to (2.3). In particular,

(2.6)

(2.7)

z(x, o)=

Z(x, o)=
Ot

if x 6. Equations (2.6) and (2.7) define a compact mapping,(T): (al, /.31)-+
(z(’, 0), (Oz/Ot)(., 0)) of V(f) into vr(fa) for each T >- To. S(T) is related to
S(T) as follows" Let Pi be the projection of W(12) ontoHr-i (11), 0, 1. Then

(2.8) Po(T)(tl, {31)-- PoS(T)(aa, --/31),

(2.9) PI(T)(/I, 131)--: PIS(T)(-al, 131).

The mapping KT of [13] may now be expressed as follows. Let E be a
bounded linear operator from W(11) into V(12) such that restriction of E(Uo, Vo)
to 11 coincides with (Uo, Vo). Let b 6 C(f) such that tb (x)-= 1 on 12 and define a
bounded linear mapping M: V (12) -+ Wo(12) by M6 (u, v) (4u, bv). Let
R: W(II)-+ vr(fz) be the bounded linear operator defined by R(u, v)=
(u la, v I-). Then

KT R(T)M6S(T)E, T >- To.

To obtain a holomorphic extension of {KT T-> To} it clearly suffices to do the
same for (T) and S(T). In view of (2.8) and (2.9), it is enough to show that
PiS (T): V(f) H-i(f) has such a holomorphic extension, 0, 1.

Let " 6 go. Then for all r/6 Oa and all x 11
Re (2-11r -xll2) Yg-[In--Xll2"- 2To Re (z)+ (Re (z))2- (Im (z))2

--> (1 -a 2)T)
and larg (d’2-llr/-xll2)l-<rr/2. By choosing that value of (sr-lln-xll2)/2 which
has positive real part, one obtains, for fixed r/and x, a holomorphic function of sr
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whose values lie in the sector. -,/l-Aro/z, largzl_-<

for all r/fi and xfi. The functions Fk(()=(2-]lrl--x]12)k/2 are likewise
holomorphic in No and satisfy

(2.10) IIFk (’)11-->-- (1 2)/2 ro, " Eo.
The operators PiS(T) are extended to operators PiS(() using (2.3) and (2.4),

in which is replaced by sr. Inequality (2.10) implies that the quantities w(x, (),
(Ow/Ot) (x, ) are holomorphic in 2,o for each x e fa and differentiations may be
carried out under the integral. Just as in [13], one can obtain an estimate like (2.5)
with replaced by sr o, from which follows that each PS(() is compact. To show,
for example, that PoS(() is holomorphic in o it suffices to prove its weak
holomorphicity, that is, to prove

F(() Z Dxw(x, ()Dv(x) dx

is holomorphic in o for each (u, v) in V;() and each v H (), where

., =1 + +n.OX OX

For any nonzero real number m, one computes

O[(2 I[’i -xll2) 2 C/3
(x

---/ (’-II.-xl)+

where the Co are constants,

a-1 ax-1] 1

and qo (qo,""", qo,) satisfies Iq[ ] and qo] <[] if . Thus F(()is a
linear combination of integrals of the form

n (x) (-I1 x lib/ d
dx

and such integrals multiplied by , where k is an odd positive integer and A and B
are (at least) in L2(). Each such integral is a holomorphic function in No because
of (2.10) and, therefore, PoS() is holomorphic there.

3. The general ease. To prove the theorem in the general case, we exploit
the fact that every analytic operator of the form (1.1) such that L is a Huygens’
operator for some N is a certain transformation of the ordinary wave operator.
To describe this transformation, consider (1.1) with c(t) analytic for 0. Let (t)
be a solution of
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which is analytic and nonzero for => 0 and define the operators

(3.2) I*
Ot tx at tx

Then one may write

Ln=An+l*l
and therefore

(3.3)

where

lL.

/. =A +//*=A.--7+ c(t)+2

One of the important properties of this mapping of Ln to Ln is the fact that if LN is
a Huygens’ operator, the same is true of /2N+2 [10]. Starting with the wave
operator U1, and repeatedly applying such transformations results in

(3.4)

where

(3.5) l /Xo at + b (ab > 0),
3t [bk

(3.6) (ll)tx +1 0, k 0, 1,..., q 1.

It was proved in [8] that every operator L, which satisfies the conditions of the
theorem satisfies (3.4) for some (nonunique) sequence {/k}. It is possible to choose
q=(N-5)/2 in (3.4), but not smaller. In this case the sequence {/: k
0, 1, , (N-5)/2} is uniquely determined. In addition, one has

c(t) 2 log H
k=O

and ]-[m=0tx(t) is a polynomial of degree 1/2(m+l)(m+2), O<=m<-_(N-5)/2.
These and other facts concerning the operators L are proved in [9].

Since the theorem is proved for n, to prove it in the general case it is
sufficient to show that if it is true for some operator L, it is also true for the
operator n defined by (3.1)-(3.3).

Let T_-> To, uoH+l(Ft), voH(f) and fHS+(Fx[O, T]) be chosen so
that the unique solution u Hr+(12X[0, T]) of (1.2)-(1.4) satisfies (1.5). Set

lu and note that

O’----" Utt-- U+ U-- Ut An+ hi-- ; blt.
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Therefore H (1] x [0, T]) satisfies

L,t =0 in fx[0, T],

(3.7) iT(x, 0) rio(X) Vo(X) -(0) (0)UotX)
(3.8) 0) [A,o--i (o)/

Uo(X

Offaa (x, t) + fl-v (X, t)= lf(x, t) on Fx[0, r].

In addition, at T, one has

.(0)

0fi
fi(x, T) =/l(X), ---, (x, T) l(X), x

of

where fi 1, 1 are defined in the same manner as rio, to but with Uo, Vo replaced by
u 1, v l, respectively. Thus the control function IfH (F x [0, T]) steers (tTo, o) to
(til, tl) in time T. In addition, the map (Uo, Vo) (tTo, o) defined by (3.7), (3.8)
maps vr+l(l)) onto Vr(I)). Indeed, given (rio, o), one may choose uoas the unique
solution in Hr+l(f) of

(3.9) A,uo to + Uo, x

(3.10) Uo 0 on F,

and then set

(3.11) Vo to +(0)
/ (0)

Uo, x .
It follows that an arbitrary initial state (to, to) e V (f) can be steered in time T
to an arbitrary final state (tl,l)eV(f) with a boundary control Ire
Hs(r x [0, T]).

To obtain the estimate (1.6), we define Uo, Vo by (3.9)-(3.11) and similarly
define Ul, v in terms of ax, tx. Using the well known estimate

Ilwll,,+2 llzX,,wll , w /-/r+l(l’)/-/(l-), k -<r- 1,

one obtains

Remark 1. We have shown that if the control problem for the wave equation
is solvable in time T, the same is true for all Huygens’ operators (1.1) or,
equivalently, for operators L, defined by (3.4)-(3.6). Conversely, if for some
Huygens’ operator (1.1) the control problem is solvable in time T, the same is true
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for the wave operator. This follows from the relation

loll lqLn nlol lq

(see [8]) where the {/xk} are certain solutions of

I,q -- C(t)txq O, (lkl)l.l,k_ O, k q, q 1,..., 1,

and q (N- 5)/2 where N is the smallest number of space dimensions for which
LN satisfies Huygens’ principle. Russell has proved [11] that if is less than the
"minimal distance across f", that is,

< 2 min {t" F -}
0

where

[’t={x Ee n" 71

the control problem for the wave equation is not solvable in time and, in fact, the
set of initial states which can be steered to zero at time with controls (1.4) is not
even dense in Vr(ft). The same result must therefore hold for every analytic
Huygens’ operator (1.1).

Remark 2. Just as in the case of the wave equation, the control function f for
which the solution of (1.2)-(1.4) satisfies (2.2) may be realized as the solution of a
certain moment problem. For definiteness we assume a 0, although this is
inessential. Following [13], let

0<A<A2< <Ak <

be the eigenvalues of the problem

Aw+Aw=0 inO

subject to the boundary condition

w(x) +
ow
(x) 0 onr,

and let {,/: k 1, 2,.. l= 1, 2,..., m} be an orthonormal basis for Le(O)
such that {./: 1, 2, , m} spans the eigenspace corresponding to. Write

k=l /=1

k=l /=1

These series converge in H() and H-(O), respectively.
Let u be the solution of the boundary control problem (1.2)-(1.4), (2.2) and

z H (x [0, T]) be a solution of (1.2) in x [0, T] which satisfies homogeneous
boundary conditions of the type (1.4). One can establish, exactly as in [13], the
relation

(3.12) z(x, O)vo(X)- Uo(X)( O) dx --(x, t)f(x, t) dx dt.
x[o,] Op
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To obtain the moment problem, one inserts into this relation special solutions
z(x, t). Since chi,j(x) cos (wit) and 4i,j(x) sin (wit) (ooi x//) are solutions of K],u 0
which satisfy homogeneous boundary conditions, (3.4) suggests that one intro-
duce solutions of the form

Zi, (i,j(x)(lqlq_l to) cos

2i, 4)i,(x)(lqlq-l Io) sin (wit)

for i= 1, 2,... j 1, 2,..., mk, where q (N-5)/2.
Substituting these solutions into (3.12) and using the orthonormality of the

4k,l results in the moment problem

’’ % Ir 4’"--- (x)[(tqtq- o) cos (,ot)lf(x, ) dx d,
a x[O,T] Or,

(3.14) ii,.i "1 fFx[0,T] Oi"i (x)[(lqlq-l lo) sin (wit)lf(x, t) dx dt,

where ,i,/2,j are functions of Idgi,j, r,i,j and 0.)i.

As a specific example we consider

02U 2anu --dis+ ,+ a ),.u o

In this case q 0,

0 1

Ot t+l’

zi,i toi sin (wit) +-- cos (wit) i,i(x),

i,j O)i COS (wit)----- sin (wit) cki,i(X).

The left hand members in the moment problem (3.13), (3.14) become,
2respectively, r,i,i + 1 w )/xi,j and o9 (r,i,i +/xi,i).

For the equation

one has q 1 and

02/t 6
-7+ (i,+,,i)u o

0 2
Ot t+l"

In this case the left members of (3.13) and (3.14) are, respectively, (2-to)r,,. +
(4-309 )lUbi, and ooi[3r,i, nt- (5 (.o
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Remark 3. D. L. Russell has considered the question of exact controllability
of solutions of the wave equation when the control is applied on only a portion of
the boundary, and has shown that data (u0, v0) in HI() L2() can be steered to
the zero state in some finite time T with a control f L2(1-" [0, T]). Here F is a
relatively open subset of such that the pair (, F) is "star-complemented"; see
[14] for details. By using the transformation of 3, analogous results can be
obtained for operators of the type considered in the present paper.
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DISCRETE MAXIMUM PRINCIPLE WITH STATE CONSTRAINED
CONTROL*

JOSI ANTONIO ORTEGA" AND RICHARD JEFFREY LEAKE$

Abstract. The validity of a discrete maximum principle is proved for a class of problems in which
the control constraint set depends on the system state using the formalism and basic optimization
theorem of Cannon, Cullum, and Polak [Optimization, Control and Algorithm, 1970].

1. Introduction. Although the maximum principle for continuous systems
was derived by Pontryagin et al. [2] over 15 years ago, the mathematical details of
the proof of the discrete maximum principle have been cleared up only recently.

First mention of a maximum principle for discrete time systems can be
attributed to Rozonoer [3]. Rozonoer’s claim that "the extension of the maximum
principle to discrete systems is possible, generally speaking, only in the linear
case," together with faulty proofs by early researchers caused considerable
confusion in the subject.

Beginning in 1964 and later in 1966 Halkin [4], [5] presented a careful
mathematical proof of the discrete, maximum principle. Almost concurrently,
Propoi [7] arrived at the same conclusion, namely that a rather strong convexity
assumption is required. A study of state constrained controls using Halkin’s
methods was given by Bruckner and Wu [8]. Holtzman and Halkin [9]-[11]
greatly extended the usefulness of Halkin’s results, however, by introducing the
concept of directional convexity.

Cannon, Cullum, and Polak [12] and Da Cunha and Polak [13] later
presented a method for handling such problems, using a basic theorem of
optimization and a systematic approach to conical approximations. Using this
method they have greatly simplified the proof of the discrete maximum principle
and have given extensions to include state space constraints and vector valued
performance criteria. Their work is summarized in the book by Cannon, Cullum,
and Polak [1], and to conserve space the notation and formalism of [1] will be
assumed familiar to the reader in this work.

In the definition of U/(xi), we allow that the set be empty. In this case it should
be noted that further, implicit, constraints are imposed on the state in order that
there exist an admissible control. The essential additional assumption which we
have made in order to allow this type of constraint are the differentiability of the
next state function in u, and the requirement that the set

(1) xi {(x, u): u U(x)}

be convex. If X is defined by a constraint Ri (x, u) -< 0 by a differentiable function

* Received by the editors September 14, 1973, and in revised form November 11, 1976. This
research was supported in part by BNDE and CNPq, Brasil, and by the U.S. Air Force Office of
Scientific Research under Grant AFOSR-76-3036.

" University of California at Berkeley, on leave from COPPE, Universidade Federal do Rio de
Janeiro, Brasil.

$ Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556.
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then explicit formulas can be given relating the various multipliers as in 1].
Remark. A set valued function U is biconvex if
1) U (x) is convex for each x
2) OU(x)+O’U(x’)c Ui(Ox +O’x’), where 0, 0’=>0, 0+0’= 1.
It is easy to show that U is biconvex if and only if

X/= {(x, u)" u U(x)} is convex.

Thus, our assumption of convexity on X is equivalent to the biconvexity of U.
Halkin [6] uses this concept to obtain a very elegant proof of the "discrete
maximum principle" and the slightly stronger "equilibrium price conditions" of
mathematical economics. Halkins results are easily obtained from the results of
this paper by taking f (x, u)= ui.

2. Problem definition. We consider the system

(2) Xi+l-Xi fi(xi, ui)

with x E", u Em, 0, 1, , k 1 and the problem of minimizing the scalar
performance function

k-1

(3) J= Y ff(xi, u)
i=0

subject to (2), to u U(x), 0, 1,..., k- 1, where each X of (1) is a convex
subset of E x Em, and to the terminal constraints

(4) go(Xo) O, gk (Xk 0

where all functions are continuously differentiable and the Jacobians of go and gk

have maximum rank where evaluated. Defining

(5) Fi(x, u)= (f(x, u), fi(x, u))

we make the additional assumption that G(x, U(x)) is directionally convex for
each 0, 1,. ., k- 1 and each x. That is, given x and u’ and u" in U(x) and
0 _-< A =< 1 there exists u (,) in U (x) such that

(6)
f,(x, u(;t))=,f,(x, u’)+(-,)f,(x, u"),

fi(x, u, )) <= ,V?(x, u’) + , fi(x, u").

If U(x) is empty then G(x, Ui(x)) is also empty and hence taken to be direction-
ally convex. In what follows however, existence of optimal controls guarantees the
nonemptiness of U (:).

3. Main results. In this section we present an extension of the discrete
maximum principle. Let us define the Hamiltonian as

(7) Hi (xi, pi + 1, li pf(xi, bli -’[- Pi + 1, fi (Xi, ui ))

and the radial cone

(8) RC((, /), X)={(x-i, u-a): A >-0, (x, ug)Xi}.
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THEOREM 1. If (rio, til," ",/.ik_l) (o, 1, k) is an optimal solution of
the problem in 2, then there exist vectors Po, pl," , Pk,/Xo,/xk, and a scalar
po<_ 0, not all zero, such that

/O(i, Pi+ 1, ai)T
9

o(x, u)

for all

(o)

(6x, 6u I + pg+ p’ 6x <= o

(6xi, 6ui) RC((Y, a), Xi)

where the bar denotes closure, for 0, 1, , k 1. Furthermore,

(11) Hi (i, Pi + l, ui Hi (i, Pi + l, li

for all ui U (Yi), O, 1, , k 1 and the transversality conditions

Ogo(Yo)r Ogk(Yk)r
(12) PO OX OX

are satisfied.
Proof. We follow the approach in [1], translating to the mathematical

programming problem:
k-1

(13) minimize f(z) Z v o
i=0

(14)

(15)

subject to" x Xo- Vo

X2--X --I)

r(z)= =0,
Xk --Xk- --Vk_

go(Xo)
gk(Xk)

a’= {z ((Xo, Uo), , (x, u), Vo," "’, v_)"

(Xi, ui)Xi, W co Fi(xi, U/(xi))}

where co denotes convex hull,

(16) v fi (xi, ui ), vi f (xi, ui ),

(17) X/= {(xi, ui): ui U/(xi)}

v (v?, v,

for 0, 1,..., k- 1. Xk Enx E" and Uk are artificial quantities added for
symmetry. Assuming is an optimal solution of the corresponding problem with

’ replaced by f which is defined by replacing F/(x, U(xi)) by co F(x, U)) we
introduce the convex cone C(2, )’) as the set of vectors

(18) z ((Xo, 6Uo),..., (x, u), 6Vo,..., v_)

such that

(19) (6x, 6ui)e RC((2i, tii), X)
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and

(20)

where

(21)

and

(22)

o(x, u)
(aX,, 6u,) RC(V, co F (X,,

Wi Fi (i, ai

rc(v/, co F/(Xi, U,(Xi)))= {a(V-V/).a =>0, VecoF/(X,, U/(Xi))}.

Now let 6z 1, az2, aZp be a linearly independent set of vectors in C(5, 12’) with

(23) 6z ((aXoj agO.i),’’" (aXkj aUk.i) a Voj, a Vk_lj

Choose e > 0 such that for ] 1, 2,. ., p

(24)

for =0, 1,..., k and also

o(x, u)

xJ(z) < 1 suchfori=0, 1 k-1 Now there exist coefficients /x (z > 0, y.f=l
that for any z e co (5, 5 + eaz 1, , 5 + eazp) we have

p

(26) az z 2 e Y tx (z)az,.
j=l

In fact, as in [1] the independence of the az implies the existence of a matrix Y
such that for/x(z) (ix (z), ixV(z)),

(27) /x (z) Yaz.

Equation (25) implies the existence of controls

(28)

a 1, 2, s and a a , 1, such that

(29)
a(x, u) =

We now make the crucial definition

( )(30) uii(z) 1- Ixi(z) u71(5)+ ., tz*(z)(ai+sauii)
1=1 1=1

such that (24), (28), and the convexity of X imply

(3) ua(z)e U,(z,)

for z co (5, 5 + eazi, , 5 + eaz,) and xi a component of z. Introducing
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(32)

(33)

we have

(34)

and

matrices B7 and Zi(z)such that the

]th column of Zi(z)= ATFi(xi, uT(z))-Fi(xi, ui),
ot=l.

th column of B7 - uTi(f),

uij(z) uij(z)+6ui +Bi Y6z

0F/(i, ai)
(35) 6V/= (x,,

0(x, u)

we next apply the extended basic theorem [1, p. 85] which shows that if there
exists a continuous map

(36)

such that

(37)

with

(" co (5, 5 + e6z 1, -’{- e6Zp IT

((2 + 6z) 2 + 6z + o(6z)

(38) lim llo(6z)[]= 0

then there exist p_-< 0 and vectors Po, Pl, , Pk, not all zero such that
k-1 k-1

0 (6Xi+ Xi Vi))p0 ’ l/.)i + (--Pi+I,
=0 =0

(39)

Ox o Ox

for all 6z 6 C(z, ’). We define ((z)=(yo(z),’", yk(Z), Wo(z),""", Wk_l(Z))
with

(40) Yi (Z) (Xi, Ui),

=0, 1,- ., k-l, and

(41) W/(2’)--- Fi(xi, ui)-+-Zi(z Y6z.

It is now routine, using the crucial relation (31), to establish that W(z) is a convex
combination of elements of F(xi, U(xi)) and hence the range of sr is in ’; and
further, using (34) and continuous differentiability, that

(42) Zi(e + 6z) Y6z Zi(e Y6z + O"(6z),
SO

(43) W( +6z)= +6V + V +O’(6z).

Thus, all conditions of the extended basic theorem [1] are satisfied, and using
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respectively the variations

z (0, , 0, (x, u), 0,..., 0, v, 0, , 0),

(44) 6z (0,..., O, 6 V, 0,..., 0),

6z (0,..., O, (6x, 6u), 0,..., O)

in (39) yields all the conditions of the theorem when the relation in Po is taken as a
definition.

THEOREM 2. Suppose that all of the assumptions of the previous theorem are

satisfied with

(45) Xi {(xi, u): R(x, u)=<0},

(46) U (xi) {u R(x, u) <- 0},

0, 1,’’., k- 1, where each R: E xE -E1, is continuously differentiable
and the gradients of the active constraints are linearly independent; that is,
{VRj(Yi, tTi): j I(Yi, tT)} is a linearly independent set, where I(Y, i)=
{j" RJ -i(x, ) O, =<j< li}. Then there exist vectors Po, Pl, Pk, /ZO, [-k and a
scalarp <_ O, not all zero, and also vectors Ao, A 1, ",Ak-1, ,,i 0 0, 1, , k
such that

(47) (Pi+I Pi)
OH(, Pi+l, a)r OR(Y, a)+ Ai,

Ox Ox

(48) 00Hi(Yi, p,+,, ti,)r OR,(Y, i)T+ Ai,
Ou Ou

(49)

Furthermore,

(50)

(R (Y, ai), Ai)= 0, 0., 1,..., k 1.

.for all ui U (’i), O, 1,. , k 1, and the transversality conditions

Ogo(Xo) og(x)
(51) Po --/Zo, Pk ---[&kOx Ox

are satisfied.
Proof. The linear independence of the gradient vector implies that the set

(52) { (6xi, 3ui)" f OR{(’i’ i)T )o(x, u)
(,x, ,u) <-_0 for j

is contained in RC((Y, fi), X) and as such we may apply Farkas’ lemma [1] to (9)
and (52) to yield (47), (48), (49). The equations (50) and (51) follow from
Theorem 1.

Comment. Note that convexity of X is required in (45), and this is implied in
the instance that each R(x, u) is a convex function.
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4. Conclusions. The principal contribution of this work is a valid proof of the
extension of the results of Cannon, Cullum, and Polak 1] to allow dependency of
the control constraint set U on the state xi. Problems of this type are frequently
encountered in economic and industrial problems. These results compliment the
dynamic programming approach, in which there is little difficulty in handling state
constrained controls.
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ON LOWER SEMICONTINUITY OF INTEGRAL FUNCTIONALS. II*

A. D. IOFFE

Abstract. A necessary and sufficient condition for the integral functional f(t, x(t), y(t)) d/ to be
lower semicontinuous with respect to norm convergence of x(. )-components in Ls(G, Rm) and weak
convergence of y(. )-components in Lq(G, R n) (1 <q <) is established.

