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ON OPTIMAL CONTROL OF LINEAR STOCHASTIC EQUATIONS
WITH A LINEAR-QUADRATIC CRITERION*

JEAN-MICHEL BISMUTY

Abstract. The purpose of this paper is to apply the stochastic maximum principle previously
obtained by the author to the control of a linear quadratic criterion.

1. Introduction. We consider a stochastic differential equation:

dx = (Ax +Cu) dt+(Bx +Du) - dw,
(1.1

x(0)=0,
and a criterion to minimize

T T
1.2) I(u)=E{I [M.x,[* dt+J (Nu,, u,) dt+|M1xT|2—2(h,xT)},
o o

where h is a random variable and coefficients are random.

The purpose of this paper is to find the optimal control in feedback form, by
using the results obtained by the author in [1] and [2].

In § 2, as in [2], we introduce a dual state, and we discuss some of the
problems related to this dual state. In § 3, we find the control in random feedback
form.

2. The problem. Assumptions and notations are taken from [2], to which we
refer constantly.

Equation (1.1) and criterion (1.2) satisfy the same assumptions as in [2]. We
also assume that h e LY.

THEOREM 2.1. I has a unique optimum.

Proof. The argument is the same as in [2, Thm. 3.1]. 0O

We apply the stochastic maximum principle given in [1, Thm. V-1]. The
maximum principle equations are

dp=(M*Mx—-A*p—B*H)dt+H - dw +dM,
(2. 1) PT = _'MTMle‘l'h,
Nu=C*p+D*H,

with (po, H, M) in LIX Loy X W,
As in [2], for t =0 we consider the system

dx = (Ax + Cu) dt+(Bx +Du) - dw,

x(0)=0,
(2.2) dp=(M*Mx—-A*p—B*H)dt+H - dw +dM,
pt =h7

Nu=C*p+D*H,

* Received by the editors June 6, 1975, and in revised form February 23, 1976.
t Paris, France.
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where heL5.
It is easily checked as in [2] that

t t
2.3) E{ [ M ds + [ (Nato ) ds} = E¢po )
0 0

As in [2], we can then prove that the mapping Q, : h - x, has the following
properties:

(a) Q, is linear and continuous from L} into L5.

(b) Q; is self-adjoint.

(c) Q, is a positive operator.

(d) The operators Q, are uniformly bounded on compact sets of R ™.

However, in total contrast to [2], we do not have

(2.4) Ot(lAh +1CAh,)= 1A0,h +1CAQ;h,
when A € &, The operators Q; are of interest because they would allow us to write
2.5) x = Qp,.

However, this is not a feedback relation in the sense that this operator generally
acts on the whole random variable and not only on its values at time ¢. (This last
assumption is verified only in the deterministic case where Q, solves a Riccati
equation.)

We then have to use other methods.

3. The feedback form. p, is the unique solution in the sense of [2] of
3.1) dpo=—(A*po+B*H,) dt+ H, - dw +dM,,
Por=h.
Then p; = p — po must verify
dp,=(M*Mx—A*p,—B*H,) dt+ H, - dw +dM,
p1r=—MiMxr.
We then have

(3.2)

(3.3) Nu =(C*po+D*H,)+(C*p,+ D*H,).
If uo and u; are defined by

(3.4 uo=N"'(C*po+D*H,),

(3.5) uy=N"'(C*p+D*Hy),

then we have the following system:
dx = (Ax + Cu;+ Cuyg) dt + (Bx + Du, + Duy) - dw,
x(0)=0,
(3.6) dp,=(M*Mx—A*p,—B*H,) dt+H, - dw +dM,,
P1r=—MTMxr,
Nu,=C*p,+D*H,.
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But this system is a system of the type already studied in [2], with

(3.7 f = Cuy; g = Duy.
We have then
(3.8) Pir= —(Px,+r,),

where P, and r, are defined in [2]. v
We assume that (0, #, P)= (U XQ", F, Q F,, P’ R P"), that A, B, C, D, M,

M;, N are defined on ' and adapted to {%}},=¢, that w is defined on Q" and
adapted to {F/},=0, and that h is defined on Q, is square integrable and % -
measurable. We have then in the sense of Theorems 6.1 and 6.2 of [2]:

dP+{PA+A*P+B*PB—(B*PD +PC')(N+D*PD)_1

- (D*PB+C*P)+ M*M} dt—dM =0,

Pr=M >1“1\’1 15

(3.9) dr={(PC+B*PD)(N+D*PD)'C*—A*}rdt

+[{(PC+B*PD)(N +D*PD) ™' D*— B*}(PDuo+ h)— PCuo] dt
+h - dw+dM'

rT=O’

u; =—(N+D*PD) Y(C*P+ D*PB)x + C*r + D*(PDuo+ h)}.

Knowing u, we find the optimal control u:

(3.10) U=ug+u;.
Then
(3.11) p=po—r—Px.

4. An example: The deterministic coefficients. We assume that all the
coefficients A, B, - - -, h are deterministic. In this case, po, r and u, are deter-
ministic. Then p and u will be sums of a deterministic process and of a process in
feedback form.

Remark. When B and D are null, it is easily proved that the operators Q, are
found by solving a simple Riccati equation:

dQ=AQ+QA*+CN 'C*- OM*MQ,

4.1
@D Q0)=0.

Then
4.2) x = Qp.

In the general case, we are not able to construct the Q, directly.
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ON THE UNIFORM ASYMPTOTIC STABILITY OF CERTAIN LINEAR
NONAUTONOMOUS DIFFERENTIAL EQUATIONS*

A. P. MORGANT AND K. S. NARENDRA%

Abstract. In this paper we give a simple characterization of the uniform asymptotic stability of
equations ¥ = —P(t)x where P(t) is a bounded piecewise continuous symmetric positive semi-definite
matrix. In the course of developing this characterization, a new and general sufficient condition is given
for uniform asymptotic stability in terms of Lyapunov functions. The stability of this type of equation
has come up in various control theory contexts (identification, optimization and filtering).

1. Introduction. The stability of the ordinary differential equation
1 X ==P(t)x,

where P(¢) is symmetric positive semi-definite time-varying matrix arises often in
mathematical control theory. (See, for example, Narendra and McBride [8, p. 34,
(20)], Lion [7, p. 1837, (10)], and Sondhi and Mitra [11, p. 5, (7)].)

In this paper we consider the stability properties (in the sense of Lyapunov) of
the equilibrium state x = 0. Since for V(x) =x Tx, V(x) =0, the origin is uniformly
stable. However (uniform) asymptotic stability does not generally hold unless P(t)
is positive definite. The semi-definite case arises much more frequently in practice
than the definite one, and the main effort in this paper is directed towards finding
conditions characterizing uniform asymptotic stability in such a case.

The treatment of uniform asymptotic stability (u.a.s.) rather than mere
asymptotic stability is important here. This uniformity assures the “‘stability under
persistent disturbances” of the system. (See Hahn [3, p. 275]; also see Hale [4, pp.
86, 313].) On the other hand, this type of stability is not necessarily possessed by
(nonuniform) asymptotically stable systems. (See Hale [4, p. 87] for an example.)
Further, u.a.s. proofs yield “rate of convergence” information, and this is fre-
quently not the case if only asymptotic stability is established. Note also that since
(1) is linear, all stability properties are global.

The principal results are stated in Theorems 1 and 2, Proposition 1, and the
Lemma. The following theorem, which is a part of Theorem 1, gives a simple and
complete characterization of uniform asymptotic stability and is illustrative of the
type of result derived in this paper.

THEOREM. Suppose P(t) is a symmetric positive semi-definite matrix of
bounded piecewise continuous functions. Then the equation

x=—P(t)x

is uniformly asymptotically stable if and only if there are real numbers a >0 and b
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research reported in this document was sponsored in part by support extended to Yale University by
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College of Georgia, Augusta, Georgia 30902.
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such that

t
I |P(s)w|ds = a(t—to)+b
to

for all t =ty =0 and all fixed unit vectors w.

In §2 we discuss some examples. In §§ 3 and 4 the principal results for
uniform and nonuniform asymptotic stability are stated. A key lemma used to
establish the results is given in great generality in § 3 and should be useful to show
uniform asymptotic stability for other classes of linear and nonlinear systems of
equations. Sections 5 and 6 contain the proofs of the theorems in §§ 3 and 4,
respectively.

2. Preliminary discussion. Before stating all our main results, we will discuss
some implications of the Theorem above. Our discussion divides naturally into
five parts ((a), (b), (c), (d) and (e) below). First however, we state the following.

DEFINITION. The equilibrium state x = 0 of the uniformly stable differential
equation x = f(x, t) is uniformly asymptotically stable (u.a.s.) if for some £;>0
and all £,>0 there is a T= T(eq, £2) >0 such that if x(¢) is a solution and
|x(to)| < €1, then |x(t)|<e, if t=to+T. If T depends on f,, then x =f(x, t) is
(nonuniformly) asymptotically stable (a.s.). (See Fig. 1.)

We should also make the following comment on notation. We use the n-tuple
notation (x1, X, - * * , X,) for the column matrix [x1, X2, * - * , X, 1"

(a) If P(¢t) = Pisaconstant matrix, then (1) is u.a.s. if and only if P hasrank n.

If P(¢) is periodic and continuous, then (1) is u.a.s. if and only if, for each unit
w, |P(t)w|> 0 for some t.

(b) Let A(¢) denote the eigenvalue of minimal length of P(z). Then u.a.s.
holds if there are a >0 and b such that

Jﬂ A(s)|ds=a(t—1to)+b

for all t=¢,.
In particular, if P(¢) has (maximal) rank n for all # and A (¢) is bounded above

CIRCLE OF RADIUS €4

CIRCLE OF RADIUS €,

- x(t) for t=ty+ T

FiG. 1
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zero or periodic, then X = —P(¢)x is u.a.s. Thus if P(¢) is rank n and periodic, then
u.a.s. holds. However,

jt [A(s)|ds=a(t—ty)+b

to

is not necessary but only sufficient. This will be clear from the discussion of the
2 X2 rank 1 case in part (c) below.
(c) Suppose there is u: [0, ) > R? such that

2
P(t):‘u(t) . u(t)T:-[ ui uluZ] .

wiu; U
The eigenvalues of P(¢) are then |u(r)]* = u;(¢)* + u,(¢)* and 0. Now
X=—P(t) - x

becomes x = —(u(t), x) - u(t) where ( - ) denotes the canonical inner product on
R?. Thus the condition

t t
I |P(s)w|ds = I Ku(s), w)| [u(s)| ds =Za(t—to)+b
to to
for fixed unit vectors w requires that both [(u(s), w)| and |u(s)| “not get too small
for too long”. Thus u(s) must change direction uniformly so that its inner product
with any fixed direction w does not converge too quickly to zero, and also u(s)
itself must not converge too quickly to zero. To further illustrate this, consider the
following explicit examples.
(d) Let e;=(1,0) and e, = (0, 1). Define vectors u(¢) and u'(¢) to alternate
between e; and e, according to the following formulas.
1) u@®)=e ifte[2n,2n+1),
u(t)=eyif te[2n+1,2n+2),
(i) u'(t)=e,if t€[0,1],
=e,if te[l,2),
=e,if te[2,4),
=e, if te[4,5),
=e, if t€[5,8),

=e; if tE[k,k+n),
=eyifte[k+n, k+n+1),
=e iftelk+n+1,(k+n+1)+(n+1)),

Now x =—u(f)u(t)"x is u.a.s., because

[Ku(s), w)| Ku(s)| = Ku(s), w)| g\g either for all s €[2n, 2n+1)

orforallse[2n+1,2n+2), where n=0,1,2,3, - -.
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But x =—u'(t)u’(t)"x is not u.a.s., because u' spends longer and longer in the
e, direction. Solutions with initial conditions on the y-axis must wait longer and
longer before they can go to zero. It is clear that

t t
[t el ds= [ Kats), el ds
to to
equals zero for longer and longer intervals and can dominate no linear function
with positive slope. However, the above integral does go to infinity as ¢ - 00, and
we shall see in § 4 that this implies x =—u'(¢)u'(f) "x is asymptotically stable.
(e) Consider the following final example. Let u(¢)=(1, 1/ «/t). Then

;L
7

ulu@®) = 1 ; ,
N/

and [(u(s), w)| lu(s)| = |wi+(1/VOw,| W1+1/t|. Thus for w= (0, 1), we require

that
r \/;\/( )ds—j 2Jgds—2«f

dominate a linear function; but this is false.

It is easy to confirm that if u(f) = (1, t*) where a <0, then % = —u(f)u(t)"x is
not u.a.s. We shall see in § 4 that such equations are not even a.s.

We close this section by noting that the comments made in (c), (d) and (e)
clearly hold for the general n X n case.

3. Uniform asymptotic stability. If P(¢) is symmetric positive semi-definite,
then there is a symmetric () such that P(f) = u(¢)*=u(t)u(t)”. (See Reed and
Simon [10, p. 196].) We will usually assume P(¢) is in this form. As a special case
we consider P(t) = u(t)u(t)” with u(¢) an n X k matrix with k <n. In this case,
u(®)u(r)™ can have at most rank k. In general, u(¢) is n X n but not necessarily of
full rank. In fact, the rank of u(f)u(z)" may change with ¢. We do assume u(¢) is
piecewise continuous and unlformly bounded.

Letting V(x)= x34+x34+- - -4+x2 we see that V(x)=—x"P()x =0 for % =
—P(t)x. Thus the equation is eas1ly seen to be uniformly stable. If P(¢) is constant
or periodic, we have the well-known result of LaSalle by which if V is not constant
on any solution of X = —P(¢)x, then asymptotic stability follows. (See LaSalle [5].)
This result breaks down for general nonautonomous P(¢). This can be seen as a
result of the lack of an invariance property for the w-limit set. (See LaSalle [6].)

The following theorem gives a characterization of uniform asymptotic stabil-
ity for ¥ = —P(f)x. The statement of the theorem is followed by a key Lemma and
some remarks. Proofs are deferred until § 5. In reading the following material, the
reader may find the case u : [0, 00) > R? an illuminating example.

THEOREM 1. Let u :[0,00)> Ry be a piecewise continuous and bounded
function, where R, denotes the space of real n X k matrices. (We identify RT and
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R".) Then the following are equivalent.

1. % =—u(t)u(t)"x is uniformly asymptotically stable.

2. There are real numbers a >0 and b such that if y € R" is a fixed unit vector,
then

t
I yu@)u(s)yds=a(t—t)+b
to
forall t=1,=0.

Equivalently, we may replace the above integral expression by

r lu(s)u(s)Ty| ds=a(t—1to)+b

{)

or by

Ir lu(s)Ty| ds Za(t—to) +b.

to

3. There are real numbers a >0 and b such that

)t,-[j" u(s)u(s)Tds] Za(t—ty)+b fori=1,2,---,n,

to

where A; denotes the i-th eigenvalue of the n X n matrix

t
I u(s)u(s)" ds.
to
4. Given y a unitvectorin R", there is a conical neighborhood C, for y and there
are real numbers a, >0 and b, such that

j lu(s)|? ds =a,(t—to)+b, forallt=1,=0,
[t0,t]—2y

where Q, ={te[0,0)u(’)* N C, #0}, u(t)" =orthogonal complement of u(t)=
kernel (u(t)"), and “conical neighborhood C, of y" is defined as below.

Part 4 is more technical than the others and helps to bridge the gap between
parts 1 and 2 in the proof. It says, intuitively, that u(¢) is bounded away from each
direction for a sufficient part of time over any reasonably long period of time.
However, it is formulated to say that u(¢)* is bounded away from any unit
direction, which is actually more to the point.

Let 3S, denote a sphere of radius r about 0 and S, a ball of radius r about 0.
Thus 3S, ={x € R"||x|=r} and S, ={x € R"| |x| =r}. By a “conical neighborhood
C2for y” we mean that a is an open subset of the unit sphere 8S; = R", y/|y| € @ or
—y/|yl€a if y #0, and Cj is defined to be the union of all lines through 0 in R"
that intersect a. The width of C7 is defined to be the diameter of a. For simplicity,
we sometimes omit the a and write C, instead of Cy. (See Fig. 2.)

By f : [0, 00)-> R piecewise continuous, we mean that there is a decomposi-
tion of [0, ) into half-open intervals, [0, ©0) = U~ [a,, a,+1) such that the
restriction u|(ay, a,+1) is continuous for all n.

This completes the statement of Theorem 1.
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CG

FI1G.2

The Theorem in § 1 asserts the equivalence of parts 1 and 2 of Theorem 1,
except that only one of the three formulations of part 2 is given there. We will
present an explicit proof later that each of these formulations implies the other
two. In practice, it would seem that the equivalence of parts 1 and 2 would be the
most useful implication of this theorem, asis illustrated in § 2. We should also note
that the equivalence of part 2 and the eigenvalue condition (part 3) is not hard to
show.

After the acceptance of this paper for publication, it was pointed out to the
authors that Anderson in [1, p. 2.13], for the case that u(¢) is almost periodic, had
established results from which the 2= 1 part of Theorem 1 could be derived.

The following key Lemma will be applicable to many cases besides those
discussed in this paper. To indicate this, we present some corollaries after the
statement of the Lemma, but first we need a definition.

DEFINITION. A function ¢ :[0, c0) - [0, 00) is said to belong to class K, ¢ € K,
if it is continuous, strictly increasing and ¢(0) = 0.

LEMMA. Let f(x, t): S, X[0,0)> R" be continuous in x and piecewise con-
tinuous in t with f(0, t) = 0 for allt =0, where & > 0 is some fixed constant. Assume

1. there is ¢, € K such that

lf(x, 0= f(y, D|I=d1(x—y) forallx,ye S,, t=0,
2. there are real numbers a >0 and b and ¢, € K such that
t
[ 175, 5)1 ds = gallxDlate )+ )
to

for all fixed x € S, and t =1, =0,
3. there is a continuous differentiable function V:S, X [0, 00)>[0, c©0) and
¢3€ Ksuchthat ¢s(|x|)= V(x, 1)=0and V(x, t) =0 forallt =0 and x € S, where

Vi, =220, )+ TV, 1) (5, ),
4. thereisa € Ksuchthat —V(x, t) Z|f(x, t)]* - p4(x|) forallx € S,, t =0,

5. the solution x =0 of the equation % = f(x, t) is uniformly stable.
Then the solution x = 0 is uniformly asymptotically stable.
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Remarks. 1. Condition 1 is satisfied if f(x, )= A(t)x and |A(f)|=M for
some constant M, all ¢. It is also satisfied if f is differentiable in x and its derivative
with respect to x is bounded uniformly in ¢

2. Intuitively, something like condition 2 seems necessary for u.a.s. How-
ever, it probably is not necessary as written.

3. Since Lyapunov function converse theorems for uniform asymptotic
stability exist, condition 3 is very natural. (See Hale [4, Chap. X].)

4. We know from Krasovskii’s theorem that if x = A(¢f)x is u.a.s., then a
quadratic Lyapunov function exists (Narendra and Taylor, [9, p. 62]). In this case,
if |JA(#)| is uniformly bounded, it is easy to see that we can choose ¢5; to make
condition 4 hold. Thus, for f(x, ¢) linear and V quadratic, condition 4 is necessary
for u.a.s.

5. If there is a ¢ € K such that V(x, £) = ¢(|x|) for all x and ¢, then uniform
stability (condition 5) follows.

DEFINITION. A =B means A — B is positive semi-definite.

CoroLLARY 1. If f(x, t) = —P(t)x where P(t) is a symmetric positive definite
uniformly bounded matrix and if there are real numbers a >0 and b such that

t
I |P(s)w|ds=a(t—ty)+b
to

for all t =ty =0 and all fixed unit vectors w, then % =—P(t)x is u.a.s.

Proof. Applying the Lemma, conditions 1 and 2 are immediate. Letting
V(x)=|x[*, we have V(x, t)=—x"P(t)x =0 so conditions 3 and 5 are also easy.
Condition 4 follows because 0 = P(¢) = I implies P(t)*= P(¢) for symmetric P =0.
(We may as well assume P(f)=I) Thus —V(x,)=x"P(t)x =x"P(t)’x =
|[P()x>. Q.E.D.

COROLLARY 2. Suppose x = A(t)x is uniformly stable, A(t) is uniformly
bounded, and there are real numbers a >0 and b such that

It |A(s)w|ds=a(t—to)+b

for all t = ty and all unit vectors w. Assume there is a positive definite Q(t) uniformly
bounded such that

—(QMAD+AMTQM)+0(t) ZcA() A(t)

for all t where c is some positive constant. Then X = A(t)x is u.a.s.
Proof. Let V(x,t)= xTQ(¢)x. Then the result follows immediately from the
Lemma. Q.E.D.

4. Asymptotic stability. We now consider the asymptotic (nonuniform)
stability of (1). Theorem 2 provides sufficient conditions for asymptotic stability.
The relation between Theorems 1 and 2 is discussed at the end of this section.

THEOREM 2. Letu :[0, ©0)-> R} be piecewise continuous and bounded. Then

x=—u(®)u()x

is asymptotically stable if there are n linearly independent unit vectors y1, ** - , yn
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with closed disjoint conical neighborhoods C,,, C,,, - - -, C,, such that
I lu(s)* ds = o
Ai

fori=1,2,---,n, where A;={s €[0, ©)|u(s) N C,, # 0}. By C,, closed, we mean
that C,, is the closure of an open conical neighborhood.
Since Theorem 2 gives only sufficient conditions for asymptotic stability, we
present the following as a step in the direction of obtaining necessary conditions.
PROPOSITION 3. Let u :[0, 0)> R" be bounded piecewise differentiable with
|u1(¢)| bounded away from zero where u(t) = (uy(t), - - - , u, (¢)). If

j |ti(s)] ds <o,
0

then % = —u(t)u(t)"x is not asymptotically stable.

Examples and Comments. 1. We now see that u' in § 2(d) yields an asymp-
totically stable system, even though not u.a.s.

2. The one-dimensional equation x = —(1/(1+1¢))x obeys

[e o] 1 o
L 1+tdt In(1+1)|g =00
and so is a.s. but not u.a.s. Note that this example indicates why something like the
conditions of the Lemma are required. With V= x%, V==2x%/(1+1); with
V=>1+0)x> V=—x

However, Proposition 3 shows that x=—u()u()’x where u(t)=
(1, (1+¢)~") with @ >0 is not a.s. This is because

()=, —a(1+0)™

and

[ lu(s)lds=aj (1+s5) ™ Tds=—(1+s) 5 =1.
o o

In particular, the above applies to u(¢)=(1,1/(1+1%)), u(t)=(1, 1/v1+1), and
u(®)=(1,1/(1+1)?.

3. The condition of Theorem 2 is roughly similar to condition 4 of Theorem
1. (Note, however, the difference in the definitions of €2, and A,,.) The question of
whether there are conditions implying asymptotic stability analogous to parts 2
and 3 of Theorem 1 is interesting. Letting u(¢)=(1,1/v1+14) as in example 2
above shows that

I y u@u(@)"ydt=co0
0

does not imply x = —u(t)u(s)"x is a.s. Also, it would be very useful to have a
nonuniform version of the lemma for Theorem 1.



UNIFORM ASYMPTOTIC STABILITY 13

4. Proposition 3 suggests the following as a conjecture. Let u : [0, ©0) > R be
bounded, piecewise differentiable with k <n and |u(s)|# O for all s. If

r° u(s)
o

u(s)

5. Proofs. In this section we prove the Lemma and Theorem 1.

Proof of Lemma. 1. The hypotheses of the Lemma hold in a ball of radius ¢
about the origin. Since x = f(x, ¢) is uniformly stable, there is an £, >0 such that if
x(¢) is a solution and |x(fo)| = &1, then |x(¢)| =& for all ¢ = ¢,. Fix this &;.

2. All that is required to establish u.a.s. is to show that, given g, with
0<e,<ey, there exists a T(e;)>0 such that for all £,=0, |x(t,)|<e, implies
|x(to+1")| < &, for some t'€[t,, to+ T(e5)].

3. Now we state two fundamental inequalities. Let x(¢) be a solution to
% = f(x, t) such that |x(t,)| = &, and |x(s)|= &, for s €[t;, £,] where 0<g,<g; and
0=t=t,=t,. Let L(#,, t,) denote the arc length of x(s) from ¢, to t,. Then

ds <o,

then x = —u(t)u(t)x is not a.s.

(2 L2(t, ) =B%(t,— 1), where B = ¢3(e1)/ pale2),
(3) da(ela(ta—t) +b]—d1(é(ty, ) t2—t]=L(1, 1),
where

&(t, 1) =max {{x(s)—x(t:)|;s €[y, ]}

We postpone the proof of (2) and (3) until after completing the proof of the
Lemma.
Define 6 = ¢7 ' (a¢,(¢2)) and

Y= [a¢221(382)]2+b2'

Then, combining (2) and (3) into a single inequality eliminating L(¢y, £,), we see
that £(¢,, t,) <& for t,—t; > v is a contradiction. Thus ¢, —#; >y implies (¢, £,) =
8. Note that neither y nor § depends on ¢.

4. Now assume |x(s)| = &, for s € [to, t] and use (2) with ¢, replaced by #p and ¢,
replaced by ¢. This yields BVt — o= L(to, t). Now clearly L(zy, t,) = £(14, t,) for any
1 =t,. Also we have £&(t,, t,) =48 if t,—t, =y by part 3 of the proof above.

Therefore, if t —ty = my for some positive integer m we have

m—1

m—1
BYmy=BvVt—to=L(to,1)= ¥ L(ti, k)= ¥ 6=m *§,
k=0 k=0

where ., — 1t =y and ¢, = t. This yields

By
82

v

m

which puts an upper bound on the length of an interval [, t] with |x(s)| = &, for
s €[to, t]. Since this upper bound is independent of #,, we have established the
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existence of T(e,). Specifically, we may define

2.2

Y
52 +7.