1. Introduction. Let G be a measure space with finite positive measure/,
and let f(t, x, y) be a function on G R R with values in (-00, 00]. In [1] we
proved a theorem containing a general necessary and sufficient condition for the
integral functional

I(x (.), y (.)) f f(t, x (t), y (t)) dl,t

to be sequentially lower semicontinuous (1.s.c.) relative to a spectrum of mixed
strong-weak topologies. Here we consider in more detail the case when G is a
bounded domain in a finite dimensional Euclidean space, is the ordinary
Lebesgue measure on G and the type of convergence in question is that defined by
the norm topology of Ls (G, R") for x (.)-components and by the weak topology
of Lq(G, R n) (1 <q < 00) for y(. )-components. Here Lp(G, R k) is the space of.
measurable mappings from G into R k with the usual p-norm. For simplicity, we
shall write merely Lp, not Lp(G, R k), since this can lead to no confusion. We
exclude the case q 1 fully investigated by Olech [4]. (As has been shown in 1],
Theorem 5, Olech’s result is a direct corollary of the main theorem of [1].)

In [1] we assumed f to be (R)-measurable. Here the particular choice of
the measure space allows us to deal with a more convenient, though somewhat
broader, class of functions. Let A c G R k. We shall say that A is an almostBorel
set if there is a Borel set A’ G x R k such that (pra(A A A’)) = 0 (A stands for
symmetrical difference, pr denotes the projection on G). Note that every
(R)N-measurable subset in G x R k ( and N being the algebras of Lebesgue
measurable subsets of G and Borel subsets of R k respectively) is almost Borel,
since each Lebesgue measurable set in G contains an F-subset of the same
measure. It is clear that almost Borel sets form a tr-algebra. Mappings or functions
measurable with respect to this algebra will be called almost B-measurable. It is
likewise clear that (R)Y3-measurable mappings are almost B-measurable and
that every almost B-measurable mapping coincides with a B-measurable map-
ping up to a set with measure-negligible projection on G. We shall suppose"

(A) f is almost B-measurable, l.s.c, in (x, y) and convex in y.
Note that, according to Theorem 2 in [ 1], these assumptions are quite natural

and, in fact, almost necessary for I(., to be 1.s.c.
The purpose of the paper is to prove the following result.

* Received by the editors February 17, 1976.

" Profsojuznaja 97-1-203, Moscow B-279, USSR.
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THEOREM. Let (A) be satisfied, and let ]I(xo( ), yo( ))[ < oo for some Xo(
Ls, Yo(" Lq. For I(., to be 1.s.c. with respect to norm convergence of x(. )-
components in Ls (1 _-<s < oo) and weak convergence of y(. )-components in Lq
(1 < q < oo), it is necessary and sufficient that there exist an almost B-measurable
mapping p(t, x): G x R" - R" such that

(i) f(t,x, y)>=(p(t,x), y)-clx[S-b(t), Vt, x, y

for some c R, b(t)L1;
(ii) if Xk(" norm converges in L, Yk(" weakly converges in Lq and

I(Xk ("), Yk (")) <- a < oo for all k 1, 2,. ., then the sequence offunctions
[p(t, Xk (t))l’

is weakly precompact in L 1.

Here q’ is defined by 1/q + 1/q’= 1, and and (., denote the Euclidean
norm and the inner product respectively.

Remark 1. For s oo two changes should be made. Firstly, the beginning of
the second sentence in the Theorem should be as follows: for I(.,. )) to be
everywhere greater than -oo on Ls x Lq and 1.s.c Secondly, the term c Ix is in
the right-hand part of (i) should be replaced by r(Ix]), where r(A) is a nondecreas-
ing real-valued function on the positive half-line.

Remark 2. The theorem remains valid if (i) holds with c 0 and norm
convergence of x(. )-components is replaced in the statement by convergence in
measure.

The proof of the theorem is contained in the following two sections. In the
concluding section we prove, under an additional assumption, another criterion
which is more convenient to verify.

2. Two basic lemmas. Let g(y) be a convex function on R" satisfying

(2.1) g(y)_->-Iylq/q, Vy R".

Then there are p R and fl R such that

(2.2) g(y)_->(p, y)+fl >-_-Iylq/q VyR.
Denote by II(g) the set of all p R" satisfying (2.2) together with some/3 R
(depending on p). It is easy to see that p II(g) if and only if

(2.3) Ip]q’/q + g*(p) <-_ O,

where g*(p) is the Fenchel conjugate to g. (Here and below we use the standard
terminology of convex analysis without explanations.) Obviously, II(g) is convex
and compact unless g(y)= oe while in the latter case II(g) contains the origin. In
either case there exists a unique vector 7r(g) II(g) such that

[r(g)l-- min {Ipl [p II(g)}.

In other words, 7r(g) is the unique solution to the problem

(2.4) minimize

subject to (2.3).
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LEMMA 1. Let g satisfy (2.1). Denote for brevity Po 7r(g). If Po O, then
there is yo R such that

(2.5)
g(Yo) -qq,- l

lpo] ]yo[,

(2.6) [Yolq [po[q’.

ero4 Let r=[polq’/q ’, z =[po[q’-l(po/[Po[), the maximal value and the
maximum point of the function y --(Po, Y)-[Y]q/q. To prove the lemma, it is
sufficient to find Yo R which satisfies

(2.7) g(yo)--<-(1/’/-q’)lpo[ lyo[ + r,

(2.8) lyol[zl.
Indeed, (2.8) is the same as (2.6). On the other hand, (2.7) and (2.8) imply together

g(Yo) N 1- ]po[ ]yol--[pOlq, [yo[ +r

<
q’- l lpo] [yo]-

1 ]pol Iz ]+r ’/- 1
--;-- q--; q-=--[po]

We shall consider two possible situations and show that in either of them
(2.7), (2.8) hold.

1) Assume that

(2.9) ]Polq’/q ’+ g*(Po) O.

Since po is a solution to (2.3), (2.4) and Po 0, there is _-> 0 such that

0 0( ]Po[ + ]Po[q’/q ’+ g*(Po)).

Two of the three bracketed functions are continuous. Hence summation and
subdifferentiation operations commutate and there is a y Og*(po) such that

(2.1 o) yo -(apo)/[ po[- z.

By ddfinition, z is positively proportional to Po and hence

(2.11) (Po, yo)=-Ipol lyol.

Thus (2.10) implies (2.8). On the other hand, using (2.9)-(2.11) we get

g(Yo) <Po, Yo)- g*(Po) -Ipo[ lyol + r

which implies (2.7).
2) Assume that

IPolq’/q ’+ g*(Po) < O.
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This may happen only if po is the unique point of dom g* nearest to the origin,
which means in particular that

(-Po, Po-p) >-0, Vp dom g*

because of convexity of dom g*.
Note that g(y) is not identically equal to infinity, since poe0 by the

assumptions. Hence for any y dom g and any A > 0 the following inequality
holds (see [6, Thms. 8.5 and 13.3])"

g(Y APo) --< g(Y) + max {-(APo, P)lP dom g*}

=g(y)-A(po, Po)

g(Y)- (Po, Y)+(Y-APo, Po).

Since P0 0 and q’> 1, the latter inequality shows that (2.7), (2.8) will be satisfied
for Y0 =Y- Ap0 if A is sufficiently large.

The following proposition, though playing a subsidiary role here, seems to us
very useful in itself (cf. [ 10] where a similar result was proved under much stronger
assumptions).

PROPOSITION. Let g(t, x, y) be an extended-real-valued function on G x
R x R which is almost B-measurable and l.s.c, in y. Let

g*(t,x,p)=sup((p, y)-g(t,x, y))
y

be the Fenchel conjugate to g(t, x, ). Then g*(t, x, p) is also almostB-measurable.
Proof. Take a Borel set G’= G such that G’= xG and g(t,x, y) is B-

measurable on G’x R R n. Define the following multifunction from G’x
into R x R"

r(t, x)=epi g(t, x, )= {(y, a)[a >= g(t, x, y)}.

According to the choice of G’, the graph of F is a Borel set. On the other hand, F is
closed-valued since g is 1.s.c. in y. It follows from the Novikov projection theorem
that F is B-measurable, which is to say that every set

{(t, x)lt G’, x R m, r(t, x) (3 C }

is Borel whenever C= R x R is closed (see, for instance, [9, Thm. 1.6]). This in
turn implies that g*(t, x, p) is B-measurable on G’x R x R" ([8, Proposition
2S]).

LEMMA 2. Let g(t, x, y) be an extended-real-valued function on G x R x
R which is almost B-measurable, convex and l.s.c, in y and satisfies

g(t, x, y)_-->-]ylq/q.
Let p(t, x) r(g(t, x, )). Then the mapping p(t, x)" G x R R is almost B-
measurable.

Proof. Let G’ be the same as in the above proof. According to Proposition,
the set

{(t, x, p)lt a’, x e m, g*(t, x, p) + Ip[q’/q 0}

is Borel.
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Denote P(t, x)= II(g(t, x,. )). Then P is a closed-valued multifunction and
it follows from what we have just established that the graph of the restriction of P
on G’R is a Borel set. Therefore (again, according to [9, Thm. 1.6]) P is a
B-measurable multifunction on G’ R and

p(t, x) prox P(t, x)

is B-measurable on G’R" (see [7]) which implies the required result.

3. Proof of the theorem. The sufficiency part of the theorem follows
immediately from [1]. Hence we need only to verify necessity.

Assume that I(., is sequentially 1.s.c. relative to the above specified type
of convergence. Since I(., is not everywhere on Ls Lq equal to +0o,

f(t, x, y)>=-c]xlS -c[ylq -b(t)

for some c R, b(. ) L1. For f satisfying the Carath6odory condition, this was
proved by Poljak [5]. In our case the proof needs no changes. Let

g(t, x, y)= (q[c])-l(f(t, x, y)+[b(t)])+q-lx[.
Then

(3.1) g(t, x, y)=>-]ylq/q.

Clearly, g is almost B-measurable, 1.s.c. in (x, y) and convex in y. Likewise, the
functional

J(x( ), y(. ))= Io g(t, x(t), y(t)) dla,

is 1.s.c. in the same sense as I(. ,. and if I(Xk ("), Yk (")) (k 1, 2," are upper
bounded and Xk(" are norm bounded in Ls, then J(Xk(" ), Yk(" )) are also upper
bounded. Therefore we may prove the theorem for g and J instead of f, L

Let p(t, x)=Tr(g(t,x,. )). Then p(t, x) is almost B-measurable and (i) is
satisfied by definition. Hence we have only to prove that p(t, x) satisfies the
condition (ii) of the theorem.

Let Xk (")’-’ X strongly in Ls, Yk (") Y weakly in Lq and

(3.2) J(Xk(" ), Yk(" ))_--<a, <0o Vk 1, 2,....

Let us denote pk(t)=p(t, xk(t)). We must verify that the functions Ipk(t)]q’,
k 1, 2, , form a weakly precompact set in L1 or, in other words, that they are
equi-uniformly summable, that is,

fTlpk (t)]q’ --> 0 in kuniformly

as/zT 0.
To prove this, we shall assume the contrary and come to a contradiction. First

we note that

(3.3) ]IY (")]lq --< a2 < oo, Vk 1, 2,. ,
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due to the fact that Yk (")converge weakly. This along with (2.1), (3.3) implies that

(3.4) I Ig(t’x(t)’ y(t))l dlx <=a3<’ Vk= 1,2,....

If Ipk(t)lq’ are not equi-uniformly summable, then there are 6 >0 and a
sequence {Tk} of measurable subsets of G such that

0, lim sup f [pk(t)lq’dlxtX Tk
k

With no loss of generality, we may assume that

(3.5) f IPk (t)lq’ d >= , k 1, 2,..

and

(3.6)

(3.7)

(3.8)

Let

p(t)O VtTk, Vk=l, 2,....

By Lemma 1, for any k and any T, the set

Bk(t)= {ylg(t, xk(t), y)_--<--sClpk(t)] lY[, ]Ylq >=]Pk(t)]q’}

where sc (1/q’) (.-- 1), is nonempty and closed. Furthermore, the multifunc-
tion Bk (t) is Lebesgue measurable (because its graph is obviously almost Borel
and (G,/x) is a complete measure space [8]). Hence (see [3], [8]) for any k,we can
find a measurable mapping zk(" ): G R" such that zk(t) Bk(t) a.e. on Tk. In
other words, a.e. on Tk the following inequalities hold:

g(t, xk (t), zk (t)) <- --]Pk (t)] Iz (/)],

Izk (t)lq >-IPk (t)lq’’

T’N={t Tkl Iz(t)lq N[pk(t)lq’},
TN {t (t)lq >N]p (t)lq’},

fkN f IZk(t)lq dlx +gl. Ipk(t)lq’ dlx.
"Ti

We shall consider three cases which together cover all possible situations and
show that each case is contradictory.

Case 1.

lim inf FkN < 00.

No loss of generality will follow if we assume that FkN =< b < oo for all k, N. Fix
some N such that biN< 6/2. Then

(3.9) Ir;,N Izk (t)lq dlx <- b, I lp (t)lq’ d >= 6/2.
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where

bk fTN g(t, Xo(t), yo(t)) dl + O, if k -+ o.

This, however, contradicts to the fact that J(., is 1.s.c.
Case 2.

lim inf Fku ;

In this case we may assume that

and hence

lim.s_++inf f,,, [p (t)]q’ d <.
lim,N++infI [zk (t)[q d/ +

lim f, ]pk(t)lq’ dl o.

It follows that we can choose N> 0 such that

NfT [p(t)lq’dl e l, Vk l, 2,

We can also find measurable sets E c Tu such that

gfF IP (t)lq’ dl 1.

LOWER SEMICONTINUITY. II

Choose some Xo(" ) Ls, Yo(" ) Lq such that IJ(xo(. ), Yo(" ))[ < cx3, and let

w (t) Xo(t) +x(t)(x (t) Xo(t)),

Uk (t) yo(t) +Xr;,(t)(Zk (t) yo(t)),

where xr(t) denotes the characteristic function of T. Then Wk(’)Ls and
converge strongly to Xo(" because/XTk -> 0 and Xk (") converge strongly to Xo(" ).
Likewise, the first inequality in (3.9) together with tXTkN-’> 0 shows that Uk (")
belong to Lq and converge weakly to Yo(" ). At the same time, by (3.7)-(3.9),

J(w(. ), u(. ))-J(xo( ), yo("

f (g(t, Xk (t), Zk (t)) g(t, Xo(t), yo(t))) dl
T

<-- -5 (. IPk (t)l [Zk (t) dl + bk

<-- I Iptl’ + bk
Ti,

_-< -(1/2)8 + bk,
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Then

z(t)l d a.

The two last relations are analogous to (3.9) and hence they are also contradictory.
Case 3.

lim inf f ]Pk (t)]q’ d .
k,N-o dT:N

As above, we can choose N 0 and Ek Tv such that

(3.10) (N/q) [pk(t)[q’d =a3+l, Vk 1, 2,...
gE

(a3 being the same as in (3.4)).
Define functions ak (t) on Ek by

(3.11) la (t)z (t)[ NIp (t)["’.

Then ak (") are measurable and 0 ak (t) 1 a.e. on Ek according to the definition
of T. Let

Wk (t) Xo(t) +X(t)(Xk (t) Xo(t)),

Uk (t) y0(t) +X(t)(ak (t)Zk (t) + (1 ak (t))yk (t) y0(t)),

where Xo(t) and yo(t) are the same as above. As in the first case, we see that
Wk(" )Xo(" strongly in L. On the other hand, by (3.3), (3.10), (3.11),

2-q f ]Uk(l)]qd SE]ffk(l)Zk(l)]qd +f lYk(/)lqd
aE Ek

-l(N1/q)(aa+l)+a, Vk=l,2,...,

which shows that the norms of Uk (") in Lq are bounded and hence Uk (") weakly
converge to Yo(" ). Finally

g(t, (t), (t)) [ (t)g(t, (t), (t)) ddk k Xk Zk
#Ek

+f (1--ak(t))g(t, xk(t), yk(t)) d
aE

aE Ek

-(sl/ IP t)l’ a -aE

because of (3.4), (3.7), (3.10). (3.11) and due to the fact that g is convex in y. As in
the first case, this shows that J(., is not 1.s.c. This completes the proof of the
theorem.
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4. A corollary and its proof.
COROLLARY. Ill addition to the assumptions of the theorem, suppose that

II(x( ), yo( ))[ < eo for some yo( Lq and all x( A, where A is an open set in
Ls(s <oo). Then I(.,. is l.s.c, with respect to norm convergence of x(. )-
components in Ls and weak convergence of y (.)-components in Lq if and only if
there exists an almost B-measurable mapping p(t, x): G x R R such that for
some c > O, b(. ) L1, inequalities

(i) f(t,x, y)>-_(p(t,x), y)-clxlS-b(t),
(ii) Ip(t, x)lq’<-_clxl / b(t)

hold everywhere on G x R )< R up to a set with ix-negligible profection on G.
Proof. In [1, Thm. 8] we have shown that this condition is ufficient. Let

1(., be 1.s.c. Choose p(t, x) according to the theorem of 1. Then condition (ii)
of the theorem shows that Ip(t, x(t))[q’ is summable if x(. e A. We claim that, in
fact, this is true for all x(.) Ls. Indeed, suppose that

(4.1) I lp(t, x(t))[q’ dix 0(3

for some x (.) L. Choose arbitrarily a Xo(" A. Then it is possible to find e > 0
such that

wr(t) Xo(t) +XT-(t)(x(t) Xo(t))

belongs to A if ixT< e. On the other hand, (4.1) shows that for some measurable
Tc G with ixT<e,

IT. Ip(t, x(t))lq’ dix

In this case, [p(t, WT(t))Iq’ is not summable which contradicts the fact that
wr(" ) A. Hence (4.1) is wrong.

Thus p(t, x(t)) belongs to Lq, for every x(. ) L. But this is the same as (ii).
This fact was proved in [2] under the additional assumption that p(t, x) satisfies the
Carath6odory condition. But the proof given there demands nothing beyond
measurable choice which is possible in our case since p(t,x) is almost B-
measurable.

Note. The following condition was introduced by Cesari (L. Cesari, Closure
th’eorems for orientorfields and weak convergence, Arch. Rational Mech. Anal., 55
(1974), pp. 332-356): Given a sequence {Xk(" ), Yk(" )} converging in the desired
sense, there is a weakly converging sequence {ak(.)}cLa such that
f(t, xk(t), yk (t)) >= ak (t). As far as sufficiency (not necessity!) is concerned, this
condition is equivalent to the lower compactness property. But in the above-
mentioned work as well as in a recently published paper of L. Cesari and M. B.
Suryanarayana, Nemytsky’s operators and lower closure theorems, J. Optimization
Theory Appl., 19 (1976), pp. 165-183, this condition is accompanied with other
assumptions such as property (Q) or its weakened versions, the Carath6odory
condition and certain others which are needless for lower semicontinuity pur-
poses.
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ENVELOPE CORRESPONDENCE AND ITS
APPLICATION TO THE DESIGN OF

GUARANTEED ERROR CONTROLLERS*

B. ROSS BARMISH’I"

Abstract. In this paper, various problems of minimax error regulation are solved via the method of
"envelope correspondence." Using the Fenchel-Rockafellar system of conjugacy correspondence, we
define a transformation *e and proceed to transform Problem (P), the original problem, into (P*), the
so-called envelope problem. The derivation of (Pe*) from (P) exploits convexity rather than differentia-
bility of the system error norm. The solvability of (P*) is then considered. To meet this end, we develop
a subdifferential description of the dual objective function associated with (P*). When the output error
norm is polyhedral, it is shown how one can get a practical hold on (Pe*), i.e., a linear programming
approach becomes feasible for computation of approximate numerical solutions.

1. Introduction. An incompletely or inaccurately identified dynamical sys-
tem may often be characterized by a vector q of uncertain parameters. Problems
of guaranteed performance (G.P.) arise when control is attempted for such
systems. Basically, the problem one faces is that of finding a control law Uo to
guarantee some upper bound Vo for a performance index J(q, x, u). We insist a
priori that this bound must hold for all excursions of q within some prespecified
uncertainty set O.

In the literature of control theory, various assumptions (compactness,
differentiability, etc.) are made about O and J(q, x, u) above. A selection from
this extensive literature includes the minimax control problems of Witsenhausen
[1], Salmon [2] and Wilson [3], the sensitivity approaches of Sobral [4] and Dorato
and Kesterbaum [5], the adaptive G.P. controllers of Chang and Peng [6], the
norm-uncertain systems of Donati [7] and Negro [8], and the fuzzy set formula-
tion of Chang [9].

In this paper, we propose a new approach to G.P. control which does not
depend on the differentiability of the cost functional. Underlying the theoretical
developments of 2-5 is the following rather simple geometric notion:

If a function f is "well-behaved", then we may describe the
convex hull of f, cony f,1 as the upper envelope of the tangent
hyperplanes to the graph of f.

This so-called envelope operation was recently used in a convex programming
context by White [10]. In [1], Witsenhausen considers G.P. control of sampled
systems subjected to an additive disturbance. The envelope operation is used in
deriving algorithms dual to dynamic programming. In contrast to [1], we shall
consider the envelope operation within the framework of initial state uncertainty.
McLinden [11] and Rockafellar [12] have related this operation to Fenchel’s
theory of conjugate duality [13]. It is this relationship that is instrumental to the

* Received by the editors January 28, 1976, and in revised form January 24, 1977.
t Department of Engineering and Applied Science, Yale University, New Haven, Connecticut

06520.
conv f is the largest convex function majorized by f.
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G.P. control schemes presented here. The plan for the remainder of this paper is
as follows:

Section 2. We describe the envelope correspondence *e. A typical object in the
domain of *e is a family {Jq: q O} of real-valued (performance) functionals.

Section 3. We define Problem (P)ma G.P. output regulation problem. Our
goal is to minimize the worst-case output error subject to variations in the initial
state x0 within prescribed bounds.

Section 4. Under *e; we obtain an envelope-type dual objective functional.
Hence, we consider Problem (Pe*) in lieu of Problem (P). (Pe*) is simpler than (P) in
the sense that its solution can be found in Euclidean n-space whereas Problem (P)
is infinite-dimensional. Furthermore, we can obtain necessary conditions on the
solution of (P) from the solution of (Pe*). It is seen that a strengthening of the
results of 4 is possible when U is a ball (amplitude constraints) and the output
norm has a polyhedral structure.

Section 5. The structure of (Pe*) is examined and an approach is suggested for
computation of numerical solutions. Under the strengthened hypothesis of 4, we
can characterize the dual objective as the pointwise maximum of finitely many
"preferred" affine functions.

Section 6. A numerical example is used to illustrate the implementation of the
computational approach of 5.

Section 7. Conclusion.
The appendices contain proofs of all results presented herein.

2. Envelope correspondence *e.
(i) Envelope operation.2 Let F={i:iI} be a nonempty collection of

extended real-valued functionals on a normed vector space X. Define the set

O(F) {g" X-R 1. g is affine; g =< inf fi pointwise}.

Then env F: X->R U {-]-OCI} is defined by

(2) (env F)(x) sup {g(x)" g (R)(F)}

where the supremum over the empty set is taken as -.
(ii) Fenchel’s conjugate. For fi as above, we define f.*,, the conjugate offi, by

(3) fi*(x*) sup [x*(x)-fi(x)]
xX

where x* X*, the dual of X. The following fundamental lemma relates Fenchel’s
conjugate in R to the envelope operation.

LEMMA (See [12] for proof). Let F={fi’iI} be a nonempty indexed
collection of proper3 lower semicontinuous convex functions on R having a

Geometrically, we are constructing env F from the closure of the convex hull of the epigraph of

f inf fi. Consequently, env F is the pointwise supremum over all affine functions majorized by f.
3f is proper if it never assumes the value -c andf +c.
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common effective domain. Then

(4) (max )* env F*

where F*= {f*" I}.
In light of this lemma, we define the action of *e by

*e F.{1]" I} - env

3. Guaranteed error performance. We describe below a linear differential
system S having uncertain starting state Xo. For a given command signal ya, we
seek a control Uo providing the smallest possible worst-case output error y- ya,
the worst case taken with respect to all possible variations of Xo within given
bounds.

(i) The given data.
1. A nonempty admissible control set U. We assume that U is a prescribed

closed and bounded convex subset of L[0, T]--the space of m-dimensional
essentially bounded real-valued measurable functions on [0, T].

2. A nonempty compact setXo c R n. Points Xo Xo are possible initial states.
3. A controllable linear differential system S described by

(t) A (t)x (t) +B (t)u (t),

y(t)=C(t)x(t)

where dim x n and dim y r. The matrices A (.), B (.) and C(. are assumed
continuous in their arguments.

4. A desired output trajectory ya(t)--an r-dimensional, real, measurable
function on [0, T].

(ii) Problem (P). We let y (Xo, u, t) denote the output at time > 0 induced by
the input pair x0 Xo, u U. Also, I1" will be a specified norm on R r. Then the
terminal error for fixed (Xo, u) is

(6) E(xo, u) Ily (73 y (xo, u, 7311.

(P) Vo inf sup E(xo, u).
U xoXo

(iii) Special cases. In many engineering applications, E(Xo, u), U and Xo are
endowed with additional structure. As special cases of the results to follow, we
shall consider the assumptions

A1. E(Xo, u) measures the largest weighted component of the terminal error,
i.e.,

E(xo, u) max w, lyi(T)-y’(xo, u, T) l, w =>0.

For simplicity, we take all wi 1 and note that our results can be easily modified to
handle wi 1 as well.



1004 B. ROSS BARMISH

A2. The admissible controls are amplitude bounded by M> 0, i.e.,

U {(b/1, u 2, u")e L[O, T]’lu(t)l<M<ooa.e= for/= 1, 2, m}.

4. The envelope problem (P*).
(i) Notational preliminaries. We take (t, -) as the state transition matrix for

S; h 10), h20"), ", hm (-) will be the columns of H0-) C(T)(T, -)B 0-); H*(-)
will be the transpose of H(r); I1" II, will denote the dual norm on R r. (E.g. if
IlylI-(YT=I ]yi]p)l/p, l<p<, then IIylI,-(Y7--, ]yilq)l/q where 1/p+ 1/q 1.)
With this notation, the dual unit ball is

b* {y * R r" IIY*]I. < 1}.

The indicator on b* will be 3 (y*lb*) 0 if y* b*; 6 (y*lb*) + if y* b*. We
also define the set

Y {C(T)(T, 0)x0: Xo Xo}.

Finally, h(. IK) will denote the support function of a (convex) subset K of a
normed vector space X, i.e., if x* X*, then h(x*lK) supers: x*(x).

(ii) Problem (Pe*). Using the theory of conjugacy correspondence [12], [16],
we can describe Problem (P*), a finite-dimensional dualized version of (P). The
manner in which (P) and (Pe*) are related is given below in Theorem 1 and
Corollaries 1 and 2.

(Pe*) Vo* min {ff*(y *) + (*(y *)" y * R r}

where

We seek

* env F*, F* {/*(;, ): 37 I7"};

f* (37, Y *) (ya (T) y-, y *) + 6 (y *lb *);
(*(y*) h(-H*( )y*lU).

THEOREM 1 (see Appendix A for proof) Vo+ Vo* =0. Furthermore, an
optimal element y*o R" solving(P’e) always exists and any Uo( ) U solving (P)
satisfies the necessary condition

T

(7) -h(-H*(. )yo*lU)- | (uo(), H*(’r)yo*) dr.
30

COROLLARY 1. (See Appendix A for proof). Under A1, there is a finite
subset Yp {)71, )Te,- -, yp} of Ysuch that Theorem 1 holds with Yp replacing Y;
p<=2r.

COROLLARY 2. (See Appendix A for proof). Under A2, the necessary
condition in (7) is equivalent to

uio(t) M if (yo*, hi(t)) < 0;

(8) Uo(t) -M if (Y*o, hi(t)) > 0;

u(t) [-M, M] if (yo*, hi(t))= O.



ENVELOPE CORRESPONDENCE 1005

(iii) Remarks. The points 37i above can be constructed from an extremal basis
for (P), i.e., there are points Ol, o2," ", Op in Xo such that

Vo inf max E($oi, u).
uU

Then, we may take yi ya(T)-C(T)(T, 0)Yoi (see Appendix A).
Corollary 1 also holds as is if A1 is replaced by
AI’. Xo is a convex polytope.
We note that (8) is simply an alignment requirement between the Banach

spaces L[O, T] and L7[0, T].
(iv) Trajectory-weighted problems. The results developed in this paper can

be easily modified to handle the trajectory-weighted version of Problem (P), i.e.,
we seek

(Pt) Vot inf sup E,(xo, u)
U xoXo

where

Et(xo, u)= m.ax Ilya(t)-y(xo, u,

and 0 < tl < t2 <" < tN T is a set of sample times. Now, it can be shown (using
an argument similar to that in Appendix A) that Theorem 1 remains valid subject
to the following substitutions:

Replace Vo by Vot;
Replace Vo* by Vo*t;
Replace (Pe*) by (Pe*t);
Replace (P) by (Pt);
Replace R by R/r;

Replace " by FC(tl)(tl,0)Xo
C(t2)di)(t2, O)xo I "xoXo
C(tN)(t, O)xo]

Replace Yd T) by

Replace H(-) by
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where

I0"1[0, ti]) 1 if - [0, ti ],

0 otherwise.

5. The structure o (P*). In this section, we investigate
1. the dependence of if* env F* on its argument y* R r;
2. the structure of the nonlinear convex function (*(y*).
(i) The envelope. In general,/*(y*) is given by (cf. Corollary 17.1.3 of [12]

and Theorem 1 above)

/*(y*) min ,(ya(T)-y, y*), ’,

where the minimum is taken over all expressions of y* as a convex combination of
vectors y* 6 b*, Furthermore, we can restrict attention to those convex combina-
tions in which at most (n + 1) of the A are nonzero.

Such a scheme, however, has one obvious drawback" To evaluate/* at a
single point, we must solve an entire optimization problem involving, perhaps,
many parameters. With the inclusion of A1, however, we shall obtain a closed
form expression for/*(y*).

(ii) Algorithm for finding/*(y*). We first define the polytope E in R r/l
as

the convex hull of all points of the form e mini (37, e) where e is a vertex of b*
and )7i Yp (of Corollary 1). Now, E is said to be a preferred subset of E if

P1. aff E, the smallest linear manifold containing E, is a nonverticalhyper-
plane.

P2. The affine linear function F on R generated by aft E contains E in its
epigraph, i.e.,

(9) E
__
{y*z" z _->/?(y*)}.

The class {Ff" j J} is now taken to be those (preferred) afline functions generated
by the preferred subsets of E. Then we have

(iii) THEOREM 2 (See Appendix B for proof). Under A1,

(10) /*(y *) max FT:(y *) + 6 (y *[b *).

(iv) Remarks. The fact that/* turns out to be polyhedral when b* is a
polytope (A1) is not surprising in light of Theorem 19.2 of [ 1 2]. For the purpose of
numerical computation, we require an algorithm telling us how to generate/*.
Consequently, Theorem 2 cannot be proven simply by invoking Theorem 1 9.2 of
[12J.

(v) The nonlinear convex function (*(y*). Without assumption A2 (or some
other assumption about the structure of U), (*(y*) is found from the formula for
the support function (See Theorem 1)

G*(y *) -min (u 0"), H*(r)y*) dr.
uU
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Under A2, more can be said, i.e., if we substitute for U in the expression for
G*(y*) above, we obtain

(11) (*(Y*) Mfria0=1 ](y*’ hi(t))] dr.

From the point of view of computing numerical solutions to (P*), the following
lemma will be useful.

LEMMA 1. (See Appendix C for proof). Let* R r. Then the subdifferential of
* at *, denoted 0(*()7"), contains all vectors of the form

(12) s ()7")=M
J0=fri hi(t)ri(t) dt

where each cri (’) is a measurable function satisfying

ri(t) 1 if (37*, hi(t))

os(t) -1 if (y*, h(t)) < O;

-1 _-<re(t) 1 /f ()7", hi(t))= O.

(vi) Remarks. A vector s()7*) in 0(*()7") can be used to generate a hyper-
plane which supports the epigraph of (* at the point )7*, i.e., the affine linear
function (of y*)

(13) G*()*, y*)= (s (37"), y*)+ [G*(;*)-(s(37*), 37*)]

is majorized by (* and agrees with * at )7*. Using this fact we can "approxi-
mate" (* (from below) as the pointwise maximum of a finite collection of affine

-,linear functions, i.e., ifs(yi 0(*(37*) for 1, 2,- , k, then we might approxi-
mate G*(y*) by

max {(*(37*, y*): 1, 2,..., k}.

6. Numerical solutions. In light of the preceeding remarks, we propose the
following "heuristic algorithm" for computation of "candidate" G.P. controllers
(under A1, A2).

Step 0 (Initialization). Construct the conjugate functionsf* using the points )7i
cf Corollary 1. Then use the vertices of the polytope E to generate the preferred
affine functions F in accordance with P1 and P2. Replace (*(y*) in (Pe*) by the
zeroeth approximation (0*(y*)= 0. Also, replace if-’* in (Pe*) by the right hand side
of (10). Set n 0.

Step 1. Solve the following linear programming problem for

(LP,,) V.* min {/?*(y*)+ .*(y*) y* Rr}.

Let y,* denote one solution to (LPn).
Step 2. Compute e, O*(y*) -* *G, (y,). (Note: e, is an upper bound for

Vo*- V,*.) If e, is "sufficiently small," proceed to Step 5. Otherwise,
.*),Step 3. Compute s (y a vector in 0*(y ,*), using the formula in Lemma 1.
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Step 4. Let

G,+(y =max{G,(y J*(y,, y*)}

where ((y*, is given by (13). Replace n by n + 1 and return to Step 1.
Step 5 (Termination). Use the "approximate solution" y* to generate a

candidate G.P. controller u, (.) via (8). (Note that u, (.) will be feasible (in U)
despite the fact that y * is not necessarily the exact solution of (P).)

(ii) Remarks. Step 4 defines a progressive rule for generating a well defined
sequence of linear programs. Arguing as in [18], it can be shown that any limit
point of the sequence (y,),= is a solution to (P). We call the algorithm
"heuristic", however, because we can provide no guarantee that the correspond-
ing sequence of controls (u, (-))=1 will converge to a solution of (P).

(iii) Unconstrained version of (P). We may also wish to consider the case
U L[0, T]. Now, we seek

(P’) V,= inf sup E’(Xo, u)
6L xoXo

where

(14) E’(xo, u)=llull+E(xo, u).

Using an argument similar to that in the proof of Theorem 1, it can be shown that
V+ V’ 0 where

(P’) g’=min *(y*)" 2 I(Y*,h(t))ldtl
i=1

Furthermore, if * is a boundary point of the (convex) dual constraint region"’

y*eR- I(y*,h())ldl
i=1

then Lemma 1 can be re-interpreted (withM 1) as being a description of vectors
in the normal cone of this region at *. Consequently, we can develop an
algorithm (analogous to the one above) to generate candidate solutions to (P’).

(iv) An example. We consider an unstable, 3-dimensional plant S described
by

i(t x(t + u

i(t) 4ax(t)- 16x(t) + x(t) + u(),

y(t)=x(t)+x()+x3(t), efo, 0.75].

The set Xo of possible initial states is the tetrahedron having vertices (0, 0, 0),
(0.1, 0, 0), (0, 1, 0) and (0, 0, 1), and the desired output ya(t) is the triangle wave of
Fig. 1. Terminal errors are measured at the sample times t..3 0.25, 0.50, 0.75
and we regulate the quantity

(xo, u)= max ly (xo, u, ) y()].
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y(xo, u, t)
6

4

/

""v,, \.. \.., o

-2 \
/

Yd(t)

--4

-6

i
/

//

" /" .75
/

// //

/

FIG. 1. Possible output trajectories subject to G.P. control

We also include a term penalizing control effort as in (14). The conjugate
functions are computed to be

f*(y*) 1.14y 1"- 7.56y2"- 5.70y 3. +6(y*lb*),
f2*(Y*) 5.62y 1, + 0.82y 2, + 4.52y 3, + 6(y*lb*).

The preferred attine functions are

F*(y *) 6.25y 1,_ 2.45y 2,_ 0.59y 3,_ 5.11,

F2*(y*) 6.25y 1"- 4.292"- 0.59y 3"-4.19,
F3*(y*) 0.5 ly 1.- 2.45y 2"- 0.59y 3.- 5.11,

) 1 2 3F4(y =0.51y -4.29y -0.59y -5.11.

Using 9 supporting hyperplanes to approximate the dual constraint region, we
obtain an "approximate" solution to Problem (P*’)"

yg* (-0.51, 0.38, -0.11),

V9*’= 6.24.
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Using (8) of Corollary 2, we generate the candidate control

u(t) 1 if e [0.0, 0.1] [3 [0.38, 0.75],

otherwise.

if e [0.0, 0.38] U [0.68, 0.75],

otherwise.

In Fig. 1, the cross-hatched region represents the set of possib!e output trajec-
tories y (Xo, u9, t) that arise as the initial state Xo varies over Xo.

7. Conclusion. Theorem 1 presupposes the existence of a G.P. controller
Uo U. In [14], a weak-star lower semicontinuity argument is used to guarantee
the existence of Uo above. The situation may arise wherein the quantity (y 0", hi (t))
is zero on a time set of nonzero measure. In such a case, a G.P. controller is
nonunique and we may consider the inclusion of a secondary performance
criterion. Finally, we mention two G.P. control problems currently being investi-
gated via the.method of envelope correspondence. Under *e, we hope to obtain
new envelope problems analogous to (P*).

(i) Optimal control subject to multiple or conflicting objectives. In this situation
we consider a set Ya of desired paths for the differential system S. J(ya x; u) is a
performance index for S and we seek the infimum

V0 inf sup J(ya x; u ).
uU yd Yd

(ii) Inaccurately modeled dynamic systems. M(u) is the response of a model
M of S to an input u. S(u), the output of S, is known only within prescribed
bounds, i.e., it is known a priori that the system-model error

e(u)=S(u)-M(u)

is bounded in norm by some constant/3. The G.P. control problem is that of
finding the best performance level J(e(u); u) that can be guaranteed indepen-
dently of possible error excursions between the system and the model, i.e., find

Vo inf sup J(e(u); u).
uU

Negro [8] and others have recently considered a class of such problems in a Hilbert
space setting.

Appendix A. Proot of Theorem 1, Corollaries 1 and 2. First, we define the
function f: R r.._) R by

f(y) sup_ f(37, y)

where f(37,. ): Rr-- R is given by

y) Ily (T) y

Step 1. Convexity off(. ). Clearly, f(y, can be expressed as the composition
of E2(y)=llyll and El(y)=ya-]-y, i.e., f(y, y)=(E2oE1)(y). Since El(. is
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affine linear and E2(" is convex, it follows that f(37, y) is convex. Now, we may
view f(. as the pointwise supremum over the family {f()7, )’)7 Y} of convex
functions. Hence f(. ) must be convex (cf. [12, Thm. 5.5]).

Step 2. Application of Rockafellar’s duality theorem. We are going to put
Problem (P) into the standard form required for applying Rockafellar’s extension
of Fenchel’s duality theorem (cf. Theorem 3 of [16]). To meet this end, we define
the linear operator A" L[0, T]-R by

T

Au | C(T)O(T, ’)B (’)u (r) dr;
Jo

and the concave function g" L[0, T]-R by

(u) -(u u).

Now, it is easily shown that

(P) Vo inf {f(Au)-g(u): u 6Lm[0, T]}.

Applying Theorem 3 of [16], we obtain4

(P*) Vo max {-g*(-A*y *) -f*(y *)" y * Rr}.

Step 3. We show that f*(y*)= P*(y*). By definition,

f*(y*) sup [(y, y*)- sup f(y, y)]
y

sup (f(g.))*(y*).
eY

Now, by Lemma 1, it follows that

f*(y*) (env F*)(y*)

where F*= {/*(,. ): 3 Y}. The calculation

f(y, y*)= (yd(T)--), y*> +8(y*]b*)
is straightforward.

Step 4. Completion of proof. It is easily verified that

g*(-A*y*) -h (-H*( )y "1 U)
-d*(y*).

Substituting for f* and g* in (P*) yields

Vo max {-f*(y*)- G*(y*): y* eR r}

Solutions to (P) and (Pe*) must satisfy the so-called "extremality conditions"
(cf. [16, p. 184]). Hence, we require -A*yo* Og(uo). This says that -A*y must

4 It is easily shown (using Theorem of 16]) that (P) is "stably set",ma technical precondition for
Theorem 3.
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be in the normal cone of U at Uo, i.e.,

(-A*y, Uo) sup (-A*y o*, u ).
u.g

Clearly, this condition is the same as (7).
Proof of Corollary 1. We construct a set of points {ol, o2,""", op} R

such that the equality

sup E(Xo, u) max E(oi, u)
xoXo

holds for all u U and p -_< 2r. Define Pj" RrR to be the projection map onto
the jth coordinate, i.e., Py y. Now for fixed j, it follows from the co_ntinuity of P.
and the compactness of Y that there are (at least) two points 7-, yi in Y such that

inf Py PYi, sup_ Piyi Pi.
y "CY y Y

Pick any two points 2i, _x e R such that C(T)(T,
Letting j vary from 1 to r, we obtain at most 2r distinct points _Xl, il, _x2,

i2,""", _xr, i, in this manner. Relabel these points ion, io2,""", iop. Now we fix
any Xo e Xo, u U and observe that for some k =< r,

E(Xo, u) ]P (ya (T) C(T)(T, 0)xo- Au

=< max {E(2, u ), E (_x, u)}

_-< max E (2oi, u).

The inequality

(A.1) sup E(xo, u) <- max E(Yoi, u)
xoXo

now follows by taking the supremum over Xo 6 Xo. Furthermore, (A.1) can be
reversed because Yoi 6 Xo.

ProofofCorollary 2. When U is a closed ball of radiusM in L[0, T], we have

h (-H*( )y *[ U) M[]H*(. )y

where I]" [!, is the norm on L,,,[0, T]. Substituting (7) above, we obtain the
necessary condition

Z u()(y*o, h(’)) dr M ](yo*, h(,))] d
i=1

from which (8) easily follows.

Appenclix B. Prooi ot Theorem 2.
Preliminaries. The point y *@z * in R+ is called a lower point of the polytope

E if

(B.1) z* inf {z" y*@z e E}.

We denote the set of lower points of E by L and call conv a lower r-face ofE
when E is a preferred subset of E.
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Proofs of the following "geometrically obvious" facts are left to the reader.
Fact 1. L is the nonempty union of the lower r-faces of E.
Fact 2. L shadows b* in the following sense: For every y* b*, there is some

z* R such that y* if) z * L.
We also require one lemma. (See Witsenhausen [1] for proof.)
LEMMA. Suppose f" R r- R Iu +/-oo is bounded from below and f(x)- 4-00

outside a convex set K. Then (env f)(x) 4-00 for x outside the closure of K.
Proof of Theorem. For y* outside b*, we have

min f (y *) 4,00.

The preceding lemma necessitates

(env F*)(y*)= +oo

outside b*. Hence we have the term 6(y*[b*) in (14).
For y* b*, we first establish the inequality

(B.2) (env F*)(y*) _-< max F[(y*).

To do this, pick any 0 (R)(F*) and fix y * b*. By Fact 2, we may find z * R such
that y*@z* L. Using Fact 1, we may now select some lower r-face conv Fk
containing y*ff)z*. LetF denote the preferred affine function generated by
We now proceed to show that

(B.3) 0 (y *) =<F(y *).

First we expand y* (R)z* as a convex combination of the vertices of ,, i.e.,

y* (R) z* Y’. ci (gi (R) min (9j, gi)), Odi-----0 ZC,= 1

By the nonnegativity of the ci and the afline linearity of 0 and F’, it follows that

0 (y *) O( Oli oliO (i)

F’( c) Fk*(y *).

Consequently,

O(y*) max F(y*)

Inequality (B.2) now follows by taking the supremum over 0 (R)(F*).
To establish the reverse inequality

(B.4) max F[(y *) --_< (env F*)(y *),
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we first show that

(B5) max F’(y*) _-< m!n f(y*).

To do this, we exploit the convexity of maxj F, i.e.,

(B.6) max F(y *) <= Y ai max F**. (6i ).

The condition E
_
epigraph F for all j then requires

(B.7) Y 01. maxF(6i)<=Y Og man f(.i).

Now, by the concavity of mini f, we have

(B.8) Cti min f(6i)-<m!n if(y*).

Inequality (B.5) now follows from the chain of inequalities (B.6)-(B.8). Inequality
(B.4) is now a trivial consequence of (B.5).

Appendix C. Proof of Lemma 1. Suppose )* R and s (y*) has the structure
given by (12). Then, we must show that

(*(y*)=>(*(jT*)+(y*-37*, s07*)) for all y* ER r.

For arbitrary y*E R r, we have

30:fTil (y*’ hi(t))’i(t)at

{y*-*, h(t)}m(t) dt + G*(*)

G*(*) + {Y*- *, 2 h(t)m(t)} dt
i=1

G*(* + (y* *, s (*).
eiege. The author is grateful to Professor James S. Thorp for a

number of helpful consultations held during the course of research. He also wishes
to express his thanks to the reviewers whose suggestions were incorporated into
the revised manuscript.

REFERENCES

[1] H. S. WITSENHAUSEN, Min-max control for sampled linear systems, IEEE Trans. Automat.
Control, AC-13 (i968), pp. 5-21.