T(ey) ="

5. We now prove (2). Using the integral expression for arc length and the
Cauchy-Schwarz inequality, we obtain

L(t;, )= I : |%(s)| ds

t

[ o, otas=\ [ ratsr P dsv

But, by hypothesis 4 in the statement of the Lemma, we have

t, o
outen) | Iftets), 9P ds 5= [ Vix(s), 5) ds
t1 t1
=V(x(t), 1) — V(x(t2), t) = V(x(t1), t1)
S ¢3(lx(t)]) = ¢s(en).
Now (2) follows by combining the above two inequalities.
6. We now prove (3). Consider

I C ), )~ F(x(s), 5)| ds ;I “IF ey, )| ds —I “If(s), 5)| ds

2 (el +b1- [ 1f(x6), )l ds

Z ¢y(e)lalt,— 1) +b]—L(1y, 1)

and also
| 1w, 91660, 91 s = [ autieen—xo s

= [ " $1(£(t1, 1)) ds = 1(&(tr, )~ 1]

Now (3) follows by combining the above two inequalities.
This completes the proof of the Lemma.
Proof of Theorem 1. For simplicity assume |u(s)| =1 for all s. We shall show
the equivalence of the four parts of the theorem by proving in succession that 2
implies 1, 4 implies 2 and 1 implies 4 and that 2 and 3 imply each other.
(i) 2= 1. This will follow from Corollary 1 to the Lemma, once we show
that the three formulations of condition 2 are equivalent.
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Claim. The following are equivalent:

(a)

t
I yTu(s)u"(s)yds =a(t—to)+b for some constants a >0, b
fo and all unit vectors y.

(b)

t
j [u(s)u”(s)y|dsza'(t—t,)+b' for some constants a’>0, b’
o and all unit vectors y.

(©

I |u(s)Ty| ds = a"(t—to) +b" for some constants a” >0, b"
and all unit vectors y.

Proof of Claim. Firstobserve that y "uu"y = |u"y|*. Also|y|=1and |u(s)|=1
implies |y "u(s)u(s)Ty|=|u(s)u(s)"y|=(u(s)"y|. Thus (a)=>(b), (a)=>(c), and
(b)=>(c) follow at once. We need only show (c)=>(a). This follows because if
Ii, 1f(8) ds Z a(t—to) +b, then

a’(t—to)* +ab(t—to) = (J: ¥il ds)2 = (L: 2 ds) (t—1to)

by the Cauchy-Schwarz inequality. Q.E.D.
(ii) 4=2. Assume conditign 4 holds. We then have the conical open cover
for R", {C,|y e R", y # 0}, with associated {(},} as given by condition 4.

The C, cover 35, the unit sphere. Choose a finite subcover C,,, - - -, C,_. Fix
y€dS;. Then y € G, for some io. Then there is an £ >0 such that [u(s)"y|*=
yTu(s)u(s)Ty = elu(s)]® for all se[0, 00)—{)y, . This is because, for such an
s, u(s)-=ker (u(s)") is bounded away from y. (See Fig. 3.)

1 .
u(s)*,outside Cyio

8S for se[O‘”]-()yi
o

Fi1G.3
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Thus

t
I yTu(s)u(s)Ty ds gj yTu(s)u(s)Ty ds
[to,t]—ﬂyio

to

zeJ' lu(s)|* ds zelay, (t—t0) + by, ].
Tro.1-Qy,

This inequality is valid for all unit vectors in some small neighborhood of y.
By compactness of 9S;, we conclude

t
J yu(s)u(s)"yds=a(t—ty)+b forsomea>0,bandall r=1,=0,
fo all ye 351.

(iii) 1=>4. Assume % =—u(f)u(r)"x is v.a.s.

(a) Suppose condition 4 is false. Then there is some w €3S, such that for
every conical neighborhood C;,, the following holds:

Given any N >0 and & >0, there are ¢, and ¢, such that t,—¢; =N and

I lu(s)* ds <e,
[t1, 2%

where Q5 = {t [0, o)|u()* N C, # 0}.

(b) Byu.a.s. of X =—u(t)u(t)"x, given £ > £, >0, there is a y >0 such that if
x(t) is a solution and x(¢,) € S,,, then x(¢) € S,, if t=¢,+.

Let &, =1, £, =13, and choose v for these &4, €,.

(c) By (a), forany & > 0 and conical neighborhood C:,, there are ¢, and ¢, such
that t,—¢, =y and

J lu(s)]? ds <e.
[t1,02]-0%

(This w is the one fixed in (a).)

(d) Let w* denote an n X (n — 1) matrix which consists of columns which are a
basis for the orthogonal complement to w, an(n — 1)-dimensional hyperplane.
Define v(t)=w" - (Ww)" - u(t)) = “projection of u(t) onto w”. If u(¢) is n X k,
then v(¢) is n X k also. If u(t) is “close to w™,” then v(¢) is “close to u(t).”

The equation x = —v(t)v(t)"x has stationary solutions (any initial condition
on the line through w). We shall show that x = —u(f)u(t)"x is close enough to
x=—v(t)v()™x to have “almost stationary” solutions, at least to an extent
sufficient to contradict u.a.s.

(e) If x=A(0)x, y=[A@)+B(t)]y, and x(¢), y(¢) are respective solutions
with x(t) = y(to), then

t
y(©)=x(t) +j X(0)X(s) 'B(s)y(s) ds,
to
where X(¢) is a fundamental matrix solution for x = A (¢)x.

Let A()=—u(®)u(®)” and B(t) =[-v()v(1)T]— A(¢). Define the constant
function x(¢) = w, and note that x(¢) is a constant solution for x = A (¢)x.
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Then, for any initial o, we have solution y(¢) with y(#,) = w, and

y(t)=w +It X()X(s)"B(s)y(s) ds.

Now

I t X0X(s)'B (s)y(s) ds

=[ xOx@ BN y6lds=] Bo)ds

0 to

since |X(6)X(s)'|=|w|=1 and |y ()| =|y (to)| = |w|=1.

® IB(t)|=|-v()v(®)"—A@)|=[o@)o®7|+|u@)u®"|
=lu@f+u@)f=2lu@f.

Choose C, of width less than 1/(8v); i.e., if zq, z,€ Cy, are unit vectors, then
|z1—2,|=1/(87). Then, for te Q5, |B(t)|<1/(87), because u(t)" N CL#0. (See
Fig. 4.) In other words, since u(t)" is close to w, we may conclude that v(f)=
“projectTi_on of u(t) on w” is close to u(¢). Then it follows that v (f)v (¢) T is close to
u(®u()".

F1G.4a
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By (c) we can choose ¢, and ¢, with t,— ¢, =y and
1

u(s)f ds <—.

J;‘l:‘Z]_Q?v I )I 16

Now, letting tp=t, in (e), we have

r X()X(s) " B(s)y(s) ds ér IB(s)| ds

- B(s)| ds + [ \B(s)| ds
[t1,621N Q5 [t1,t2]-Q%
1
=I —ds+2 [u(s)|? ds
tr1n0s 8Y [t1,621-0%
L—1 1 Y 1 1
§ + ¢ —_— e - = —
8y 1216 8,78 4

Thus

el |w e+ XOXE) BEYE d
=|w|- I‘[ ’ X)X (s) 'B(s)y(s) ds| =1 —%=%>%.

1

This contradicts the choice of v, which was based on u.a.s. of ¥ = —u(#)u(s)"x. In
particular, |y(,)| should be less than 3.
(iv) 2<3. The smallest eigenvalue of A = j’io u(s)u(s)” ds is equal to

inf {yTAy}= inf (I yTu(s)u(s)y ds).
Iyl=1 Iyl=1

to
The equivalence of 2 and 3 is now obvious. Q.E.D.

6. Proofs of Theorem 2 and Proposition 3. In this section we prove
Theorem 2 and Proposition 3. First, however, we sketch the proof of Theorem 2
and discuss briefly its relation to the Lemma for Theorem 1.

Outline of proof for Theorem 2. Let x(t) be a solution. We want x(¢) >0 as
t - 00. To get a contradiction, suppose the length of x(¢) is bounded away from 0.
Then there are two possibilities.

(i) x(z) is eventually bounded away from some y; ={x € R"|(x, y;)=0}=an
(n —1)-dimensional “hyperplane.”

(ii) x(t) gets close to each y;,i=1,2, - - - n, repeatedly as ¢ - c0.

If the first possibility occurs, it is easy to show that we get a contradiction. If
the second holds, then we argue as follows. First x(¢) must repeatedly spend a
certain minimal amount of time away from all the y;". For this time we may relate
the decrease in V(x(¢)) to the increase in arc length of x(¢). We conclude that
V(x(2)) decreases by a certain fixed increment as x(¢) “travels the circuit” to each
of the y;". Since V(x(¢)) is bounded below, this also leads to a contradiction.
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It is reasonable to suggest that the Lemma in § 3 for the special case
flx, )=—u()u(®) Tx could be established by a proof analogous to that of Theorem
2. However, it does not appear that this proof would work for the general case,
and also this proof is not as simple as the one given for the Lemma. Since the proof
of the lemma does not seem to be adaptable to the nonuniform case, we have
chosen not to attempt a unified proof of the two results.

Proof of Theorem 2. For simplicity, assume |u(s)| =1 for all s and denote C,,
by C.

(a) We have defined y;" ={x € R"[(x, ;) =0} to be an (n—1)-dimensional
subspace of R". We extend the definition of “conical neighborhood” by defining a
conical neighborhood D; of y; by

D, =[C, ] ={x e R"(x, y)=0 for some y € G, }.

Then it follows that D; is the union of all lines in R" intersecting a neighborhood 8
of y; NS, in 3S;. (8S; is the unit (n — 1)-dimensional sphere in R" ; y;" N 3S; is an
(n —2)-dimensional “‘subsphere” (a “great circle”); 8 is an open subset of 35, that
contains y; N3S,). In fact, if C;= Cy, where a is an open neighborhood of y; in
881, then B =a™NdS; ={x €S;/(x, y) =0 for some y € a}. (See Fig. 5).

It is clear that if u(f)N G #0, then u(¢)* € D;. Since the y; are linearly
independent, we may further assume that D, D,N-- -N D, =0.

(b) Now if t€ A,, then u(t) N C; # 0 and therefore u(t)* € D;. Expand C, and
D; slightly to closed conical neighborhoods C¥ and D so that interior (C¥) 2 G,
interior (D)2 D,, CFNCF =0if i #j,and D¥N- - - N D} = 0. Do not change A,.
Then if € A;, we have u(¢)* € D¥ and bounded away from the boundary of D¥.
Therefore, we may conclude that there is an £ >0 such that if € A; and x¢ D¥,
then |u(t)"x| = |x| |u(¢)|. This is because, for ¢ € A; and x& D7, x is bounded away
from u(¢)* =ker (u(t)").

FI1G. 5a
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FIG. 5c. The surface of revolution of the shaded part of the figure equals D; = C;

(c) Thusif x(¢) is a solution that is eventually not in some D} (say for t = ¢t,),
we have

_Joo V(x(s)) ds zL [u(s)"x(s)[ ds zL e lus)Plx(s) ds

0

which is unbounded if |x(s)| = @ > 0 for some a. This would be a contradiction, so
|x(s)|=>0.

(d) Suppose x(?) is a solution which enters each D, i =1, - - -, n, repeatedly
as ¢ - 0. Suppose [x(s)|=a >0.

Now letting D = D¥UD%U- - - U D}, we conclude x(t) must spend a mini-
mal amount of time in R" — D when it travels to all of the D¥, i =1, - - -, n. This is
because, in going to each of the D¥, x(t) must cover a minimal distance in R" — D.
Since |%(¢)| is bounded above, this implies x (f) must spend at least a fixed amount
of time in R" —D. Thus we have a minimal distance § and a minimal time ¥.

Without loss of generality we have the following. If x(¢) travels to all the D¥
as t€[c, d], then there is [a, b]=[c, d] with b —a =y such that x(f)e R” — D for
all t€[a, b] and the arc length of x(¢) from a fo b is at least é.
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Note that when x(t) € R” — D, we have |u(t)'x(t)| = e|u(®)”] |x ()| = ea|u(?)|
(e) Let Q={te[0, ©)|x(t)e R" —D}. Then,

J' lu(s)x(s)]* ds =&%a’ I lu(s)[* ds.
o )

Thus

J' lus)) ds = I lu(s) x(s)[ ds.
) )

(f) If [a, b]< Q, then L(a, b)=arc length of x(s) from a to b =

2 2
E a

I IX(s)lds=I Iu(s)u(s)Tx(s)Idng' [u(s)| |u(s)x(s)| ds.

Applying the Cauchy-Schwarz inequality, we get

b b
[L(a,b)]zgj u(s)]? ds[ u(s) x(s)|* ds

b b
éﬁj |u(s)Tx(s)|2dsJ lu(s) x(s)|* ds

by (e).

We conclude that if x(s) enters each D as s ranges over values in [c, d], then
there is [a, b]1<[c, d]NQ <[c, d] such that

I |u(s)Tx(s)| ds ;I [u(s)"x(s)* ds = easd.

c.d] [a,b]

(g) By assumption, x(f) enters each D} repeatedly. Therefore [0, c0)=
)

Ui2i[ci, d;) where x(¢) enters each DF as te[c, d;), and there are [a;, b;) <
[ci, d)) NQ2[c;, d;) as above.

Thus
_J»oo V(x(s)) ds = ro [u(s) x(s)]* ds = j
0 0 Ulc;,
5[ wornorazg |
ci,di) i=1J,

i=1

|u(s)Tx(s)|* ds
d;)

lu(s)Tx(s) ds
ag,be)
= ) ead =0.

i=1

Therefore, |x(s)|=a >0is false. Q.E.D.

Proof of Proposition 3. (a) We will use the technique of putting u(f)u(t)”
into ““L-diagonal form” as described by Cesari [2, p. 39]. We will find piecewise
differentiable P(¢) such that

(i) P(0) 'u(u)"P(f) = A(r) = diag (u(#)*, 0,0, - - -, 0),
(i) |P(¢)| and |P(z)""| are bounded above, and

(iii) Lw |P(t)"'P(t)| < .
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Then J&=—u§t)u(t)Tx is asymptotically stable if and only if x=
A()x+P(t) 'P(t)x is. It is easy to confirm that this second system is not

asymptotically stable.
(b) Let
Uy —uU —us -+ U,
U, U 0
us; 0 U,
P(t)= . 0 0 U

u, 0 0 U
0 -u, —Uy,
Uz

= . +u11.
U, 0

Condition (i) is easy to check. The columns of P are eigenvectors for uu . Since
det (P)=(—=1)"""u}?|ul’, P7" exists.
Condition (ii) follows from the fact that |u(¢)| is bounded above and |u,(¢)| is
bounded below.
Condition (iii) follows because |P~(s)| = k implies

j |P'1P|dsgj P[Pl ds =k [ IB(s)| ds
0 0 0

ékj lit(s)| ds < oo. Q.ED.
0

Acknowledgment. We would like to express our appreciation to Professor J.
P. La Salle for his many helpful comments and especially for his suggestions on
rewriting the proof of the Lemma to improve its readability.

Note. A proof of the converse of the lemma, in the sense that u.a.s. and 1
imply 2, has been discovered by the first named author.
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PROJECTION ON A CONE,
PENALTY FUNCTIONALS AND DUALITY THEORY
FOR PROBLEMS WITH INEQUALITY CONSTRAINTS
IN HILBERT SPACE*

ANDRZE] P. WIERZBICKI AND STANISLAW KURCYUSZ?

Abstract. Each element p of a real Hllbert space H can be uniquely decomposed into two
orthogonal components, p=p~ +p~ P” where p® e D is the projection of p on a closed convex cone D
and p is the projection of p on the minus dual cone —D*. Hence if the cone D generates a partial
order in H, then the positive part p” and the negative part p~ P” ot each p € H can be distinguished. For
a general optimization problem: minimize Q(y) over Y, ={y e E:p—P(y)e D < H}, where Q:E -
R,P:E —>H E is Banach, H is Hilbert: the violation of the constraint can be determined by
(p—P(y))""". Hence a generalized penalty functional and an augmented Lagrange functional can be
defined for this problem. The paper presents a short review of known penalty techniques, some
properties of the projection on a cone, basic properties of penalty functionals for a general optimiza-
tion problem and duality theory for nonconvex problems in infinite-dimensional spaces.

Properties of minimizing sequences in constrained optimization are discussed and the con-
vergence of increased and shifted penalty techniques is studied in detail. Conditions of stability of the
optimization problem, implying convergence conditions, are discussed in the closing section.

1. Introduction. R. Courant in [3] suggested that in order to solve the
problem

(1.1) mi}p O(y); Yo={yeR":P(y)=0eR™}; Q:R">R, P:R"->R"
YE€TXo

a penalty function can be minimized
(1.2) Doy, ) =0 +PWIF;  @o:R"XR,>R

for a sequence of parameters {¢,}, ¢, - 0. This idea was later generalized—see
Fiacco and McCormick [7]—for problems with inequality constraints

(1.3) min Q(y); Yi={yeR":P(y)=0eR™},

where the partial in R™ is generated by the positive orthant. The exterior penalty
function for the problem (1.3) has the form

(1.4) i(y. £)= 0)+3¢ 5 Pi(y) max (0, P(y).

It is also possible [7] to define interior penalty functions for the problem (1.3), but
these are not investigated in this paper.

The problem of minimizing a penalty function for large penalty coefficients ¢
is badly conditioned numerically, since the spectral radius of the Hessian matrix of
a penalty function increases with . To overcome this difficulty, two equivalent

* Received by the editors July 16, 1974, and in revised form February 24, 1976. This work was
supported by the National Science Foundation Grant GF-37298 to the Institute of Automatic Control,
Technical University of Warsaw, Warsaw, Poland and the Center for Control Sciences, University of
Minnesota, Minneapolis, Minnesota.

T Institute of Automatic Control, Technical University of Warsaw, Warsaw, Poland.
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approaches have been developed independently. M. D. J. Powell in [20] intro-
duced the shifted penalty function for the problem (1.1):

(1.5) Wy, &, v)=Q)+xIPO») —vl’;  Wo:R"XR,XR™>R

which is minimized in respect to y for a sufficiently large ¢ and a sequence of
penalty shifts {»,}. J. Szymanowski, A. Wierzbicki and others (see [25], [15])
investigated shifted penalty functions for problems with inequality constraints
(1.3). M. R. Hestenes in [8] introduced the augmented Lagrange function for the
problem (1.1):

(1.6)  Ao(¢, m,y)=0Q()+(m, PON+3¢IPOIIF;  Ao:RXR™" >R,

where the additional term 3¢[|P(y)|* ““convexifies” the usual Lagrange function. R.
T. Rockafellar in [40] introduced the augmented Lagrange function for the
problem (1.3) and developed a duality theory for nonconvex problems. It should
be noted that the minimization of the functions Wy( -, £, ») and Ay({, m, - ) are
equivalent, since

(1.7) Ao(&, —Lv, y)=T(y, &, v) =53¢0l

but the augmented Lagrange function has useful properties, particularly in duality
theory.

A penalty functional approach in infinite-dimensional problems has been
applied by A. V. Balakrishnan, [2]. For the optimal control problem

(1.8) min Q(x, u) = Itl fo(x, u, t) dt+ h(x(t1)); X=f(x,u,t); x(to)=xo

to

a penalty functional has the form
1 1. 2
(1.9) D, (x, U, ;) = Q0 W)+ () =flx(-), (), I

where the norm is in L*(ty, t,); additional constraints can also be taken into
consideration. The functional (1.9) results in the so-called e-technique and in a
computational approach to the maximum principle. The method of multipliers
based on a functional similar to (1.9) in application to optimal and variattonal
problems was discussed in the works of Rupp [42], [43].

A more abstract approach was used by Levitin and Poliak [13] for an
optimization problem:

(1.10) anQ(y);Ao={yeE:K(y)§0}; Q:E->R, K:E->R,,
YE€Ao

where E is a topological space or, more specifically, a Banach space. A general
form of the penalty functional is then

(1.11) W(y, {) = O(y) +{K(y).

One of the authors of this paper observed in [26] that for a problem with
operator inequality constraints

(1.12) )r)reu}r) Q(y);Y,={yeE:p—P(y)e D< H}; Q:E-»R, P:E-H,
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where D is a positive cone in the Hilbert space H, the functional K can be defined
by

(1.13) K@) =3Pp)-p)""IF,

where D* is the dual cone and ( - )" is the projection on this cone. This approach
has been developed in order to solve optimal control problems with state space
eonstraints and, particularly, optimal control problems with delays and final
complete state constraints. The corresponding shifted penalty techniques have
been applied successfully to solve various optimal control problems [27]. How-
ever, the projection on a cone has many useful properties, which make it possible
to develop a generalized theory of penalty functionals, augmented Lagrange
functional and duality for nonconvex problems. The aim of this paper is to present
an outline of this theory.

Beside the references cited above, a number of works have been devoted to
the study of penalty functionals for various extremal problems. See, for instance,
[34], [35], [36], [41]. The shifted penalty technique (often called the method of
multipliers) has been recently investigated by numerous authors. Besides two
important papers [15],[31], a good review of related problems along with a rather
complete list of references is available by Bertsekas [32].

Part I. Fundamentals.

2. Projection on a cone and its properties. Let H be a Hilbert space, D a
nonempty, convex closed set in H.

LemmMmaA 2.1 (see [5], [28]). For any p € H there exists a unique element pD eD
satisfying

D_ _
2.1) lp” = pll=min |2 —p|.

The lemma holds also if H is a complete strictly normed space (if |x +y| =
[x[|+ lly|l implies x = ay, & € R). The element p” is called the projection of p onto
D, the mapping ( - )°, the projection onto D.

Projections on linear subspaces play a fundamental role in functional
analysis; but projection on more general convex sets and, in particular, on convex
cones have been investigated relatively recently. A basic result, stated in Theorem
2.4 in this section, was announced by J. J. Moreau [18] in 1962. E. H. Zaran-
tonello [29] used the projection on a cone to develop the spectral theory for a class
of nonlinear operators. The application to penalty functional techniques have
been introduced in [26]. The properties of a projection on a cone are presented
here from the point of view of this application.

Throughout the paper, D is assumed to be a nonempty, closed convex cone in
H with vertex at the origin, thatis, D + 8D < D for a, 8 =0. Recall that the dual
cone D* is defined by D*={d*ec H:(d*, d)=0Vd € D}. D* is a closed convex
cone and (D*)*=D.

LEMMA 2.2. For any p € H, p € D, the equality p = p® holds iff

(2.21) (i) p—peD*,
(2.2ii) (i) (p,p—p)=0.
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Proof. Let p satisfty (i) and (ii). Then |d—p|*=|d-p|f+
2d, p—p)+|p —p|F =||5 —p|* for any d € D. Since p®” is determined uniquely,
p=pP®. Conversely, if j=p” and not (i), then there exists d € D such that
(p®-p,d)<0 and, for some &>0, also &(p”—p,d)+¢e?d|*<0. Hence
lp” +ed —p| <||p® — p|f*; since D is a convex cone, p” + ed € D and (2.1) cannot
be satisfied. If not (ii), then ( p”, p” —p)>0in virtue of (i). There is an £; >0 such
that inequality —e(p®, p” —p)+&%|p"IF <0 holds for all £<(0,e;). Hence
[(1—¢)p® ——p||2<||p —p|| since D is a cone, (1—¢)p” e D for £ (0, 1) and
(2.1) cannot again be satisfied.

LeMMA 2.3. For any p € H the following holds:

(2.3) @ p” =p+(p)",
(2.3ii) (i) (-p)°=-p ",
(2.3iii) i) (Ap)°=rp® VA =0.

(iv) For any p € D the equality p =p® holds iff

(2.3iv) Ipll=" min |id].
deD*+p

Proof. (i) We have (p+(=p)°)—p=(-p)° e D =(D** and
(p+(=p)°, (p+(=p)°)=p)=((-p)” =(=p), (=p))=0 by (2.2ii). Hence p=
p +(—p)P satisfies conditions (i), (ii) of Lemma (2.2) with D changed to D*. Part
(ii) is proven similarly. To prove (iii) observe that |]A\p” —Ap||=Alp” —p|=
A mingcp ||d —p||=mingec,p-p ||d —Ap|| for A >0 since then AD = D. If A = 0, (iii)
is obvious. Part (iv) follows from (i), since mingep«+, [[d||=mingcp+ Ild+p|=
l=p)"" +pll=1p"Il

The following statement, announced first by J. Moreau [18] in 1962 in a
slightly different formulation, is a generalization of the classical decomposition
theorem for Hilbert space [5], [28]: if D = T is a closed subspace of H, then each
p € H can be uniquely represented by p=p” +p™" where p”, p”" are projections
on the orthogonal subspaces T, T respectively. Note that any subspace is a cone
and T"=T*=-T*.

THeEOREM 2.4. Decomposition theorem. Any element p e H can be rep-
resented in the form

(2.4i) p=p"+p™"
with
(2.4ii) (P2 p"H=0;  lplP=Ip"IF+Ip~"IP.

This decomposztzon is umque the relations p = p,+p,, p1€ D, p,€ —D* (p, p,) =
0 imply p,=p®, p,= . This decomposition is also norm-minimal ; the relations
p=pi+p, p1 €D, p, e —~D* imply |p:l1Zlp°], 2= o™’

Proof. The theorem follows directly from Lemmas 2.2 and 2.3. The minimal-
ity property holds by (2.3iv): p; =p—p,e D*+p; hence [p°||=||pi|l.

The decomposition theorem is fundamental for determining constraint viola-
tion in the problem (1.12) and thus defining a penalty functional. But the
projection on a cone has further useful properties.
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LemMA 2.5. The projection on a convex closed cone has the following proper-
ties:

@5y 0O le”I=lpl PeH,
2.5i)  Gi) [pP-p2l=lpi—pal, P, P2€H,
@.5ii) (i) (i +p—d®)PI=llpp+pdl,  pi,p.€eH, d*eD*.
Proof. Part (i) follows from Theorem 2.4. Part (ii) follows from the in-
equalities:
lp?—p2 P =(p? = pz> pr—p2—pi” +p:"")
=(p7—pz> p1—p)+ (T, 2" ) —(p7, p1"")
=(p7-p3>p1—p=[p?~p2l - lIp1—pal;
these estimations are based on Lemma 2.2. To prove (iii) we apply (2.3iv):

(p1+p>—d*)"||= MiNgep* s p, +py—a* ||d]| = lp?+p3l,
since
pL+py =@ -p: +p2—pr+d*)+p +p,—d*e D*+p,+p,—d*

by (2.2i).

Corollary 2.6. The functional ||(-)"|| is convex.

Proof. Any subadditive ((2.5iii) with d* =0)) and positively-homogeneous
(2.3iii) functional is convex.

More important are the properties of the functional 3|( - )°|°. Anticipating
the applications to penalty functionals, we shall state the following lemma in terms
of D* rather than D though the roles of both cones are fully symmetric.