[2] D. SALMON, Minimax Controller Design, Ibid., AC-13 (1968), pp. 369-375.
[3] D. J. WILSON, Min-max control of quadratic systems, Proc. IEEE Conf. on Decision and

Control, Phoenix, AZ, 1974.



ENVELOPE CORRESPONDENCE 1015

[4] M. SOBRAL, Sensitivity in optimal control systems, Proc. IEEE 56, Institute of Electrical and
Electronics Engineers, New York, 1968, pp. 1644-1652.

[5] P. DORATO AND A. KESTERBAUM, Application of game theory to sensitivity design of optimal
systems, IEEE Trans. Automatic Control, AC-12 (1967), pp. 85-87.

[6] S. S. L. CHANG AND T. K. C. PENG, Adaptive guaranteed cost control ofsystems with uncertain
parameters, Ibid., AC-17 (1972), pp. 474-483.

[7] F. DONATI, Approssimazione di sistemi lineari in spazi normati, Proc. XI Inter. Automation and
Instrumentation Conf., FAST, Milan, 1970.

[8] A. NEGRO, Min-max optimal control of systems approximated by finite-dimensional models’, J.
Optimization Theory and Appl., 12 (1973), pp. 182-203.

[9] S. S. L. CHANG, Control and estimation of fuzzy systems, Proc. IEEE Conf. on Decision and
Control, Phoenix, AZ, 1974.

[10] D. J. WHITE, Envelope programming and a minimax theorem, J. Math. Anal. Appl., 40 (1972),
pp. 1-11.

[11] L. MCLINDEN, Envelope programming and conjugate duality, Ibid., 47 (1974), pp. 256-268.
[12] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1972.
[13] D. G. LUENBERGER, Optimization by Vector Space Methods, John Wiley, New York, 1969.
[14] B. R. BARMISH, On a class of perturbation-invariant Chebyshev regulators, Ph.D. dissertation,

Cornell Univ., Ithaca, NY, 1975.
[15], Guaranteed error performance for uncertain linear systems, Proc. Conf. Systems and

Information Sciences, Johns Hopkins Univ., Baltimore, 1975.
[16] R. T. ROCKAFELLAR, Duality and stability in extremum problems involving convex functions,

Pacific J. Math., 21 (1967), pp. 167-187.
17] B.R. BARMISH AND A. BRANDES, Transformed controlproblems over ad]oint constraint regions,

in preparation.
[18] A. F. VEINOTr, The supporting hyperplane method ]:or unimodal programming, J. Operations

Res., 15 (1967), pp. 147-152.
[19] W. FENCHEL, On conjugate convex functions, Canad. J. Math., (1949), pp. 73-77.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 15, No. 6, November 1977

OPTIMAL CONTROL OF GENERATING POLICIES
IN A POWER SYSTEM GOVERNED BY A
SECOND ORDER HYPERBOLIC PARTIAL

DIFFERENTIAL EQUATION

N. U. AHMED?

Abstract. In this paper we present necessary and sufficient conditions for determining the

optimum generating policies for each of a system of power stations feeding into a primary transmission
line. The system is modeled as a linear second order partial differential equation of hyperbolic type
with appropriate initial and boundary conditions. Further, existence of optimal control policies for the

system is proved. A computational algorithm for determining the optimal policies is also presented.

1. Introduction. In this paper we consider the problem of optimal control
of generating policies of power stations feeding into a primary transmission line.
For economic operation of a power system it is necessary to adjust the generating
levels of each of the power sources (subject to the limitation imposed by its
maximum generating capacity) with the change of the distribution of load with
time. In 2 we present the model for a power system consisting of a transmission
line, two or more generating stations and load distributed in space and time.
Assuming the generating stations are located at the terminals of the line, we
develop a model consisting of a second order partial differential equation of
hyperbolic type with Dirichlet boundary conditions. In 3 we present certain
fundamental results that assure the existence of solution to the Dirichlet (first
boundary) problems. In 4 necessary and sufficient conditions of optimality are
presented for power systems with two generating stations located at the terminals
of the line (Theorems 4.1, 4.3) and also for power systems having generating
stations located at arbitrary points on the line including those at the terminals
(Theorem 4.7, Corollary 4.8). In 5 we present a theorem on the existence of
optimal control policies, and in 6 a computational algorithm, based on the
necessary conditions of optimality of 4, is given.

In the knowledge of the author there appears to be no known results on
power systems optimization employing partial differential equations as the sys-
tems model. Static optimization techniques and classical variational methods have
been widely used for power systems optimization without taking into account the
dynamic constraints of the transmission line (Dommel [1, (1971)]; see also the
references thereof). The idea of "transposition" used to prove the existence of
solutions of nonhomogeneous boundary value problems ( 3) is taken from Lions
and Magenes [4, vol. 1, p. 283] and Lions [2, p. 291]. Necessary conditions of
optimality for systems governed by hyperbolic partial differential equations of the
type 02y/Ot2 +Ay g, A elliptic, with Dirichlet or Neumann boundary controls
are available in the literature (Lions [2, Chap. 4, p. 272 if]). However these
results are not directly applicable to the problems considered in this paper since
the damping term (Oy/Ot) is missing from the above model and also because the
function g, in some of the results given in our paper, is actually a distribution in the

* Received by the editors October 26, 1976, and in revised form February 7, 1977.
t Department of Electrical Engineering, University of Ottawa, Ottawa, Ontario, Canada
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1016
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sense of Schwartz. Russell [5], [6], [7] has considered optimal control of systems
governed by a system of hyperbolic equations in symmetric form. In [5] Russell
obtains the optimal control in feedback form; however, he does not impose any
control constraint. Further, Russell’s models do not contain distributional forcing
terms.

2. Modeling and formulation of the optimal control problem. A transmis-
sion line at power frequencies is described by a pair of first order hyperbolic
equations relating currents (i) and voltages (e)

(2.1) ix -Ge -Cet, ex -Ri -Lit,

where ix, ex and it, et are first partials of i, e with respect to space and time
variables. Equation (2.1) represents a line without load. A loaded line is rep-
resented by

(2.2) ix -Ge Cet f ex -Ri -Lit,

where f(t, x) is the distribution of load current (in time and space) so that the total
current drawn by the load from the entire line at any time is given by

(2.3) I(t) I f(t, s) dsc, f (0, L0), Lo length of the line.

The system (2.2) can be reduced to a single second order hyperbolic equation
involving only current distribution

(2.4) itt q- air h- fli yixx Yfx
where

a (LG + RC)/(LC), RG/(LC), 3’ 1/(LC).

and L, C, R, G are the fundamental line parameters (series inductance, shunt
capacitance, series resistance and shunt conductance per unit length). Since the
equation (2.4) is second order in it is required to specify the initial distribution of
current and its time rate of change before one can consider its solution. In general
we have a Cauchy problem:

itt + ait +i yix,

i(0, x) io(x) / given for x l (0, L0)
it(O,x)=il(x) J

We consider two different systems, one in which the generating stations are
located at the terminals of the line and the other with generating stations located
at arbitrary points of the line.

Case (i). We consider that the transmission line is supplied with power from
two generating stations located at the terminals. Further we will assume that they
are able to generate power at different rates up to a maximum limited by the
capacity of the plants. For a given generating voltage eo(t), the power (active and
reactive combined) supplied by the sources is determined by the current supply.
Under these assumptions the Cauchy problem (2.5) is converted into a first
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boundary value problem called the Dirichlet problem with boundary conditions

(t, 0) U (t), i(t, Lo)=Uz(t),

where Ul(t) and u2(t) are the currents supplied by the sources located at the
terminals at time t. Let L0 be the length of the line and f (0, Lo) its span and
I (0, T) the time interval of interest and Q I . Let 01 {0, L0} denote the
endpoints of the line and Z I 012. Let u (u l, u2) denote the control vector
representing the generating policies of the two sources during the time interval L
With these notations we can rewrite our system model as

itt + oit qi yi,,,,

(0,’) io,
(2.6)

it(0, il, (t,x)6Q,

i/Z u.

Let a//ad, a closed convex subset of L2(I) L2(I), denote the class of admissible
controls or the admissible generating policies over the period of operation
I (0, T). In the sequel we will consider several performance functions J(u)
representing the cost of operation of the system. The problem is to find a control
U 0-1./ad, subject to the dynamic constraint (2.6), so that J(u) <-_ J(v) for all v O]/ad.
We consider in this paper a distributed cost function

J(u)= (i(t,x)-ia(t,x))2dxdt+- (AlUh-A,2u)dl
(2.7)

ax a,

and a terminal cost function

(2.8) J(u)= (i(T,x)-ia(x))Z dx +- (Alu+Azu) dt

and present the corresponding necessary conditions of optimality from which
optimal generating policies can be computed. The function ia(ia ia(t, x) or ia(x))
represents the desired current distribution and is assumed known. The first term in
the cost functions, with A0>0, represents losses due to deviation from the
expected demand and the second term, with A 1, A 2 > 0, represents cost of genera-
tion. The last term in (2.7) represents resistive losses dissipated in the form of heat.

Case (ii). A power system consisting of a primary transmission line with
generating stations located at intermediate points in addition to those at the
terminals can be modeled in a similar way. We point out the modifications
necessary. Suppose, in addition to the terminal generating stations, there are
additional (n- 2) generating sources located at points X2, X3,""", Xn-1 - with
0 x and L0 xn. Then the system (2.2) takes the form

n--1

(2.2)’ ix -Ge Cet -f+
s=2

y us (t)6 (x xs),

ex -Ri -Lit,
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where ui, 2,. ., n 1 are the generating levels of the sources located at the
points xi, 2, , n 1. Consequently the system (2.4) takes the form

n--1

(2.4)’ itt +ait +i-yixx yfx-3’ Z Us(t)6’(x-xs),
s=2

where 6’ is the distributional derivative of the Dirac measure 6. The complete
model in this case is then given by

itt at-oit +fli-yixx Yfx-Y Z Us(t)6’(x-Xs),
s=2

i(0,. io,

it(O, ")=il,

i(t, O) ul,

(t,x)Q,

i(t, Lo)

The necessary conditions of optimality for both the cases are presented in 4.
The existence theorem is given in 5 and a computational algorithm is presented
in 6.

3. Some preparatory results. Let B be a real Banach space with the norm
and I an open interval of the real line R. Denote by Lp(L B), 1 <=p <-, the
equivalence classes of strongly measurable functions on I with values in B and
equipped with the norm I1" []where

For B H, a Hilbert space and p 2, L2(I, H) is a Hilbert space. Let H denote a
real Hilbert space of functions defined on 12 (0, L0) with scalar product denoted
by (.,.) and norm by[. [. We introduce the following Sobolev spaces:

with scalar product

and norm Ilella with

H’(tl) {e 6 H L2(fl)" e, ex 6 L2(fl)}

(e,f)=(e,f)+(ex, fx)

Ilel[--[el 2

HI’(() {e L2(()" e, el, e L2(O)}

with the scalar product
T T

and norm Iletl,l where

T

(e,, ft) dt + Io (ex, f) dt

:JO
T/"

]2 2 2}{[e +letl + [ex dt

{e L2(O)" e, et L2(O)}



1020 N.U. AHMED

with scalar product

(e, f)= IoT T

(e, f) dt+ Io (et, ft) dt

T T

Similarly H’1 is defined. Clearly H’(O)=Lz(O) and H’I(O)=L(L H). By
H-a we will denote the dual ofH whereH is the closure in H topology of C
functions with compact support. Thus L2(L H-) (L2(L H))*.

There are several techniques for solving nonhomogeneous boundary value
problems (Lions and Magenes [4, vol. 1, Chap. 3]). In this paper we will use the
method of transposition. Towards this end let us define the map F

and F* its formal adjoint given by

We then consider the homogenous boundary value problem

F*()=h for(t,x)OIxO=(O,

(T, .) =0,

[ 0, where E (0, T) z {0, Lo}.

For the problem (3.1) we have the following result.
LEMMA 3.1. Let a,, 3,>0, h6L2(LH)=L2(O) and 0<T<oo. Then the

system (3.1) has a unique solution q H1’1 (Q).
Proof. For the proof we use Galerkin’s approach after an a priori bound is

established. Multiplying the first equation in (3.1) by q, and integrating over the
set 12 we obtain

(3.2)
d 12a-71Y(t)l- 2c Iqgt 2(h, qgt)

where, since fl, 3, > O,

and

(. ) dx.

Integrating once with respect to we have from (3.2) that

(3.3) ]Y(t)12-2a ]q,12do=lg(o)12+2 (h(O,.),,(O,.))dO
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for each [0, T]. Subtracting (3.3) from the same for T one obtains
T T

(3.4) IY(t)]2+2a I Iq’ld-IY(Z)12-2 1 (h, qgt) dO.

Since q(T, q,(T, --0 on it follows from the definition of Y that Y(T)
0. Thus

T r

(3.5) [Y(t)lz+2a ltlz dO2( IhlZ do)/2( I ],12 dO) ale.
Using the elementary inequality

2 2a e b2lallb[<+ fore >0=e
in (3.5) we obtain

g()l/2c I1 dO <--- Ih dO / I1 dO
E

or equivalently

(3.6) Ig()l/(2- I1 dO <--- Ihl dO.

Since c > 0, it follows from (3.6) by choice of e >0 so that -ea>0 that
r

(3.7) [g(t)12--<e fo Ihl2 dO

and since ON/< T<c we have j g(t)l2 dt <. Thus we conclude that if the
problem (3.1) has a solution it is bounded in/-/’(O) or equivalently q
L.(I, H(f)) and q e L.(I, H). Denote by H the class of functions in H that
vanish on the boundary 0f and let {w} be an orthonormal system on complete
in the class H. Following Galerkin’s procedure, the solution of the problem (3.1)
is approximated by the solution of the finite dimensional problem

4,. (m)/ (re)l,,. (m)
/"S Wj, Wi) a E ZS \w.i, Wi)-- E Zj Ws, Wi)

j=l j--1 /=1

(3.8)

z ((Ws)x, (W,)x)=(h, w),

l<=i<=m.

Since, for each positive integer m, the system in (3.8) is finite dimensional and
linear it has a unique solution satisfying the terminal conditions. By defining

(m)la,(3.9) q E Zi "’i
i=1

and using the a priori bound established above it is easily shown that {q9 m} is a
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bounded sequence from Hl’a(O). Thus there exists a subsequence again denoted
by {q’} and an element q Hl’a(O_) so that q" q weakly in Ha’a(O). Equival-
ently {pm }, {q 7] and {q7} are bounded in L2(I, H) and have weak limits q, qt and
qx respectively with qm (T, )0 and q7’(T, )-0 strongly in H and Hrespec-
tively. From these facts it follows that 0 is a weak solution of the problem (3.1) in
the sense that

r T T T

for all g e Ha’a(O) with g(0, 0 and glz 0. Choosing g with compact support
in O, it follows from (3.10) that p solves problem (3.1) in the sense of distribu-
tions. For uniqueness it follows from the inequality (3.7), with h =0, that
s(t)[ 0 and consequently q-= 0. This implies uniqueness. This completes the
proof.

Remark 3.2. Note that, since {wi} is orthonormal the system (3.8) can be
written as

(m) A (m)y(m +H(m)

where

and

y(m)__ (y,,,) y(2.,)); y.)= z(m) and

-(/31+yA), aI
z =(z "’’zm

I (m X rn) identify matrix,

A {((wi)x, (wi)), i, ] 1, 2,. ., m}, an rn x m matrix,

H(")=[0, h(")] withh(m)={(h, w)i= 1,2,.." ,m}.

Here denotes transpose of a vector.
Remark 3.3. In fact the above result remains valid if -YG is replaced by

B(t)O where B(t) is any self adjoint elliptic operator from. H to (Ha)* and
(B(t)O, O)>--blOlH with b >0 and h 6 (Ha)* where we have used * to denote the
dual and ., ) to denote the duality bracket in H and (Ha)* and IH to denote
the norm in H1. For general results see Lions [2, p. 272-327].

With this preparation we can now solve the nonhomogeneous boundary
value problem (2.6).

Note. We will, from now on, denote the response of the system (2.6) or (2.6’)
corresponding to the control u by (u) and its values by (u)(t, x), (t, x) O.

LEMMA 3.4. Consider the system (2.6) with data io6 Ha, H and f
L2(I, H) and suppose the assumptions ofLemma 3.1 hold. Then for each control
u R,a there exists a unique solution (u) L2(I, H) for the problem (2.6) and the
map u -i (u is affine continuous.

Proof. We will transpose Lemma 3.1. By Lemma 3.1, for each h L2(L H)
there exists a unique q H’a(O) with q(T, qt(T, )=0 and ql. 0. Define

X--- {q 6 Ha’a(O): F*(q) L2(O), q(T," )= q,(T," )=0,
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and suppose it is endowed with the topology induced by the norm I1" IIx where
(3.11) Ilq [Ix ]JF*(q)l]a(t,n)= Ilh
with q the solution of the homogeneous boundary value problem (3.1) corres-
ponding to h L2(I, 14). Endowed with this norm, X is a Hilbert space and the
operator F* is an isomorphism of X onto L2(I, 14). With 0 from X, the system
(2.6) can be written in the following variational form:

(3.12) Io7"
where

(i (u ), F*(q)) dt (qg

T

l(q)-- 1 (3,f,q)dt+ [. io(x)[cq(0, x)-qt(0, x)] dx+ 1_ il(x)qg(0, x)dx
(3.13) T

Jo [ul(t)q(t, O)-u2(t)tpx(t, Lo)] dt.+3/

The system (3.12) is equivalent to (2.6) and a formal interpretation of (3.12) is
obtained by choice of a q X with compact support in Q. This leads to the equality

T T

(3.14) fo (i(u), F*(q)) dt fo (3/fx, q) dt.

Since (3.14) holds for every q 6 X, with compact support in Q, it follows that

(3.15) itt(u)+ait(u)+fli(u)-yix(U) Yf in Q.

Multiplying (3.15) by 0 X and integrating by parts over Q we obtain
T T

fo <i(u), F*()) dt fo (Yfx, p) dt + fn i(u)(O, x)[aq(O, x)-qt(O, x)] dx

(3.16) + In it (u)(0, x)o (0, x dx

+ 3/fn [i (u)(t, O)qgx (t, O) i(u)(i, Lo)Ox (t, Lo)] dt.

Clearly this shows that i(u)(O,.)=io, it(u)(O,’)=il, i(u)(t,O)=ul(t) and
i(u)(t, Lo) u2(t). Hence the equivalence. Since f L2(I, Hx), i0E H1, il H and
u 6 0-//ad c L2 L2 it follows that is a continuous linear functional on X, that is,
X* the dual of X. Further F* is an isomorphism of X onto L2(I,/4); thus it

follows from the principle of transposition (Lions and Magenes [4, vol 1, p. 283];
Lions, [2, p. 291]) that there exists a unique i(u) L2(I, H) so that

T

o
(i (u), F*(q)) dt l(q) for all X.

Further the map --> from X* into L2(I, H) is continuous and in particular the
map u--> i(u) from 0-adC L2 L2 into L2(L H) is affine and continuous. This
completes the proof of the lemma.
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In fact the Lemma 3.4 is true under more relaxed condition as stated below.
LEMMA 3.5. Consider the system (2.6) with io EH1, EHand f E L2(I, H

and suppose the assumptions of Lemma 3.1 hold. Then for each control u
there exists a unique solution (u L2(I, H).

Proof. The only difference in the proof is in the definition of the functional 1.
In the present case we take

/(P)= fo (Tf’ cPx) dt + I io(x)[aqo(O, x)-qo,(O, x)] dx + il(x)cp(O, x) dx

(3.17) T

| [ul(t)ox(t, O)-u2(t)ox(t, Lo)]dt.+3’
Jo

Since 01. 0, the two functionals (3.13) and (3.17) are identical. The integrand in
the first term of (3.17) is the duality product between H-1 and H1.

For the proof of the necessary conditions presented in the following section
we need one more lemma. This result asserts the existence of the Gateaux
differential of (u) with respect to the control u. Define

’(v) w. limit
-->0

(u + ev (u)

to be the weak Gateaux differential of at u in the direction v.
LEMMA 3.6. The solution i(u) of the first boundary value problem (2.6)

corresponding to the control u has a linear (weak) Gateaux differential at every point
u lad. This differential is unique, independent of u and is given by the solution
(v L2(I, H) of the problem

i;t if" OZ i"t + fl 3"i"xx O,

(3.18) f(O," O, i](O," O,

lG /.) 0ad.

Further, the transformation v-i(v) is linear.
Proof. The proof is similar to that as given in Lemma 3.4 with

(3.19)
T

l(qg) T Io [Vl(t)qgx(t, O)-v2(t)qgx(t, Lo)] dt.

That ’(v) is the Gateaux differential of i(u) in the direction v follows from
subtracting (3.12) corresponding to u from that corresponding to u + ev and then
taking the limit e --> 0. Linearity of the transformation v --> (v) is obvious.

4. Necessary conditions of optimality. With the help of the above results we
will be able to prove several necessary conditions of optimality.

THEOREM 4.1. Consider the system (2.6) in its variational form (3.12) with

defined by either (3.13) or (3.17). Let the hypotheses ofLemma 3.4 or Lemma 3.5
hold and suppose the costfunction J is given by (2.7) with ia L2(L H) and Ao, A 1,

A 2 > O. Then the optimal control u is determined by the simultaneous solution of the
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system of equations

(4.1)

and

(i(u), F*(0)) dt l(O)

(4.2)

and the inequality

fftt cfft +/3p "yff,, Ao(i (u) ia) + Ri (u),

,t,(T, ,,(T, 0,

{[/1Ul + ")/I/Ix (t, 0)](W U 1) -- [/ 2U2 )tl//x (t, Lo)](w2 u2)} dt >- 0

for all w (w 1, W2) E 0ad.
Proof. Let u E 0?/ad be the optimal control (existence proved in Theorem 5.2).

Then, for the given data io, and f and the control u, the functional is well
defined through the expressions (3.13) or (3.17). Thus, by Lemma 3.4 or Lemma
3.5, there exists a unique solution i(u) L2(/, H) for the problem (4.1). Therefore
Ri(u)+Ao(i(u)-id)L2(I, H) and consequently by Lemma 3.1 the system (4.2)
has a unique solution (u)6.X. Since for arbitrary v 6 a//ad, (3.18) has a unique
solution (v) L2(I, H) (Lemma 3.6), we can scalar multiply the first equation in
(4.2) by ’(v) in the Hilbert space L2(/, H) giving

T

((v),F*.(b)) dt=Ao Io ((v), (1 +-o)i(u)-ia) dt.

It follows from Lemma 3.6 that

(4.5)
T

((v), F*(d/)) dt y Io [vld/x(t, O)-v2G(t, Lo)] dt.

Since has a Gateaux differential on q/ad (Lemma 3.6) and J is defined by (2.7) it
follows that J also has a Gateaux differential. Further J is quadratic in u and
therefore convex. Since by hypothesis a//ad is a closed convex set, the necessary and
sufficient condition that J attains its minimum at u 6 0-//a is that the Gateaux
differential

(4.6) Ju(W u) >= 0 for all w ado

This gives us the inequality

J’(w-u)=Ao (w-u), 1+- i(u)-ia dt

(4.7)
T+Io [AUl(W-Ul)+A2u2(w2-uz)]dt>=O forw0"//ad’

where (w -u) is the solution of the problem (3.18) corresponding to the control
v =(w-u).
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Using (4.4) and (4.5) for v (w-u) in the inequality (4.7) we obtain the
desired inequality (4.3). That is, (4.3) is a necessary and sufficient condition for
optimality. This completes the proof.

Remark 4.2. In case ?/ad L2 x L2 (no control constraint) the optimal control
is given by

U

u(t) =-6(t, 0),

u2(t) 26 (t, Lo).

In this case the optimal control is given by the solution of the two point boundary
value problems

itt +ait + [3i-’yixx Yfx,

(4.8)

and

i(O, x) io(x), it(0, x) il(X)

i(t, O) -7-6(t, 0), i(t, Lo) =-a6x(t, Lo),

6t, Ot +t TOng Ao(i ia) + Ri,

(4.9) (T,x)=,(T,x)=O,

dd(t, O) dd(t, Lo) 6t(t, O) Ot(t, Lo) O.

The system (4.8) is solved in the variational form as defined by (4.1).
In problems where power demand changes fast and it is required to adjust the

generating level to meet the predicted demand by a given time, it is natural to use a
terminal cost function. Denoting the period of transition by the same interval
(0, T) as in Theorem 4.1, the cost function is given by the expression (2.8). For this
problem we have the following result.

THEOREM 4.3. Consider the system (2.6) in its variational form (3.12) with
given by either (3.13) or (3.17). Let the hypotheses of Lemma 3.4 or Lemma 3.5
hold and suppose the cost function is given by (2.8) with ia Hand Ao, A , A 2 > O.
Then the optimal control u is determined by the simultaneous solution of the system
of equations (4.1),

(4.10)
,(T, x) 0,

6t(T, x) Ao[i(u)(T, x)-ia(x)],

and the inequality
T

(4.11) Io {[AlUl--3tx(t’ O)](wl-ul)+[A2u2+Tffdx(t’L)](w2-u2)}dt>--O

for all w Oad.
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Proof. By Lemma 3.5 the system (4.1) has a unique solution i(u) L2(/, H)
for u ad- Thus i(u) has continuous representative. Choosing the continuous
representative we have Ao[i (u)(T,.) ia(- )] 6 H. Multiplying the first equation of
(4.10) by i(v) of Lemma 3.6 and using Green’s formula we obtain formally

T T

(4.12) +)to fa (v)(T, x)[i(u)(T, x)-ia(x)] dx

T

+Y fo [VlOx(t, O)-v2x(t, Lo)]dt.

From (4.10) ((v),F*(O))dt=O and from (3.18)of Lemma
(0, F(i(v))) dt= 0 and consequently

(4.13))to fa (v)(T,x)[i(u)(T,x)-ia(x)]dx

As in Theorem 4.1 we have for all w

3.6

[VzOx(t, Lo)-VlOx(t, 0)] dt.

(4.14)

J’(w -u) =)to Ia (w -u)(T, x)[i(u)(T, x)-ia(x)] dx

T

+ Io [)tlul(wl-ul)+)t2u2(w2-u2)] dt >-O

where w =(wl, w2) and u =(ul, u2). Substituting (4.13), corresponding to v
(w u), into (4.14) we have

T

{[)t lul-Yx (t, 0)](w u 1) +[)t 2u2 + yq& (t, Lo)](w2- u2)} dt >- 0

for all w 0/ad. Formal application of Green’s formula in (4.12) is justified by
approximating i(u) and i(v) by a sequence of regular functions (for example
integral averages) and then passing to the limit.

Remark 4.4. Again for the unconstrained problem, ad L2 X L2, the opti-
mal control is given by

ul(t)=--x(t, 0),

u2(t) -bx(t, Lo).

A power system usually consists of a network of transmission and distribution
lines carrying power from generating stations located at several geographical
positions. We consider here a system consisting of a transmission line with power
supplied by generating stations located at n points xl,.. ", xn e [0, Lo] with
x l( 0) and x, (= L0) being the end points and xi, 2,..., n- 1, the interior
points of f (0, Lo). The output (current) of the generating sources is denoted by
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u (Ul," , u,). Let L denote n-copies of the space L2(0, T) and 0"ad a closed
convex subset of L representing the class of admissible generating policies or
controls. The system in this case is described by the first boundary value problem

(4.15)

n--1

i# +ai, +fli-yi ),f -y Y u,(t)a’(x -x,)
s--2

i(O,x)=io(x), i,(O,x)=i,(x), (t,x)Q,

(t, 0) U (t), (t, Lo) u, (t),

where 6(x-xs) is the Dirac mass located at x =xs and 6’ its distributional
derivative, which itself is a distribution (in the sense of Schwartz). Due to the
presence of distributions in the equation it is now absolutely essential to interpret
the system (4.15) in the sense of distribution and consider it in the variational form
(4.1), here,

T

(4.16) Io (i (u ), F*(q )) dt= (q) for all q 6X

where

(4.17)

l(q) =- -y (f, qx) dt + {i0(x)[aq (0, x)-qh(O, x)]+ il(x)tp (0, x)} dx

+y u(t)qx(t, Xs)-U(t)q(t,x,) dr, x=O, x,=Lo,
-----1

and the set X and the operator F* are as defined in 3. The system (4.16) is
equivalent to the system (4.15) as discussed in the proof of Lemma 3.4. The proof
of the following lemmas is similar to that of Lemma 3.5 and 3.6.

LEMMA 4.5. Consider the system (4.15) with a, fl, y>0, fLz(I,H-1),
ioH1, and il H. Then for every control u e 0//ad cL_ the problem (4.15) has a
unique solution i(u L2(/, H) in the sense that

T

(i (u), F*(p)) dt [(q) for all q X.

For the Gateaux differential of (u) we have the following result.
LEMMA 4.6. The solution i(u) of the problem (4.15) corresponding to the

control u has a linear Gateaux differential at every point in llao
_
L". The differential

is unique, independentofu and is given by the solution (v L2(/, H) oftheproblem

(4.18)

n--1

i], +ai] +fl:-’yi =-T E v,6’(x-x,)
s-----2

x) o,
’(t, 0) Vl, ’(t, Lo) v,, v 6 0ad (t, X) 6 Q,
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in the sense that

(4.19)
Io ((v),F*(q))dt=Ylo vs(t)qx(t, xs)dt

T

-3/fo v,(t)qx(t, xn) dt

for all o X where x =- 0 and x, Lo.
With the help of the above results we can prove the following necessary and

sufficient conditions for optimality.
THEOREM 4.7. Consider the system (4.15) in its variationalform (4.16) with

as defined by (4.17). Let the hypotheses of Lemma 4.5 hold and suppose the cost

function J is given by

(4.20)
(i(v)-ia, i(v)-ia) dt +- As(vs(t))2 dt

+- (i(v), i(v)) dt

with ia L2(L H), Ao, As, s 1, 2, , n, positive and v 0ado Then in order that
u 0ad be the optimal control it is necessary and sufficient that the equalities

(4.21)

(4.22)

and the inequality

T

o
(i(u), F*(6)) dt [(),

qtt, tt + flq YOxx Ao(i (u id) +Ri (u ),

for (t, x 6 Q,

(4.23)

,(T, .) =0,(T, 0

o,

T n-1

Y [Asus(t) + yd/(t, x)](w(t)- us(t)) dt
s=l

Z

+ fo [A,u, (t) TP (t, x,)][w, (t) u, (t)] dt >- 0

for all w O/ad hold simultaneously.
Proof. The proof is similar to that given for Theorem 4.1.
Next we consider a pointwise necessary condition of optimality. Let U be a

compact and convex subset of R" and suppose 0ad consists of measurable
functions on I with values in LI. Clearly q/ad CL L and the Theorem 4.7
holds. We present a pointwise necessary condition of optimality for this case.

COROLLARY 4.8. Suppose the hypotheses of Theorem 4.7 hold and let
0ad L, as defined above, be the class of admissible controls. Then the necessary
and sufficient conditions ofoptimality consist ofthe equalities (4.21) and (4.22) and
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the inequality

(4.24) Y [AsUs(t)+yqx(t, Xs)][vs-us(t)]+[Anun(t)-yd/x(t, xn)][vn-un(t)]>--__O
s=l

,for almost all I and all v U.
Proof. It suffices to demonstrate the inequality (4.24). Let E be any measura-

ble set containing the point and contracting to the one point set {t} where is an
arbitrary point in (0, T). Let v 6 U be arbitrary and define

v for 0 E,
a(O)

u(O) for0e\E, I=(0, r),

which is an admissible control. Substituting t for w in (4.23) and dividing the
resulting expression by/x (E), the Lebesgue measure of the set E, we obtain

() sZ=, [,us(O)+q,(O,x)][v-u,(O)]

(4.25)
+ [A,,u,, (O Tx (O, x,, )] {v. u.(0)] / dO >-o.

Since u and G (", xs) are measurable functions and consequently almost all points
of I are Lebesgue density points with respect to these functions we obtain the
inequality (4.24) by letting x (E)- 0. This completes the proof.

Remark. In practice the current capacities of the generating stations are
limited in amplitude and in that case the control range space is given by a
hypercube

U ={v R"" [vsl<-bs, bs>O,s 1, 2,... ,n}.

Therefore it follows from the above corollary that the optimal control u
(ul u,) has the form

us(t)=us G(t, xs s=l, 2,..’,n-1,

where

b for z => b,
Us(Z): z for[z[<bs, s:l,2,...,n.

-bs for z _-<-bs.

5. Existence of optimal control policies. In the necessary (and sufficient)
conditions developed in 4 it was assumed that optimal control policies exist. In
this section we give a proof of this fact. For this we will need the following lemma.

LEMMA 5.1. Consider the system (4.15) in its variationalform (4.16) with as

defined by (4.1_7) and the cost function J given by (4.20) with o, As (s
1, 2,. , n) positive, i L2(I, H) and 0ad a closed convex subset of L’d. Suppose
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Lemma 4.5 holds. Then the cost]unction Jis weakly lowersemicontinuous on 0ad.
Proof. Let {u k } be a sequence from 0ad SO that u k -u weakly in L. We must

show that J(uO)<--liminfkJ(uk). By Lemma 4.5 there exists a sequence of
solutions {i(uk)} and i(u)e L2(L H) for the problem (4.15) so that for each k

T

(i(ukl, F*(q)) dt= [k(q)

and
T

o
(i (u), F*(rp)) dt

for all q X with [k(p) and [o(q) given by (4.17) with u replaced by u k and u
respectively. Since u k - u weakly inL and X it is clear from the expressions
for k and o that k 0 in the weak star topology ofX* (dual of X). Therefore

T

o
(i(uk)--i(u),F*()) dtO

for all X. Since F* is an isomorphism of X onto Le(L H) it follows that
(u k) (u) weakly in Le(I, H). Further it is easily verified that

k for( ( R)i o) )J(u )J(u)+Ao i(uk)--i(u), 1+ (U --ia dt

-u)Us dr.
=1

Since u u weakly in L and i(u) i(u) weakly in L(I, H) it follows from
application of limit inferior on either side of (5.1) that

(5.2) J(u) Nlim inf J(u).
k

This comoletes the proof.
THEOREM 5.2 (existence theorem). Consider the system (4.15) in its varia-

tionalform (4.16) with [as defined by (4.17) and costfunction (4.20). Suppose the
hypotheses of Lemma 5.1 are satisfied. Then there exists a unique optimal control
U
0 0/ad SO that J(u ) <-J(v) for all v ad.

Proof. Define

(5.3) inf {J(v): v ad} y.

Since by definition J -> 0 and for each u, J(u) < o, it is clear that 0 _-< 3’ < o. Let
{u k } be a minimizing sequence from 0-ad SO that

(5.4) lim J(u k) y.
k

Let ]lu denote the norm of u in L 7. Since 0 <- y <o and J(u) - o as Ilu II" c it is
clear that {u k } is a bounded subset of 0ad L. Thus, L being a reflexive Banach
space, there exists a subsequence of the sequence {uk}, again denoted by {uk}, and

0 k 0an u L e so that u - u weakly. Since 0ad is closed and convex it is weakly
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closed and therefore u 0ad and due to (5.3),

(5.5) _-<(u).

By Lemma 5.1 J is weakly lower semicontinuous on 0ad and consequently

(5.6) J(u) _-<lim inf J(u’ ).
k

Combining (5.4), (5.5) and (5.6) we have

y <=J(u) -<limkinf J(u
t"

li J(u T.

This shows that u is an optimal control. Since J is quadratic in u it is strictly
convex and therefore u is unique. This completes the proof.

Remark 5.3. The result of Theorem 5.2 also holds for ’//aa a closed convex
subset of L endowed with the weak star topology.

6. A computational procedure. An iterative technique based on the neces-
sary conditions of 4 can be developed for computing the optimal controls. The
following discussion is presented with reference to Theorem 4.7 even though it
applies to all the necessary conditions of optimality of 4. The inequality (4.23)
gives J’,,(w u) in terms of the adjoint state. Thus the gradient of the cost function
is a linear functional on L that is for v L_

T

where 0(u) is the adjoint state corresponding to i(u) (see (4.22)) and hence the
control u. The functional Ju can be computed for each choice of u 6 0?/ad by solving
the system and the adjoint equations. Since J is quadratic and the system
equations are linear, the map u J’, from L to (L)*, identified with L, is an
affine map. Therefore there exists a rt L. independent of u, v 6L so that

(6.2) J’,+ J’, + c (J’ + n).

Let u e L2 and define u u opj,o, w J,o and denote J(w) by (J’,,, w), inner
product in .Lo Then by Lagrange formula

.l(u ’) J(u) + Jo J"+("-")(u u) dO

J(u o) + Jo (J’’+("’-" u dOo), U O)

J(u)- Jo (J’u-ow’ J’u) dO.

Using (6.2) in the above expression we obtain
2

(6.3) J(ul)=J(u)-pl[J’ull2+--(J’wo+rI, J’u).
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Clearly I(Jo+ rt, Ju)l < (x3 and consequently it follows from (6.3) that

(6.4) J(u )=J(u)-pllJLoll2 / o(o ) wherelim(P)=0.

Therefore if p >0 and sufficiently small then J(u ) <J(u) for u u-pJo. The
choice of p is also dictated by the requirement that ue aaCL. The above
discussion leads us to the following algorithm.

Step 1. Guess u e a-
Step 2. Solve the system equation (4.15) in the weak form (4.21) to give

i=i(u).
Step 3. Solve the adjoint system (4.22) to give o= (uO).
Step 4. Use the pair {u , o} in the necessary condition (4.23) to find jo.
Step 5. Define u= u-pJ with p >0 but sufficiently small so that ue
Step 6. Compute J(u ). if J(u 1) <j(u o) go to Step 2 with u replacing u and

if not reduce p by a suitable factor and go to Step 5.
Remark. A suboptimal control is obtained by introducing a stopping criterion

IJ(u"+’)-J(u")l<e or Ilu"+l-unll< for a suitable number e.
For a discussion of other numerical methods the reader is referred to Lions

[3, Chap. 9, p. 296].
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INVERTIBILITY OF CONTROL SYSTEMS ON LIE GROUPS*

RONALD M. HIRSCHORN]

Abstract. This paper gives necessary and sufficient conditions for the invertibility of a class of
nonlinear systems which includes matrix bilinear systems. Lie algebraic invertibility criteria are
obtained for bilinear systems in R which generalize the standard tests for single input linear systems.
These results are used to construct nonlinear systems which act as left-inverses for bilinear systems.

1o Introduction. There is a considerable amount of literature dealing with the
invertibility of linear control systems (cf. [1], [2], [6]-[8], [11]). The question of
invertibility--when the output of a control system uniquely determines the
input--is of practical as well as theoretical interest, and is related to functional
controllability, problems in coding theory, etc.

The purpose of this paper is to show that the linear results on invertibility can
be extended to a much larger class of systems. In particular, we consider the
question of invertibility for right-invariant systems, where the state space is a Lie
group, and bilinear systems where the control depends linearly on the state (cf. [3],
[5], [9]).

The role of Lie theory in the study of right-invariant and bilinear systems is
analogous to that of linear algebra in studying linear systems. Many of the
standard matrix rank conditions for linear systems have been generalized as Lie
algebraic criteria in the right-invariant and bilinear case (cf. [3], [5], [9]).. In this
paper we find necessary and sufficient conditions for invertibility which are Lie
algebraic in nature and generalize known results for linear systems.

In 2 we introduce notation and basic results. Section 3 examines the
invertibility of right-invariant systems, which includes the class of matrix bilinear
systems. In 4 these results are used to construct left-inverses for bilinear systems.
A left-inverse is a nonlinear system which, when driven by appropriate derivatives
of the output of the original system, produces as an output u(t), the input to the
original bilinear system. A number of examples are presented in this section.

2. Notation and preliminary results. In this section we review some basic
results and definitions which are used in this paper. We assume that the reader is
familiar with the basic notions of differential geometry and Lie theory (cf. [4],
[10]).

Let H be a Lie group. The right multiplication mapping Rx :y yx from
I-I- H has differential dRx. A vector field X on H is called right-invariant if
dRxX(y) X(yx) for all y e H. The collection of right-invariant vector fields, , is
called the Lie algebra of H.

A single input-single output bilinear system is a control system of the form

(t) Ax (t) + u (t)Bx (t); x (0) x0,
(1)

y(t)- cx(t)

* Received by the editors June 29, 1976, and in revised form January 24, 1977.
? Department of Mathematics, Queen’s University, Kingston, Canada K7L 3N6.
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where the state x 6 R A and B are n x n matrices over R, c is a 1 x n matrix over
R, and u 6 R, the class of piecewise real analytic functions on (0,

It is often convenient to express the solution to (1) as x(t)= X(t)Xo where
X(t) is an n x n matrix valued function of which is the trajectory of the
corresponding matrix bilinear system.

A single-input matrix bilinear system is a system of the form

2(t) AX(t) + u (t)BX(t) X(O) Xo,
(2)

Y(t) CX(t)

where A, B, X are n x n matrices over R, u ag, and C is an r x n matrix over R.
We will assume that Xo is invertible so that X(t) evolves in GL(n, R), the Lie
group of invertable n x n in real matrices (cf. [3], [9]).

The matrix system (2) is a special case of the more general class of right-
invariant systems studied in [9]).

DEFINITION. A right-invariant system is a system of the form

2(t)=A(x(t))+ E u,(t)B,(x(t)); x(0)=x0H,
i=1

()
y(t)= Kx(t)

where u 1, , u,, R, H is a Lie group, K is a Lie subgroup of H with Lie algebra
Y{, and A, B1, , B,, , the Lie algebra of right-invariant vector fields on H.

We remark that the coset output y(t) Kx(t) generalizes the output Y(t)
CX(t) in (3). In particular one could set K={X GL(n, R): CX C} and H=
GL(n, R).

A single-input right invariant system is a system of the form
(t)=A(x(t))+u(t)B(x(t)); x(0)-x0H,

(4)
y(t) Kx(t)

where A, B, K, u are defined as above.
DEFINITION. The right-invariant system (3) is said to be invertible if the

output - y(-) on any interval 0 <--< uniquely determines the input -- u(’)
for 0<_- < t. That is, distinct inputs produce distinct outputs. Invertibility for
systems (1), (2) and (4) are defined in an analogous manner.

The properties of a right-invariant system are related to the structure of the
Lie algebra . The Lie algebra is a vector space with a nonassociative
"multiplication" defined as follows"

for X, Y Y the Lie bracket ofX and Y is

IX, Y](m X(m Y- Y(m)X

(cf. [4], [10]). We define adcY inductively as follows" adcY Y and adcY
[X, adx-1Y]. For matrix bilinear systems with X, Y W right-invariance means
that X(M) XM and

[X, Y](M) (YX-XY)M.

Let 6e be a subset of the Lie algebra . We define {oQg}LA to be the Lie algebra
generated in 6 in g. Thus {}LA is the smallest Lie subalgebra of X" containing
For each x H let o(x) {L (x): L o}.
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It is known that the structure of the reachable set for (3) is related to the
structure of the Lie algebras:

{A, B, B2, Bm}LA,

o {adBi" k 0, 1,-.. and/= 1,..., m}LA,

{B 1," ", Bm }LA.
Thus each right-invariant system has associated with it the chain of Lie algebras

If exp:H is the standard exponential mapping in Lie theory than
exp {exp L :L } H and the group generated by exp , {exp 0}o, is a Lie
subgroup of H [4], [10]. Set

G {exp }G, Go {exp O}G

and

B {exp Y3 }G.

Thus each right-invariant system gives rise to the chain of Lie groups

HGGoB.
Since o is an ideal in (i.e. for each Lo o, L , [Lo, L e o) we know that
Go is a normal subgroup of G. The following theorem relates the structure of the
trajectories of a bilinear system to the above group decompositions.

THEOREM 2.1 (Sussmann and Jurdjevic [9]). Consider the right-invariant
system (3) where the state x evolves in the Lie group It and A, B1, Bm .
Associated with this system is the chain ofLie groups H G Go B. Thenfor any
set of controls u 1,"’, Um with corresponding trajectory t-x(t) we have
x(t) (exp tA Go" Xo for all >-_ O, where (exp tA Go" Xo
{exp tA g xo" g 6 Go}.

We conclude this section by presenting two formulae which are used in the
next section. The mapping Lx" y - xy from H H is called the left multiplication
map. Suppose that x =exp X where X and x I-I. The mapping Ax
Lx R,_I" y --> xyx- of H-> H has differential dA, Ad(x): --> . The
Campbell-Baker-Hausdorff formula for right-invariant vector fields asserts that

1 1
Ad (x)(Y) Y-adxY+.adcV- adY+.

(cf. [4, p. 118]).
The exp mapping of Y{--> H has a differential X Yt, d expx" Yt’--> where

ad1-e
d expxY(e) (dRexpx)e

-adx
Y(e)

1
+
1 ad:Y(exp X) +..-Y(expX)+ adxY(exp X)
3!

(cf. [4, p. 95]).



INVERTIBILITY OF CONTROL SYSTEMS 1037

3. Invertibility criteria for right-invariant systems. In this section we derive
necessary and sucient conditions for the invertibility of right-invariant systems.
The main result in this section is the following theorem:

TIZORZM 3.1. The right-invariant system (4) is invertible if and only if
adAB Y{for some k {0, 1, ., n 1}, where n is the dimension of and Y{ is the
Lie algebra of K.

COROLLrV 1. Consider the right-invariant system (4) with output y(t)=
c(x(t)) where c: H- J is a Lie group homomorphism andc,:- is the differential
ofc.

This system is invertible if and only if c, adB 0 for some positive integer
k {0, 1,. , n-l}.