LeEmMA 2.7. Let q(p) =3|p” |- Then

@) gAp1+(1—M)p,—d)=Aq(p1)+(1—-A)q(p2), pi1,p2€H, deD,

A €(0, 1). In particular, q is convex.
(i) The functional q is Frechet-differentiable with the derivative

(2.74) 0 (p)=p"".
Proof. Part (i) follows from (2.5iii) with D replaced by D*:
IAps+(1=1)pa =) P = AP +(1=1)p)” [P =[ApT" + (1 = 2)p7
=Alp? P+ =llpZ P

The proof of (ii) is omitted; various proofs are given in [9], [26], [29].

An extensive treatment of the projection on convex sets is given in [29]. We
close this section with examples.

Example 2.8. Let H=R",D={p=(p',- -, p")e R" :p' =0 Vi} (the posi-
tive orthant). Then D*=D and from Lemma 2.2 it follows that p®=
P+, -+, p%) where pi =max (0,p’), p'eR.

Example 2.9. Let H= W3[0, 3]. This is the space of absolutely continuous
real functions on [0, 3] with square integrable derivatives and with the scalar

product
3

2.9) <1m,pz>=pl<0>p2(o)+j0 Br(Opa(e) d.
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Let D={peH :p(t)=0Vte[0,3]}. One can verify that: D*={peH:p is
nonincreasing, 0=p(¢)=p(0) a.e.}. Let p(¢) =—1, te [0,1], p(r)=¢t— 2 te[l,3].
Then from Lemma 2.2 it follows that p~ (t) =-1 and p Piy=o0,te
[0,1];¢—1,t€e[1, 3].

Example 2.9 shows that the projection on a cone can in general have quite a
complicated form. The projection is simple in the space of L type.

Example 2.10. Let 5 be a separable Hilbert space, & < 3 a closed convex
cone and (Q, /4, 1) a measure space. Let H = L*(Q, M, w; 3); this is the space of
equivalence classes of the Bochner square integrable function from () into %, with
the scalar product

(.10 10 = | (Pi0). paw)de)

where (-,-) is the scalar product in . Let D be the closed convex cone
D={peH:p(w)ePae}. Then D*={peH:p(w)ePD*ae} and p°(w)=
(p(@))? a.e. If, in particular, #¥ =R, & = R., then p®(w) = (p(w))+.

3. Penalty functionals for a general optimization problem. In this and the
following sections, let E be a real Banach space, H a real Hilbert space, D a
nonempty closed convex cone in H with vertex at zero, P: E - H an operator and
Q:E - R afunctional.

Problem 3.1.

(3.1) ;relip Q(y); Y,={yeE:p—P(y)e D}.

This is a rather general optimization problem, which includes most of the
problems of optimal control, nonlinear programming, etc. The assumption that H
be a Hilbert space is not really restrictive, since it is the most natural setting for
many infinite-dimensional optimization problems—for example, problems with
constraints described by partial differential equations. On the other hand, the
Hilbert space has a useful and strong mathematical structure; here, the most
important feature of the space H is the notion of the pro;ectlon on the cone D.

Observe that p—P(y)e D if and only if (p—P(y)) "> =0 (Theorem 2.4).
Define the constraint violation functional

3.2) Ky)=3lP»)-p)”"|F; K:E->R..

Since (p —P(y)) 2" = —(P(y) —p)"" by (2.3ii), then the condition p — P(y)€ D is
équivalent to K(y)=0. Thus, the notion of the projection on a cone makes it
possible to reformulate the general problem (3.1) with operator constraints into a
simpler one with functional constraints.

Simplified problem 3.1'.

(3.1) min Q(y); Ap={y € E:K(y)=0}.

Moreover, the functional K preserves some properties of the operator P.

LemMma 3.3. () If P is D-convex, that is, (1—A)P(y;)+AP(y;)—
P((1—=A)y,+Ay)eD forall A €[0, 1], yy, y, € E, then K is convex. If, in addition,
P is continuous, then K is weakly lower semicontinuous.
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(ii) If P is continuous, then K is also. If P is weakly continuous (in weak
topologies of both E and H), then K is weakly lower semicontinuous.
(iii) If P is differentiable, then K is also and

(3.3iii) Ky(y)=P¥(y)P(y)-p)”".

Proof. (i) P(1—A)y1+Ay2)—p=(1—-A)P(y)—p)+A(P(y;)—p)—d for
some d e D, if A €[0, 1], y,, y.€ D. Since K(y)=q(P(y)—p) the convexity of K
follows from (2.7i). Since g is contihuous by (2.5ii), then K is continuous; being
convex, K is weakly lower semicontinuous. Part (ii) is immediate and (iii) follows
directly from (2.7ii).

Example 3.4. Let H=R"xR™, D=R}x{0,}={p=0@",---,p"p""",
<o, p"™)eR"XR™:p'=0, 1=i=n, p'=0, i=n+1}. Then D*=R"xR™.
Let P:E->R,i=1,"--,n+m, P=(py," - *,Pysp), and p=(p’,- - -,p" ™) e H.
Then

n n+m
K(y)=2 P (P(y)=-p)i+: X 1 (P(y)~p:)’.
i= i=n+
Infinite dimensional examples.
Example 3.5a. Nonlinear operator with values in L*(0,1). Let H=L%(0, 1),
D={peL?0,1):p(t)=0ael. Let P: E-~L*0,1): peL*0, 1). K is defined
by

1
(3.54) K»)=3 [ PO -p)E a

Examples 3.4, 3.5a are general and simple. The constraint violation functional
(3.2) appears in various problems with complex structure. The examples below
are described without details, which can be easily filled in by the reader.

Example 3.5b. A controlled system with inequality constraints. Suppose the
constraints are:

X)) =f(x(@), u®@),?t) a.e.in[to, 1],
x(t)=x0,  gx(t) =0,
h(x(t)=0 Yte[to, t].

Assume the customary hypothesis on f to guarantee for any u(-)e L™(ty, t;; R")
the existence of a unique solution x (z)( - ) to the initial value problem (the first two
equations). Suppose g:R"->R™ h:R">R". Define H=R"™ xL(ty, t;; R"),
E=L"(ty, t;; R"). Thus y = u( - ). Define P: E > H by
P(u) = (g(x(u)(t1), h(x(u)(+))).
Define the cone
D={(g h(-))eH:g=0,h(t)=0a.e.in[to, 1;]}.
Then the whole set of constraints can be written as
—P(u)eD.



32 ANDRZEJ P. WIERZBICKI AND STANISLAW KURCYUSZ

Functional K is here

1 L ,
(3.5) K) =g XP+5 [ IhG)0)F .

Example 3.5c. A controlled system with delay. For simplicity, consider the
linear case:

) =A@Ox@)+B@t)x@t—1D)+C@)u(t)z a.e.in [, t4],
x(t)=¢0(t) Vte[to_l, ‘tO],
x(t) = @1(t) Vielti—1, 4],

where A, B, C are measurable bounded matrices of suitable dimensions. Pro-
vided u(-) is square integrable and ¢y, e.g., continuous we have that
X ()Mo € Wilto, t1; R™)—that is, x is absolutely continuous with an > deriva-
tive. Similarly as above, the first two equations define x(u) for each u e E =
L*(ty, t:; R"); therefore the constraining operator P can be defined as

P:E->H, P(u)=x()|y-1,01~ 1-
Generally, the Hilbert space H can be chosen in at least two ways: H=

L*t,—1,4;R") or H= W(t;—1, t;; R"). The corresponding penalty terms
K(y) (setting y = u) would have the form

(3.50) 3 0= d
or

" 1 2 1 i . . 2
(.5¢) e -eF+3 [ N0 e 0Fd

t1—1

For particular problems of this type, other spaces and norms could also be
employed; for instance, if the state equations were

x1(0) =x1() —x1(t = 1)+ x2(2),

X2(8) = x2() + x2(t — 1)+ u(t),

one could readily use the constraint violation term of the form' (abbreviating

x(u)(2) to x(t))

1
-2-|x(t1) ‘¢1(t1)|2+%|351(t1) 7‘/511([1),2
(3.5¢" 51 (BO-8u0P+ 0P

Example 3.5d. A problem described by partial differential equation (the

! This is the square norm in the product Sobolev space Wa(t;—1, ;)X Wi(t;— 1, t,).
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model of a gas pipe-line system [27]).

Pi__ 90
ot 0x
(t,x)eQ=[0,TIX[0,L;], i=1,2,
%= -B,Q;
ox

(where p, Q are the gas pressure and flow). Initial and boundary conditions are
pi(x, 0) = fi(x), i=1,2,
p1(0, 1) = g (1),
Oy(Ly, )=u(?),
Q(0, 1) = u(t),
Qy(Ly, )= h(t)
(u is the control). Additional constraints:
Pi min =Pi(X, t) = Pi maxs i=1,2, Vxt
Fimin=Fj(u(t), py(L1, 1), p2(0, ) =Fjmax»  j=1,2 Vit

For any control u € E = C(0, T), the state equations along with boundary and
initial conditions define the pressures p;(u), p.(u) belonging to L*(Q). Denote
briefly F;(u(¢), p1(L1, ), p2(0, t)) by F;(u). Define the Hilbert space H to be

H=L*Q; R*)xL*([0, T]; R*
and the operator P: E - H by:
P(u) = (p1(tt) = P1 max> P1min— P1(4), P2(U) = P2 maxs P2 min—P2(14),
Fy(n) = Fi maxs Fi min = F1(4), F2(t) = Fa max> F2 min = F2(1)).
Define also the cone D = H by
D={(p,F)eH:p(x,H)=0ae.inQ, F(t)=0a.e.in [0, TT},
where the inequalities are taken in R*. Then the set of constraints is equivalent to

—P(u)e D
and consequently

K@= 3 [ (0= prrst + (pin—p ) didx
=1 Jo
' T
35D 125 [ (B~ Fmad? + (= )2 di
2;51

Given the functional K it is routine to define the penalty functional for
problem (3.1) by

(3.6) Dy, )= Qy)+LK(y) = Q(y) +3¢|(P(y) ~p) "
It is also possible to define a shifted penalty functional by substituting the constant
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element p in (3.6) by a variable penalty shift » € H:
B7) Wy, &v)=QW+HIPY) - yeE {20, veH.

Clearly, ®(y, {) =¥(y, {, p).

As was shown before, this form of penalization is well justified by numerous
examples arising in computational experience. Functional (3.6) with (3.5a’) has
already been suggested by Levitin—Poljak [13]. Functionals (3.6) and (3.7) with
(3.5v', ¢, ¢”, ¢", d") have been effectively used for solving optimization problems of
(3.1) type. See [27], [38], [39] for computational results.

The penalty functionals (3.6), (3.7) can also be used for optimal control
problems reformulated in a manner different from that shown in the examples
above, where state equations along with initial and/or boundary conditions have
been excluded from the set of constraints and the optimization has been carried
out in the space of controls u. Another approach, proposed by Balakrishnan
(e-technique) and Rupp consists in carrying out the optimization in the space of
pairs y = (u( +), x( - )) = (control, state), and treating state equations as principal
constraint; other constraints, e.g., endpoint conditions on x can be included in the
definition of the space E of optimized trajectories. See Balakrishnan [2] for the
use of (3.6) and Rupp [41], [42] for the use of (3.7) for optimal control problems.
Some computational results are given in [42], [43] and [27].

It is also possible to include all constraints in the-functional K; in Example
3.5d one could augment functional (3.5d’) by the term:

L3 I%_éip_f
2,=1Jg lot B ox>

2 12 (& 2
didx+3 3 j 9%, 0)— £, () dx
i=170

T
4 L (101(Ly, ) u(®R +]Qa(0, )~ (B +|QsL, )~ h(O)P) dt

in order to avoid solving numerically partial differential equations.

The properties of ® and V¥ are related to the Lagrange multiplier theory in
optimization techniques. Recall the following.

DeriNITION 3.8. Let Q, P be both differentiable or Q be convex, P be
D-convex. The functional L : HX E - R defined by

(3.81) L(n,y)=Q(y)+{n, P(y)—p)

is called the normal Lagrange functional for the problem (3.1). Anelement n € H
is called a normal Lagrange multiplier for the problem (3.1) at a (optimal) point
yevy,if

(3.8ii) neD*,  (n, P(§)—p)=0
and

(3.8iii) L,(n,y)=0

for Q, P differentiable, or

(3.8iv) L(n,y)=L(n,y) VyeE

in the convex case.
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Itis well known that rather severe additional assumptions are needed in order
to ensure the existence of normal Lagrange multipliers at an optimal point for the
problem (3.1)—see, for example, [1], [11].

LEMMA 3.9.2 Suppose § minimizes V(- , {, v) over E. Then ¥ is a solution of
the problem

(3.90) min Q(y); Y, ={yeE:p—P(y)e D},
where
(3.9ii) p=Py)—v)" +v

is a normal Lagrange multiplier for the problem (3.9i) at y = Yj.

Proof. p—P(3)=(P(5)—»)" - (P(y)—v) by (2.3i); hence y € Y. Moreover,
for ye Y; p—P(y)e D and

IP(y) =) I = lw = P(y))° = (v = P)IF =I5 - P(y) — (v — PO)I

=l =+ =IPE -

by (2.3i) and the definition of projection. Since ¢(y, ¢, v) =¢(y, {, v) forall y e E,
then Q(7)=Q(y) for ye Y, Thus j solves (3.9i). Clearly, 7 eD* and
(0, PG)=py=L(~(P(H)—v)"", (v=PE)")=Lr—PF)™"", —PF)")=0
by Theorem 2.4. If Q, P are differentiable, then ¢, (,{, »)=0 and L (%, y)=
Q,(3)+P¥(3)a =, (7, £, v) = 0 by (3.3iii). Thus (3.8ii) and (3.8iii) are satisfied at
(7, ¥)- Now, let Q be convex, P be D-convex and suppose (3.8iv) is not satisfied,
i.e., there exists y € E such that Q(§)— Q) +(n, PF)—P(F))=a <0. Let y, =
y+te(—y)=(1—e)y+ey for 0<e<1. By convexity, (1—¢)Q(y)+eQ(y)=
Q(y.) and P(y,)=(1—¢)P(y)+eP(y)—d(e),d(e)e D. Hence Lemma 2.7ii
implies the following estimate:

\F(Ye" {’ V) - ‘I’(Y, {, V) = Q(YE) - Q(}_j) +%{(”(P(ys) - V)D*Hz - "(P(y) - V)D*"2

=£(0(5) - Q)+ (IP(F) +¢ (P(F) - P() —»)”I
=IP@) =)

=£(Q(F)— Q) +HUPGF) —v)”", e(P(§)— P(7))) +0(e)

=e(Q() -~ Q) +(@, P(F) =Py +o(e)=¢ (a +9(Le£)—)) ‘

Thus ¥(y,, &, v) —Y(J, {, v) <0 for small ¢ and y cannot minimize V(- , ¢, v) if it
does not minimize L (1, - ). This proves (3.8iv).

Without substantially changing the proof, the lemma can be restated for the
case of a local or constrained minimum.

LemMmA 3.9'. Suppose y minimizes W(-,{, v) over a set A<E. Then j is a
solution of the problem

(3.9') min Q(y); Y;={yeE:p—P(y)e D},

ye anA

2 This is the Everett theorem for the penalty functional (3.7).
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where pis defined by (3.9ii); the element 7) defined by (3.9iii) satisfies (3.8ii). If A is
open and Q, P are differentiable, then L, (7}, y) = 0; hence 7 is a normal Lagrange
multiplier. If A, Q are convex and P is D-convex, then L@}, y)=L(7, y) for all
y€A; hence 7 is also a normal Lagrange multiplier for the problem (3.9'1) at
yeY;NA.

The Lemmas 3.9, 3.9" are fundamental for understanding penalty functional
techniques. First, it is assumed that W( -, £, ») does have a minimum; conditions
for the existence of minimal points of penalty functionals are investigated in the
next sections. Secondly, when minimizing a penalty functional, one actually solves
not the original problem (3.1), but a slightly modified (3.91); observe that
7= (P(§)—p)”" +p for unshifted penalty functionals. The modified problem is a
normal one, i.e., it has normal Lagrange multipliers. The original problem need
not be normal. If it is possible to choose a sequence {¢,, »,} such that j, converges
to p, then the original problem is approximated by a sequence of normal ones.
Since fn,—p=v,—p+PF.)—va)" =v,—p+(1/L,)7, one can expect a fast
convergence of p,, to p when choosing suitable shifts »,, and keeping £, constant.
But p,, can be equal to p only if the original problem is normal. If it is not, {,, must
be increased in order to approximate p by p,. The suitable algorithms and their
covergence are discussed in §§6 and 7.

4. Augmented Lagrangians and duality theory. An augmented Lagrange
functional can be defined by adding to the shifted penalty functional (3.7) a term
independent from y; hence these two functionals are equivalent when minimized
in y. But the study of augmented Lagrangians results in an extensive duality theory
for nonconvex problems. See [22], [30], [34], [35], [36] for the discussion of this
theory for nonconvex problems with H = R". In infinite dimensions, the convex
case was studied—e.g., in [10], [12], [21]. The authors are not aware of any
presentation of duality theory for nonconvex, infinite-dimensional problems.
Nevertheless, the presentation here is brief and confined to main points which
allow a generalization of the extensive theory presented in [22]. Those proofs
which are obvious modifications of the proofs in R” given in [22] are omitted in
the sequel.

DEFINITION 4.1. The augmented Lagrange functional for the problem (3.1)
is defined by introducing an equivalence between the Lagrange multiplier n and
the penalty shift » and coeflicient

(4.1i) n={(p-v).

Then the augmented Lagrangian is

AW v, y)=An, y) =Wy, ¢, v)—3Llp—v|P

(4.1ii) . b 1 )
= Q) +3¢l(P(y) )" I =2¢Llp — vl
In the sequel, only the functional A({, v, y) will be studied.
LEmMmA 4.2. The optimization problem (3.1) is equivalent to the primal
problem

@2) @ min( sup  AQ®y)=minO0.p)

ye€E \({,w)eR+xH
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where
.. — def Q(y), er,
4.2 S ={ p
(4.2ii) 00D ey,
Proof. 1t is sufficient to show that
* 0 ey,
(4.2iii) sup (||(P(y)—»)P|P— —I? ={ >, YEY)
sup €HPO) =" =2l =P ={ 22 22

To prove this, note that for p— P(y) € D the following inequality holds:
IPG) =) =P ~vI=1PE)~p+p =) |-lp—~]
=l(p—=»)""I~lp-rl=0

due to (2.5iii) with D changed to D*. If p— P(y) € D, then (P(y)—p)”" #0; take
(gm Vn) = (n’ P) to obtain

L IPG) =2 F=llp = wlP) = nl(P(y) = p)* P —> oo.

DEFINITION 4.3. The functional

. A~ def | .
(4.3i) A, v) = inf AU v, y)=inf (3, ¢, v) —3¢llp—If
€ ye
is called the dual functional. The dual problem is defined by
(4.3ii) (D)  max (inf A, v, y)) = max A v).
(,w)eR+XH \yeE (&v)eR4xH

Observe that the optimization in both (4.2i) and (4.3ii) in respect to v (or 7,
see (4.1i)) is unconstrained in the space H, whereas in the classical convex duality
theory the optimization is performed in respect to n € D*.

DEFINITION 4.4. Consider a family of optimization problems (3.1) with the
parameter p varying over H. The functional

(4.41) O(p) < inf Q(y)

yeYp

is called the primal functional. Clearly,
(4.4ii) Q(p)= int Oy, p)-

A crucial role in the generalization of Rockafellar’s duality theory is played
by the following representation lemma. .

LemMMA 4.5. The functionals A({, v, y) and A({, v) satisfy the relations
@S) O AGp+7y)=inf (00 p+p)+EIAP -2, 7)
@si) @) A¢p+a)=inf (0(p+p)+515P-2(5 7).

(ili) The  functionals  ({,n)—~>A¢&p+(1/Dn,y) and  ({m)—
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f\({, p+(1/0)m) are concave and weakly upper semicontinuous.
(iv) For{>0=0,vecH,

-~ =2
(4.5iv) A({, p+v) >x§1€a§( (A(o-, p+z)— ”Z{—_ozl)l).
Proof. Without loss of generality, let p =0 to simplify notation. By (2.3iv),
[(P(y)—#)P"||= minscp+pey) | 5 — 7| Therefore

AQ 5, y)= QW) +3¢  min [|5—l~3¢#l

= min (Q(y)+3¢llp|—- {(p,v))—mf (O, p)+3L16IP - &, 7).

peD+P(y)

Thus (i) holds; the point (ii) follows from (i). Part (iii) holds since both functions
are biggest minorants of a family of affine functions; see [12]. To prove (iv),
observe that

A; 9)= inf (Q(p)+301pIP =0 (B, 2)+3(¢ ~ P+ (5, 07 = £7)

= inf (Q(p)+3o|plF —o(p, )+ m1n G —oBlIF +(p, oz — 7))

peH

_ A( = Z)— I_—
COROLLARY 4.6. For any ne H,

. imA(p+7)= sup Alwp+2)=sup (D),

(o, Z)eR+h

where sup (D) denotes the supremum of the dual problem (4.3ii).
Proof. For any (o, Z)€ Ry X H and any ¢ >0 it is possible to choose ¢’ such
that

A o _Im—ezlf
g)zA(O',p+z) s

zf\(a',p+2)~s, =/

]\({,p+

Lemma 4.5 allows a straightforward generalization of several duality
theorems given in [22]. To state these theorems, some further definitions are
necessary.

DEeFINITION 4.7. The primal functional (4.4i) for the problem (3.1) is called
quadratically bounded or, equivalently, it is said that the problem (3.1) satisfies
the quadratic growth condition if there exist g, { € R such that

(4.7) O(p+p)zq—{|plP VpeH.
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THEOREM 4.8 [22]. If the primal functional (4.41) is quadratically bounded,
then

(4.8) —o0 <sup (D) =lim inf Q(p +p) = Q(p) =inf (P),
m

where sup (D) and inf (P) denote the supremum of (4.3ii) and the infimum of (4.2i),
respectively. If the primal functional is not quadratically bounded, then sup (D) =
—00.

The next definitions are related to the so-called stability of the problem (3.1)
in the family of perturbed problems defining the primal functional O( p+p).
Actually, stability is a kind of continuity of the primal functional. The notion of
stability was introduced in [21]; see also [10], [12], [6].

DErFINITION 4.9. The problem (3.1) is called inf-stable if the primal func-
tional is lower semicontinuous at p, that is,

4.9) lim inf Q(p+p) 2 Q(p)-

DEeFINITION 4.10. The problem (3.1) is called stable of degree 2, if there is a
neighborhood O of zero, an element ¥ € H and a number >0 such that

(4.10) O +p)z=0(p)+{p, »)—3LlpIF VpeO.

Conditions guaranteeing stability shall be discussed in Part I1, § 8 of this paper.
The notion of stability is the basis for two following theorems. The theorems are
stated and proven for the nonconvex finite-dimensional case in [22]; the first
theorem is also stated and proven for the general convex case in [21]. Due to the
Lemma 4.5, the proofs of the theorems remain valid also for the nonconvex
infinite-dimensional case.

THEOREM 4.11. Suppose the primal functional (4.4i) for the optimization
problem (3.1) is quadratically bounded. The duality relation inf (P) = sup (D), that
is,

(4.11) inf sup A(,wv,y)= sup inf A v, y)

y€E ({,v)eR+xXH & v)eR+XH yeE

holds if and only if the problem (3.1) is inf-stable.

THEOREM 4.12.% Suppose the primal functional (4.4i) for the optimization
problem (3.1) is quadratically bounded. The duality relation inf (P) = max (D), that
is,

(4.12) inf  sup A(l,v,y)= max inf A, v,y)

yeE ({,v)eR+xH (mv)eR+xH yeE

holds if and only if the problem (3.1) is stable of degree 2. Moreover, a pair
(£, ¥) € R, X H is an optimal solution to the dual problem (4.3ii) iff it satisfies (4.10)
for some neighborhood O of zero. If Q and P are differentiable or Q is convex, P is
D-convex, then 1 =—(7 is a normal Lagrange multiplier for the problem (3.1).

3 Compare also [34], [35], [36].
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COROLLARY 4.13. Assume that ¥ is a solution of the problem (3.1) and let the
problem satisfy the quadrattc growth condition. A necessary and sufficient condition
for the existence of (£, ?)e R* X Hsuch that § y minimizes the augmented Lagrangian
A({ , ¥, ) or, equivalently, the shifted penalty functional ‘I’( , (D) is that the
problem (3.1) be stable of degree 2. The set of all these pairs (, ?) is identical with
the set of all pairs ({, ¥) satisfying (4.10) for some neighborhood O of zero.

Part II: Algorithms and convergence.
5. Minimizing sequences in constrained optimization. Consider the original
problem (3.1) in its equivalent functional-constrained form.

Problem 5.1.
(5.1i) y“e‘i{}) Q(y); Ao={ye E:K(y)=0},
where
(5.1ii) K(@y)=3Py)—p)”"I

is the constraint violation functional for the operator constraint p —P(y)e D
corresponding to the squared distance from p — P(y) to the positive cone D. Recall
that E is a Banach space, H is a Hilbert space; Q K:E->R,P:E->H,Disa
closed convex cone in H, D* is the dual cone, (- ) is the projection on D*.

In a numerical method solving the problem (5.1i), a sequence of points
{yn}n-1 is generated, with the aim to approximate a solution § of the problem.

DErFINITION 5.2 (Rockafellar [21]). A sequence {y,}n-1 < E is called an
asymptotically minimizing sequence (ASMS) ift

(5.2i) @ lim O(y,)=liminf Q(p+p),
(5.2ii) (i) lim K(y,)=0,

where O is the primal functional (4.4i).
DEFINITION 5.3. A sequence {y,},-1 < E is called a weakly approximately
minimizing sequence (WAMY) ift

(5.31) ®  lim Qy.)= Q(p)=int (P),
(5.3ii) (i) lim K(y,)=0,

where inf (P) is the infimum of the primal problem (4.2i).

According to Theorem 4.8, if the primal functional is quadratically
bounded (4.7), then Q( p)=liminf;_, Q( p +p) =sup (D), where sup (D) denotes
the supremum of the dual problem (4.3ii). In this case, a WAMS gives a better
approximation of the solution of the original problem than an ASMS. However, if
the problem is inf-stable (4.9), ASMS and WAMS are equivalent.