COROLLARY 2. The matrix bilinear system (2) is invertible if and only if
C adB 0

for some positive integer k {0, 1, , n 2__ 1} where A and B are n n matrices.
COROLLARY 3. The matrix bilinear system (2) fails to be invertible if and only

if every control gives rise to the same output function.
The similarity between the standard linear invertibility results and the above

conditions is striking. In [2] Brockett shows that the single-input, single-output
linear system A Ax + bu; y cx is invertible if and only if cA kb 0 for some
positive integer k. The relative order a of the system is the least positive integer k
such that cA k-lb 0 (or infinity). Rewriting this system in bilinear form (cf. [3]),
we have

A Z -[- uB1z

where

y Cz

z= A= 0 0 BI= 0 0

The state transition matrix for this system is the state for corresponding matrix
bilinear system. Corollary 2 above asserts that this matrix system is invertible if
and only if C adAiB1 0 for some k. Since

CadaB= (0 cA kb)
and invertibility in the linear case is independent of the initial state, the well-
known linear result follows from the more general bilinear result, Corollary 2.
This motivates the following definition:

DEFINITION. The relative order, a, of the matrix bilinear system (2) is the least
positive integer k such that C ada-lB 0 or a if C adB 0 for all k > 0.

As in the linear case, a matrix bilinear system is invertible if and only if the
relative order a < o. The remainder of this section will be devoted to proving this
result.

In studying the invertibility of matrix bilinear systems one is tempted to
repeat the approach which is successful in the linear case--differentiate the output
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until the control u (t) appears, and solve for u (t) in terms of the derivatives of the
output. Unfortunately the bilinear dependence of the control on the state greatly
complicates the situation and little insight is obtained. Instead we will use the fact
that the trajectory evolves in a Lie group. We begin by looking for a sufficient
condition for invertibility for the right-invariant system (4). Suppose that this
system is not invertible. This means that there are two different controls u and u2
which give rise to outputs yl and Y2 respectively, where y Y2. Let t- Xl(t) and
t- x2(t) denote the trajectories corresponding to u and u2. Then

yl(t) I(. Xl(t)= K. x2(t)= y2(t)

and

K xl(t)xz(t)-a K for all t_->0.

In particular the curve - a(t)= x(t)x2(t)-1

is contained in the Lie subgroup K for all -0, and for each positive time t, the
derivative d(t) is contained in the tangent space to K at a(t), Y{(at)). The
following lemma establishes some of the basic properties of a (t) and d (t).

LEMMA 3.2. Consider the right-invariant system (4). Suppose that u 1, u2
are controls which give rise to trajectories t-xl(t) and x2(t) respectively. The
curve - a(t) Xl(t)x2(t)-
is contained in Go and

d(t)=(A +Ul(t)B)(a(t))+dLa(o(A +Uz(t)B)(e)

where e is the identity element of Go. In particular

dRt)-,(d(t)) (A + ul(t)B)(e)-Ad (a(t))(A + u2(t)B)(e)

is contained in o(e) for all real t.

Proof. Let t- Xa(t) and x2(t) be smooth trajectories corresponding to
controls u and u2. By Theorem 2.1 x(t), Xz(t) (exp tA) Go" Xo for all R. It
follows that xi(t)= (exp tA). Pi(t)" xo where Pi(t) is a smooth curve in Go, for

1,2. Thus

a(t)= Xl(t)x2(t)- (exp tA )Pa(t)P2(t)-1 exp (-tA ),

and since exp tA G, P(t)P2(t)-1 Go, and Go is a normal subgroup of G, we see
that a (t) Go for all R.

The product rule for differentiation implies that

da (t) -(x (t)x2(t) ) -x (t)x2(s) +--x,(t)x(s)-s=t OS s=t
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Since A and B are right-invariant vector fields and i(t)=(A +ui(t)B)x(t)
for 1, 2, we have

0-x(t)x(s)
Ot

-(A + ul(t)B)(Xl(t)x2(t)-l) (A + u(t)B)(a(t)).

To obtain an expression for 2(S)-1 we observe that X2(S)X2(S)-1-- e for all
s R. Differentiating both sides of this equality results in the equation

or

Thus

dLx2(t)(2(t)-1) + dRx2(t)-l2(t) 0

(X2(/)-1) ---dLx2(t)-’ dRx2(t)-’:2(t)=-dLx2(t-’(A + u2(t)B)(e).

0--XI(t)X(S) dLxl(t) (-dLx2(s)_l(A q- u2(s)B)(e))
Os

and using the chain rule we conclude that

t(t) (A + ul(t)B)(a(t))-dLa(t(A + Uz(t)B)(e).

To complete the proof we identify o(g) with Te (Go) for all g Go. Then ti(t)
is identified with dRa(t-,,(ft(t)) for all real t. We observe that the mapping
Cx: g-+ xgx -1 of GoGo can be written as the composition Rx- Lx and thus
dRx-., dLx dC Ad (x) and dR(t)-,(dt(t))= dR(t;-(A +ul(t)B)(a(t))-
dR(t) dL,(o(A + u2(t)B)(e)= (A + Ul(t)B(e)-Ad (a(t))(A + u(t)B)(e). This
completes the proof.

We have observed that if system (1) fails to be invertible then the curve
a(t) is contained in the Lie Group K and fi(t) Y{(a(t)). Thus dRa(t)-(t(t))

Y{(e) for all in R and if we set

O(t) (A + u(t)B)(e)-Ad (a(t))(A + Uz(t)B)(e)

then the curve t- Q(t) is contained in Y{(e) by Lemma 3.2. If we identify Y{(e)
with Y{" then Q(t) and its derivatives with respect to of all orders are contained in
9’{’. In particular (d"O(t)/dt)[t=o=Q(")(O)6Y{ for n =0, 1,... and the Lie
algebra generated by these tangent vectors is contained in YL

In proving Theorem 3.1 we will show that the Lie algebra generated by the
derivatives Q(0), Q(I(0), Q(2(0), is the Lie algebrao of Go. Thus a sufficient
condition for invertibility is that 5fo YL The next lemma examines the relation-
ship between the curve, - a (t) and the Lie algebra o.

LEMMA 3.3. Consider the right-invariant system (4). Suppose that u 1, u2 R
are distinct controls and t - x l(t), t x2(t) are the corresponding trajectories. Then
there exists e > 0 and a real analytic curve t- L(t) in o, defined for It] < e, such
that Xl(t)x2(t)-1= exp L(t) for [tl < e ando {L (t)" It[ < e}A.

Proof. The curve - a(t) Xl(t)x2(t)-1 is contained in Go as a consequence of
Lemma 3.2. It is well known that exp" o- Go is a local diffeomorphism in some
neighborhood of 0 in Wo [4], [10]. Thus there exists an e > 0 and a real analytic
curve t-L(t) in o such that expL(t)=a(t) and L(t) has a Taylor series
expansion L(t) ,i=o tiLi for It[ < e. Since a(0) Xl(0)x2(0)-1 e e -1 e and



1040 RONALD M. HIRSCHORN

a(0)=expL(0), we have L(0)--0 and Lo=0. Clearly L1, L2,’" Echo and

{L(t)ltl < e}LA {Li" 1, 2,’" "}LA. We will set4o {Li" 1, 2,.. "}LA. It follows
that oco and the proof will be complete if we can show that o o.

Set O(t)=(A +ul(t)B)(e)-Ad (a(t))(A +Uz(t)B)(e) for all real t. Lemma
3.2 asserts that

O(t) dRa(t)-l(d(t)) dRaft) exp L(t)

We will use this equality to study o. We begin by noting that Ad (a(t))=
Ad (exp L(t)). Using the Campbell-Baker-Hausdorff formula we have

Ad (a(t))(a + u2(t)B)(e)= 2 ((-1)/k!)ad,)(a + u2(t)B)(e),
k=0

and so

Q(t)=(u(t)-Uz(t))B(e) . ((--1)k/k!) adkc,)(A +Uz(t)B)(e).
k=l

Choosing e smaller if necessary we can assume that u(t)= io ait and u2(t)---
=o bit for [tl < e. Setting ci a bi we have

Q(t) , ctB(e) , ((--1)k/k !) ad kL(t)A (e)
i=0 k=l

Y, Y ((-1)/k !)biti ad(,)B(e).
k=l i=0

Expressing L(t) as i1 tJLj we can collect like powers of and write

Q(t)=coB(e)+ . tkFk(e),
k=l

where Fk o for all k. A straightforward induction argument shows that

Fk ckBk + (-- 1)’ adALk +Rk + Sk

where Rk is a linear combination of terms of the form ad/k adtk adL,A with
p >- 1, ki < k for 1, 2, , p and Sk is a linear combination of terms of the form
ad/ adcB with q _-> 1, k _-< k for 1, 2, , q.

A second expression for Q(t) comes from the identity

Q(t)= dRa(t)-l(-t exp L (t)).
Using the formula for dexp and the Taylor series expansion for L(t) it is easy to
verify that

Q(t)=Ll(e)+ Z tk((k + 1)Lk+(e)+Mk(e))
k=l
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where Mk is contained in {L1,."", Lk}LA. Combining these two expressions for
Q(t) we find that L coB and

(6) (k + 1)Lk+l +Mk =F
for k 1, 2,. . To complete the proof we will use these relations to show that
adB 0 for k 0, 1, , which implies that 0 0.

Since u u2, Ck 0 for some k. Let p be the smallest positive integer k such
that ck 0.

Claim. L1, L2,"’, Lp 0 and (p + 1)Lp+a cpB" If p 0 then this is the
case, since L=coB. If p>0 then c0=0 and La=0. Suppose that L a,

L2,’",Lk =0 for 0_-<k<p. Combining (5) and (6) we find that Fk
(k + 1)Lk+ +Mk =ckB +(-1)k adALk +Rk +Sk. Since ca =c2 ck =0 and
L, L2, , Lk 0 it follows from the definitions that Mk ckB adALk Rk
Sk 0. This induction argument proves that L a, L2, , Lp 0 and hence Mp
adALp ep Sp--0. Thus (p + 1)Lp+a Fp cpBp, which proves the assertion.

Claim.o is an adA -invariantsubspace ofo" Let p be chosen as above. Then
La L2 Lp 0 and it suffices to show that (- 1)k adALk (k + 1)Lk +1
{Li" p < _--< k}La for all k > p, since this implies that adALk oo for all k. The proof
uses induction on k. We have shown that (p + 1)Lp+a cpB, (p + 2)Lp+2 +Mp+l
Fp+l from (6), and Fp+l =Cp+lB q-(-1)p+l adALp+l nURp+l +Sp+l from (5). Since
La Lp 0, we have Rp+a, Sp+l 0 and since Mp+l {L1," ", Lp+a}LA,
Mp+ aB for some real number a. Combining these results we have

(p + 2)np+2 (-1)P+’(Cp/(p + 1)) adAB +(Cp+,-a)B.

If k =p+ 1 then (-1) adALk-(k + 1)Lk/l=(--1)k adA((Ck_a/k)B)-
(--1)k(ck-/k) adAB--(Ck-a)B =(a--Ck)B {Lk}LA. NOW assume that
(- 1)k adALk (k + 1)Lk +1 {Li" p < <= k}LA for p < k < n where n is a positive
integer greater than p + 1. For k n we have

(n + 1)Ln+l =Fn-Mn =cB +(-1)" adALn +R +Sn-Mn
from (5) and (6). Thus

(-1) adAL-(n + 1)Ln+, =Mn-cnB-Rn-S
and the induction will be completed if we can show that the right hand side of the
above inequality is contained in {Lp+l, gp+2, ,Ln}LA. Set Yd=
{Lp+ 1, , L}LA. NOWM Y/" by definition, and since Lp+ cpB Y( and Cp 0,
bo,th B and cnB are in Y/’. Recall that S is a linear combination of terms of the form
ad/k, adLk adL/,qB where ki _-< n, hence S Yg’. Finally, Rn is a linear combina-
tion of terms of the form adl...adcqA where kq <ft. By the induction
hypothesis (- 1)" adALn_ (-- 1 ad._A =-nL, +L where L 6

{Lp+l," ", Ln--1}LA and it follows that Rn is also contained in 3’{. This completes
the induction.

Since Cp O, B o, ando is an adA-invariant subspace of o, ad o for
all k _-> 0, which completes the proof of this lemma.

Proof (Theorem 3.1). First we suppose that the system (4) is invertible but
adkAB 6 { for k 0, 1, . For each control u q/the corresponding trajectory is
x(t) exp tA P(t) Xo, where P(t) Go, as a consequence of Theorem 2.1. Since
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5o is the Lie algebra generated by {adkaB" k 0, 1,’’ "}, a subset of the Lie
algebra Y{, we are assuming that oc y{, and thus Go c K. If u 1, u2 are two
controls producing trajectories xl(t) exp tA Pl(t) Xo and Xz(t)
exp tA Pz(t) Xo, then xl(tXz(t)-1 =exp tA Pl(t) XoX;1Pl(t)(exp tA)-1=
(exp tA)(Pl(t)Pl(t))(exp tA)-1. Since exp tA G, Pl(t)Pl(t)6Go, and Go is a
normal subgroup of G, x l(t)Xz(t)-1 Go C 1(. Thus Kxl(t)Xz(t)-1 I( and Kx: l(t)
Kx:z(t) for all t>0. In other words ul(t) and Uz(t) produce the same outputs.
Clearly this system is not invertible, a contradiction. Thus invertibility implies that
adkAB Y{ for some positive integer k. Since ada is a linear operator on the n
dimensional Lie algebra, a necessary condition for invertibility is that ad,B Y{

for some k {0, 1,. , n- 1}, by the Cayley-Hamilton theorem.
To show that this Lie algebraic condition implies invertibility it suffices to

show that if two different controls result in the same output then 5o c YL Suppose
that u 1, u2 0//are distinct controls producing the same outputs, y l(t) K. x l(t)
yz(t) I(. Xz(t). Then for sufficiently small the real analytic curve t-a(t)
x(t)x2(t)- is contained in K. From Lemma 3.3 we know that there exists an e > 0
and a real analytic curve L(t) in 5o such that a(t)=exp L(t) for Itl <e and
?o {L(t)" Itl <e}=o. Shrinking e if necessary we can express L(t) by the
Taylor expansion L(t) Yi= Li where {L i= 1, 2,.. "}LA 0. Since a(t)=
expL(t)K for It[<e we know that L(t)6Y{ for [tl<oo (cf. [4] or [10]). Thus
{L" 1, 2,. "}LA Y{ and 0 0 Y{’. This completes the proof.

Proof (Corollary 1). Let K be the kernel of c. Then Y{ is the kernel of c. and
X Y{ if and only if c.X= O. Since the outputs yl(t) c(xl(t)) and yz(t) C(Xz(t))
are the same if and only if the coset outputs K. xl(t) and K. Xz(t) agree, Theorem
3.1 applies. Thus the system is invertible if and only if adkaB Y{" for some k -> 0, or
c* adkaB : 0. This completes the proof.

Proof (Corollary 2). Set K={M: Me GL(n,R) and CM=C}. Then two
outputs CXI(t) and CXz(t) agree if and only if Xl(t)X(t) K for all t->0, or
K. X(t)= K. Xz(t). Theorem 3.1 asserts that the system is not invertible if and
only if adkAB Y{ for all k => 0. Since Y{ {X: CX 0 andX gl(n, R)}, the proof is
complete.

Proof (Corollary 3). If the system (2) is not invertible then C adkaB 0 for
k 0, 1, by Corollary 2. Any trajectory X(t) P(t) exp tA where P(t) Go.
Here Co {0} so CP(t) C for all and Y(t) CX(t) C exp tA. Thus every
control produces the same response. If different controls result in different
responses then C {0}, so C adkaB # 0 for some k, and the system is invertible,
by Corollary 2. This completes the proof.

4. Left-inverses for bilinear systems. Suppose that a given control system is
invertible--that is, the output uniquely determines the control. One then faces the
practical problem of determining the input given only the output record of the
system. In the linear case this problem has been solved in a very elegant manner. A
second linear system, called a left-inverse system, can be constructed. This
left-inverse system, when driven by appropriate derivatives of the output of the
original system, produces as an output u(t), the input to the origunal system [1],
[2], [7], [8]. In this section we will construct nonlinear systems which are
left-inverses for bilinear systems.
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Consider the bilinear system (1). As in the matrix case the relative order, a, of
this bilinear system the least positive integer k such that c adA-1B 7 0 or ce 0(3 if
C adAB 0 for all k > 0.

In contrast with the linear case it is not yet known whether or not an invertible
bilinear system has a bilinear left-inverse system. We will look for a left-inverse in
the class of nonlinear systems of the form

(7)
(t) a ( (t)) + ( (t)b ( (t)),

33(t) d((t))+ t(t)e(a(t))

(0) =om,

where M, a differentiable manifold, t 07/, a(. and b(. are smooth vector
fields on M, and d,e are smooth functions on M.

DEFINITION. The system (7) is called a left-inverse for the bilinear system (1)
if fi(t) y )(t) implies that 33(t) u(t). The following theorem generalizes the well
known linear result on left-inverses [2] to the bilinear case:

THEOREM 4.1. If the bilinear system (1) is invertible then its relative order
a < oo. If a < o and c ad,-lBx0 76 0 then the bilinear system is invertible with
left-inverse (7), where M= R ---(cA"-IB) +/-, 0 Xo, and

and

a(2) A2 -(cA’2/cA-IB2)B2,
b()=(1/cA-IB)B,
d() -(cA/cA-IB)

e()=(1/cA-B).

If t(t)= y()(t) then (t) u(t).
Proof. We will begin by showing that an invertible bilinear system has relative

order c < oe. If c is infinite then the corresponding matrix bilinear system (2) is
not invertible by Theorem 3.1, Corollary 2. Choose distinct controls u, u2 71
which produce identical outputs for the matrix bilinear system. Since the output of
the bilinear system (1) is t- Y(t)Xo, where t- Y(t) is the output of the corres-
ponding matrix system, the bilinear system (1) is not invertible. This completes the
first part of the proof.

Suppose that a < oo and c ad-Bxo 76 0. Differentiate the output y(t) cx(t)
to obtain

(t) c2(t) c Ax(t) + u(t)cBx(t).

If c > 1 then cB 0, and differentiating )(t) we find that

y 2(t) cA2 (t) cA 2x (t) + u (t)cABx (t).

If a > 2 then c adaB 0 and so cAB- cBA 0. Since cB 0 we have cAB 0
and

y (3)(/) cA 3X (t) + u (t)cA 2Bx (t).

Continuing this procedure we find that

(8) y )(t) cAx (t) + u (t)cA-Bx (t).
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Since cA-Bxo 0 by assumption, the scalar function cA-Bx(t) is nonzero for
sufficiently small. The set of vectors x in R for which cA-lBx 0 is the

differentiable manifold M R -(cA-B)-. Consider the nonlinear system (7)
described in the statement of this theorem, and set (t)= y("(t). Then

(t) a (2 (t)) + (cA"x (t) + u (t)cA-lBx (t))b(2); 2(0)=Xo.

Claim. 2 (t) x (t): Since 2 (0) x (0) it suffices to verify that both 2 (t) and x (t)
solve the same differential equation. Replacing 2 by x in the above differential
equation in 2, and invoking the definitions for a(. and b(. ), this equation
reduces to the differential equation

2 (t) Ax (t) + u (t)Bx (t).

Thus 2 and x satisfy the same differential equation when a(t) y((t).
The corresponding output is

(t) d(x(t)) + a(t)e(x(t))

(cAx(t)/cA-IBx(t)) + y("(t)(1/cA-Bx (t)).

Substituting the expression (8) for y((t) we find that (t)=u(t). Since x(t)
involves inM for some interval of time and the controls are piecewise real analytic
functions, u (t) is completely determined for all > 0. Thus the bilinear system is
invertible and the given nonlinear is a left-inverse system. This completes the
proof.

We remark that in the proof of this theorem we show that when (t) y((t)
the state 2(t) x(t), the state of the original bilinear system. Thus the left-inverse
system acts as a state observer for the bilinear system, a result which itself is of
some interest.

We also note that for certain bilinear systems the vector fields a (x), b (x) may
not be complete. That is, the integral curves for these vector fields need not be
defined for all time. Thus after a finite time has passed the trajectory x(t) could
leave M, and in this case u(t) would only be recovered for in some bounded
interval. For a linear system in bilinear form y(t) is defined for all t and the
left-inverse system reduces to the standard linear left-inverse (see Example 1).

Theorem 4.1 presents a sufficient condition for inverting vector bilinear
systems in case where a < oe but this condition is far from being necessary. In
Example 3, c ad.-1Bx0 0 but c ad,Bx0 0 and the system is invertible. It seems
reasonable to expect that a necessary and sufficient for invertibility must take into
account the action of the matrix Lie group G on the state space Rn.

DEFINITION. The initialized relative order, a (Xo), for a bilinear system (1) is
the least positive integer k such that c ad,-Bxo 0 or a (Xo) oo if c adABXo 0
for k =0, 1, 2,. ., n-1.

Note that a_-<a(Xo) and one could have a <ee with a(Xo) infinite (see
Example 2 with Xo (0, 1, 0, 0)).

THEOREM 4.2. Consider the bilinear system (1) with associated Lie algebras
2 o . If a (Xo) < oe and

(9) a (x) >= a (Xo) for x G Xo



INVERTIBILITY OF CONTROL SYSTEMS 1045

then the system is invertible with left-inverse (7), where

20 Xo, M R "-(cA’(x)-IB)+/-,
a(2) A2 -(cA’(x)2/cA"(x-lB2)B2,
b(2) (1/cA"(x-IB2)B2,
d (2) (cA"(’2/cA(x-B2),

and

e(2)=(1/cA’(xo)-’B2).

If a (t) y ((x(t) then (t) u (t).
Remarks. The condition (9) is automatically satisfied if c (x(xo), since

c adAB 0 for k < a (Xo)- 1.

Proof. Suppose c (Xo) < oo and condition (9) is satisfied. Condition (9) implies
that c adABX 0 for 0_-< k < a(Xo)-1 and x G’xo. In particular cBx 0 and
cadaBx c(BA-AB)x cBAx-cABx 0 for c (Xo)> 2. Now (9) implies that
cB (exp tA)x 0 for all real t, as exp tA G. Differentiating with respect to and
setting 0 shows that cBAx 0. Combining this with the above expression for
c adABx we see that cABx O. A similar argument proves that cA kBx 0 for
0 _--< k a (Xo) 1 and for all x G. Xo. In particular, if x (t) is the trajectory for the
system (1) with x (0) Xo, then cA kBx (t) 0 for 0 _--< k < c (xo) 1 and

y(x(t) cA(X)x (t) + u (t)cA (x,,-aBx (t).

In the proof of Theorem 4.1 we showed that this implies that 33(t)= u(t) when
(t) y("(x(t). This completes the proof.

Example 1. In this example we apply Theorem 4.1 to a linear system in
bilinear form. The nonlinear left-inverse reduces to the standard linear left-
inverse described in [2].

Consider the linear system 2(t) Ax(t) + bu(t); x(O) Xo, with output y(t)
cx(t). In bilinear form

J:(t) Fz(t)+ u(t)Gz(t); z(O) Zo,

y(t) Hz(t)

where z (t) (x (t), 1), z (0) (Xo, 1),

F=
0 O’ G=

0 0
,H=(c 0).

Here Had-G=(0 cA"-Ib) and HadTv-lGzo=cA-Ib. Thus Theorem 4.1
asserts that a linear system is invertible if and only if c < oo, v,hich is proved in [2].
If c < oo the left-inverse described in Theorem 4.1 is of the form

,(t) a($(t))+ a(t)b($(t)); (O)=z(O),

(t) d($(t)) + a(t)e($(t))
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where (t)= (x(t), c(t)) with x 6 R" and c 6 R,

a () (A2 (cA2/ cA-lb)a b, 0),

b() ((1/a cA-b) b, O)

d() =-(cA/ ca-ab),

e() (1/a ca-ab),

M={(x,a):x R", a 6R--{0}} and Zo=(Xo, 1). With Zo given it follows that
z(t) (x(t), 1) so that the above system of equations reduces to

(t) [A (bcA/ca-b)]2 (t) + (1/cA-b)b (t),

(t) (cA/cA-b)2 (t) + (1/cA-b) (t),

which is the well known linear left-inverse (cf. [2]).
Example 2. In this example we describe a matrix bilinear system which

satisfies the hypotheses of Theorem 3.1 Corollary 2. The corresponding vector
bilinear system illustrates the construction of the nonlinear left-inverse described
in Theorem 4.1.

Consider the matrix bilinear system

2(t) AX(t) + u (t)BX(t) X(O) I,

Y(t) CX(t)

with

0 0 0 0

1 0 0
A=

0 0 0
0 0 0

1 0 0 -1
0 0 1
0 0 0
o 0

and C (1 1 0 0). By direct computation we find that

0 0 0 0
1 0 0 -1[A, B] BA AB
0 0 0
0 0 0

0 0 0 0
1 0 1 -1[B, adaB]=[A,B]B-B[A,B]=
0 0 0
0 0 0

ad,B -adAB, adA [B, adAB [B, adAB],

and

ad adAB [B, adAB].
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Thus

and

has basis

has basis

{B, A, adAB, [B, adAB]},

{B, adAB, [B, adAB]}

hasbasis {B}.

Here CB O, C adAB (1, 0, 0,-1), hence the relative order a 2, and this
system is invertible by Corollary 2 of Theorem 3.1.

Now we consider the corresponding bilinear system

A (t) ax (t) + u (t)Bx (t); x (0) Xo,

y(t)=cx(t)

with A, B, c defined above and Xo (1, 0, 0, 0). Since c adABx : 0 Theorem 4.1
asserts that this system is invertible with left-inverse

; a(2) + tb(2); o=Xo
=d(;)+ae(;)

where

According to Theorem 4.1 we have )3(t) u(t) if fi(t) y(2)(t). We now verify this
fact directly. We know that

(t) cA (t) cAx (t)+ u (t)cBx (t) cAx (t),

since cB 0, and

(2)(t) cA (Ax(t) + u(t)Bx(t))

cA 2x(t)+ u(t)cABx(t)= x2(t)+ u(t)(x4(t)-x,(t)).

Thus if t(t)= y(2)(t) then

/x _x4t
X4oXl

\[’223/(24--21)]--[X2X3/(x4-X1)] \--23 /

But if we set $(t)--x(t) this equation is just

A (t) Ax (t) + u (t)Bx (t),
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so when t(t)= y(2)(t) we see that 2(t)= x(t), and

(t) x2(t)/(X (t) X4(/)) -- y (2(t)/(x4(t) X l(t)) U (t)

for all _-> 0.
Example 3. The following system has c 1 and c ad.-1Bxo 0, so Theorem

4.1 car’t be used. Theorem 4.3 can be used to prove invertibility. Consider the
bilinear system

where

2 (t) Ax (t) + u (t)Bx (t); x (0) Xo,

y(t)=cx(t)

x0- (0, 0,1), c=(1 0 1), A= 0 0 0 and B= 0 0
0 1 0 0 0

0

1
0

Here cB (1 0 0), cBxo 0, and c adABXo 1. Thus c 1, ce(xo)= 2, and
Theorem 4.1 does not apply since c ad-lBxo 0.

To apply Theorem 4.3 we must check that c (x)_-> c (Xo) for all x CJ. Xo. In
this case we must verify that cBx 0 for all x G Xo. By direct computation both
exp tA and exp tB are matrices with first rows of the form (b 0 0) with b real.
Since 13 {exp tlA, exp tzB: tl, t2 real}G, G. Xo consists of vectors whose first
entries are zero. This means that cBx (1 0 0)x 0 for all x G. Xo.

Theorem 4.3 states that this system is invertible and provides a left-inverse.
Here

a(2) =A, b(2) d(2) 0, e(2) (1/3),

and M {(a, b, c): a, b, c 6 R, c 0}. Since condition (9) is satisfied we know that
cBx(t) cBG. Xo ={0}. Thus ))(t) cAx(t)+u(t)cBx(t) cAx(t), y(Z)(t)
y()-(t)=cAZx(t)+u(t)cABx(t) u(t)x3(t), and when t(t)=y(z)(t), (t)=
2 (t), 2 (t) x (t) and

(t) (a(t)/3(t)) u(t)x3(t)/x3.(t) u(t).

Of course for certain controls u (t) one could have x3(T) 0 for some T> 0, in
which case x(T)M and u(t) is recovered for some interval 0-< < e on which
x(t) exists.
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OPTIMAL REGULATION OF NONLINEAR
DYNAMICAL SYSTEMS ON A FINITE INTERVAL*

A. P. WILLEMSTEIN

Abstract. In this paper the optimal control of nonlinear dynamical systems on a finite time interval
is considered. The free end-point problem as well as the fixed end-point problem is studied. The
existence of a solution is proved and a power series solution of both the problems is constructed.

1. Introduction. We consider control processes in R of the form

(1.1) =F(x,u,t)

and investigate the problem of finding a bounded r dimensional feedback control
u (x, t) which minimizes the integral

(1.2)
T

J(’,b,u)=L(x(T))+I G(x,u,t)dt

for all initial states x (-) b in a neighborhood of the origin in n. In 2 we treat
the free end-point problem and in 3 the fixed end-point problem. More
specifically, in 3 we require the final value x(T) of the state to be zero.

For the situation where F is linear and L and G are quadratic the solution of
the optimal control problem is well known (e.g. see 1-2, 3.21 ], [3, 2.3], I-4, 9.7]
for the free end-point problem and [2, 3.22] for the fixed end-point problem).

Here we consider the situation where the states and controls remain in a
neighborhood of a fixed point (for which we without loss of generality take the
origin) where the functions F, G and L can be expanded in power series. An
analogous problem has been considered by D. L. Lukes [1] (see also [5, 4.3]) for
the infinite horizon case and our treatment will follow this paper to some extent, in
particular as far as the free end-point case is concerned. The theory is more
complete than the related Hamilton-Jacobi theory since existence and uniqueness
proofs of optimal controls are given. For the solution of the fixed end-point
problem we introduce a dual problem of (1.1) and 1.2) which we use to reduce the
fixed end-point problem to a free end-point problem. Some examples are added
to illustrate the theory.

Notation. The inner product of two vectors x and y we shall denote by x y,
the length of a vector x by [x x/x x, and the transposed of a matrix M by M7".
The notation M> 0 and M-> 0 means that M represents a (symmetric) positive
definite and a nonnegative definite matrix respectively. If f(x) denotes a vector
function from " into ", the following notation and definition of the functional
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? Department of Mathematics, Eindhoven University of Technology, Eindhoven, The Nether-

lands. Now at Faculty of Econometrics, Tilburg University, Tilburg, The Netherlands.
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matrix will be used (in agreement with the notation of D. L. Lukes in [1]):

c)X
\
\ Ox

\
\

\\ Ofm
_OXn C3Xn_

Let N be a neighborhood of the origin in Nn, V a subset of m, f a vector function
from N x V into [k, g a vector function from N into Nt. Then we say that
f(x, y) O(g(x)), uniformly for y 6 V, if the following property holds:

=i,>oV.NVyv: If(x, y)l --< Klg(x

2. Free end-point problem.
2.1. Assumptions.

(i) F(x, u, t) A (t)x +B (t)u +f(x, u, t). Here A (t) and B (t) are continuous
real matrix functions of dimension n x n and n xr respectively. The function
f(x, u, t) contains the higher order terms in x and u, and is continuous with respect
to t. Furthermore f(x, u, t) is given as a power series in (x, u) which starts with
second order terms and converges about the origin, uniformly for [-, T].

(ii) G(x, u, t) x rO(t)x + u rR (t)u + g(x, u, t). Here O(t) and R (t) are con-
tinuous real matrix functions of dimension n xn and r x r respectively. The
function g(x, u, t) contains the higher order terms in x and u, and is continuous
with respect to t. Furthermore g(x, u, t) is given as a power series in (x, u) which
starts with third order terms and converges about the origin, uniformly for
te[r, T].

(iii) L (x) x rMx + l(x). Here M is a real matrix of dimension n x n. The
function l(x) is given as a power series which starts with third order terms and
converges about the origin.

(iv) O(t)=>0 and R(t)>0 for t[r, T]; M=>0.
We consider the class of feedback controls which are of the form

u (x, t) D (t)x + h (x, t).

Here D(t) is a continuous matrix function of dimension r x n. The function h (x, t)
contains the higher order terms in x and is continuous with respect to t. Further-
more h (x, t) is given as a power serie’s in x which starts with second order terms
and converges about the origin, uniformly for e [-, T]. We shall denote the class
of admissible feedback controls by

DEFINITION (optimal feedback control). A feedback control u. e 1" is called
optimal if there exists an e > 0 and a neighborhood N, of the origin in Nn such that
for each b N, the response x,(t) satisfies Ix,(t)l<-e and lu,(x,(t), t)l <=e for

[, T], and furthermore J(-, b, u,)-<JO’, b, u) among all feedback controls
u 1) generating responses x(t) with Ix(t)l <- e and [u(x(t), t)] <_- e for [, T].
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2.2. Statement ot the main results.
THEOREM 2.1 (Main Theorem). For the control process in

F(x, u, t), x (’) b

with performance index
T

J(, b, u)= L(x(T))+ J G(x, u, t) dt

where x represents the solution (depending upon ’) of the differential equation, there
exists a unique optimalfeedback control u,(x, t). Thisfeedback control is the unique
solution of the functional equation

(*) F,(x, u,(x, t), t)Jx(t,x, u,)+ G,(x, u,(x, t), t)=O

for small Ix] and [, T]. Furthermore

u,(x, t) D,(t)x + h,(x, t)
and

J(’, b, u,) b 7"K,(’)b +j,(’, b ),

where the matrix functions D,(t) and K,(t)>=O depend only on the truncated
problem.

THEOREM 2.2 (Truncated problem). For the special case in whichf(x, u, t)
O, g(x, u, t)= 0 and l(x)= 0 the optimal control is given by

u,(x,t)=D,(t)x
where

D,(t) R -’(t)B (t)K,(t).
Here K,(t) >- 0 is.a solution of the Riccati equation on Jr, T]:

I(t)+Q(t)+K(t)A (t)+A (t)K(t)-K(t)B(t)R-l(t)B(t)K(t) 0,

K(T)=M.

Furthermore D,(t)x is a global optimal control in the sense that we can take N, ff"
and e 00 in the definition of optimal feedback control. Finally

J(r, b, u,) b K,(’)b.
Remark. Note that for u 6 f the property J(T, b, u)= L(b) holds.

2.3. Construction o the optimal eedback control.
LEMMA 2.1. For each feedback control u 1, u(x, t)=D(t)x + h(x, t), there

exists a neighborhood N, of the origin in ff" in which

J(’, b, u): b rI(-)b +j(-, b).

Here j(’,b) contains the higher order terms in b. The matrix function I(-)>-_0
depends only on the truncated problem. Furthermore, the functional equation

F(x, u(x, t), t)7"J(t, x, u) +Jt(t, x, u) + G(x, u(x, t), t)= 0

holds ]:or each x Nu, [’, T].
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So

where

(2.2)
/(r) := d-T(r)dT(T)Md(T)dP-(r)

T

+ I. [-T(r)r(tl{O(t)+D(tlTR (t)D(t)}(t)-l(r)] dt.

It is easy to verify that/(r)->0 and/(T) M. It is known that there exists a
neighborhood N2 of the origin in l such that for each s [r, T] and for each
b N2, the solution of F(x, u(x, t), t) with x(s) b, exists on Is, T]. (See [6,

1.7, Thm. 7.1]; note that our differential equation meets the requirements.)
Now let Nu := N1 f) N2, s [7", T] and b Nu. If x (t, s, b) denotes the solution

of F(x, u (x, t), t) with x (s) b then we can write
T

J(t,x(t,s,b),u)=L(x(T,s,b))+ I G(x(,s,b),u(x(,s,b),);)d

OPTIMAL REGULATION

Proof. The following differential equation holds"

Yc (A (t) +B (t)D(t))x +B (t)h (x, t) +f(x, u (x, t), t),

x(r)=b.

If we define A,(t):= A(t)+B(t)D(t) and v(x,t):= B(t)h(x,t)+f(x,u(x,t),t)
then this equation becomes

A.(t)x + v(x, t),

x(r)=b.

From [6, 1.7, Thms. 7.1., 7.2] it follows that the solution x (t) of this differential
equation exists for b in a neighborhood N1 of the origin and furthermore that this
solution may be differentiated to the initial value b. Hence it is clear that
x(t)= qt(t)b +O(Ibl2), uniformly for t e[r, T]. From the variation of constants
formula we conclude that (t)= (t)-(r). So we can write

x(t) (t)d-(r)b +

uniformly for e It, T-]. Here (t) is a fundamental matrix of the linear equati6,:
A A,(t)x (i.e. a nonsingular matrix function of dimension n x n which satisfies
(t) A,(t)(t)).Hence

G(x (t), u (x (t), t), t) x (t)TO (t)x (t) +X (t)TD (t)TR (t)D (t)x (t) + 0(Ix 13)
b T--T(r)T(t){O(t)+D(t)TR (t)D(t)}(t)-(r)b

uniformly for t e [r, T]. Furthermore

L(x(T)) x(T)TMx(T) + O(Ix(T)l)
b T(p-T(r)(pT(T)M(I)(T)(P-(r)b + O(Ibl).



1.054 A.P. WILLEMSTEIN

for [s, T] in agreement with the definition of J. One can verify that it is allowed
to differentiate this equation with respect to t. Setting s afterwards we get the
equation

F(b, u(b, s), s)TJx(s, b, u)+J,(s, b, u)+G(b, u(b, s), s) O.

If we finally replace b and s by x and t we get the desired result.
Remark. From the proof it follows that we even have

J(t,x, U)=xTI(t)x ’]- O(]x 3)
uniformly for Jr, T] and for small Ix ].

LEMMA 2.2. The equation

F, (x, u,, t)p + G, (x, u,, t) 0

has a solution u,(x, p, t) near the origin in 2,for which u,(O, O, t) 0 for [’, T].
Furthermore

R (t)B T(t)p + h,(x, p, t),u,(x,p,t) -1

where h,(x, p, t) contains the higher order terms in (x, p).
Proof. For each [-, T] we can use the result in [1, Lemma 2.2]. fq

LEMMA 2.3. There exists a unique solution K,(t) on [-, T] to the matrix

differential equations (Riccati equation)

lii(t) + Q(t) + g(t)A (t) +A 7"(t)K(t) K(t)B (t)R -I (t)B r(t)K(t) O,

K(T)=M.

The property K,(t)>-_ 0 holds on [’, T].
Proof. See [3, 2.3].
LEMMA 2.4. Suppose there exists a feedback control

D,(t)x + h,(x, t), which satisfies the nonlinear functional equation
u,(x,t)=

(*) F. (x, u,(x, t), t)Jx (t, x, u,) + G, (x, u,(x, t), t) 0

for small ]x] and t [, T]. Then u, is the unique optimal feedback control.
Furthermore

and

D,(t) R-(t)B r(t)K,(t)

J(r, b, u,)=b /(,()6 +j,0-, b),

where K,(t) is defined in Lemma 2.3. Thefunctionj,(’, b) contains the higher terms
in b.

Proof. Consider the following real valued function defined for 6 [-, T] and
for (x, u) near the origin in ,+r:

(2.3) O(t,x,u):=F(x,u,t)WJx(t,x,u,)+J(t,x,u,)+G(x,u,t).
By Lemma 2.1.

O(t, x, u,(x, t)) 0 near x 0 and for [’, T].
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We have assumed that

O, (t, x, u,(x, t)) 0

Furthermore the Hessian

Q,, (t, 0, 0)= 2R (t)

It follows that

near x 0 and for [-, T].

is positive definite for [-, T].

0< j J(t, xl(t), dt + G(Xl(t), ul(xl(t), t), t) dt.

This yields the result
T

0<J(T, xl(T), u,)-JO’, b, u,)+ J, G(xl(t), ul(xl(t), t), t) dt

and thus

J(r, b, u,)<J(r, b, u 1).

So u,(x, t) is the unique optimal feedback control. By Lemma 2.2 we have

u,(x, t) 1/2R -l(t)B 7-(t)Jx (t, x, u,) + 0(Ix [2),

uniformly for [-, T] and .in Lemma 2.1 we have

Jx(t, x, u,)= 2/(t)x + O(Ix[2).
So

(2.5) u,(x, t)= -R-l(t)BT(t)I(t)x + O(Ix12),

and so

0, (t, x, u) > 0 for Ix [small, lu [small and 6 Jr, T]

because O(t, x, u) is a continuous function. Hence we conclude that there exists an
e > 0 such that

0 O(t, x, u,(x, t)) <= O(t, x, u 1)

for [’, T], Ixl =< e and lu 11--< e, while strict inequality holds for u u,(x, t). So

(2.4) 0 <=F(x, u 1, t)TJx(t, x, u,) +Jr(t, x, u,) + G(x, u l, t).

Now let N, be a neighborhood of the origin in " such that for each b N, the
solution x,(t) of F(x, u,(x, t), t), x(’) b, exists for t [’, T], Ix,(t)l <= e and
lu,(x,(t), t)l <-- e.

Furthermore let u be an arbitrary feedback control such that the solution
x l(t) of F(x, u l(x, t), t),. x (r) b is defined on [r, T], and satisfies Ix (t)l --< e
and lu(xl(t), t)l<=e, if b N,. Then we can write:

T

0 < J, {F(xl (t), u (Xl(t), t), t) rJx (t, x l(/), U,)

+Jt(t, Xl(t), u,)+ G(Xl(t), ul(xl(t), t), t)} dt,
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uniformly for [r, T]. By Lemma 2.1 we have

(2.6) F(x, u,(x, t), t) 7‘Jx (t, x, u,) + Jt(t, x, u,) + G(x, u,(x, t), t)= 0

for Ix] small and [r, T]. Using (2.5) collecting the quadratic terms in x we find
that K(t) is a solution of the Riccati equation. We also know that/(T) M and by
the uniqueness of the solution we have K(t)= K,(t) on Jr, T]. This yields the
result

and

u,(x, t)= -R-l(t)B7‘(t)K,(t)x + O(Ixl2)

J(r, b, u,) b 7‘K,(r)b + O(Ibl). [

Proof of Theorem 2.2. Let u,(x, t) D,(t)x, where D,(t)
-R-l(t)BT‘(t)K,(t) and the matrix K,(t) satisfies the Riccati equation. Hence

x 7‘{/,(t)+ Q(t)+ K,(t)A (t)+A 7‘(t)g,(t)- K,(t)B(t)R-l(t)B 7-(t)K,(t)}x 0

for all ,x R". So we can write

[(A (t)-B(t)R-(t)BT‘(t)K,(t))x]7‘2K,(t)x +x
+xT‘Q(t)x +xT‘K,(t)B (t)R-l(t)B T‘(t)K,(t)x O.

It follows that

[(A (t) +B (t)D,(t))x ]7‘2K,(t)x +x 7‘Iii,(t)x + x 7‘Q(t)x + [D,(t)x ]7‘R (t)D,(t)x O.

This yields

F(x, u,(x, t), t)7‘2K,(t)x + x 7‘Ii;,(t)x + G(x, u,(x, t), t) O.

By integrating this equation along the trajectory F(x, u,(x, t), t), x(r)= b,
where b is arbitrary in Rn, we obtain the equation

J(r, b, u,) b

It is now easy to verify that u,(x, t) satisfies the functional equation (,) in Lemma
2.4. The global character of u,(x, t) follows from examination of the proof of
Lemma 2.4.

Before giving the proof of the main theorem, we consider the Hamiltonian
system in R2,.

F(x, u,(x, p, t), t),
(2.7)

p -{Fx (x, u,(x, p, t), t)p + Gx (x, u,(x, p, t), t)}

with the boundary values

x(r) b,

p(T) (x(T)).
Here u,(x, p, t) is defined in Lemma 1.2.
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LEMMA 2.5. For small Ib] system (2.7) has a solution (x,(t), p,(t)) on [-, T]
with the property

p,(t) 2K,(t)x,(t) + O(Ix,(t)12),
uniformly for t [’, T].

Proof. The Hamiltonian system has the form

2Q(t) -ar(t) +h(x,p,t),

where the function h (x, p, t) contains the higher order terms. First of all we shall
prove that the lemma holds for the case that h (x, p, t)= 0. The solvability of the
linear system together with the implicit function theorem will be used to obtain a
proof for the general case. So we shall first consider the linear Hamiltonian system

with x(r) b and p(r) 2Mx(r). This system has a solution (x,(t), p,(t)) with the
property p,(t) 2K,(t)x,(t), which can easily be verified. Note that this solution
exists for each b e N. If we now consider this linear system as a final value
problem:

X(T)=xr, p(r)=pr,

then the solution is given by

(2.8) () ()-(v) p.
Here (t) is a fundamental matrix of the problem. If we partition

.(t)._(T) (011(t, T) O,(t, T))
then (2.8) can be written as

x(t, xr, pr)=Oll(t, T)xr+O2(t, T)pr,

p(t, xt, pr) Oe(t, T)xr + O2e(t, T)pw.

So

x(t, xT, 2MxT-)= (Ol1(t, T)+ 2012(t, T)M)xT-.

We saw that for each b 6 R" there exists a solution on [-, T] with p (T) 2Mx (T).
So

Vb ":lxT- ": (O1(’, T) +202(-, T)M)xT-=b.