DEerINITION 5.4 (Levitin—Poliak [13]). A sequence {y,},-1<E is called



PROBLEMS WITH INEQUALITY CONSTRAINTS 41

approximately minimizing (AMS) iff
(5.4 @ lim Q(y.)=0(p),

(5.4ii) (i) lim dist (y,, Ag)=0.

An AMS is the strongest type of approximating sequence. If Q, K are
uniformly convex, each AMS is norm convergent to the (unique) solution y of
(5.1i)—see [4], [13]. But it is usually easier to show that a sequence of points
generated by an algorithm is ASMS or WAMS rather than AMS. Under certain
regularity assumptions, it is possible to verify that a WAMS is AMS.

DEerINITION 5.5 (Levitin—Poliak [13]). The constraint functional K is called
correct if, for any sequence {y,}, =1 < E (5.3ii) implies (5.4ii).

Several conditions of correctness of K are discussed in [13]. One of them is
the following:

LeEmMMA 5.6 [13]. Suppose K(y) =0 for all y € E, K is Fréchet-differentiable in
E, its derivative K, (y) satisfies |K,(y)|? ZAK(y) for all y € E and for some A >0,
and the mapping k,( - ) is Lipschitzian. Then K is correct.

CoRrROLLARY 5.7. Let P be affine continuous and its linear part Py be a
surjection. Then K defined by (5.1ii) is correct.

Proof. By (3.3iii), K,(y)=P¥§P(y)—p)° " and K, (y) is Lipschitzian with
Lipschitz constant equal to [|P,[” by (2.5ii). Moreover,

1K, DI =11PEPGIP) I 2 Aol (PG)—p)°|P = 240K (y)

for some Ay >0, since P§ is a normal injective operator; see [5; V1.6.2]. Hence all
assumptions of Lemma 5.6 are satisfied.

We close this section with a theorem on convergence of penalty techniques,
which is due to Rockafellar [22] in the case of H=R".

THEOREM 5.8. Let a sequence {(,, v,)} = R X H be given, such that{, =6 >
0 for all n and

&

X . . In — +_—
(5.8) lim A (¢, -804 257,

>=sup(D)<+oo,

where A is defined by (4.31) and sup (D) is the supremum of (4.3ii).
Suppose each y, € E minimizes approximately A((,,p+ V., ) (or, equival-
ently, V(- , ¢, p+7,) over E), that is,

(5.8ii) Al P+ 5y ya) =MLy p+7) +
where a,, > 0. Then

(5.8ii) @ PG -p)”1—20;  [#]—20

or, equivalently, dist (p — P(y,), D)~ 0 and dist (—#,, D*)>0.
(b) If the sequence {{,v,} is bounded, then {y,} is ASMS for the problem
(5.1i,1i).
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(c) If the sequence {{,7,} is bounded and the problem (5.1i,1i) is inf-stable
(4.9), then {y,} is WAMS for the problem.

Proof. Without loss of generality, let p =0 to simplify notation.

(a) Denote p, =v, +(P(y,)— 0,). According to (2.3iv) and (4.5i) the follow-
ing estimate holds:

Ay Py Yu) = Q) ¥ 38| Bull® = &ul B> 7

= 00+ 169Nl = 6~ 5 225 7) + 1015

=A o 2

2A(6, -8, 257 ol
This and (5.8ii) imply

sup ()~ A (£, -8, 22-5,) +a, 23515l

n ’(n_a n n = n 2

hence p,~0 by (5.8i. Moreover, [P(y.)"” ||—||(v,,+P(y,,) vr)D =
17 + (P(y) = 5) ™ + (Pyn) = 7)) =G+ (P(ya) = 7)) W= 1157 1| by

Theorem 2.4 and Lemma 2.5(i), (iii) (all statements of § 2 are obv1ously valld after
interchanging D and D). Similarly, 7] = =[P~ (Pyn) ~ 7)) PN =l p= N pall
by (2.5i, iii). Thus, [|P(y,)” = [|5.]- 0, [[77] =[5/l > 0.

(b) {¢.v,}being bounded =, (P, Py cOnverges to zero. Since A(L,, Dy, ¥,) =
Q(yn) +3ullpill = £u{Pns va) we have

lim sup 34, |5, = lim Ay, 7, ya)—lim inf Q(y,)
=sup (D)—lim inf Q(yn)-

But liminf, . Q(y,) =liminf,_ Q(P(y,,) )= lim inf, 550 Q( D). Hence
lim sup,, - 3¢, || p|* =sup (D) —lim inf;_,o O(5)=0 according to Theorem 3.8,
which can be applied here since sup (D)>—00. Thus lim, .« 3Z]|p.|° =0 and
lim,, . Q(y,) =1im, 0 A&, P,y ) =sup (D) so that {y,} is an ASMS.

(c) is an obvious consequence of (b).

Comment 5.9. If the assumptions (5.8i), (5.8ii) are satisfied, then—as it is
shown in the proof above—lim, .. A({y, p+7,y,)=sup(D); hence also
lim, -0 AL, p+v,)=sup (D). Butlim,, .« A, p +v,)=sup (D) does not neces-
sarily imply (5.8i). Thus the assumption (5.8i) is somewhat stronger than a typical
dual approximation. But in some applications—for example, in the case of
increased penalty algorithms—the assumption (5.8i) is easy to check and
Theorem 5.8 implies quite powerful convergence results.

6. Increased penalty techniques. The problem (5.1) can be solved numeri-
cally by the following:
ALGORITHM 6.1 (pure increased). Given @ >0, £ >0, {,>0, k > 1 define

(6.1i) L =k"{o.
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For each ¢, take 7, = p and minimize approximately the penalty functional

(6.1ii) O(y, £,) =Wy, & p) = Q) +3LIP() ~p)” I
in order to determine y, such that
(6.1iii) By, &) = inf Dy, &)+t

ye

where a,, - 0. If a,, =a and ||(P(y,) —p)”"|| =, stop.

It is known that the sequence {y, } generated by Algorithm 6.1 is a WAMS
under mild assumptions concerning Q and K—see [4], [13]. The numerical
effectiveness of the algorithm can be slightly improved by guessing a Lagrange
multiplier n € D* or penalty shift vo=p—(1/{)n = po— .

ALGORITHM 6.2  (increased-shifted). Given «a>0,£>0, >0,
o€ —D*, k>1 define

(621) {n = k"ZO; Vn =p+ ﬁm Vn - k_n_

For each (¢,, v,) minimize approximately the penalty functional

(6.2ii) W(y1, & ) = Q) +3LM(PY) = )
in order to determine y, such that

(6.2ii) Wy, Lo ) S 0 Wy, £y )+,
ye

where a, > 0. If a, =« and ||(P(y,) — v,)”" + v, —p|| =, then stop.

Observe that the stopping test in Algorithm 6.2 is slightly different than
in Algorithm 6.1. This stopping test is based on Lemma 3.9: Yo, solves (approxi-
mately) the problem min,.y,, Q(y) where p, =(P(y,)— v,)” +v,; hence we
require that ||p, —p|Se.

Theorem 5.8 implies the following lemma.

LEMMA 6.3. Suppose that sup (D) <+ and a sequence {y,}, -1 generated by
the Algorithms 6.2 or 6.1 is given. Then:

() {yn}tn=1is ASMS for the Problem 5.1;

(ii) if the problem is inf-stable, then it is WAMS.

Proof. Assume {y,}, - is a sequence generated by Algorithm 6.2, Algorithm
6.1 being a special case of Algorithm 6.2 with 7,=0. We have {, =26 —{, >0 and

f\({,,—&,p‘i' n 17,1)=1A\({n o, pt+t——r foVo)

1
{6 {6
By Corollary 4.6, the assumption (5.8i) is satisfied; so are other assumptions of
Theorem 5.8.

The assumptions of Lemma 6.3 are rather weak and the lemma indicates the
strength of penalty functional techniques. However, the increased penalty tech-
nique becomes ill-conditioned numerically as ¢, - c0; hence, one should avoid
increasing ¢, if it is possible. This possibility is discussed in the next section.
However, the increased penalty technique can also be used as a theoretical tool to
derive necessary conditions of optimality. A. V. Balakrishnan [2] was first to
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investigate this approach and to derive the maximum principle from his -
technique. The theorem below is an abstract model of his reasoning.

THEOREM 6.4. Suppose sup (D) < +00, the Problem 5.1 is inf-stable and there
exists { Z0 such that ®(-, ) has a minimal point over E for each { =/ Leta
sequence {, =, {, > o be given, and {y, }, -1 be a sequence satisfying (6.1iii) with
a, =0. Then:

@) {y.} is WAMS for the Problem 5.1.

(ii) Denote

(6.4i) pn=(P(y.)—p)” +p.
Then p,, ~ 0 and y, solves the probiem

(6.4ii) ymli/n Q®y); Y, ={yeE:p,—P(y)eD}.
€ Pn

(iii) Denote
(6.4iii) M = La(P(ya)—p)°".

If Q, Pare differentiable or Q is convex, Pis D-convex, then ), is a normal Lagrange
multiplier for the problem (6.4ii) at y,.

(iv) If Q, K are (weakly) lower semicontinuous, then each (weak) accumula-
tion point of {y,} is a solution to the Problem 5.1.

(v) Let Q, P be continuously differentiable or Q, P be continuous, Q be convex,
P be D-convex. If the sequence {y,} converges in norm to a point y being thus a
solution to Problem 5.1, then each weak accumulation point of the sequence {n, } isa
normal Lagrange multiplier for the Problem 5.1 at .

Proof. Points (i), (ii), (iii) follow directly from Lemmas 6.3, 3.9; points (iv)
and (v) are obvious.

This theorem relates the apparently crude Algorithm 6.1 to rather delicate
aspects of optimization theory. The original problem (not necessarily a normal
one) is approximated by a sequence of normal problems.

COROLLARY 6.5. Consider a family of problems (5.1) for various pe P =
{peH: Y, # J}. Denote by P, the set of all p e P such that the corresponding
problems satisfy all the assumptions of Theorem 6.4. Denote by P, the set of all
p € P such that the corresponding problems possess a normal Lagrange multiplier at
some solution. Then P, is dense in P,.

Under moderate assumptions—see § 8—%; =% and %, is dense in %. Thus,
the existence of normal Lagrange multipliers is a metrically typical property. In
other words, the normal problems are rich enough for computational purposes—
just as rational numbers are rich enough for computations on the real axis.

7. Shifted penalty techniques. The goal of a shifted penalty technique is to
approximate, if possible, the saddle point of the augmented Lagrangian
AL, v, y) = Q) +3(P(y) = )P |P=3¢llp — v|P’, without increasing the penalty
coefficient ¢ towards infinity. The shifted penalty techniques are usually more
effective computationally than the increased ones.

A natural algorithm for shifted penalty techniques is the following:

ALGORrRITHM 7.1. (saddle-point seeking). Given a,f,y>0, >0, vo€
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H, yo€ E determine a sequence of ({,, v,, ¥,) by computing the gradient

(7.1) A& v y)=3(PG) =) P =llp —v|P),
(7.1ii) A v, y)=Lp—v—(P)—»)"),
(7.1iii) A& v, y) = Qy(y)+LPE)(P(y)—v)™”

and by applying a saddle-point seeking gradient algorithm. If |A; (&, va, Yo)| =,
1A G s Y = B5 1Ay (s ¥y )| = e, stop.

However, there are only a few saddle-point seeking algorithms known and
they are not very reliable computationally. Most of them are based on the
following:

ALcorIiTHM 7.2 (dual gradient). Given a, B8, v>0, {,>0, voeH, yocE
determine a sequence of (¢, ¥,,, y,) by minimizing approximately A({,, v, ) or,
equivalently, ¥( - , £,, v,,) over E—hence satisfying the condition (6.2iii)—and by
choosing a step-size coefficient 7,, in the relations

(7.2i) L1 =L F31 (PG — v 1P =P = vlP),
(7.2ii) Vo +1= Vo + Tuln(p = V0 — (P(ya) — v)P).

If IA{(gm Vp,s yn)l §'y, "Av({m Vp, Yn)néﬁa ap éa’ StOp.

But the augmented Lagrangian A({, v, y) has saddle points at many pairs of
(¢, v) if the problem is stable of degree 2 and ¢ is sufficiently large (see Theorem
4.12). In such cases, one may apply only the part (7.2ii) of the algorithm. The
choice 7, =1/, =1/{ is particularly useful.

ALGORITHM 7.3 (pure shifted). Given a sufficiently large (>0 and 8>
0, vo = p determine a sequence {(y,, v,)} by

(7.3i) Yo = arg }Snf Y(y, {, va),
ye
(7.3ii) Vni1=p—(P(yn)—v,)"".

If “Vn+1 - Vn” =P, stop.

Here it is assumed for simplicity that ¥ is minimized precisely (7.3i). The
stopping test results from the following consideration. Denote p, =
o+ (P(yn)—v2)"". Then each Vn minimizes Q(y) over
Y, —{y€E:p,—P(y)e D}—see Lemma 3.9. Denote p, =(P(y,-1)— v
hence

”yn+1 - Vn" = "p _pn“ = ”(P(Yn—l)_ yn—l)D* - (P(yn) - Vn)D*”
=P(y.)—p+(Py.)—p+5) "IZIPH.)—p)” |

by Lemma 2.3. Thus if the stopping test is satisfied, then |[(P(y.)—p)°’||=
P = pll=Ps1—v.| =B whereby y, € Y.

Algorithm 7.3 is a generalization of the penalty shift algorithm given by
Powell [20] in case of equality constraints in R" and by Szymanowski and
Wierzbicki [25] for inequality constraints. This algorithm can be further improved
by introducing an automatic choice of the penalty coefficient {:

ALGORITHM 7.4. (shifted-increased). Given ¢,>0,k>1,8¢€(0,1),¢o>0
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and B8 >0, v =p, determine a sequence {(y,, ., v»)} by

(7.41) Y =arginf W(y, £, va),
ye
(7.4ii) Pn=va +(P(y)—v,)"".
If || p, — pl > ¢, set
(74111) Vn+1 =P - (P(yn) - Vn)D*7 £n+1 = {m cn+1 = SC,,.

If | p, —pll>c, set
. 1 "
(7~41V) Vn+1 =D ";(P(}’n)— Vn)D 5 £n+1 = k{m Cn+1=Cy.

If || p. — pl| =B stop.

This algorithm is actually a combination of Algorithms 7.3 and 6.2. It is also
one of the most powerful penalty algorithms, most effective for solving various
static and dynamic optimization problems [27]. If the problem is only inf-stable,
the algorithm is convergent by a modification of Lemma 6.3. If the problem has a
higher order of stability, the penalty increase part (7.4iv) of the algorithm is
applied only as many times as it is necessary to secure the convergence.

DEFINITION 7.5. Assume that Q, P are differentiable or Q is convex, P is
D-convex. The Problem 5.1 will be called L-stable (locally in a nonempty open set
A cE) if there exists a neighborhood U, < H of zero such that the problems
min,cy,,,na Q), Ypi5NA={yecA:p+p—P(y)e D} have solutions and
unique normal Lagrange multipliers n(p +p) for each p e U, and the mapping
p>n(p+p) is Lipschitz continuous in U,,.

Similarly—see (4.10)—one can define local stability of degree 2 in A.

The following theorem was given first in [25] for H=R" and in [26] for
the general case. The theorem is valid also when A =FE but in numerical
implementations local minima are usually of interest; moreover, the conditions
guaranteeing local L-stability are somewhat simpler.

THEOREM 7.6. Suppose there exists ('>0 such that the functional
W(-,, p+v) attains its minimum over A for any (={' and each v in a
neighborhood U, = H of zero. If the Problem 5.1 is locally L-stable in A, then:

(i) there exists {"={' such that for any { =" there is v, € U, such that any
point minimizing V(- , {, p +v;) is a local solution to Problem 5.1 in A;
(ii) the Problem 5.1 is locally stable of degree 2 in A;
(iil) if { =", then Algorithm 7.3 has the following properties :

(761) {ﬁn}c Uw Uy _;Z 17{7

(7'6ii) {pn}c Up’ p—n—':.: O’ ﬁn = ﬁn +(P(Yn)_p - ﬁn)D*’
(7.6iii) {y,.} is a WAMS for Problem 5.1 in A.

(iv) Given any é €(0, 1) denote by R, the Lipschitz constant of the multiplier
mapping p—>n(p+p); then there exists {s =max ({", 1+8/8R,) such that { = {;
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implies that the Algorithms 7.4 and 7.3 are equivalent and

(761V) "p-n+1” = 8"ﬁn”a
(7.6v) 51— 7| = 8|5, — 7.

The proof of the theorem shall be based on a contraction mapping and is
different from the proof given in [26], but before proving the theorem, we need
the following:

LemMMA 7.7. Let y(¥) denote an arbitrary element minimizing V(- ,{, p+v)
over A for each veU, Define the mapping T:U,~H by T(v)=
—(P(y(®)—p—-9)P *. Under the assumptions of Theorem 7.6, for each 6 € (0, 1)
there exists a {5 such that { = {5 implies

(i) T:B(>*) - B(>"*) where B(r) is a closed ball of radius r with center at
zero;

(i) |T@")—T@")| =8l —v"| forv', v"e B(¢ /).

Proof of the lemma. Without loss of generality, assume p =0. Let p(#) =
7 —T(¥). By Lemma 3.9, y(¥) solves the problem inf, . s ny,, Q(y) and —{T(v)is
a normal Lagrange multiplier for this problem at y(»). Also, A({,7)=
A(¢, D, y(9)). Similarly as in the proof of Theorem 5.8, the following estimate
holds:

(7.7i) sup (D)—A({—z, ;fzﬁ) z[lp@)IP.

Let £ >0 be such that B(e 1 He U,.. By Corollary 4.6, there is a {, =2 such that

(7.7ii) A -2, 0)=sup (D) —%.
By (4.5iv),
N P S Y YRR /<
(7.7iii) A({ 2,{_21:)-_.A((€ 2,0-5,-73
- V& 1
=S“P(D)—§—R‘§|| Al

Take £ such that V¢/({~¢.)=e for {= Since sup (D) is bounded by (7.7i),
combine (7.7i) and (7.7iii) to obtain

(7.7iv) Ip@)IF=e for ¢z weBE™".
Hence, j(7) € B(e'/?) < U,. Therefore, by the L-stability assumption,
(7.7v) (T()=—n(p(3)).
Let#', 5"e B({"**) andlet R,, denote the Lipschitz constant of the map p+—> n(p)
ATE) = TEN = (pE)—n(EE")|
(7.7vi) =R, ll5")— "
=R,|T@)— TG+ Ry |7~ 7|
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and, for {§Z=max ¢, R,):

(7.7vii) ITG) - TG")|=

R
!
n

{—R
The relations (7.7v), (7.7vii) imply

(7.7viii) T(17)+11;(ﬁ(0)) = f" ||,7||§§—3/4%, seB(YY,
4 {—R, {—R,
and
(7.7i%) ITEN= 2O+
’ =M {-R,
_ 3a(lneO], R,
={ ( {1/4 +{_Rn).

Therefore there exists £ = ¢ such that ¢ =  implies | T(7]|= ¢ */*if ||| =¢~** and
the point (i) of the lemma is proved. Take {5 = max ({(1+8/8)R,); then the point
(ii) of the lemma follows from (7.7vii).

Proof of Theorem 7.6. Again, assume p = 0. (i) Choose an arbitrary § € (0, 1)
and take " = ;. By the contraction mapping theorem, there is a unique element
7€ B({*)< U, such that p(v;) = #, — T(#;) = 0. By Lemma 3.9', 7 () is a local
solution to Problem 5.1 in A. Moreover, {7, = —n(0) is the Lagrange multiplier
for the problem.

(ii) Since sup (D) >—oco—see the proof of Lemma 7.7—Problem 5.1 in A
satisfies the quadratic growth condition (4.7). Local stability of degree 2 in A
follows from (i) and Corollary 4.13.

(iii) Observe that Algorithm 7.3 is a fixed-point algorithm 7,,,= T(7,).
Hence (7.6i), (7.6ii) follow from Lemma 7.7; Condition (7.6iii) is implied by
(7.5ii), Lemma 3.9' and the fact that an optimization problem is inf-stable if it is
stable of degree 2. Part (iv) is a direct consequence of Lemma 7.7.

In the case of H = R" the convergence of this algorithm has been investigated
by many authors, starting from [25] up to the most complete discussion in[31]. In
[15] also other penalties different from the square norm were considered. In the
convex case the assumptions can be essentially relaxed, as shown in [24]. For
further references see the survey paper [32].

8. Conditions of stability and convergence conditions. Convergence condi-
tions in the previous section were stated in terms of various stability assumptions.
The aim of this section is to discuss the assumptions and to achieve more explicit
convergence conditions.

The simplest assumption is the quadratic growth condition (4.7). It is
obviously satisfied, if Q is bounded from below. By Theorem 4.8, it is equivalent
to the condition sup (D) > —00. The latter holds iff there is a pair (¢, v)e R, X H
such that f\({, v)=inf,c.g A({, v, y)>—00.

Now consider the notion of inf-stability (4.9) and the question of the
existence of points minimizing A(Z, », - ) or, equivalently, ¥( -, ¢, v) over E (this
assumption was used in Theorems 6.4, 7.6).
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THEOREM 8.1. Let E be reflexive, Q be weakly lower semicontinuous and P
continuous in weak topologies of E and H.* Suppose there exist ¢ and 6,>0 and an
element py € int D such that the sets

(8.1) G ={yeE:Q(y)= & p+8p,—P(y)e D}

are bounded and nonempty for 0=8 =6,. Then:
(i) Problem 5.1 is inf-stable.
If, in addition, Q(y) =B >—c0 for all y € E, then:

(ii) there exists {=0anda neighborhood U, of zero in H such that for every
(= and each ve U, satisfying Y,={ycE:Q(y)<e, p+i—P(y)eD}# &,
there is a point y,; minimizing V(- , {, p+7) over E.

Proof. Assume p=0 w1thout loss of generality. Denote ;=
{y e E:8pp—P(y)€ D} and 05)= inf, s, Q(y). We prove first that O( ) is right
continuous at zero. Observe that o(- ) is nonincreasing for § =0 and Q(B) =¢ for
5 €[0, 8,]. Thus, if Q(8) = & for some & >0, then 0(8) =¢ for 5[0, 8]and O(+)
is right continuous at zero. Assume therefore that 0(8) <¢ for all 6 >0. By its
monotonicity, it is sufficient to show that

(8. 1iii) O(0) =lim inf 0(s,)

for any sequence {5,}< (0, 8o] convergent to zero. For each n choose y, €S;,
satisfying

(8.1iv Q(y) =0 +min(- e - 3(,)).

Then Q(y,)=¢, y,€GCs, <G5, and {y,} contains a subsequence {y, } weakly
convergent to some y. By the weak continuity of P,

(81V) _P(}-’.) = “,Ic'_l)gn (—P(ynk)) = “,'c'_!gn (Bnkp_o-'P(ynk)) eD

since D is weakly closed. Thus y € So(=Y, for p=0) and Q(y)éé(O). On the
other hand,

Q(y) =lim inf O(y,,) =lim inf (C)(a,,k) +ni) =lim inf 0.,
->00 —>00 k —>00
Hence
(8.1vi) O(0) =lim inf 0.,

Since {y, } is a sum of its weakly convergent subsequences, (8.1iii) holds and O( - )
is right continuous at zero.

Take any sequence p,->0. Since poeintD, there exists a sequence
{6,}<[0, 8], 8, -0 such that §,po—p, € D for sufficiently large n. The relation

“If H=R", it is sufficient to assume that P is coordinate-wise weakly lower semicontinuous.
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P»—P(y)e D implies then 8,po— P(y) = 8,po—Pn+pn — P(y) € D. Hence, if y e
Y,., then y € S, for large n and O( Pn) = Q(8,). Therefore

(8.1vii) lim inf O(p,) = lim Q(5,) = G(0)= Q(0)

and (8.1i) holds.

To prove (8.1ii), let r >0 be the radius of a ball B(r) with center at zero such
that 8,0+ B(r) < D. Take U, = B(r/2). If #€ U,, then Y, < Gs, and is therefore
weakly compact. For any £ =0 and any # € U, such that Y, is nonempty, the
following relation holds:

(8.1viii) —co<a=inf W(y,{, ¥)= inf W(y, ¢, 7)= inf Q(y)=¢
yeE yeY; yeYs

since ||(P(y)—#)" *||2= 2K,(y)=0 for ye Y;. If a =&, take Yz to be any point
minimizing the weakly lower semicontinuous functional Q in the weakly compact
set Y;. If a <eg, take a sequence {y, } satisfying

(8.1ix) Y(y,, {, V) =a +min (1, g-— a) €.
Since K;(y)=3(P(y)—-7)""|? =0, then Q(y,)=<e¢ and

Ko(y) =§<\v<yn, Z ﬁ)—o<yn>>§§<s —B);

(8.1x) . )
(P(y.)—2)""||= Z(s—ﬁ).

By (2.5ii),

* * * 2 1
B1x) PG I=IPG) -2 T2V e -p)+ 5

Hence, for sufficiently large £ and ¢ =, |(P(y,))” | =r. But (P(y,))"" = P(y,) € D
which reads y, € Y(p(,,,2*. Since —(P(y,))" € B(r), then {y,} < C;, and contains
a weakly convergent subsequence, the limit of which can be taken for y,;.

The proof of part (i) of Theorem 8.1 is classical; the conclusion 8.1(i) seems
to be widely known. The criteria for inf-stability in the infinite-dimensional
convex case were studied in[21],[10], [12]. See also [6], [25] for the nonconvex in
R", and [33], [38].

Observe that if there exists an element y € Cy with p — P(y)e€int D, then of
course Y; # & for any # in a neighborhood of zero. However, many optimization
problems are posed with positive cones of empty interior. In that case, a similar
theorem can be formulated.

THEOREM 8.2. Let E be reflexive, Q be weakly lower semicontinuous and P
continuous in weak topologies of E and H. Suppose there exist numbers € and 6,>0
such that the sets

8.2) Cs={yeE:Q(y)=¢,K(y) =5}
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are bounded and nonempty for each 8 €[0, 8o). Then:
(i) Problem 5.1 isin-stable. If, in addition, Q(y) =B >— forally € E, then

(11) there exists { =0 and a nezghborhood U, of zero in H such that for each
(= and each 7€ U, satisfying Y,={yeE:Q(y)<e, p+v—P(y)eD}# J,
there is a point y; minimizing V¥ (-, ¢, p+7) over E.

The proof principally follows that of Theorem 8.1 with Cs changed to Cy; it is
therefore omitted.

Example 8.3. Suppose Q is weakly lower semicontinuous with bounded
level sets and P weakly continuous, as in the theorem. Then K(y)=
APy -p)° *|? is weakly lower semicontinuous, and there is an & = £ (p) such that
the sets Cs ={y € E: Q(y) =&, K(y) =8} are bounded and nonempty whenever
Y, is. Hence, if Q, P are additionally either convex or differentiable, then by
Theorem 8.2 and Corollary 6.5, the set 2, of all p such that the corresponding
problems are normal is dense in the set %; of all p such that the sets Y, are
nonempty (thus in the set of all well-posed problems of the type (5.1) satisfying the
above moderate assumptions).

The questions of stability of order 2 and L-stability are more delicate and
require much stronger assumptions. We are only able to discuss here the case of a
finite number of inequality constraints. In the sequel it is assumed that H =
H,XR", D={0y4}xR%, P=(P,,-++,P,), P2 E>Hy, P:E->R,i=1,---,n
The elements p,neH are understood as (n+1)-tuples (po,p1,* ", Pn),
(Mo> M1, * * *, Ma). Recall the following.

DEFINITION 8.4. For the problem min,cy, Q(y), Yo={y€E: —P(y) e D}it
is said that the second order sufficiency condition holds at a point y € Y, iff:

(i) Q, P are twice continuously Frechet differentiable in a neighborhood of
Ys
(ii) there exists a normal Lagrange multiplier 1 for the problem at y and the
range imPy, (§) is closed in H,

(iii) thesecond derivative L, (7, ¥) of L(7}, y) = Q(y) +(7, P(y)) satisfies the
relation (L,, (7}, )7, 7) 2 8|[y|]* for some §>0 and all j such that P,,(§)y =0,
i e JU{0}, P, (¥)y =0, i € J where

(8.4iv) J={i:1=i=n,P()=0, 7 #0},

(8.4v) aJ={i:1=i=n,P(¥)=0,% =0}
For the same problem, it is said that strict complementarity holds, iff 3J = .

It is proven easily (compare [37, p. 307] for the case of equality constraints
only) that these conditions are indeed sufficient for y to be a local (not necessarily
.iSolated) minimum. They are similar in formulation to second order sufficiency
conditions for nonlinear programs in H = R" [7] but may also be easily translated
into the language of the calculus of variations: the main condition is equivalent to
strict positivity of the second variation of Lagrange functional.

The following theorem was first proved by Rockafellar in the case E=R",
H=R"

THEOREM 8.5. Suppose the problem min,cy,Q(y), Yo={y € E: —P(y)e D}
satisfies the quadratic growth condition. Suppose that the second order sufficiency
condition holds at §. Assume that either E = R™ or strict complementarity holds at .
Then the problem is locally stable of degree 2 in a neighborhood of y. If, in addition,
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for any neighborhood A of § there is a neighborhood U, of zero in H such that
Q(p) =infycy, Q(y) =infycany, Q(y) for allpe U, then the problem is stable of
degree 2.

The proof is omitted since in the case E = R™ itis essentially givenin [22] and
in the general case requires only some modification based on the closed range
theorem [28].

Somewhat stronger conditions are required for the L-stability. The following
theorem was proved in [25] for E=R™, H=R".

THEOREM 8.6. Suppose E is Hilbert, and let the second order sufficiency
conditions with strict complementarity hold at § € Yo={y € E : —P(y) € D} for the
problem min, .y, Q(y). Denote H;={peH :p;=0,i¢JU{0} and let P; be the
restriction of P to H;. Assume Py, (y) is surjective. Then the problem is locally
L-stable in a neighborhood of j.

Proof. (a) Let A; denote a neighborhood of § such that P;(y) <—& <0 for
ig JU{0} and Py, (y) is surjective whenever y € A;. Let U, be a neighborhood of
zero in H such that |p;| <& for i¢ JU{0} whenever p € U;. Denote by p;, n; the
elements of the Hilbert space Hj. Observe that y(p) is a local solution to the
problem: minimize Q(y) over Y, N A; (where pe U,), and n(p) is a normal
Lagrange multiplier for this problem at y(p) if and only if y(p) = y(p,) is also a
local solution to the problem:

(8.6i) . min Q(y); Yy ={yeE:p,—P;(y)e H;N D}
while n(p)e€ Hj, n(p)=n;(p) is a normal Lagrange multiplier to the problem
(8.6i) at y(py):

(8.6ii) Q,(y(pn) +P3(y(p))ms(pr) =0,
(8.6iii) m(p) =0, iel; m(p)P(y(p))—p)=0, iel

This is readily verified since p; — P;(y) >0 for i¢ J U{0} whenever y € Ay, p € U;.

It is therefore sufficient to investigate the local L-stability of the problem
(8.61) at p;=0, i.e., to establish the existence and Lipschitz-continuity of the
mapping Uy 3 p, — n;(py) on some neighborhood Uy, of zero in H;. Having this
done, one can set U, =U; N (Uy; X Hy) in Definition 7.5 to obtain the local
L-stability of the original problem as claimed.

Notice first that since Py, (y) is surjective for y € A; then[11]any y(p,), being
a local solution to (8.6i), must satisfy (8.6ii), (8.6iii) for a uniquely determined
ns( PJ)-

(b) Observe that, according to the closed range theorem [28], since the range
of Py, (y) is closed, then P(y) maps H; onto Im P5(§) = (ker Py, (§))". Let =
denote the projection operator in E onto ker Py, (). Accordmg to the LaxMil-
gram theorem [28], the condition (L,,(#, $)7, ) Z 8|5|, 6 >0, y e ker Py, ()
implies that 7oL, (1), §) maps ker Py, (¥) onto itself. Consider the operator

Ly (#,9) P33)
PJy (5}) 0

We shall show that the operator M is surjective, that is, for every (z, s) € E X Hj

(8.6iv) M=[ ]:EXHJ—>E><H].
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there exists a pair (y, 7,) satisfying M(y, n;) = (z, s). Indeed, since Py, (§) is onto,
there exists y’ such that

(8.6v) Py()y'=s.
Let wy=mz—m oL, (9, ¥)y. Since w € ker Py, (§), there is y” such that
(8.6vi) wi=me°L,, (7, 9)y", y" eker Py, (¥).

Let wo=(I—7)(z—L,, (7, §)(y'+y"). Since w,e (ker Py, (§))*, there exists n;
such that

(8.6vii) wa = P3(§)ny.
Combine (8.6v), (8.6vi), (8.6vii) to obtain

A A X /A
Lyy(n’ Y)y i—PJy(Y)TIJ] — [Z]’ y= y'+y”'
PJy(.V)y s

Hence the operator M is surjective; since it is selfadjoint, it is also invertible. By
the implicit function theorem, the equations

Qy(y) +P.’}<y(y)nl = O:
Py(y)—ps=0

determine (y, n;) as a differentiable function of p; in a neighborhood U,; of zero
in H; (observe that these equations are satisfied by (9, ;) for p, = 0, the derivative
M of the left-hand side is invertible at (¥, 4;) and this derivative is continuous as a
function of (y, ny)).

(c) Denote (y, ny) satisfying (8.6ix) by y =f(p;), n; = g(ps). It remains to
prove that, for py insome Uy, y = f(p;) are uniquely defined local solutions to the
problems (8.6i) and 7; = g(p,) are uniquely defined normal Lagrange multipliers
for these problems (being differentiable, g( - ) is Lipschitz continuous; hence the
conditions of local L-stability are all satisfied).

Take U,; smaller, if necessary, to obtain n; = g;(py) >0, ieJ for p;e U,,.
Choose neighborhoods A < A; of § and Uy; < Us; of zero satisfying P;(A) = Uy,
f(Uoy)=A and such that the inequality (L, (g(p,), f(p,))7) =38 7| holds for
y € ker Py, (f(py)) whenever p; € Uy; (the possibility of such a choice follows from
the assumption of continuous second order differentiability). Then the second
order sufficiency condition with strong complementarity holds at y = f(p,), ps€
Uy, so that f(p;) is a local solution to (8.6i) in A (not necessarily isolated). It
remains to show that for fixed p; = p; € U,,, f(p,) is the unique local solution to
(8.61) in A. Let y(p;) be any local solution to that problem; then (8.6ii) and (8.6iii)
are satisfied with p; =p; for some n;(py) =1;. If %;>0, i €J, then by (8.6iii),
P;(y(py)) = Py so that (8.6ix) is satisfied by y = y(p,), n; =1, and p; = p;. In this
case y(ps)=f(bs), 1, =g([Ps) and we are done. But 7, i €J, must be positive.
Indeed, y =y(f;) and n; =17, always satisfy (8.6ix) with p;=P(y(5;)) € U,,.
Therefore 7; = g(p;) and 7, >0, i J.

Therefore m;(p;)=g(p;) is a unique Lagrange multiplier for the problem
(8.6i) in A ; the mapping Uy, 3 p;— (py) is continuously Fréchet differentiable, in
particular, Lipschitz-continuous on sufficiently small Uj,.

8.6viii) M(y,my)= [

(8.6ix)
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9. Conclusions. The properties of the projection on a positive cone make it
possible to define penalty functionals and to develop a duality theory for infinite-
dimensional problems with operator constraints. Two groups of results are of
fundamental importance. The Theorems 4.11, 4.12 and the Corollary 4.13
explain the relations betweén dual methods and penalty functional techniques.
Under appropriate stability assumptions, the solution of the original problem
inf (P) can be approximated by a sequence obtained by subsequent unconstrained
minimizations of the shifted penalty functional ¥( -, £,, v,)—or, equivalently, of
the augmented Lagrangian A({,, v,, - )— if the sequence {(¢,, »,)} is maximizing
the dual problem. The saddle point (inf (P) =max (D)) can be achieved at a
bounded pair (¢, #) iff the original problem is stable of degree 2; in this case, a
sufficiently large £ can be kept constant and a penalty shift algorithm of changing
v, can be applied. If the original problem is inf-stable, but not stable of degree 2,
an approximate saddle point (inf (P) =sup (D)) can only be achieved at { > co;
hence a penalty increase algorithm with ¢,, > 00 must be applied, whereas v, can be
kept constant or changed. Thus the penalty techniques are actually dual methods
[44].

The Lemmas 3.9, 3.9" explain other aspects of penalty techniques—or dual
methods. If the penalty functional W(-, ¢, v)—or A(, v, - )—does possess a
minimum at y, then the point y is actually a solution of an optimization problem
which differs from the original one only in the constraining value p (Everett
theorem). Thus, penalty techniques are two-level algorithms with coordination of
constraining values. The applications of dual methods to two-level coordination
algorithms are known; but they are not the only possible coordination methods.
In addition to typical saddle-point algorithms, two types of coordination methods
can be considered. The increased penalty technique coordinates the violation of
constraints by an increase of penalty coefficients only, and is convergent under
rather weak assumptions inf-stability. No normality assumptions are required,
although the original optimization problem is approximated by a sequence of
normal ones. But the increased penalty technique is badly conditioned numeri-
cally. Hence, if the problem satisfies stronger assumptions, normality, stability of
degree 2, L-stability and the shifted penalty technique is convergent, the latter
gives better numerical results. The shifted penalty technique coordinates the
violation of constraints by penalty shifts or, equivalently, by changing Lagrange
multipliers. Most universal is the shifted-increased Algorithm 7.4 which switches
to penalty increase if penalty shifts fail to provide for a given convergence rate.

The conditions for convergence of penalty techniques are related to various
degrees of stability of optimization problems. The inf-stability follows from the
weak continuity of a minimized functional and constraining operator, and from
the boundedness of some level sets related to these functions. The stability of
degree 2 and L-stability require much stronger assumptions, as second order
sufficiency conditions, etc.
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PROPER EFFICIENT POINTS FOR MAXIMIZATIONS
WITH RESPECT TO CONES*

J. BORWEINT

Abstract. Proper efficient points (Pareto maxima) are defined in tangent cone terms and are
characterized by the existence of equivalent real-valued maximization problems.

1. Introduction. Suppose that X and Y are (locally) convex (topological
vector) spaces over R and that S < Y is a nontrivial closed convex cone which
induces a partial ordering =,. The vector maximization problem for f mapping X
into Yand A c X,

max f(x) subjecttoxe A (VMP),

is the problem of finding all efficient points X € A : ¥ is said to be efficient (Pareto
optimal) if x € A and

f(x) = f(%), f(x)#f(x) impliesthatx¢g A.

Geffrion [1] has studied this problem in finite dimensions with the coordinate
ordering and has suggested a restriction to “proper” efficient points which allows
for a reasonable characterization. Kuhn and Tucker [4] have also used the term
but their notion requires differentiability and appears too broad for satisfactory
analysis (see below).

This paper proposes a general notion of properness which is defined in terms
of tangent cones as developed by Varaiya [8], Guignard [2], Zlobec [9] and others
and which coincides with Geffrion’s definition in the central case.

2. Preliminaries. Throughout the paper all spaces are assumed Hausdorft
and convex and “=,” is the partial order induced by S.

DEFINITION 1. Suppose C< X and % € C. The tangent cone to C at ¥ is
defined to be the set of limits of the form A = lim #, (x,, — X) with {z,} a sequence of
nonnegative real numbers and {x,} = C a sequence with limit %. It is denoted
T(C, x).

When X is metrizable, T(C, x) is closed. It is always a nonempty cone
containing 0, but need not be closed in general spaces unless defined in terms of
hets which leads to other embarrassments. The closed convex hull of T(C, x) is
called the pseudo-tangent cone and is denoted by P(C, x). Various properties of
pseudo-tangent cones can be found in [2], [8], [9] and a forthcoming paper of the
author.

DEFINITION 2. A point X will be said to be a proper efficient point of (VMP) if it
is efficient and

1 T(f(A)=S, f(®)NS=0.

* Received by the editors March 5, 1975, and in final revised form April 14, 1975.
T Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada. This
research was supported in part by National Research Council Grants A7751 and A7675.
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DeFINITION 3. When f(x) = (fi(x), - - -, f,(x)) maps R"* into R”, Gefirion
defines X to be properly efficient with respect to the coordinate ordering if it is
efficient and if there is some real M >0, such that for each i one has

FO—fE _
fiE)—fi(x)
holding for some j with f;(x) <f;(¥), whenever x € A and f;(x) > f;(X).

It is a simple matter to verify that in this later framework, (1) is a weaker
requirement on (VMP) than (2) and, in fact, that when f is continuous (1) implies
the local efficiency of X with respect to the coordinate ordering.

ProOPOSITION 1. Suppose x is Geffrion proper efficient for f over A. Then X
satisfies

2

T(f(A)—R"", f(®))NR""=0.

Proof. Suppose k #0e R"" N T(f(A)—R"", f(¥)). Without loss of generality
one may assume that k,>1, k;=0,i=2,---,n. Let

b (f(xn) —rn —f(X) > k,

where r, € R,,, t,=0and f(x,) —r, - f(X) with x,, € A. By choosing a subsequence
one can assume that

T={ilfi(xa) <f(D)}

is constant for all n (and nonempty since x is Pareto efficient). Set M > 0. Then for
n =ny,

fl(xn)_f1(5f)§t;/12,
fila) = (@)= —1,"/2M.
Then for all ief, one has
0<f,(B)~fi(xn) =t /2M,

and for n = n,,

f1(3fn) —f1(x) > _f;/lz -M,
ﬁ'(x)_fi(xn) t, /2M
which contradicts Geffrion’s definition. 0

DEFINITION 4. Suppose X' is the topological dual of X. The dual cone K of a
convex cone K © X is defined by

K'={x'eX'|x'(x)=0,Vx e K},
while the dual cone (K')* of a convex cone K' < X' is defined by
(K" ={xe X]x'(x)=0,VxeK"}.
It follows from these definitions that (i) K™ is weakly™* closed; (ii) (K")" =K ;
(i) (K; NK3) " =cl (K7 +K3) (with closure in the weak* topology). K* is well-

defined even if K is not a convex cone. In this case (K )" is the closed convex hull
of K (denoted [K]).
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These facts all hold in convex spaces. Proofs can be found for normed spaces
in [7].

3. Geometric motivation. The main aim of Definition 2 is to provide a notion
of properness which can be applied when the cone S is not the orthant ordering in
R" and is not even polyhedral. Consider (VMP):

max f(x) = z= .
f( ) z f(A) zef(l:l‘\l)a—xs-—-Ez
This last equivalence is introduced so that, in the case that f is concave with

respect to S and A is convex, the optimization in the image space is still a concave
problem. Definition 2 says that X is proper when, with Z = f(X), one has

T(E,zZ)NS=0.

In general, then, the concept of properness is an attempt to remove those
efficient points which can be approached in directions which point into S. In the
case that § = R™", this can be done by considering the components separately; in
more general orderings a more technical notion of direction must be introduced.
This is done herein with tangent cones. Consider the following examples

Example 1. Let X=R>, §={x|x =(xy, x5, x3), x3=0, x]+x3=x3}. Let
A={x||x||=1} and let f=1. The efficient points for (VMP) are {x||x||=1, x €
S}. Since E=A —S is convex, T(E, f(x)) is the smallest closed convex cone
containing E w1th vertex at f(x) x. It is easﬂy seen that for those x with ||x||=
xeS and x2+x3=x% (or x3=35, x3 +x2—2) this cone has a boundary ray in
common with S; while for any other efficient x this cannot happen. In this case the
efficient improper points form the relative boundary of the efficient points on A.

Example 2. Let X=R?’ S={x|x;=0,x,=x;}. Let A=
{(x4, x2)|x1 +xi=1,x,= 0 xz =0} and let f = I. The efficient points are those x on
the arc in A for which x> +x5=1. Again T(f(A)—S, f(x)) is the smallest closed
convex cone containing A — S at f(x). This only intersects S|{0} when x = f(x) lies
at the upper endpoint of the arc. There is, therefore, only one improper point
0, 1).

Example 3. Consider X, S, f as in the previous example, and let A;=
A N{(x1, x2)|x4 =3 or x, = 0}. The efficient points are now

{@, 0} U{(x4, x2)|x1 é%, xf+x§ = I}U{(%, x2)|x2§0, xZ_S_%}.

The problem is no longer convex, and T(A — S, f(x)) is easily calculated. Only
(, 0) and (0, 1) are improper.

We see that properness gives us a criterion for excluding some efficient points
(those which can be “approached from within $”’) for which, as will be shown,
equivalent real maximizations fail to exist.

4. Some cone separation theorems. It is necessary to establish two abstract
separation theorems for convex cones before proving general multiplier theorems
for (VMP).

PROPOSITION 2. Suppose N, S are closed convex cones in X and that NN S = 0.
Suppose that the dual cone S™ has nonempty interior in some topology T which gives
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X as the dual of X'. Then there is some s* € (S*)° with —s* e N* and
(3) s'(s)>0 VseS/{0}.

In fact this last condition is equivalent to s* € (S*)°.
Proof. Using property (iii) under Definition 4 one sees that

0y =X'=(NNS) =7—cl(N"+S%),

since 7 is a topology of the dual pair (X, X). Lets'e (S ", There is then some net
—sk=n_+s. withnieN", sieS" and n_+s, tending (7) to —s'. Since —s' is a
r-interior point for —S™, it follows that for a = ay,

—sh=ns+s.e—(SM°.

Thus n)=—(s,+s}) e —($1)°—S < —(S")°. It follows that n € N* and satisfies
(3). Conversely, if s* exists satisfying (3) and (S*)°# &, then

SN{x|s"(x)=0}=0,

and one can apply the previous argument to the two sets S and {x|s*(x) =0} to
derive that some n" e N* = {x|s*(x)=0}" is also in (—S™)°. But N"=U, <o As"
and, since 02 (S*)°, n*=As™, A <0, which implies that s* e ($")°. 0

In particular, the theorem holds for any cone S in R" which is pointed
(S N—S =0), since this means S*< R" has nonempty interior. In the case that
(8™)° cannot be guaranteed nonempty, one can still prove the existence of s*
satisfying (3) if one requires that S have a compact base B.

PROPOSITION 3. Suppose N, S are closed convex cones in X such that NS =
0. Suppose that SN—S=0 and that S is locally compact (has a compact
neighborhood base in the relative topology on S). Then one can find s" € —N"*
satisfying (3).

Proof. The local compactness condition on S guarantees by [3, (2.4)] that one
can find a compact convex subset B of S, such that 0§ B, with S = U, = AB.

It follows that B and N can be strictly separated [5] and that there is some
s* e X' with

s'e-=N" and s'(x)>0 VxeB.

It follows immediately that s *(s) >0 Vs e S/{0}. O

Remark. 1t is easy to see that in a locally convex space a pointed cone S is
locally compact exactly when it has a compact generating base. That is: S =
Ux=o0 AB where B is compact, convex and 04 B.

5. Equivalences. One can now derive the basic characterization of proper
efficient points.
THEOREM 1. Suppose that x is optimal for

max s f(x) subjecttoxe A (P(s"))

and that s* satisfies (3). Then % is a proper efficient point.
Proof. Suppose h € T(f(A)~—S, f(x)). Then

By = 8,(f(xn) =52 = f(X)) > h
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with £, =0, f(x,)—s, > f(%), x, € A, s, € S. For each n, s f(x,) =s " f(X) since % is
optimal for (P(s")) and so

lim 1, (s " (f(x,) —s,)—s (X)) =0.

It follows that s*(h)=0Vhe T(f(A)—S, f(x)). Were h to belong to S/{0}, one
would have s*(h)>0 since (3) holds. This is impossible and T(f(a)—S, f(¥)) N
S=0.

It is clear that if "x were not efficient and x; € A with f(x,) =, f(x), that the
definition of s * would imply that s *f(x,) > s " f(X) which contradicts the optimality
of £ for (P(x™)). O

THEOREM 2. Suppose that f is concave with respect to S and that A is convex.
Suppose X and S satisfy the hypotheses of Proposition 2 or 3. Then X is properly
efficient for (VMP) if and only if  is optimal for (P(s ™)) for some s satisfying (3).

Proof. Sufficiency was proved in Theorem 1. Suppose now that X is properly
efficient. Since f is concave and A is convex, f(A)—S ={z|f(x)=z,xe A} is
convex. An elementary proposition in [3] shows that in this case,

“4) f(A)=S—f(®) = T(f(A)=S,f®)=N

and that N is convex. Because X is assumed proper, NS =0. Since either
Proposition 2 or 3 holds, s satisfying (3) exists with —s “ € N In particular, since
(4) holds,

sT(f(x)—s—f(X))=0 VxeA, seS.

Setting s = 0 shows that % is optimal for (P(s")) with s “(s)>0Vse §/{0}. O

In finite dimensions with coordinate ordering, this equivalence is exactly the
same as Geffrion’s. Thus for coordinate concave programs, Definitions 2 and 3
coincide. It is worth noting that the use of the set T(f(A)— S, f(¥)) rather than the
smaller T(f(A), f(¥)) is motivated by the need for (4) to hold. If one desires the
equivalence of Theorem 2 only for problems with f(A) convex (which includes A
convex, f linear) one need only require that

&) T(f(A), fZ)NS=0.

Example. fi(x)= (=x%, x, x) is an example of a coordinate concave function
satisfying (1) or (2) on R" at 0; f>(x) = (=x2, x, 0) does not. This can be seen either
directly from Definition 2 or from the respective presence and absence of positive
multipliers when one applies Theorem 2.

If the hypotheses of Theorem 2 hold and the convex feasible set A is, in fact,
{x|g(x) =g 0, x € C} for some function g mapping X into Z, concave with respect
to B, and some convex C, one has the following “‘Lagrange” multiplier theorem.

THEOREM 3. Suppose B is a convex cone with interior and that g(x,)< B°.
Suppose % is a proper efficient point for (VMP) with A ={x|g(x) =0, x € C}. Then
there is some continuous linear mapping T of Z into Y such that T(B)< S and
Tg(x) = 0 with % properly efficient for the unconstrained concave problem

max f(x)+ Tg(x) subjecttox e C (UCP).
Proof. Apply Theorem 2 to produce s satisfying (3) with
sTf(¥)=max s*f(x) subjecttog(x)=0, xeC.
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The standard Lagrange multiplier theorem ([9]) guarantees that u" e B*
exists with u "g(x) =0 and

6) sTfE)zZs f(x)+u'g(x) VxeC

Choose s€S with s"(s)=1. Let Ty: Z~ Y be defined by Ty(z) =u"(z)s. Then
To(B) < S, T, is continuous, linear and Tog(%) = 0. Equation (6) can be rewritten
as

s (f(x)+ Tog(x)) = s*(f(%) + Tog(%)), x€C,

from which it follows, using Theorem 2 again, that ¥ is a proper efficient point for
(UCP) with T=T,. 0

6. Differential conditions. Consider now the Pareto maximization problem
max f(x) subjecttog(x)eB, xeC (P),

where f: X»> Y, g: X Y are Fréchet differentiable functions between normed
spaces and C < X, B < Z are arbitrary sets.

DEFINITION 5. The generalized constraint condition on g is said to hold at X if
there is some closed convex cone G such that GNK < T(A, x), where K=
{hlg'(®)(h) € P(B, g(%)}.

(This is necessarily slightly stronger than Zlobec’s condition [9] in which
P(A, %) replaces T(A, x).) As before, A denotes g~'(B)N C.

DEFINITION 6 [4]. Suppose K and G satisfy the constraint condition. H(G) is
said to hold when

(a) K"+G" is closed,

(b) H={u" - g'(x)|lu" € P*(B, g(x))} is closed, (in the weak* topology).
H(G) is satisfied in particular when K, G, B are polyhedrally convex in finite
dimensions. The author in his thesis has given fairly general conditions for H(G)
to hold.

THEOREM 4. Suppose % is a (local) proper efficient point for (P) and that G
satisfies the generalized constraint qualification with H(G) holding. Suppose either
(S’ # O or that S is pointed and has a compact base. There is some s* € S* with
s*(s)>0 if s € S/{0}, and some u* € P*(B, g(%)) such that

sTf(X)—u'g'(x)e—-G".

Proof. By hypothesis, SN T(f(A)—S, f(¥)) = 0. It is an elementary property
of tangent cones that,

(™) FENT(A, %) = T(f(A), f(%)).

Combining these two containments with KN G<c T(A,X), one sees that
cd(fEKNG))NS=0.