Hence the matrix

(2.9) O1,(-, T) +2(R)2(-, T)M

is regular. We shall need this result later. Now consider the nonlinear Hamiltonian
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system as a final value problem" x (T) xT, p(T) pT. The solution has the form

() (t) I)(t)cI)-(T)(;)+(t, x-, p),

where v(t, x-, p) contains the second and higher order terms in x- and pr. It
follows that

x(t, xr, pr)= (R)11(t, T)xr+Ol.(t, T)pT+O(
p(t, xr, pr) (R)21(t, T)x + (R)a(t, T)pr + O(

uniformly for [z, T]. The question is: does there exist for arbitrary b In, Ibl
small, a vector xT n such that x (z, xr, Lx (xr))= b ? Here the implicit function
theorem can help us. Define

F(b, x) := x (’r, x, Lx (xT)) b.

Then F(0, 0)= 0 and FxT(0, 0)= Oil(T, T)+ 2t12(7- T)M. By (2.9) we have that
Fx(0, 0) is regular. Thus there exists a neighborhood 3 of the origin in !" and a
function "-I" such that

(i) ;(o) o,
(ii) F(b, ;r(b)) 0 for b

So x (’, (b), Lx (7-(b))) b. Hence the Hamiltonian system (2.7) has a solution
on [z, T] for small [b 1. From the considerations of the linear system we have

p,(t) 2K,(t)x,(t) + O([x,(t)[2),

uniformly for t [-, T]. 1-1
Proof of the Main Theorem. It is sufficient to establish the existence of a

feedback control u, f which satisfies the functional equation (,). Define

u,(x, t) := u,(x, p,(x, t), t),

where p,(x, t) represents the solution of (2.7) and u,(x, p, t) is defined as in
Lemma 2.2. Then

u,(x, t)= -1/2R-(t)BW(t)p,(x, t)+O(lx[2)
-R-’(t)BT(t)K,(t)x + O(Ix[2)

uniformly for t 6 [-, T]. Thus we can conclude that u, 6 Q. Now let s 6 [7, T] fixed
and choose y 6 I" so small that the solution of A F(x, u,(x, t), t), with x(s) y,
exists on [z, T], and x(z) =: b is so small that the solution of (2.7) exists. By the
continuity and analyticity of G(x, u,(x, t), t) the following differentiation of the
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integral is allowed:

oJ(s, y, u,)=
Oy

0 O__L(x(T)-y G(X, u,(x, t), t) dt +Oy

Is r {O_yy OG(x, u,(X,ox t), t) Ou, OG(x, u,(x, t), t)
dt +--L(x(T))

Ou, Oy

OF(x, u,(x, t), t) ]Ox
p,(x,t)

Ou, OG(x, u,(x, t), t)} dt + O---L(x(T))
Oy Ou, Oy

Is t)} dt + (x(T)){p,(x, +/-L0y
r lOu*[ OF(x’u*(x’t)’t)p,(x,t)]+

I Oy Ou,

Ox OF(x, u,(x, t), t)
Oy Ox

p,(x, t) dt

oyOX
T fsr{ d y } O---L(x(T))+Oy--_-..p,(x, t) + _--2s.p,(x, t) at

-p,(y,s) -0 )Lx(x(T))+ (x(r))=p,(y,s).
Oy

So Jy(s, y, u,) p,(y, s) for small lYl and s 6 [’, T]. If we now replace s by and y
by x, and if we use Lemma 2.2, we obtain

Fu (x, u,(x, t), t)Jx (t, x, u,) + G, (x, u,(x, t), t)= 0

for Ix small and t [-, T]. So u,(x, t) satisfies (,).

2.4. A method tot calculating u,(x, t) and at(t, x, u,). In this section we shall
use the following notation: if t(x) is a power series in x then the kth order term will
be denoted by t()(x) or [t(x)](.

u,(x, t) and J,(x, t) := J(t, x, u,) can be expanded in power series:

u,(x, t) u(x, t)+ u(x, t)+...,

J,(x, t) J)(x, t) +J)(x, t) +....

We have seen that the lowest order terms are given by

((x, t) D,(t)x and J,2)(x, t) x rK,(t)x,u,

where

D,(t) R-(t)B (t)K,(t)
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and K,(t) is the solution of the Riccati equation. We indicate a method for
computing the higher order terms analogous to the method followed in [1]. This
method is based on the fact that u,(x, t) is a solution of the following two
functional equations:

F(x, u,(x, t), t)rJ (t, x, u,) + J,(t, x, u,) + G(x, u,(x, t), t)= O,

F (x, u,(x, t), t)J (t, x, u,) +G (x, u,(x, t), t) O.

In contrast to [ 1] where one has to solve linear algebraic equations, the problem
defined here reduces to solving successively a set of linear differential equations.
We shall now give the result in the form of two equations"

(a,(t)x)T[J,’)(x, t)]x + [J,")(x,
m--1

"-k+l(x, t)]T[J)(x, t)]xY [B(t)u,
k=3

m-1

(A) Y. f’-k+l)(x, U,(X, t), t)’[J)(x, t)]x
k=2

[(m-I)/2]

(m--k)(x, t)2 , u)(x, t)rR (t)u,
k=2

-u,/2)r"x, t)rR (t)u,’/2)(x, t) g)(x, u,(x, t), t)

(m 3, 4,...);

u)(x, t)= -1/2R-l(t){Br(t)[j+l)(x, /)Ix

k--1

(B) + Y. flu(x, u,(x, t), t)]q)[J-i+l(x, t)]x
j=l

+ [g, (x, u,(x, t), t)]Ck)} (k 2, 3,’" ).

Here A,(t):=A(t)+B(t)D,(t); [k] denotes the integer part of k. Furthermore
,,/2) is to be omitted for odd values of m.the term with u,

With the values J)(x, t) and u)(x, t) to start with, the higher order terms can
be calculated from (A) and (B) in the sequence

(4)(X, t), u(x, t) "’’.J)(x, t), u,2)(x, t), J,

#m) in (A)The sequence of terms {u 1), "’,u,(m--2) ,"*/(2),
by solving a partial differential equation with boundary value J,m(x, T) Lm(x).
The sequence of terms {u) );/.(2) j+l)},,"- u determinesu in(B)

Example.

ic x 3 + u, x (0) Xo,

T

2)min (x 2 q_././ dt.

Here A (t) 0, B(t) 1, O(t) 1 and R (t) 1. Furthermore f(x, u, t) x 3,
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g(x, u, t)= 0 and L(x)= 0. We have the Riccati equation

/ + 1-K2--- 0,

K(T) O,

and the solution is given by K,(t)= tanh (T-t). Hence

J(,:)(x, t) x TK,(t)x x: tanh (T- t)

and

Furthermore

u,(l(x, t)= -R-l(t)BT(t)K,(t)x -x tanh (T-t).

A,(t) A (t)-B(t)R-l(t)BT(t)K,(t) -tanh (T-t).

For m 3, equation (A) reads as follows"

(-x tanh (T-t))[J)(x, t)]x + [J(x, t)]t 0.

If we set

J(x, t) a (t)x 3

then this equation becomes

-3x3a(t) tanh (T-t)+&(t)x3=O
or

& (t)- 3a (t) tanh (T-t) 0

with the boundary value a(T)= 0. This yields the solution a(t)= 0 on [-, T]. So
(2)[ t) 0.J(x, t) O and (B) give for k 2: u,x,

For m 4, equation (A) becomes

(-x tanh (T-t))[J)(x, t)] + [J)(x, t)], -f(x, u,, t)[J(x, t)].

Setting J)(x, t) (t)x we have

{-4a(t) tanh (T-t)+&(t)}x4= -2 tanh (T-t)x 4

or

& (t)-4a(t) tanh (T-t) +2 tanh (T-t) 0

with the boundary value a (T)= 0. The solution of this differential equation is

Thus

a(t) 1/2 -(cosh (T-t))-4

J(x, t)= {1/2-1/2(cosh (T-t))-4}x 4.

Formula (B) gives for k 3"

u((x, t)= -1/2R-I(t)BT(t)[J()(x, t)]x,
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SO

u(x, t) {- 1 + (cosh (T- t))-4}x 3.
The higher order terms can be computed in a similar manner.

3. Fixed end-point problem.
3.1. Assumptions. In this section we consider a problem similar to the

problem discussed in 2. The difference being that now we require the final value
of the state to be zero: x (T) 0. As a matter of course we can take now L (x) 0.
The basic assumptions made in 2 remain. A new assumption is the controllability
to the zero state of the linear system A (t)x +B (t)u. Furthermore we restrict
ourselves to feedback controls u (x, t) with the following properties:

1. u(x,t)=D(t)x +h(x,t). Here D(t) is a continuous matrix function for
t[z, T). The function h(x, t) contains the higher order terms in x and is
continuous with respect to [z, T). Furthermore h (x, t) is given as a power series
in x which starts with second order terms and converges about the origin.

2. There exists a neighborhood Nu of the origin in n such that for b Nu the
solution x (t, -, b) of (1. i) is defined on [-, T) and in addition limt_T x (t, z, b) 0.

3. The function -+ u(x(t, z, b), t) is bounded on [z, T] for all b N,.
We shall denote again the class of admissible feedback controls by . If u 12

then it is clear that u (x, t) has a singularity in T. Furthermore there exists for
given u , s [z, T), a neighborhood N,,s of the origin in Rn with the property
that, if c N,s, the solution of A F(x, u (x, t), t), x (s) c, is defined on [s, T] and
x (T) 0. It is evident that

(3.1) N,, := {x(s, z, b)lb Nu}
represents such a neighborhood!

3.2. Statement of the main results.
THEOREM 3.1 (Main Theorem). For the control process in

A F(x, u, t), x(z)=b, x(T)= O

there exists a unique optimalfeedback control u, which minimizes the integral
T

J(’, b, u)= Jr G(x, u, t) dt

for all initial states b in a neighborhood of the origin in n. This feedback control is
the unique solution of the functional equation

(,) F, (x, u,(x, t), t)J (t, x, u,) + G, (x, u,(x, t), t) 0

for [z, T) and small Ix [. Furthermore

u,(x, t) D,(t)x + h,(x, t)

and

J(r, b, u,) b TK,(r)b +i,(r, b),

where the matrix functions D,(t) and K,(t) are defined on [r, T) and depend only
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on the truncated problem.
The truncated problem is the case that f(x, u, t)= 0 and g(x, u, t)= O. R. W.

Brockett has proved in [-2] that under our hypothesis an optimal control exists.
One can easily show that his results can be written in the following form:

(3.2) u,(x,t)=D,(t)x
where

(3.3) D,(t) R (t)B r(t)K,(t).
Here K,(t) satisfies the Riccati equation on [-, T):

I(t) + Q(t) +K(t)A (t) +A r(t)K(t) K(t)B (t)R -’(t)B r(t)K(t) 0.

If W,(t) satisfies the dual Riccati equation

Ii((t) +B(t)R-’(t)BTr(t) W(t)A r(t)--A (t) W(t)- W(t)Q(t) W(t) 0,

W(T) 0

on [-, T], then we have K-l(t)= W,(t) for [-, T). Finally

J(r, b, u,) b rK,(r)b.

3.3. Construction of the optimal feedback control.
LEMMA 3.1. For each feedback control u , u(x,t)=D(t)x +h(x,t), we

have the property

J(r, b, u)= b I(r)b +(r, b)

for b 6N. The matrix function I2((r) depends only on the truncated problem.
Furthermore the functional equation

F(x, u(x, t), t)rJx(t, x, u)+J,(t, x, u)+G(x, u(x, t), t)= 0

holds for [r, T) and x N,,t.
Proof. Just like the proof of Lemma 2.1 we shall show that the solution of the

differential equation F(x, u (x, t), t)is of the form x (t) (t)cb-l(r)b + O([b [2),
uniformly for t [r, T]. We can write again ./= A,(t)x +v(x, t), x(r) b and it is
known that the solution exists on [r, T] for b N,, and furthermore x (T) 0. The
function v(x, t) contains the higher order terms in x. Hence [v(x(t), t)[ _-< O(x)[x(t)[
for t [r, T], where the function O has the property limx_,o O(x)= 0. With the
variation of constants formula we find

x(t) (t)q-l(r)b + (t)-()v(x(), ) d.

Note that q(T) 0! The continuity of q on [-, T] has the result that (t)-(s) is
bounded for all [r, T] and s e[r, t]; say I(t)-(s)l-_<Mwhere M is a positive
number (this is not trivial; note that there are no troubles when t T and s - T).
Hence

Jx(t)J<=MJbJ+ MO(x())lx() d.
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Choose 6 > 0 such that I(R)(x)[ _-< 1 for Ib[< . Then

From the Gronwall inequality (see [7, 1.7]) we get

(**) Ix(t)[ <=M[b[ exp (M(t-z))

for Ibl< . Furthermore there exists a positive number K such that [v(x(t), t)[_-<
KJx(t)l2 for t [z, T]. So

Ix(t)-cP(t)-’(-)b[ <-M Iv (x (), )1 d <-MK Ix (s)l2 due.

Substitution of (**) into the latter equation gives the result

x(t)-cp(t)cp-l(-)b O([b[2),
uniformly for [-, T].

The remainder of the proof is analogous to the proof of Lemma 2. I. Note that
K(t) may have a singularity in T. 13

LEMMA .2. There exists a unique solution W,(t) on [-, T] to the matrix

differential equation (dual Riccati equation)

lie(t) +B(t)R-I(t)B T(t)- W(t)A T(t)-A (t) W(t)- W(t)O(t) W(t)= 0,

W(T) O.

The property W,(t)>O holds on [-, T). 1]’K,(t):= W,(t) on It, T) then K,(t)
satisfies the Riccati equation

I(t)+O(t)+K(t)A(t)+A T(t)K(t)-K(t)B(t)R-l(t)BT"(t)K(t)=O
on [’, T).

Proof. This lemma is a consequence of the analysis of R. W. Brockett in [2,
3.22]. [3

LEMMA 3.3. Suppose there exists a feedback control u,612, u,(x, t)
D,(t)x + h,(x, t), which satisfies the functional equation

(*) F, (x, u,(x, t), t)Jx (t, x, u,) + G, (x, u,(x, t), t) 0

for t [, T) and xNu,,t. Then u, is the unique optimal feedback control.
Furthermore

D,(t) R -’ (t)B r(t)K,(t)
and

J(’, b, u,)= b K,(’)b +],(’, b),

where K,(t) is defined in Lemma 3.2. Thefunction],(-, b) contains the higher order
terms in b.

Proof. The method to proof that u, represents the unique optimal feedback
control is analogous to the method followed in Lemma 2.4. Now we can choose
lu,(x,(t), t)l<-e and [Ul(Xl(t), t)l<-_e because we have assumed that u,(x,(t), t)
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and u l(X l(t), t) are bounded functions on [--, 7"]. By Lemma 2.2 we have

u,(x, t)= -1/2R-l(t)BT(t)Jx(t, x, u,)+O(Ixl
and in Lemma 3.1 we have

J,(t,x, u,)= 2/(t)x + O(Ixl2)
for t e [z, T] and x 6 N,.,,. So

(3.4) u,(x, t)= -R-(t)Br(t)I(t)x +
In the truncated case the corresponding formula is:

u,(x, t)= -R-(t)BT(t)I(t)x.
Comparing this result with (3.2) and (3.3) it follows that/(t) K,(t) on [z, T),
where K,(t) is defined in Lemma 3.2.

u,(x, t)- -R-(t)BT(t)K,(t)x + O(Ixl2)
and

J(z, b, u,) b TK,(z)b + O(Ib13). [3

Before proving the main theorem we consider again the Hamiltonian system in
[]2n

A=F(x,u,(x,p,t),t),
(3.5)

-{F (x, u,(x, p,,t), t)p +G (x, u,(x, p, t), t)}

with the boundary values

x(z)=b, x(T) 0.

Here u,(x, p, t) is defined in Lemma 2.2.
LEMMA 3.4. For small Ib system (3.5) has a solution (x,(t), p,(t)) with the

property

x,(t) 1/2 W,(t)p,(t) + O(Ip,(t)[2)

for t [z, T]. Furthermore p,(t) is a bounded function on [z, T].
Proof. The Hamiltonian system has the form

-2O(t) A r(t) + h (x, p, t).

It can easily be verified that the linear system (i.e. the case that h (x, p, t) 0) has
for each b 6 n a solution of the form x,(t) 1/2 W,(t)p,(t). Analogous to the proof
of Lemma 2.5 we shall use the implicit function theorem to prove that the
nonlinear system has a solution of the desired form. We need again a property
which we shall derive from the solvability of the linear system. So consider again
the linear Hamiltonian system as a final value problem. The solution can be
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written as

x(t, xr, pr) (R)11(t, T)x + (R)12(t, T)p,

p(t, xr, p) (R)21(t, T)xr +(R)z2(t, T)p.

We have seen that for each b [n there exists a solution on [-, T] with x0-)= b
and x (T) 0. So

Vb 6 N" ::lpr N": 112(’r, T)pr b.

Hence the matrix (R) 12(r, T) is regular. Now consider the nonlinear system as a final
value problem. The solution has the form

x(t,x,,pr)=Ol(t, T)xr+6)12(t, T)pr+O( (It)pr

p(t, xr, pr)=O21(t, T)xr+@22(t, T)pr+O( (xr) 2).Pr

The question is: does there exist for arbitrary b
such that x (-, 0, pr) b ? Again, the implicit function theorem can help us. Define

F(b, pr):= x0-, 0, pr)- b.

Then F(0, 0)=0 and FpT(0, 0)=@1.(’, T). So FpT(0, 0) is regular, and there
exists a neighborhood ow of the origin in N" and a function pr: oW N" such that

(i) i0T(0) 0,

(ii) F(b,/r(b)) 0 for b

Hence x(r, 0,/Jr(b))= b for b e 5. Thus the Hamiltonian system (3.5) has a
solution on [-, T] for small Ib I. From the considerations of the linear system we
have

x,(t) 1/2 W,(t)p,(t) + O(Ip,(t)l2)

for [-, T]. The boundedness of p,(t) on [-, T] is a consequence of the continuity
of the right-hand side of (3.5) on [-, T]. Vl

Remark. It follows that

p,(t) 2K,(t)x,(t) + O(Ix,(t)l)
for [’, T).

Proof of the Main Theorem. It is sufficient to establish the existence of a
feedback control u, ) which satisfied the functional equation (,) for 6 [-, T)
and small ]x l. Define

u,(x, t) := u,(x, p,(x, t), t)

where p,(x, t) represents the solution of (3.5) and u,(x, p, t) such as defined in
Lemma 2.2. Hence

u,(x, t)-- -1/2R-l(t)BT(t)p,(x, t)+O(lxl2)
-R-l(t)BT(t)K,(t)x +O(x 2)
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for t6[r, T]. In Lemma 3.4 we have seen that the solution of k=
F(x, u,(x, t), t), x(-)= b exists on [-, T] for small Ibl and furthermore x(T)= 0.
Because p,(t) is bounded on [-, T] it follows that u,(x,(t), t) is bounded on [-, T].
Hence we can conclude that u, . An analogous argument as in the previous
section shows us that u, satisfies the functional equation (,). [3

3.4. A method for caictflating u,(x, t). In 2 we used the fact that the
optimal feedback control u,(x, t) is a solution of the following two equations:

F(x, u,(x, t), t)TJx(t, x, u,) + Jr(t, x, u,) + G(x, u,(x, t), t)= O,

F, (x, u,(x, t), t)J (t, x, u,) + G, (x, u,(x, t), t) O.

It turned out to be possible to calculate u,(x, t) from these equations using the
boundary value J(T, x, u,) L(x) to solve the partial differential equation. This
method fails here. It is true that the optimal feedback control is again a solution of
the two functional equations but we cannot solve the partial differential equation
because the only information we have about J is that J(T, 0, u,) 0 and this is not
sufficient. This is a reason for us to follow a different method here. Consider the
following free end-point problem

p F(p, y, t), p(r) c,

min G(p, y, t) dr.

Note that pplays the. role of state vector and y plays the role of control vector. The
functions F and G are defined as follows:

F(p, y, t) := -{Fx (y, u,(y, p, t), t)p + Gx (y, u,(y, p, t), t)}

((p, y, t) := -[F (y, u,(y, p, t), t)p + Gx(y, u,(y, p, t), t)]x
-{F(y, u,(y, p, t), t)p + G(y, u,(y, p, t), t)}.

Here u,(x, p, t) is defined in Lemma 2.2. We shall call this control system the dual
system. It is easy to verify that

(p, y, t)= -A r(t)p- 2Q(t)y +(p, y, t)

and

O(p, y, t) rQwrB(t)R (t)B r(t)p + y (t)y + , (p, y, t).

Here the functionsf and contain the higher order terms in y and p. It is clear that
the dual system can be solved by the method described in 2, provided that
Q(t) > 0 on [r, T]. However, what is the connection with the original system? The
two systems have one important common property; namely they both generate
the same Hamiltonian system:

F(x, u,(x, p, t), t),

-{Fx(x, u,(x, p, t), t)p + Gx(x, u,(x, p, t), t)}.
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The boundary values however are different. In the original case we have x (-) b,
x(T)=0 and in the dual case p(-)=c, x(T)=0. Namely, if y,(p,x,t) here
plays the role of u,(x,p,t) in Lemma. 2.2 then it is.easy to verify that
y,(p, x, t) x and furthermore -{Fp(p, y,(p, x, t), t)x + Gp(p, y,(p, x, t), t)}
F(x, u,(x, p, t), t). This argument enables us to construct the solution of the
original system from the solution of the dual system. If y,(p, t) denotes the optimal
feedback control with respect to the dual problem then it follows that x,(p, t)
y,(p, t) is the solution of the Hamiltonian system. From this we can calculate
p,(x, t) by the regular transformation p,(x, t) 2K,(t)x,(t) + O([x,(t)[z) (see
Lemma 3.4). Finally we can calculate the optimal feedback control with respect to
the original system by u,(x, t)= u,(x, p,(x, t), t). In the case that Q(t) is not
positive definite but only positive semi definite, it does not seem to be possible to
introduce a dual system with the properties sketched above.

Example.

=x3+u, x(0)=x0, x(T)=0,

min (x + u dr.

Here A (t) 0, B (t) 1, O(t) 1 and R (t) 1. Furthermore f(x, u, t) x 3 and
g(x, u, t)= 0. The linear system 2 u is controllable and the condition O >0
holds. Hence we can use the method described above. The equation F, (x, u, t)p +
G,(x, u, t) 0 gives u,(x, p, t) -1/2p, so the dual system has the following form:

/ -2y -3y2p, p(0) po,
T

min | (1/4p2 + y2 + 2y3p) dt.
0

The method of 2 gives the result

y,(p, t)-1/2p tanh (T-t)-1/2p tanh (T-t)+....

Hence

x,(p,t)-1/2ptanh(T t) -p tanh4(T-t)+...
and it follows that

p,(x, t) 2x coth (T- t) + 2x 3 +- .
Finally we find

u,(x,t)= --p,(x, t)= -x coth (T-t)-x +....
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