(This last containment is essentially Kuhn and Tucker’s notion of properness
if one takes S=R""). All the hypotheses of Proposition 2 or 3 are met with
N=cl (f(x)(KNG)). There is some s* satisfying (3) with s*f'(x)(h)=0Vhe
K N G. This means

(8) sTF(X)e—-(KNG) '=—(K"+G")
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(using H(G) and property (iii) of Definition 4). A straightforward separation
argument shows that H = K. This combined with H(G) and (8) yields
©) sf (&) +ug'(X)e-G,
where s*(s)>0if se S/{0}and u* e P*(B, g(x)). O

In the standard finite-dimensional programming problem, C, B are coordi-
nate cones and the Kuhn-Tucker constraint condition implies that K N P(C, ) <
T(A, x). This means that Theorem 4 includes the Pareto maximization of any such
program with respect to any pointed cone in R". Thus one sees that Geffrion’s first
order necessary condition is subsumed by Theorem 4.

As in the case of real-valued objective functions, weak sufficiency conditions

can be described for (P) using the theory developed by Guignard [2].
In another direction if one does not require H(G) to hold, one still has

s'f(x)ecd (H+G"),
which is much like Zlobec’s asymptotic results in [9].

7. Conclusion. The paper provides a tangent cone definition of proper
efficiency which coincides with Geffrion’s for concave programs and coordinate
orderings and which enables one to develop the theory in a much more general
framework. It seems possible that some requirement of properness could be
fruitfully imposed on various other notions of maximization allowing one to
characterize various classes of extreme points in tangent cone terms. Using
compact derivatives [10] one can extend the results to arbitrary convex spaces.
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A CONVERGENT SCHEME FOR BOUNDARY CONTROL
OF THE HEAT EQUATION*

William C. Chewning died early in 1975. This paper, a result of a felicitous though brief
collaboration, is dedicated to his memory and to the mathematics which, but for this tragic accident,
he should have lived to create. (T.I.S.)

WILLIAM C. CHEWNINGt AND THOMAS 1. SEIDMAN#

Abstract. It is desired to steer the solution of the heat equation in @ < R" from a given initial
state uo=u(0, - ) exactly to a given terminal state ur=u(T, ) by controlling the Dirichlet data ¢.
An algorithm is presented which, when such control is possible, provides a sequence converging in
L, to the optimal control.

1. Introduction. Let & = R" be a bounded domain with piecewise smooth
boundary 9. We consider the equation

(1) u=Au, u=u(t,x) for0<t<T, xe2,
(2) u(0, x) = ug(x), x€9,
3) u x)=o¢(t x), 0<t<T, xe%,

with uge L,(2) and ¢ € L,(¥) where ¥ =(0, T) X 8. We may wish to further
restrict ¢ to vanish on &, =(0, T) X B(B,<=RB) so ¢ € Lr(Fy) = L,(¥F) with
Bo=B\B, relatively open in B. The terminal state u(T,-)e L,(P) depends
continuously—indeed, compactly—on the initial state uo, and boundary data o.
If a terminal state u;€ L,(9) is specified:

“4) u(T, x)=ur(x), x€9,

then, to the extent that the data ¢ is at our disposal, we may view (1)~(4) as a
control problem with ¢ as the control, carrying the initial state u, to the
specified terminal state ur subject to (1).

In practical applications one would like to approximate numerically a suit-
able control ¢ € L,(%,), given uy and ur. There are two complications: (a) there
does not always exist such a control for arbitrary (ug, uz) € Lo(2) X L,(2) and
(b) when such a control exists it is not unique. These are handled as follows: (a)
we assume that the specified pair (uo, u7) is such that a suitable ¢ exists, and
(b) we seek the optimal control ¢, having minimum norm in L,(%,). It is known
(see [2],[4]) that for u7z=0 (or ur in the range of the map: uo—>u(T,-) for
¢ = 0) there exists a control ¢ € L,(%) (in this context called a null-control) for
each uge L,(2) with the optimal control ¢, depending continuously on u,. In
general, the set of controls for given (uo, 4r), when nonempty, is a translate of
a closed subspace (the nullspace of the map: > u(T, ) for uy=0) so ¢, is

* Received by the editors March 12, 1975, and in revised form April 8, 1976.

t Formerly of Department of Mathematics and Computer Science, University of South
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well determined. Under the assumption that u; is reachable from u,, we con-
struct a sequence {¢;} of approximate controls converging to ¢ in L,(%).

2. A useful identity. We follow the discussion in [3] in considering, in
conjunction with (1)—(4), the “dual problem”

5) —v,=Av, v=0v(x) forO0<t<T, xe€9,
(6) o(T, x) = vr(x), xe9,
7 v(t, x)=0, 0<t<T, xe%B,
with vy € L,(D). We let

vo(x)=0(0, x), x€D,
®) 30

«/f(t,x)=-a;, 0<t<T, x€RBo.

Integrating (uv), = uv, + uv = vAu —ulv over (0, T) X D gives
T T
J [urvr — uovo] =J I [vAu—ulv]= —J j oy
@D 0 Y9 0 YR

on applying Green’s identity and noting (7) and that ¢ =0 for x € B\%,. Thus,

) (ur, vr)o=(Uo, Vo) — (@, ¥)s

with the inner products in L,(2) and L,(¥) and with ¢, ug, ur related by
(1)-(4) and v, vo, ¢ related by (5)-(8). For a set ¥ in L,(9D) let 6(7) be the set
of triplets (vg, vo, ¥) related by (5)—(8) with vre ¥ and let M(¥") < L,(%,) be
the span of { : (v, vo, ¥) € 8(¥)}. Let M be the closure of M(L,(2)).

THEOREM 1. Let V" be any total set in L,(D) (i.e., (u,v)5=0 forall ve ¥
implies u=0). Then:

(a) given ugy, ur, ¢ is a control for (1)-(4) if and only if it satisfies (9) for
every (vg, vo, ¥) € 0(V),

(b) if any such control exists, there is a unique one in M and that is the
optimal control .

Proof. The proof, above, of (9) actually gives, from (1)—(3), (5)—(8), that

(u(T, ), vr)e =(uo, Vo)a —(e, lﬂ)yo

so if ¢ satisfies (9) as stated one has, subtracting, (u(T, * ) — ur, v1)e =0 for all
vr€ ¥ which implies (4). It follows that controls are entirely characterized by
their action as linear functionals on M. The Riesz representation theorem
asserts that any such functional can be obtained as the inner product with a
unique element of M and this choice clearly minimizes the norm of the control;
the nullspace of the map: ¢ —u(7, - ) for uo=0 is just the orthocomplement in
L,(@)of . O

3. The algorithm. Assume, here, that u,, ur € L,(2) are such that boundary
controls exist in L,(¥%,). For any ¢ € L,(¥,), define the residual r[¢] to be
[ur—u(T, )] where u is given by (1)=(3). Let ¥ ={v’, - - -} be any total sequence
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in L,(@) and let {¢'", - - -, } be the associated (by (5)-(8)) elements of M(¥); set
Vie={v', -, v }and M =M(¥)=sp{¢’, - -, ¢¥*}in M.

THEOREM 2. For each k there exists a unique ¢, € L,(%,) which is the element
of minimum norm such that r[¢] is orthogonal to sp V.; this element ¢, is in M.
Finally, ¢ is the unique solution in M, of the finite linear system

(10) (rle], v)a =0, =1k

Proof. For r[¢] to be orthogonal to ¥ is equivalent to (10) which, by (9), is
equivalent to the system

(11) (‘P’ d’j)yo’:ci’ ]= 1’ T k7

where, defining v} by (5)-(8) with v = v/, one sets
(12) ¢ = (uo, Uf))@ —(ur, Uj)@

for each j. Any control ¢ giving (1)-(4) has r[¢]= 0 so, as it has been assumed that
such controls exist, (11) is consistent; the set of solutions of (10) or (11) is clearly
closed and convex so a unique solution ¢, exists having minimum norm. From the
form of (11), whether an element satisfies (10) or (11) depends only on its action as
a linear functional on M,. Thus, by the same Riesz theorem argument used for
Theorem 1, the minimum norm solution ¢, is in M and is the unique solution in
M, of (10) or, equivalently, of (11). 0
COROLLARY. The element ¢, is uniquely determined by

(13) O =Xt Xl

where the x; = x; . are obtained by solving

(14) 8i X =Ci i=1,--,k
1

I ™M=

i
with {c;} given by (12) and ((g:,)) the Gramian of (W', - -, "), i.e.,

(15) gi’j =<¢l’ ¢i>y0’ i3j= 1’ ttty, k.

Proof. As ¢, € M, one has (13); substitute this into (11) to get (14), (15).
Observe that (14) need not have a unique solution unless assumptions are made
guaranteeing the linear independence of (¢, - - -, ¢*) but, as the number of
independent equations is obviously equal to dim M,, the element ¢, given by (13),
(14) is nevertheless uniquely determined. 0O

Computationally, one would obtain the {'} and {v}} using (5)-(8) and then
the {c;} and the matrix entries {g; ;} using (12) and (15), after which one would solve
(14) and use (13) to define the approximate control ¢,. The computation of
{¢’}, {vh} involves numerical solution of the heat equation in & (unless the {v'} can
be taken to be eigenfunctions of A in & with (7)) which can be done to arbitrarily
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good accuracy. The computation of the {c;}, {g;;} involves numerical integration
over @ and ¥, respectively, which can also be done to arbitrary accuracy. Thus,
(13), (14) can be used to obtain ¢, to arbitrarily good accuracy and the algorithm is
computationally feasible. A preliminary (approximate) orthonormalization of the
{¢’} (“reflected back” to corresponding combinations of the {v’} for recomputa-
tion) will guarantee the well-conditioning of (13), (14) although this may make
accurate computation of the {c;} more difficult if the new {v’} are large.

THEOREM 3. The sequence of approximate controls {¢,} given in Theorem 2
converges in L,(%,) to the optimal control ¢,,.

Proof. Clearly ||p4|| = ||l@o]| = - - - =||e | since these are defined by minimization
with more and more constraints. The weak sequential precompactness of
bounded sets in Hilbert space implies the existence of weakly convergent subse-
quences of {gx },1.€., @r)— @ - For each fixed j, ¢ 44 satisfies the jth equation of
(11) since each ¢y does once k(i) =j. Thus, by Theorem 1, ¢, is a suitable
control (Remark: This shows that |lpi||=> o if no control giving (1)—(4) exists.)
Further, as ||lox || = ¢l one has || .4/ =|l@.ll whence, by the definition of ¢, one
has @4 = @4. As thisis true for the limit of every weakly convergent subsequence,
we must have ¢, — ¢,.. Finally, we note that ||¢./|=|lw —lim ¢, || = lim ||¢,|| implies
(cf. [9]) strong convergence in L,(%o) : @r = @

Instead of considering control of the heat equation (1) by Dirichlet conditions
(3), it would be possible to pose corresponding problems for the equation

(16) u=Lu, u=u(t,x) for0<t<T, xe9,
where, e.g., L is a second order elliptic operator in divergence form:
17 Lu=V-pVu—qu
with p, q given (smooth) functions on [0, T]X 9 (p >0) and for boundary condi-
tions
ou
(18) au+35—=¢, 0<t<T, xe€%B,
14
where a, 8 are given (smooth) functions on & (a>+B8%=1).
We replace (5) and (7), respectively, by the equation
(19) —v,=Lv, v=v(x) for0<t<T, xe9,

and the boundary conditions
(20) av+Bg—§=O, 0<t<T, xe@.
We replace the second equation of (8) by

@D :l/(t,x)=a§£—ﬁv, 0<t<T, x€B,,
14

It is easily seen that the basic identity (9) continues to hold if the inner product

over & (or over %) is defined with p used as a weight function ({¢, ¢} = fp(p(//),
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Then the algorithm and arguments used for (1)-(4) in Theorems 1, 2, 3 can be used
for the more general problem with no essential changes.

4. Numerical results. Some computational experiments have been per-
formed. While certainly inadequate to provide a real “feel” for the usefulness of
the algorithms for practical computation they nevertheless seem worth pres-
enting.

Consider, first, a problem involving the one-dimensional heat equation:

Uy = Uyy, 0<t<04, 0<x<1,

(22) u(t,0)=0, u(t, )=¢(@), 0<t<04,

u(0, x) =sin mx, Oo=x=1.

We take ¥ =(sinjmx:j=1, -, k) and have Table 1 (in which ¢, denotes the
computed control).

TABLE 1
k 4 6 8 10 12 14 16 18
lewlP 0.04106 | 0.05389 | 0.06227 | 0.06811 { 0.07240 | 0.07568 | 0.07823 | 0.07896

lex — @r—alf - 0.01283| 0.00838 | 0.00584 | 0.00429| 0.00328 | 0.00254 | 0.00075

As anticipated from the proof of Theorem 3, ||, [ increases monotonically with k.
Of greater interest is the bottom row of the table which gives some concrete
indication of the rate of convergence. Observe that the table strikingly confirms
the orthogonality of the increments (¢, —¢r_2); see § 5, below.

Since the computed approximations to the optimal control will not, in
general, be (suboptimal) exact controls, an experiment was performed to see how
effective the “steering” of a computed control might be. Since diffusion equations
have a strong smoothing effect even without purposive control, the effectiveness
of the computed null-control was measured by comparing the resulting terminal
state u’% with the corresponding terminal state % of the uncontrolled solution
(¢ =0). This experiment was performed for a problem involving a variable
coefficient diffusion equation:

u=""u) +i1+x)u, 0<t<0.3, 0<x<l1,
(23) u(t,0)=0, ut,1)=e), 0<7r<0.3,
u(0,x)=100x(1—x), o=x=1.

Only the approximation o was computed with Vo=
(sin 7x, sin 277x, sin 377x, sin 47rx). See Table 2. We have |[u]*/[u%*> = 0.33.

TABLE 2

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0

uyx) 0.0 0.640 1.236 1730 2.071 2.220 2.153 1.866 1379 0.736 0.0
u$(x) 0.0 0.020 0.010 —0.036 —0.090 —0.075 0.070 0.218 —0.226 —1.598 —1.605
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It is not surprising that some roughness is introduced near the controlled
boundary as the theory involves L, rather than pointwise convergence. Indeed,
theory predicts that some (optimal) controls will be quite wild as ¢ T, which
would certainly lead us to expect this sort of roughness. If desired, this can be
avoided—at the cost of increasing the L, norm of the control—either by seeking a
control which is optimal with respect to a stronger norm (see § 6, below) or by
extending the problem to x € (0, a) with a > 1 (extending the initial data) and after
solving the extended problem with control at x = a, using the values of that
solution at x = 1 as a suboptimal control for the original problem. This last *“trick”
also can be used to compute controls for more general (even time-dependent)
boundary conditions.

5. Remarks. The discussion so far has followed the manuscript prepared and
submitted before William Chewning’s death. The resulting substantial delays
mean that this final version is being prepared about a year later and, while it seems
appropriate to have presented the original material in somewhat of its original
form, we proceed now to introduce the perspective of more recent work by the
second author [5], [6], [7].

If one looks carefully at the algorithm and its proof it becomes clear that their
intrinsic logic makes negligible use of properties specific to the control problem to
which it is applied but, rather, can be viewed abstractly as a general computational
approach to a wide variety of problems. The proof above of Theorem 3 does not
even use the linearity of the problem or the Hilbert space setting and has been
abstracted in [6] to apply to nonlinear problems in the setting of a uniformly
convex Banach space. The computational algorithm of Theorem 2 and its
corollary does use these structures and, in this case, a far less sophisticated
convergence proof (giving additional useful information) has been presented in
[5] and some material on convergence rates has been obtained in [7]. We now
review § 3 from the more abstract perspective of [5], [7].

Let A: Ly(¥) > L,(9D) be the (continuous—indeed, compact) mapping: ¢ —>
u(T, - ) defined by (1)-(3) with uo,=0. Then (9) shows that A*: L,(D) - L,(¥) is
just the mapping: v(T, - )——¢ defined by (5)-(8). If we also define F: L,(2)~>
L,(D) by Fup=u(T, -) given by (1)-(3) with ¢ =0, then the control problem
consists of solving

(24) Agp=b

for ¢ with b=ur—Fu,. For ur=0, solvability of (24) for every u, implies
continuity of the null-control map C: L,(2) - L,(¥), taking u, to the correspond-
ing optimal control ¢,,.

Since Z(A) is (dense but) not closed in L,(%), A does not have a pseudoin-
verse (cf. [1]) but each H, A does, where Hy: L,(@)~ R* is defined by setting

(Hiy); =y, v)g = L yo'

and (12)—(15) is easily seen to define ¢, by letting this pseudoinverse act on Hyb.
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Theorem 1 of [5] asserts that M;=A*7,=R(HA)*) and S,=
{x: H,Ax = H, b} meet orthogonally with

(25) S MM, ={er}, ¢ =projection of ¢, on M,

so that ¢, > ¢, since sp {M,} is dense in /(A)"=R(A*)=M by the assumed
totality of ¥"'={v',---}. The fact that the approximants are obtained by
orthogonal projection shows that each ¢, is the best possible approximation
(nearest point) to ¢, in M, and that (¢r—¢;)Le; for k>j so |el>=
el +llex — @;|* (compare the start of the proof in § 3 of Theorem 3 and the first
table in § 4).

6. Rate of convergence. Since every ¢ € M is the optimal control associated
with some specification of u; (with u, fixed), the convergence can be arbitrarily
slow no matter how {v',-- -} is chosen. On the other hand, we see [7] that
restriction by a regularity condition (particularly on restricting consideration to
certain null-control problems) permits establishment of a convergence rate.

It is easy to see that typical regularity conditions can be formulated as
requiring, for problems (24), that the (minimum norm) solution ¢, be in the range
of a compact embedding map E: X > L,(%) for some Hilbert space X. With x,. € X
so ¢4 = Ex, one has, for the computed approximant ¢,, the convergence rate

(26) lox = @ 4ll = prllel
with
27 P =sup {|[Ex —Mc|: [ = 1}>0.
By Theorem 2 of [7],

K 1/2
(28) Zi+1 =i =inf [e?m +le [Ee; "Mkllz] ,

where {(e;, £7)} are the eigenpairs of E*E taken so {¢;} is an orthogonal basis and
81_—>:82§‘ < >0.

In applying this notion to the control problem we observe that if we restrict
our attention to autonomous null-control problems for which it is known that a
null-control exists for every uoin L,(D) and every T >0—see [2], [4], [8]—then we
may obtain a rate using X =L,(%) and the control map. For null-control, the
problem has the form: A¢ =Fu, and controllability means R (F) < Z(A) so the
control map C: uy—> ¢ = minimum norm control is linear and continuous. Note
that we may construct a null-control ¢ for a given u, by taking ¢ to be 0 for
0<t<T’ and then controlling u(T”, - )=Fuy to 0 so, on [T, T], ¢ is C’F’u,
where F’ is the solution operator for (16)-(18) on [0, T°] with 0 control and C’ is
the control map for [T, T]. Now, with a minor abuse of notation, the optimal
null-control ¢, = Cu, s just the projection PC’F’u, of ¢ onM (P the orthoprojec-
tion onto M in L,(¥)). Now P, C’ are bounded and F’ is compact so C is compact
and we may let C play the role of the “regularity map’’ above.
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Letting {¢ 7} be the eigenvalues of C*C in decreasing order with multiplicities,
a standard variational characterization of the eigenvalues gives
e%=inf {sup {{u, C*Cu): |[u]|=1, u L U}: dim U=k}
=inf {|Cly-*: dim U=k}
=|PC’|? inf |{F’|y-|*: dim U=k}
=[PC|* exp [-2AT7],

(29)

where the {—A,} are the eigenvalues of L. (Note that with L as in (17) for bounded
P <R" one has A, ~ cok?’™ asymptotically as k - 00.) Using (28), (29) in (26) gives
the convergence rate:

(30) lex—ell=clludl exp [-T"k*/]

for any T°<T and ¢ depending on T”, etc., but not on k or uy. This optimal
convergence rate will be attained if one could have M, =sp {Cu;, - - -, Cu, } with
u; the jth eigenfunction of C*C. Unfortunately, at present little is known about
these eigenfunctions {u;} or about {Cu;} so that it is difficult either to choose the
{v’} optimally (it is not known whether Cu; € #(A*) so optimal choice of v’ may
not be possible) or to use the right-hand inequality of (28) to estimate the
convergence rate for a given sequence {v’}. Unfortunately, also, there is no known
nontrivial (uq# 0) null-control problem for which an exact analytic solution is
available as a test case.

We make one final remark. The discussion above has been in the context of
L,(%) controls and L,(¥) convergence. One obvious modification is to seek the
optimal control in Hg'([0, T]— L,(%4)) when such controls exist, proceeding to
compute approximately either ¢, or 9™¢,/0t™ by a modified version of the
algorithm above. This would provide a control which would be smoother as
t > T—, eliminating the “roughness” noted in the second example of § 4, although
at the expense of increasing the L,(%) norm. We also note that for the autonom-
ous null-control problems just discussed it can be shown [8] that the algorithm
gives not only pointwise but C™ ([0, T°]- L,(%)) convergence (with—at least—
the same convergence rate) for any 7° < T'; further, the optimal control can be
shown to depend continuously on L in the setting.

REFERENCES

[1] D. LUENBERGER, Optimization by Vector Space Methods, John Wiley, New York, 1969.

[2] D. L. RUSSELL, A unified boundary value controllability theory for hyperbolic and parabolic partial
differential equations, Stud. Appl. Math., LII (1973), pp. 189-211.

[3] T. 1. SEIDMAN, Problems of boundary control and observation for diffusion processes, Rep. MRR
73-10, Univ. of Maryland, Baltimore County, Baltimore, 1973.

[4] , Observation and prediction for the heat equation. III, J. Differential Equations, 20 (1976),
pp. 18-27.
[5] , Solution of singular equations. I: Linear problems in Hilbert space, Pacific J. Math., 61

(1975), pp. 513-520.



72 WILLIAM C. CHEWNING AND THOMAS I. SEIDMAN

[6] , Solution of singular equations. II: Non-linear problems, Rep. MRR 75-10, Univ. of
Maryland, Baltimore County, Baltimore, 1975.

[7] , Computational approaches to ill-posed problems : general considerations, Proc. Conference
on Information Science and Systems, Johns Hopkins Univ., Baltimore, 1976.

[8] , Exact boundary controllability for autonomous wave and diffusion processes, to appear.

[9] K. YOSIDA, Functional Analysis, Springer, Berlin, 1966.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 15, No. 1, January 1977

A NOTE ON AN ALGORITHM BY J. RISSANEN*

B. R. DYET

Abstract. An adaption is made to a well-known algorithm for calculating the realization of a
sequence of matrices in order to allow more than one calculation of the realization to be made. A mean
realization can then be obtained. A particular class of sequences is defined and then shown to be the
most suitable for the adapted algorithm to use.

1. Introduction. In[1] and [2] Rissanen and Kailath present an algorithm for
calculating the realization of a sequence of p X g matrices, Ag, A, A,, - - -, Where
the realization is in the form of a triple of matrices F(N), H(N), K(N) such that

(1) A;=H(N)-F(N)-K(N) fori=0,1,---

and the size of the matrices is minimal.
Throughout this paper we shall use the notation of [2] and we shall refer only
to the case where p =1, i.e., the sequence A; is a sequence of row matrices.

2. The main theorem.

THEOREM 1. Given that Rissanen’s algorithm produces the triple, F(N),
H(N), K(N) of dimension m as the realization of the sequence of 1X q matrices,
Ao, Al, A2. ey, then

P*(m) - P"Y(m)=Cp, the companion matrix of F(N).

Before proving this theorem we shall first establish some lemmas.
DEFINITION 1. If F is a square matrix and the characteristic equation cg(A) of
F is given by
cFA)=a;+ad+ -+ +a A" A"

where n is the dimension of F, then the companion matrix Cr of F is given by

0 1 0 0 ]
0 0 1 0
. . .
0 0 0 1

|[—a1 —ax —a; —ay, |

LEMMA 1. Given the same conditions as those in the statement of Theorem 1,

* Received by the editors December 11, 1975, and in revised form March 17, 1976.
1 School of Information Sciences, Hatfield Polytechnic, Hatfield, Hertfordshire AL10 9AB,
England.
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we have
(A ] (A
Ai+1 Ai+2
Cr-| - = |. fori=0,1,.--.
_Ai+m-—1_‘ _Ai+m_

Proof. First we note that, by the Cayley-Hamilton theorem, F(N) satisfies its
own characteristic equation, which we may write in the form

2) F"=—al-a,F— - —a,F" .
To prove the lemma it is sufficient to show that
3) —a1Ai—aAii—  —@mAiim-1=Aiym fori=0,1,---.
Using (1), we see that the left-hand side of (3) may be written as
-aH - F-K-a,H-F"'-K—---—a,H-F"™ . K
=H-F [-a[l-a,F— - —a,F" 'K
=H-F -F"-K (by(2)
=Ai+m (by (1))
which proves (3) and hence the lemma.

COROLLARY 1. If by A;(j) we mean the j-th element in the 1 X q matrix A;, then
an immediate corollary of Lemma 1 is

CAG) [Aia() ]
Ai+1(f) Ai+2(i)
Cr- |- = |- fori=0,1,--- andj=1,2,---,q.
_Ai+m—1(j,)_ _Ai+m(i)_

Thus Cr acts on the individual rows and columns of A (m, N) and disregards
the block-matrix structure. '

LEMMA 2. In [2] the elements of Q(m, N) are denoted by q;; and s (i) is the least
integer such that q; ;) # 0. The algorithm sets all qy ;=0 for k >i. Given the
conditions in Theorem 1 the last row of Q(m, N) is zero. If we form the matrix
Q*(m —1) from columns s(1),5(2), - - -, s(m—1) of Q(m — 1, N), then Q*(m — 1)
will be nonsingular.

Proof. m will not be greater than N so the columns certainly exist. Q*(m — 1)
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is trivially nonsingular since it has the form

d1s) d1s52) 91.s503)

0 9Q252) 42,503)
Q*(m-1)= |0 0 93,503

0 0 0

q1,5(m-1)
q2,s(m—1)

q3,s(m—1)

qm—l,s(m —-1) |

75

Proof of Theorem 1. We denote the elements of A(m, N) by a;. From the
factorization A (m, N)= P(m) - Q(m, N), we obtain directly

ai,sQ1) ai,s22) ai1,s(m-1) ]
az,s(1) az.s(2) az,s(m-1)
4) P(m)- Q*(m-1)= |- : :
Ap—-1,51) Am—1,5(2) Ay —1,5(m—1)
and also
azs1) 42,502 a2,s(m—1)—
assa) QAssQ) as.s(m-1)
5) P*(m)- Q*(m-1)= |- : -
Am,s(1) Am,s(2) Am.s(m—1)
From Corollary 1, we may deduce the equality
@154y a1,5(2) tt Bisemen |
azs(1) azs(2) Tt A2,5(m-1)
CF' . . .
An-1s51) Am-1s2) " ' Qm-1,sm-1)
(6) = - -
Azs1)y QA2s2) """ A2s(m-1)
assa) QA43s2 """ A3s5(m-1)
Lam,s(l) Ams2) """ am,s(m—l)_‘

From (4), (5) and (6) together we get

Cr - P(m)- Q*(m—1)=P*(m) - Q*(m—1).

Since Q*(m — 1) is nonsingular we may “‘cancel” it, thus proving the theorem.



76 B. R. DYE

3. The application of the theorem.
DEFINITION 2. We adapt the algorithm given in [1] and [2] to produce the
realization F, G, H, where

F=P*@m)- P \(m),

Ao
Ay
G= . s H= [1’ o --- O]
DEerInITION 3. Given the sequence of 1Xq matrices Ag, Ay, A,, - - - the

realization of the sequence A;, A;.1, Ai+s - - - is denoted by F;, G;, H; for each
i=0,1,2- - so that, in particular, Fy, Gy, H is just our original F, G, H.

DEFINITION 4. A sequence of 1Xgq matrices Ay, A;, A, -+ is called
homogeneous if the realization of each sequence A; A;i 1, Aj4p- -+ for i=
0,1,2---is of the same dimension.

THEOREM 2. Given the homogeneous sequence of 1Xq matrices
Ao, Ay, A, - - - wecalculate the realizations F;, G, H, in the form of Definition 2 for
eachi=0,1,2,---. Then F;=F,foralli,j=0,1,---.

Proof. Certainly each F; is a companion matrix of the same size. Suppose
F; # F; for some i <j. Let the characteristic equation of F; be

cr(M)=a;+aA+ - - Fa AT
And let the characteristic equation of F; be
Cp‘,(A):b1+b2A+ e +bmAm~1+Am_

Following the proof of Lemma 1 we shall get, for k =},

(7 —a1Ar —a2A 11— — AnAkim—1= Akim
and
(8) "‘blAk _bzAk+1_ Tt _bmAk+m—1 =Ak+m-

Subtracting (7) from (8) we get:
(@a1—b)Axt(ay—b)Aks1t+ -+ +(am —bm)Akim-1=0
fork=j,j+1,j+2,--.

This contradicts our assumption that the sequence is homogeneous unless every
coefficient is zero. So F; = F; for all i, j.

THEOREM 3. Given the realization F, G, H of the sequence of 1 X q matrices, a
necessary and sufficient condition for the sequence to be homogeneous is that F has
no zero eigenvalues.

Proof. F is in companion matrix form (see Definitions 1 and 2). F has zero
eigenvalues if and only if a; is zero. The proof of the theorem is in two parts.

Necessity. Suppose F has zero eigenvalues; then a; is zero, and suppose F is
of dimension m. Then, by considering (3) in the proof of Lemma 1, we have
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_aZAi+1_ e _amAi+m—1=Ai+m for i =O7 17 T

and this tells us that the dimension of the realization of A{, A,, A;:--ism—1
and so the sequence is not homogeneous.

Sufficiency. Suppose Ao, A1, A, - - - is nonhomogeneous. Then there exists a
k such that

the realization Fy_1, Gy -1, H,_, of the sequence Ay _q, Ay - * - isof

©) L
dimension m, say
and
the realization Fy, G, H, of the sequence Ay, A1 - - - isof
(10 dimensionm — 1.
Suppose
~ 0 -
0
Fy1=
0 0 0 1
. —a1 —ax —az ‘°° —an|
and
i 0 |
0
F, = :
0 0 0 cee 1
| =b1 —by —bs - —bpq
Then (9) and (10) imply
(11) — 1A 14— QAR — T T A Akim—241= Ak bm—14i
and
(12) =b1Ak+i —b2Aks1vi— b1 Akam—24i = Aktm—1+i
fori=0,1,---.
Now, subtracting (12) from (11) gives us
(13) a1 Ak-14i — (@2 b1)Aksi— - = (G —bm-1)Akim—24+i =0
fori=0,1,---.

Unless every coefficient in (13) is zero, it is saying that the sequence
A1, Ax, Ari1- - -+ has a realization with dimension at most m —1 and this
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contradicts (9). So every coefficient is zero, in particular a,, and therefore Fj._; has
zero eigenvalues and so has F; by Theorem 2. Thus sufficiency is shown.

CoROLLARY 2. It follows directly from Theorem 3, that, given any not
necessarily homogeneous sequence of 1X q matrices, then the nonzero elements in
the last row of each F; will be identical. This comes directly from the fact that every
coefficient in (13) is zero.

Theorems 1, 2 and 3 show that given any homogeneous sequence of 1Xgq
matrices, then we may make as many calculations as we like of the F matrix and
each calculation uses a different part of the given sequence. For example, if F
(=F,) is of dimension m—1 say, then we may calculate F;, for i=
0,2m,4m, 6m - - - and each calculation will use a completely disjoint portion of
the given sequence (since 2m terms are used each time). The condition of
homogeneousness serves to exclude sequences which have terms in them com-
pletely independent of all the rest and which therefore have dimensions artificially
large. We have thus shown that a small adaption to a well-known algorithm allows
a more accurate realization to be found. Reference [3] contains a description of
other algorithms superior to the standard algorithms, which is relevant to this
note.
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OPTIMAL IMPULSE CONTROL OF A DIFFUSION
PROCESS WITH BOTH FIXED AND PROPORTIONAL
COSTS OF CONTROL*

SCOTT F. RICHARDY

Abstract. This paper concerns the optimal control of a system where the state is modeled by a
homogeneous diffusion process in R . Each time the system is controlled a fixed cost is incurred as well
as a cost which is proportional to the magnitude of the control applied. In addition to the cost of
control, there are holding or carrying costs incurred which are a function of the state of the system.
Sufficient conditions are found to determine the optimal control in both an infinite horizon case with
discounting and a finite horizon case. In both cases the optimal policy is one of ‘“impulse’ control
originally introduced by Bensoussan and Lions [2] where the system is controlled only a finite number
of times in any bounded time interval and the control requires an instantaneous finite change in the
state variable. The issue of the existence of such controls is not addressed.

1. Introduction. This paper concerns the optimal control of a system where
the state is modeled by a homogeneous diffusion process in R' and where there
are both fixed and proportional costs incurred by controlling the process. In
addition to the costs of controlling the process, there is assumed to be a holding
cost which is a function of the state of the system. Sufficient conditions are found
for a control policy to be optimal. The question of the existence of such a policy is
not considered.

This paper is a modification’ of Bensoussan and Lions [1], [2] who were the
first to consider the finite horizon problem with fixed costs only. In their case
Bensoussan and Lions find that the optimal control policy is one of “impulse
control,” where the control is used at a series of stopping times to instantaneously
move the state of the system by a finite amount. This jump type of control is, of
course, necessitated by the incursion of a fixed cost every time the control is used.
Bensoussan and Lions restrict themselves to the case where all costs are bounded
and, in particular, rule out the case where holding costs rise linearly with the state
of the system and the costs of control rise in proportion to the magnitude of the
control. In this paper these restrictions are removed and a general holding cost
function and proportional control costs are allowed. Furthermore, we consider
here both the infinite horizon discounted cost case and the finite horizon case.
Lastly, Bensoussan and Lions restrict the control to be nonnegative, but that
restriction is removed herein.

2. The infinite horizon with discounted costs model. Let w, be a Wiener
process in R' and &, be the increasing family of o-algebras generated by w,. Let
O0=r=7m,=---=1,=---beanincreasing sequence of stopping times adapted to
%, such that only a finite number will occur in a bounded interval a.s. Denote by

* Received by the editors May 30, 1975, and in revised form August 14, 1975.

t Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh,
Pennsylvania 15213.

! In one sense this paper is not a generalization: Bensoussan and Lions consider the case of a
diffusion in R".
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%.,, the minimum o-algebra of events prior to 7. To each 7; assign a random
variable & which is #,, measureable. Without loss of generality assume that 7; - oo
a.s. as i »> 00,

Let Y(¢) be defined by the stochastic differential equations

dy(t)=undt+odw, n=t<t. Vi=0;

(1) y(r)=y@)+&,
y(0)=x,
where
2) 7=0 and 7,=7 ifr,=7.

Let an impulse control be denoted by v:

3) v=(r, €5 3T ).

Let the holding cost function H(x) be continuous and nonnegative. The total cost
function associated with the policy v is

@ 1) =E{ £ e BE)+| e PHO) ds),
i=1 0
where B(¢) is the cost of control £ given by
B(€) =K, +kelé],

K*>0 foré=0,

) K‘f={K—>0 for £<0,

and
k ={k‘“>0 for £ =0,
¢ k>0 foré<o.

We, of course, seek a control ¢ such that J,(d) =inf, J(v).
Suppose there exists a function u(x) such that®

(6) u=0, u'(x)isabsolutely continuous and bounded and u"(x)e L*(R),

(7) u(x)=inf[B(&)+u(x +£)]=Qu(x), Vx;

(8) Bu(x)—pu'(x)—3c*u"(x)=H(x) ae.x;

and

9) (Bu(x) — pu'(x) —30°u"(x) — H(x))(u(x) — Qu(x)) =0.

Then we may define the optimal policy as follows.
Let the continuation region be defined by

(10) C={x:u(x)<Qu(x)},

2 For a heuristic (and quite intuitive) development of these conditions see Bensoussan and Lions

[2].
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which is an open subset of R since it is easily shown® that Qu(x) is continuous.
Define the impulse control ¢ associated with u(x) as follows. Let

dy =udt+odw,
an {YAE)O) : x,
and let
(12) 7, =inf {§(¢) ¢ C}
and =
(13) E=n((#D),
where 7(x) is a real-valued measurable function* chosen so that
(14) B(n(x))+u(x+n(x))=Qu(x) Vx.

In general then to define #; and & consider

djy=pdt+odw, t=7,

(1) (s e
and let
(16) Tiv1= inf e}
and B
(17 b1 =n(P(#70)).

THEOREM 1. If there exists a solution to (6)-(9), then
(18) ux)=J,(0)=J(v) Vo

and 0 defines the optimal impulse control.

Remark 1. If we have the additional constraint that £ € K, K compact, or
£ =0, then that constraint is imposed on £ in (7) and on 1 in (14) and Theorem 1
remains valid.

3 For & >0 by the uniform Lipschitz condition

~Me=u(x+é+e)—ux+&)=Me V¢

so that
Ke+kelé|+u(x +&)—Me S K, + k€| +u(x +£+¢)
=K+ kel€|+u(x + &)+ Me.

Taking the infinum yields

Qu(x)—Me =Qu(x +¢&)=Qu(x)+Me
so that

|Qu(x +¢)— Qu(x)| = Me.

“Itis easily shown that for each x, n(x) is chosen from a compact set. See Bensoussan and Lions

[2].
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To prove Theorem 1, we must first prove five preliminary lemmas.
LemmMmA 1. Let F(x, t) be a continuous function for which F,(x, t), F,(x, t) and
F,.(x, t) are continuous ; then

Fy(T"), T)=F(x, 0= L [F(y(n), n)—F(y(r)), 7)]

<T

(19) +j0 [Ey (1), )+ wF(y(6), )+ 307 Fi(y (0), 1)] dt

+J F.(y(®), o dw,
0

Proof of Lemma 1. If 7 is such that 7, < T = 7., then we may apply Ito’s
formulaontheintervals[r;,_{, 7;),i =1, - - -, k, and on the interval [7, T) to find

FOy), m)=Fly(id, med+ | Ely(®), Dodw
(20) Ti-1

7 EOO 04 REG 0, 0+ E 0, 0] dr

i—1

and

FO(T), T)=Fiyr, )+ | Ey(®), drdw,
1) b

[ EO® 0+ B0 0, 0+ Fuy (), 0] d

Tk

Summing (20) for i =1, ..., k and adding (21) yields (19).
LemmMmA 2. Let F(x) be an arbitrary bounded twice continuously differentiable
function with |[F'(x)| =M and

(22) (GF)(x)=—BF(x)+uF'(x)50°F"(x)
bounded. Then for 8 >0,
(23) —-Fix)=E § [F(y(r))=F(y(r;)]e " +E L e P[(GF)(y(1)] dt.
i=1
Proof of Lemma 2. Apply Lemma 1 to F(x, ) = e *F(x) to obtain

PEGT)~F()= | e P[-BF+uF +1o?FN(y(0) dr
(24) .

+L oF'(y(t)) e P aw,+ ET[F(Y(Ti)) —F(y(r)] e P
Letting T - co we find

~F(x)= | e (GRy(0) de+E IRy ()= Fly e

(25) o
+I oF'(y(t)) e ® dw..
0
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Now
(26) J Ea-z[F’(y(t))]Ze‘zB'dt§M20'2j e P dt<oo,
0 0
so that
27 E j oF'(y(t)) e ® dw,=0.
0

Taking the expectation of (25) yields (23).
LemMa 3. Let ¢ (x) be continuous and in L>(R) and let E Zfi e P <0; then

28) z@i=|E[ e 600 df = Al

0
Proof of Lemma 3. Consider the expectation

(29) X()=E [ X NS00 e
(0]

where from (1) we find that

(30) yO) =y(m)+u@—m)+ow.—w,) form=t<r_;.

Let

(31) D(r, )=p(t—7)+o(w,—w,

and let s =¢—7; for t =7, so that

(32) D(Ti, t) = D(Ti, Ti +S) = us +0'(w1'1+s —Wg).

Denote

(33) w:i = w‘r,'+s - wﬂ

so that by the strong Markov property (see Gihman and Skorohod [3, p. 30]) wiis
independent of %, and is a Wiener process. Now

‘K1(¢) E J X[O,Ti+1_7,')(s)l¢(y (Ti) D(Tb T; +s))| e_B(s+Ti) o
(34) 0 + /
<J‘ E[e_Bfi|¢(y ()+D(1, 7 s))|] e~ ds.
0 +

Let p(x, s) be the probability density function for D(7;, ; +s) so that

exp [—(x — us)*/(2s0?)]
5 ,8)=
G3) p(x,s) omso

Hence

E[e ¢ (y(r:)+ D(mi, 7 +5)|]= L E[e | (y(r)+n)lp(r, )] dr

= L E[e™|¢p(x)lp(x —y(7:), s)] dx
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since D(r;, 7; +s) is independent of y(7;) and of 7.
Therefore

2615 x@= 5 E[ e[ 1o0le—ym, 0 dx] ds
i=0 i=0 0 R

(36) =S E[ [ e i@l ey (r), ) deds
i R

1= 0

[Eo E Lw L e e ™G (x) dx ds]

1/2

A

0 (<o) 00 1/2
[ Y EJ J e P Prip2(x —y(m), s) dx ds]
o

i=0 R

by the Cauchy-Schwarz inequality.
Now for any value of y(r;) we have

L pix—y(r),s)dx= L expl=(x =y (1) 5)"/(s07)] dx

2mso?
1 exp[—(x — (us +y(1))*/(2(sc*/2))]
37 =
(7 20Vms JR V2w (so?/2) =
_ 1
20Vms
Thus
_ © . . _l_ o e—Bs 1/2
IZ(¢)|=[E Eoe £ ]||¢”L (R)\/B‘[J'O rovms ds]

é[E

o8

] Wbl Cl6) = Ll

]

Remark 2. Z(¢) is abounded linear functional on ¢ € L*(R) and continuous,
hence for arbitrary ¢ € L*(R), Z(¢) is defined by extension such that |Z(¢)|=
Clldll2x)-

LEMMA 4. Let F(x) be bounded and continuous on R with (GF)(x) € L*(R),
F'(x) absolutely continuous and let ¥;. , E e ®" <. Then

(8) Fix)=— £ BIFGm)-FyGe ™ +E | e *[=GR©)] d

Proof. Let F,(x) be a sequence of smooth functions bounded with two
continuous bounded derivatives such that

39) F,»F uniformly on R
and

(40) GF, > GF inL*R).
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Then from Lemma 2 we have

@) ~F@=§ EEGE)-EE e +E [ e MGR 0 d

0
Now by Lemma 3,

(42)

E I e " [(GF - GF,)(y(t))] dt’ = C|GF — GF, )~ 0.
0

Lastly, denote ||F]|=sup, |F(x)| so that

él ELF(y(r)) = Ey(y(r) = (F(y(r7) = F (y ()] =5

<2|F-F,| Y Ee®>0. Q.ED.
i=1

LeMMA 5. Let u(x) satisfy (6). Assume that Y., Ee ®i<o,

43) EJ.oo e P [(—Gu)(y ()] dt <0
0

and

(44) 3 Elg) e <o,

then

45) u(x)=ZE[u(y(r,-"))—u(y(fi))]e“*"+EJ0 e PI(=Gu)(y(®)] dt.

Remark 3. By (43) we mean
4 B[ B o) -m v df 4oz <o,

where Z(+) is given by (28), u =0 and |u'|= M.
Proof. Clearly u satisfies a uniform Lipschitz condition.

(47) u(x)—u(y)|=Mx —y|.
Define
(48) U, (x)=e***u(x) forl=a >0,

so that u, (x) is continuous and bounded on R and Gu, € L*(R).
Furthermore, u.(x) is bounded for 0 <a =1; thus u(x) satisfies a uniform
Lipschitz condition

(49) [ua(x) = ua ()| SL]x —yl.

From Lemma 4 we have

(50) ua(x)= —iZl Elua(y(r) —tta(y(ri))] e * +E L e P [(=Gua)(y(1)] at.
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From Lemma 3 we find that

(51) ] " ettty af <o,
and as @ » 0 by Lemma 3,

(52)

Ej P40y ()~ ully (] df >0,

Since |u'(x)] =M we have that

© M
(53) | ] e o a sluly <o
and
(54) B[ e w0 - u v ] slull il 0
o B

as & > 0, where ||F]| = sup, [F(x)|.
Thus (43), (51) and (53) imply that

(55) OéEJ:o e PBu(y(t)) dt <o,

and by the monotone convergence theorem

(56) E Loo e PBu,(y(t)) dt>E LOO e PBu(y (1)) dt.
Lastly,

57) £ £ b -wee|ste § ele

and by hypothesis (44) the expectation of the right-hand side of (57) is finite.
Hence by the dominated convergence theorem as a -0,

T Elua(y(m) = sa(y(ri )] e ™"

i=

(58) > 3 Elu(y@)-u(y(r)]e P <co.

From (50), (52), (54), (56) and (58) the result (45) follows. We now complete
the proof of Theorem 1.
Proof of Theorem 1. Suppose v is such that J,(v) <0,’ then by (7),

(59) Uy () =B@)+u(y(ry).
Hence
©0 L EluGy)-ulym)]e™ = ¥ EB(E) e <o

5 This justifies the assumption that only a finite number of stopping times may occur in any
bounded time interval a.s.
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since J, (v) <oo, which implies that

(61) 3 Eetne

and

(62) i Bl e <o,

Furthermore, from (8) we find that

(63) | e Et-Gaonas| " e BHG o) di<w,

since J, (v) <co. Thus applying Lemma 5 we have that
(64) u(x)=J,(v).

We must first establish that Ee ?%iu(5(77))<oo for i=1. We do so by
induction, the induction hypothesis following from

Ee Phy(3()) = u(x)+Ee P11 M|y(#7)—x| <o

since it may easily be shown that for any stopping time 7 =0,

(65a) Ee ™ y(r)| <o,
where
(65b) dy(t)=pdt+odw, forO=t=7 and y(0)=0.

Now assume E e #%iu($(#7)) <o and note that (7) implies

(66) Ee Pu(9(77)) = Ee *B(£&)+E e ™ u(§ (7)) <o
which in turn implies that E e "% (§(#;)) < o since both terms on the right-hand
side of (66) are nonnegative. Hence,

Ee iy (§(771) S E e P u(P(7)) + ME e *i4|§(7751) — § (7))
=Ee *u ()7(‘7':)) +ME e“ﬁ(‘?i+1_‘;i)|)?(71i_+l) - }?(ﬁ)|
<00

by (65). Furthermore we have established that E e #iu(§(#,)) <oo for i = 1.
We note that (9) and (10) imply that for x € C, (8) holds as an equality and
thus u"(x) is continuous for x € C. Hence we may use Ito’s lemma to find that
Ti ‘l'l
OéEJ e *H(§(s)) ds =EJ e ®[Bu—uu'—30*u")($(s)) ds
(67) Ti-1 Ti-1
=E e ®1u(§(7,-,))— E e P u(j(#7)) <co.
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Summing (67) for i =1 we find that
0=E [ e FHOE) ds=ul)- £ B () -u(9G)]
(68) -
=u(x)= Y Ee*B(§)=u(x)<w,

from which it follows that
(69) J.(®)=ulx)<o0. Q.E.D.

3. The finite horizon model. We proceed in a manner exactly paralleling § 2.
The proofs of several of the lemmas are shortened since they are modifications of
previous lemmas.

Let 0=7=m=---=7,=---=T be an increasing sequence of stopping
times adapted to %, such that only a finite number will occur in [0, T'] a.s. (or else
the expected cost of the policy would be infinite). Let y(¢) and v be defined by
(1)-(3). We modify the holding cost function and the cost of control to allow it to
depend upon time, i.e., let H(x,¢) be continuous and nonnegative on S =
R X (0, T) and define B(¢, t) on S by

(70) B(& 1) = K(t) + ke(1)|€],
where

_ K+(t)>0 fOI' fgo’
(71) K ()= {K"(t) >0 foré<o,
and

_(k*()>0 for¢=z=0,
(72) ke(r) = { k=(£)>0 for <0,

and K*, K™, k*, k™ are continuous.
The total cost associated with the policy v is

L) =E{ 3 B@&mn+| HO),5ds+u6m),

where W(-) is a nonnegative continuous penalty function.
Suppose there exists a function u(x, ¢) such that

ueC'S), uz=0, u,isabsolutely continuous and bounded,
(73) { e €LX(S), e *u,eL(S) for0<a=1, and u=0;
(74) ux, )= irglf [B(&, ) +u(x+& )]=Qu(x,t) Vx,t;
(75) —u,—puu, —30’u . =—Gu=H ae.;
(76) (H+Gu)(u—Qu)=0;
and

(77) u(x, T)=W¥(x).
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Note that (73) and (77) imply that ¥(x) must satisfy

(78) W () =W (y)| = s 1x -yl
Let the continuation region be defined by
(79) C={(x, N):ulx, ) <Qu(x, 1)},

which is an open subset of S. We define the optimal impulse control in the same
manner as in § 2 but with n a function of both x and ¢ chosen such that

(80) B(n(x, 1), ) +u(x+n(x,1),t)=Qu(x,t) V(x,t).

Thus, for example, £, = n(§(77), 7), etc.
THEOREM 2. If there exists a solution to (73)-(77), then

(81) ulx,0)=J.(0)=J,(v) Vv

and ¥ defines the optimal impulse control.
We again proceed with a series of lemmas.
LeEmMa 6. If ¢(x, t) e L*(s) and E Z,i<T 1<o0, then

= C“¢”L2(s)'

(82) \ELTw(t), £yt

Proof of Lemma 6. This lemma can easily be proved by modifying the proof
of Lemma 3. However, we may proceed even more easily by using a result of
Bensoussan and Lions [2]. Their Lemma 2.1 can be used to show that for any
nETa=T,

) E[|[ xemr080:0, 0 | m< ] = il

Thus

]ELT¢<y<t>, naj=e |z B '[OTX[fi,fi+1)(f)¢()’(t), £ dr

7i<T

<))

(84) =£| 5 1] Clllere

=Cl¢l.2).  Q.E.D.

Lemma 7, Let F(x, t) be bounded and continuous on S with (GF) (x, t) € L*(S)
and assuming E }, _1<00. Then

(85) F(x,00=EF(y(T), T)—E Y [F(y(r), )= F(y(r:),7)]

~E[ (6P, na
0

Proof of Lemma 7. Let F"(x, t) be a sequence of smooth bounded functions,
with F', F; and Fy, continuous and bounded such that

(86) F"- F uniformly on §
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and
(87) GF" > GF inL*(S).

Using F" in (19), adding F"(y(T), T)—F"(y(T"), T) to both sides and taking
expectations yields

F'(x,0)=EF"(y(T), T)-E ‘ET[F"(Y(T,-);TJ—F"(y(’r?), 7))

®8) ,
-E[ 1GF6 0, nlar

since F is bounded. Now by the same type of argument used in Lemma 4, we can
show that (88) converges to (85). Q.E.D.

Lemma 8. Let u(x,t) be a function satisfying (73). Assume that
EY, -r1<o,

(89) E % |¢]<c

and |

(90) B[ 16wy, 0 di<co;
then

u(x,0)= Eu(y(g_"), T)-E Y [F(y(m), )= F(y(r:), 7)]

H=T

1) +Ej0 [(=Gu)(y(2), )] dt

Proof of Lemma 8. We proceed as in the proof of Lemma 5. The boundedness of
u, guarantees that u satisfies a uniform Lipschitz condition

(92) lu(x, ) —u(y, )| =Mix —y|.
Define
(93) u*(x, 1) =e ““*u(x, t)

for 1=a >0 so that u*(x, ) is continuous and bounded on § and Gu*(x, t)e
L*(S). From Lemma 7 we have

u®(x,0)=Eu*(y(T), T)—E ér[u“(y(n), ) —u*(y(ri), 7)]

(04) ,
+| El-Gun) 0, 0] dt

The remainder of the proof closely parallels the proof of Lemma 5. We need only
remark that Eu*(y(T), T)—> Eu(y(T), T) by the monotone convergence theorem
and that Eu(y(T), T) <o because all the other terms in (94) converge to finite
limits by hypothesis. Q.E.D.
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With the use of Lemma 8 instead of Lemma 5 and the observation that
u(y, T) ="¥(y), the proof of Theorem 2 proceeds mutatis mutandis from the proof
of Theorem 1.
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OPTIMAL CONTROL OF JUMP PROCESSES*
R. BOEL! AND P. VARAIYA}

Abstract. The paper proposes an abstract model for the problem of optimal control of systems
subject to random perturbations, for which the principle of optimality takes on an appealing form. This
model is specialized to the case where the state of the controlled system is realized as a jump process.
The additional structure permits operationally useful optimality conditions. Some illustrative exam-
ples are solved.

1. Introduction. This paper addresses the problem of the optimal control of
dynamical systems subject to random perturbations. It does so in the following
way. First, in § 3, an abstract mathematical model is proposed in which the choice
of controller is modeled as choosing a probability measure over the measurable
space of state trajectories. This idea was first developed by Benes$ [1], [2] and
Duncan and Varaiya [11] in order to prove existence of an optimal control when
the perturbations form a Brownian motion. Second, in § 4, we derive optimality
conditions for the abstract model using dynamic programming and elements of
martingale theory in the way developed by Davis and Varaiya [9] for the
Brownian motion case. Their approach in turn was motivated by the work of
Rishel [20]; it also has some resemblance to earlier work by Kushner [16], and
Stratonovich [26]. Some of the extensions of their results as given in § 4 are special
cases of recent results of Striebel [25]. While the abstract model does serve to
unify previous results, further comprehension of the scope of the model can be
gained and an evaluation of its practical import can be made only by working
through with more specialized problems with additional structure. Hence, in §§ 5
and 6, the case where the random perturbations constitute a jump process is
discussed in detail. Related results using different methods have been reported by
Rishel [21] and Stone [24] and we shall compare them later. We note that there
are control problems with jump disturbances which must be modeled quite
differently from the model of §§ 5 and 6. As examples of these we mention the
work of Rishel [22] and Sworder [27].

2. Conventions and notations. Let ({), ¥) be a measurable space. Let
I=[0, T] or [0,0) be a fixed time interval with the corresponding final time
denoted T. A stochastic process is always a triple (z,, %, P), t€ I, where P is a
probability measure on (Q, &), (%,) is an increasing family of sub-o-fields of &
and (z,) is a family of (%,)-adapted random variables with values in some
unspecified measurable space. When the context makes it clear we write the
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stochastic process z = (z,, %, P), t € I, as (z,) or (z, F,) or (z,, P) or z; z, without
the parentheses, usually denotes the random variable at time ¢ instead of the
process.

All probability spaces are assumed complete, and every increasing family of
o-fields, (%,), is assumed right-continuous i.e., % =N, F. An (F, P)-
martingale is a uniformly integrable martingale (m,, &, P), te€ I, with mo=0 a.s.
The collection of all such martingales is denoted M (F, P). In a similar way, we
define MA(F, P), Mio(F, P), M} (F, P), the classes of (F, P)-uniformly
square integrable, locally integrable, locally square integrable martingale, and it
will be assumed that a version of these processes is chosen such that it has
right-continuous sample paths with left-hand limits.

A (F, P)is the class of all processes (a,, %, P), t € I, which vanish at 0, ao =0
a.s., with right-continuous, nondecreasing sample paths, and which are uniformly
integrable, sup, Ea, <. (%, P)=oA"(F, P)—sA4 (¥, P) is then the class of
processes with integrable variation. The classes &/ ey Ao are defined in the usual
way.

A family (z,) of (%#,)-adapted functions taking values in a metric space is said
to be (%,)-predictable if there is a sequence-of such families (z7), n=1,2,- - -,
with left-continuous sample paths such that lim,, .« z/(w) = z,(w) for all (t, w) €
IxQ.

3. Abstract model of the control problem. The model proposed below is
similar to the one presented and investigated in [25]. It consists of three
interconnected parts: a description of the dynamical system, i.e., the way in which
it is affected by the control action, a description of the set of allowable control
laws, and a description of the cost associated with each control law. The
assumptions imposed are given next.

We suppose given measurable spaces (Z, &), the state space, and (2, Z), the
trajectory or sample space. Also given is a function x,(w): I X Q- Z which is
measurable with respect to %; X Z. Let &, = o{x, | s =t} and without losing gener-
ality we assume that & = o{x, |t € I}. We now assume

S;. The behavior of the system under the action of any (admissible) control
law u is completely described by the specification of a probability measure 2* on
Q, 2).

Thus for each control law u, x“ = (x,, &, P“), t € I, is a well-defined stochastic
process. We are evidently modeling the system as a controlled probability space
rather than as a controlled set of trajectories which is more customary. Of course
in the deterministic context the latter model is the more natural one. We now
describe the set of control laws.

We suppose given a measurable space (¥, 94,,), the control space, where ¥V'isa
metric space. Also given is an increasing family of o-fields, (%,) called the family
of observations, such that %, &, t € I. A collection % of functions u,(w): I X Q-
V' is a collection of (admissible) control laws if the following holds:

S,. (i) (u) is (%,)-adapted and (u, ¥, #*), t € I is a measurable process.

(ii) % is closed under concatenation, i.e., if u, v € %, then so does (i, v, t)

where (u, v, t)(s) = u(s) for s =t,=v(s) for s >1t.
(iii) For each ue€ ¥ and A €%,, P“(A) depends only on u,, s =t i.e., if
ve is such that u,=v,, s=t, then P“(A)=P "(A); for each ueU, Ae
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Z E“(14 l%,) does not explicitly depend on u,, s =t i.e., if v € U such that u, =v;,
szt then E“(14 | %) =E (14| %,).

In the above, (iii) is a version of a causality condition and also expresses the
notion that the past trajectory x,, s =t serves as a state at t whereas (ii) is essential
for dynamic programming. In (i) the requirement that u, is %,-measurable
indicates that %, is the o-field of observations available up to .

We can now describe the cost of control. Associated with each ue is a
unique cost J(u) given by

(3.1) J(u)= E"U roc(t, u(t)) dA“(t)+r0TJT]

where E“ denotes expectation with respect to 2“, T denotes the final time of I,
and the other terms are described below.

C,. The instantaneous costc: I X U X - R is a nonnegative function which
is jointly measurable with respect to %B; X By X (B, By are the Borel sets of
I, U), continuous with respect to u for fixed ¢, w and measurable with respect to &,
for fixed ¢, u.

C,. The time rate A*: I XxQ - R, defined for each u € U, is (¥,)-predictable
and, for each w, the sample path > A“(¢, ) is right-continuous and increasing.
Furthermore, dA“""(s) = dA"“(s) for s =t,= d A°(s) for s > t. (See S, above for a
definition of (u, v, t)).

Since A* can have discontinuous sample paths, the indefinite (Stieltjes)
integral [, ric(s, u(s)) d A“(s) can be discontinuous. The most useful examples of
time rates are

(a) A“(¢)=t; whenever the sample paths are absolutely continuous with
respect to Lebesgue measure on [ this case obtains.

(b) A*(t, ®) =Y 1{=rw) Which counts the number of (Z,)-stopping times ;,
i=1,2,- -, which occur before ¢.

(c) A" is the predictable increasing process associated with the counting
process in (b), and which can replace the latter in (3.1) whenever c(¢, u(?)) is a
(&,)-predictable process, since the values of the integrals coincide (see [19]).

C;. The discounting rate ry(w): is a nonnegative function defined for w €
Q, s, tin I with s =t. For fixed s, ry(w) is (%,)-adapted, jointly %; X % measurable,
and uniformly integrable, and has continuous sample paths for fixed w. Further-
more, for each u

re=rarg as. Pforti=6=t;,
r=1 a.s. P forall t.

C,. The terminal cost J;: Q- R is a nonnegative &-measurable function. Jr
is the cost incurred at or after the final time 7. When T = c0 it will be assumed that
Jr=0.

Cs. Forall ue ¥, J(u)<oo.

The problem of optimal control is to find u* € % such that

J(u*)=uirel£l J(u).

Such u* is called an optimal control.
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Remark 3.1. (i) The fixed time interval I can be replaced by a random interval
[0, 7]= T where 7 is a (%,)-stopping time. This can be achieved by setting
¢(t, u, )= 0for t = 7(w) or by making A" constant after 7. If 7 does not depend on
u one can set ro(w) =0, t =7(w).

(ii) The discounting rate ry(w) is not allowed to depend explicitly on u. In an
economic context this implies that the controller cannot directly influence the
interest rate. Of course, since the distribution of ris dependent upon P“ there is a
possibility of introducing indirect control.

(iii) Except for the special results with complete information (i.e., %, = %,) or
Markovian assumptions, the final cost J- can depend explicitly on the control law
u. Again, except for these special cases, ¢ (¢, u, @) can be made to depend upon the
past u,, s =t of the control. These generalizations are not made here since the
notational burdens become intolerable.

(iv) There are important applications, e.g. optimal stopping time problems,
where the optimal control cannot be chosen to be predictable. The results here do
not apply to this class of applications.

4. Optimality results for the abstract model. Since the proofs of the results
are simple modifications of proofs published in [9] we have been content with
citing the correspondence. The assumptions made in § 3 are enforced throughout.

4.1. Principle of optimality. Let u, v € U and ¢ € I. We define

T
Yu,v,t)= E(“’""){J ric(s, vy) dA§’+r,TJT| 03/,}.

t

Evidently, from the assumptions made above,

(u,v,)e L (Q, ¥, P*).
(The first part of S, (iii) implies that

Eu,v,t'(/l(u, v, t)l =Eu|¢(u, v, t)l

justifying the notation L'(Q, ¥,, #*).) The random variable ¥(u, v, t) is the
conditional expectation given the observation &, of the future cost beyond time ¢,
evaluated at ¢, when u is adopted on [0, ¢] and v is adopted beyond ¢. To evaluate
these costs at time 0 it is only necessary to multiply ¢ (u, v, t) by rj. Since L' is a
complete lattice under the natural partial ordering for real-valued functions the
following 2, -essential infimum exists:

Wy, t)= A y(u,v,)eL (Q, ¥, P*).

Note that W(u, 0)=J* = A,cqaJ (1) is the infimum of the achievable costs. The
process (W(u, t), %,,P") is called the value function corresponding to u. The fact
that for different control laws u and v, the corresponding #, and %, can be
singular, does not pose any problem since, in the following optimality conditions,
W(u, t) and W(uv, t), or related processes, need never be compared (one must
interpret carefully expressions such as min,cq in (5.41)).

The next definition was introduced by Rishel [20]. It was used in [9].
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DEFINITION 4.1. % is said to be relatively complete with respect to W if for
each ue€ U, te I, e >0 there exists v € U such that

v, v, ) =W(u,t)+e as. P

LeEMMA 4.1. U is relatively complete with respect to W.
Proof. The proof is identical with that of [9, Lemma 3.1]. [
THEOREM 4.1. For t;=t, in I and u € U we have

173
4.1) Wi(u, t,) éE““ ric(s, us) dAy| @,1] +E“[rﬁfW(u, )| @,,],

(4.2) W(u, T)= E"[Jr| ¥r].

Furthermore, u is optimal if and only if equality holds in (4.1).

Proof. The proof depends on Lemma 4.1 and follows the same lines as that of
[9, Thm. 3.1]. O

COROLLARY 4.1. For u € U, the process

T =rsWi(u, t)+E“U roc(s, ug) dA"(s)| 03/,]
0

isa (¥, P*) sub-martingale. uis optimal if and only if this process is a martingale.
Proof. The proof is immediate from Theorem 4.1. [
Since the process

(B[ ricts, w) dns+rirg|9]) e @, 2,
I
therefore the process (w(u, t)) is a (¥,, #*)-supermartingale, where

T
, w(u, t)= E“[I roc(s, u;) dAY+roJr| 0!/,] —roW(u, t)
(4.2" ¢

=ro[Y(u, u, t)— W(u, t)].

COROLLARY 4.2. For u € U, the process (w(u, t), %, P*) is a potential. u is
optimal if and only if w(u, t)=0.

Remark 4.1. (i) The model proposed above is a special case of the one
presented by Striebel [25] and the results obtained above can be obtained from
hers. In particular Corollary 4.1 is a version of [25, Thm. 3]. The additional
structure that we have imposed will be used to obtain the more detailed results
given below. It is possible to replace the “relative completeness” property by the
slightly weaker “‘¢-lattice” property introduced by Striebel.

(ii) Following Samuelson [23] we can give a heuristic interpretation of the
submartingale (J¥). Its value is the expected cost evaluated at ¢, using the
observation %, given that u is adopted up to ¢ and an optimal control is adopted
beyond ¢. This expected value will increase if the nonoptimal control is used for a
longer time, accounting for the sub-martingale property. If u is optimal, however,
then the expected cost remains constant.

(iii) Theorem 4.1 can be rederived from Corollary 4.1. Hence the optional
sampling theorem implies that in (4.1) we may replace the deterministic times #,
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and £, by any (%,)-stopping times 7, = 1, with values in I. This observation is often
useful.

(iv) Sometimes, as in [2], [9], [11], there exists a probability measure 2 on
(Q, &) such that #* « @ for all u € U. One can then introduce L(u)=dP"/dP

and
%),

T
d(u,v,t)= E{L(u, v, t) U ric(s, vy) dA§’+r,TJT]
Vi, )= A ¢(u,v,10).

The previous results can be restated in terms of the unnormalized value function.
While in an optimal filtering context working with such unnormalized quantities
has certain advantages (see e.g. [6]), we are unable to observe similar advantages
in the optimal control context.

(v) The random variable w(u, t) expresses the loss incurred by using u
beyond ¢ as compared with an optimal control. From definition (4.2") and from Cs
we can verify that it is potential of class (D). By [18, VI, T3 and T4] w (i, t+) exists
and is also a potential. Using (4.2') we then get a right-continuous process
ro" W(u, t+) satisfying (4.1). Even though in general w(u, t+) and W (u, +) need
not even be versions of w(u, t) and W(u, 1), it is implicitly assumed from now on
that these right-continuous process are meant. In special cases, such as value-
decreasing controls (first step in proof of Lemma 4.2 of [9]) and complete
information, with cost bounded by k (apply [18, VI, T16] to the submartingales
Y(u, v, 1) +k - Ai17), W(u, t) actually has a right-continuous modification, justify-
ing the above notation. Hence by Meyer’s decomposition theorem [18, VII, T31],
there is a unique predictable process (Aow(u)) e (¥, 2") and a martingale
(m" (u, 1)) € M (¥, P*) such that

w(u, t)=J(u)—Aw(u)—m" (u, t)

where J(u) = w(u, 0) = J(u) —J*. We know, furthermore, that the following weak
limit (in the sense of the o(L", L™)-topology) exists (see [18]).

t

‘ . 1,
Ao(u)=we’al1k011mJ' EE (w(u,s)—w(u, s+h)|¥,] ds
- 0

4.3) =weak lim {J
h->0

0

t 1 s+h
ZE"[J roc(o, u,) dAy| st] ds

"1
—J EE“[rf)W(u, s)—re"" W, s +h)|%,] ds}.
0

Now it is easy to see that there exists a predictable process (y(u)) e £ (¥, P*)
such that

t s+h
(4.4) y(u)= wegkolimj' %E““ roc(o, uy) dAy| @s] ds.
g 0 s
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From (4.3), (4.4) we may conclude that there exists a predictable process
(Aow(n)) e L(¥,, P), viz. AoW(u)=y(u)—Aiw(u), such that

1
AoW(u)= wegkolimJ’ EE"[rf) Wi(u, s)—ry""W(u, s +h) | %,] ds.
e 0
This is sufficient to apply Meyer’s decomposition theorem to the process
(roW(u, t)) and we may conclude that
roW(u, )= roW(u, 0)— AoW(u)+m" (u, t)
=T~ A W) +m" (u, 1),

where (m"% (u, 1)) € M(Y,, P*). Furthermore, since (W(u, t)) is evidently of class
(D), the decomposition in (4.5) is unique.

In terms of this decomposition we can rewrite (4.1), after multiplying both
sides by rg, as

(4.5)

(4.6) E"[AGW(u)—AGW(u)|%,] éE““ roc(s, ug) dAS|%,] as. P,
n
and we have equality if and only if u is optimal. With these results in hand we can
proceed as in the proof of [9, Thm. 4.1] to establish the next proposition.
THEOREM 4.2. There exists a constant J* and for every u € U there exists a
predictable process (Ao(u)) € A(Y,, P*) such that

4.7 E“A{(u)=J*—E“(riJy),

and such that for (¥,)-stopping times 7, = 1, with values in I,
(4.8) E“[—A If(u)+J' roc(s, us) dAY| @n] =0 as. P“

A control law u = u* is optimal if and only if equality holds in (4.8) for deterministic
times t, = t,, and then, furthermore,

J(u*)=J%,
roW(u*, t)=E“[A](u*) +reJr|¥] as. P

Remark 4.2. This result is a considerable improvement over [9, Thm. 4.1]
since there the inequality (4.6) and hence (4.7) is established only for those u
which are “value decreasing”, i.e., for which (W(u, t)) is a supermartingale. The
same shortcoming can be noticed in [20]. Of course, if u is value decreasing, then
in (4.5) (AoW(u)) is an increasing process.

4.2. Local optimality conditions. One can divide both sides in (4.8) by 7, — 74
and take limits as 7, — 7, - 0. The basic idea is to express A o(u) as an integral with
respect to A“. It appears necessary however to restrict attention to value decreas-
ing controls.

So let u € 9 be such that (W(u, t)) is a supermartingale. Then (AW (u)) is a
predictable increasing process and (4.6) can be rewritten as

0=E“[AZW(u)|¥,] §Eu“’

t

roc (s, us) dAY| GJJ,,] a.s. P“
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For any nonnegative, (%,)-predictable process (0,) we have, forall0=¢# <, =T,
Ae%¥,

(4.8) OéE"lAj

(11,t2]

0 dAsWwSE Ly [ 6, Focls, w) dA!

(t1,t2]
where roc (s, u;) denotes the predictable projection of E*(roc(s, u,)| %,) (see [31,
VT14)). This follows from [31, VT25], and an application of Fubini theorem to
show that

B[ alrtets )~ E"Chels w)] %) 4A2|,]=0.
(11,12]

Hence, whenever the second integral in (4.8’) vanishes, so does the first, and by the
Radon-Nikodym theorem (applied to measure w(6) on R, X €} with the predicta-
ble o-field associated with (%,) [31, IV, D2]) there exists a predictable process
(a,(u), ¥, P,) such that 0=a,(u)=1 P as., and

t
AW = a@e(s, wy AL
0
Using this representation we can restate Theorem 4.2 in a “local’ version.
THEOREM 4.3. There exists a constant J* and for every value-decreasing
u €U, there exists a (¥,)-predictable process (o, (1)), 0=a,(u)=1, P“ a.s., such
that

T /\ T
(4.9) E" J a,(wroe(t, u) dAf=J*—E“(roJr)
0
and
(4.10) [1 —at(u)(w)]m(w)io

for dA“ X dP" almost all (t,w). A control law u=u* is optimal if and only if
equality holds in (4.10). Then, furthermore

T
roW(u*, t):E"*[J as(u*)m dA;‘*+rf,JT|Qy,] P as:

t

Remark. If roc(t, u,)>0a.s. dA" X dP" one can also find an («a, (u)) such that

t

AW = [ a(u) dA

giving a slightly easier version of Theorem 4.3.

4.3. Complete information. Suppose ¥, =4, so that at each time ¢ the
controller has complete information about the past. Then

T
¢0@v,0=?E“””[I ﬁcc,m)dA§+rﬁh4@ﬂ

t
T
= E”U ric(s, vy) dA§’+r,TJT|@,]

=y(v,0,1)
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by assumption S,(iii). Hence W(u, t) does not depend on u, and the preceding
results are simpler. Nevertheless the process AoW(u) still depends upon past
values of the control law u. Its “derivative” o, (u) however will often be indepen-
dent of values of u before ¢ as seen in [9] and in the following sections.

5. Optimality results for jump processes. In this section the abstract model
of § 3 is specialized to the case of a dynamical system whose state process is a
(fundamental) jump process as studied in [5], [6]. The additional structure gives
more content to the formal results established earlier. For a review of the
definitions and properties of jump processes see [6, § 2].

5.1. The model and its limitations. The state space (Z, &) is now also a
Blackwell space. {) consists of all functions w: I - Z which are piecewise constant,
right-continuous and have only a finite number of jumps in a finite time interval.
x(w): IXQ - Z is just the evaluation function x,(w) = w(t). &, & are defined as
before.

The observations (%,) are obtained as follows. We suppose given a Blackwell
space (Y, %) and ameasurable map y: Z->%.Lety, = y(x,) and ¥, = o{y, |s = t}.

With (x,) and (y,) we can now associate the following discrete random
measures.

(5.1 P*(B, (@)=}, Ly (@) # x5 (@)e B}
s=t

= number of jumps of x(w) which occur before ¢ and end in
Be%;

(5.2) P(C B)(w)= §, Ly, @=yt@ecy

= number of jumps of y(w) which occur before ¢ and end in
Ced.

Note that P*(B, t) is &,-measurable and P’ (C, t) is %,-measurable.

We can now define the collection of admissible control laws % and the
probability measures #“, u € U. Let (¥, %8,) be the control space, where ¥ is a
metric space. 4 is the collection of all functions u,(w): I XQ - % which are
(%,)-predictable. It is supposed that for each u € U there is given a probability
measure 2“ on (), ) such that the stochastic process ¥* = (x,, Z,, P“), tel,isa
jump process in the sense of [5.6]. (It is evident that S,(i), S,(ii) are satisfied by
these assumptions.) Now from [5, Thm. 2.1] we know that to say that x,, is a jump
process it is equivalent to say that there exist continuous processes (Pi(B, 1)) €
A (%, P*) for each B € Z such that

(5.3) (QYB, 1)) =(P*(B, 1)~ PB, t)) € My, (Z,, P*).
Thus the action of u € 9 is completely described by specifying the correspondence
u->{(PYB, 1), %, P*)|Be%}.

Compare this with a result of Jacod [15] which states that, under conditions
satisfied in this section, there exists a one-to-one relationship between “kernels”
of predictable (P(B, t)|B € Z) and all probability measures 2“ on (Q, &). To
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guarantee assumption S,(iii) and to simplify some notation later on we suppose
that for u € % and B € %, P;(B, t)(w) is given by

5.4) PYB, H)(w)= L J: f(z, s, us(w), 0)u(dz, ds, us(w), ®)

where the integral is an ordinary Stieltjes integral and the prespecified functions f
and u satisfy these conditions:

() f(z,s,u)=f(z,s,u, @): ZXIXV'xXQ~->R, is jointly measurable, con-
tinuous in u for fixed z, s, @ and for fixed z, u, (f(z, t, u, w)) is (Z,)-predictable.

(i) uB,t,u,w)=pu(B, t,u): ZXIXV'xQ->R, is jointly measurable and
for each fixed B, u, (u(B, t, u)) is (%¥,)-predictable, continuous and increasing. (In
practice w is usually a deterministic process.) These assumptions are technical, but
u and f can with care be interpreted as jump rate and distribution of different
types of jumps.

Finally the cost J(u) incurred by u € % is supposed given by

(5.5) Ju)=E “[J.Z J; rec(z, s, u,)Pi(dz, ds)+ rgJT]

where c satisfies the same conditions as f does, and r;, J; satisfy the conditions
imposed in § 3. Itis assumed that J(u) < oo for all u. This completes the description
of the mathematical model. -

Before turning to the analysis of the model we discuss its limits in terms of
which empirical control problems can and which cannot be adequately reflected in
the model. First of all, as far as the behavior of the state trajectories is concerned
the most serious limitation is the requirement that (P%(B, t)) have continuous
sample paths. It is known (see e.g. [5]) that this restriction is equivalent to saying
that the stopping times at which the state jumps, i.e. the times of discontinuity of
(x;(w)), are totally inaccessible. In intuitive terms this means that if the controller
observes the first n jumps, then the probability with which it can predict the
(n+1)st jump exactly is zero, foreachn =0,1,2 - - - (see [5, Lemma 2.4]). Now
most problems of queuing, inventory control, machine failures etc. indeed have
this property. But there are some problems which do not. For example suppose
that in an inventory control problem there is a fixed (deterministic) delay between
the time an order is placed and the time that the corresponding delivery is made;
evidently the total inventory jumps when the delivery is made and this time of
jump can be predicted exactly, and so the model proposed here is inadequate for
this example. Now the only reason why we have insisted on the total inaccessibility
of the jump times is so that we can use the martingale representation theorems
derived in [5]. More recently, such theorems have been obtained without the
restriction on the jump times (see [7], [8], [13], [15]) and therefore the results
announced below should be extendable to arbitrary jump processes.

The second limitation of the model appears to the requirement that controls
have to be predictable processes. One reason for this is based on empirical
considerations. Since the time when the state jumps cannot be anticipated with
positive probability, and since in empirical situations there is an infinitesimal delay
before the controller can observe and react to a change in state, therefore the

.
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predictability requirement seems appropriate to us. In any event since u is
continuous in Z, therefore ﬁi defined by (5.4) is always continuous in ¢ even if u is
measurable and not predictable. Hence the results below remain unchanged
whether we permit u to be any measurable process so long as we always take the
predictable projection of f (as well as of ¢ in (5.5)), or whether one insists at the
outset that u be predictable. Because many of the following results can also be
obtained for u discontinuous, and to avoid problems with predictable projections,
the predictability assumption has been made.

Finally, the cost functional (5.5) may appear too limiting since in many
situations one may wish to have the cost increase only when a jump occurs. Thus
one would prefer to have as cost the amount

E ““ I roc(z, s, u)Py(dz, ds) + rng]
VALY |

=E “[ L roc(xs s, u)+ rgfr].
xss—e#lxs

But since P* — P* is a martingale and since the integrand above is predictable, the

quantity above is equal to J(u) given by (5.3) and so there is no loss in generality.

(This equality does not obtain if u is not predictable.)

5.2. Preliminary analysis. To simplify notation we write 1c(z) = 1{,¢)ecy-
Then, from (5.2),

(5.6) P(C,t)= J’

t
I 1c(2)P*(dz, ds).
Z J0
We calculate the unique processes (PL(C, 1), ¥,, P*) so that
(5.7) (QUC, 1) =(P’(C, )~ PUC, 1) € Moo ¥, P*).

For an arbitrary process (g;) let (g,) be the (¥,) predictable projection of E* (g, | ¥,)
(the appropriate u will always be clear from the context.) Then from (5.4) and
(5.6)

P’(C, t)—J’ jﬂ of (z, s, us)u(dz, ds, uy)

z

= J J‘t 1c(2)[P* (dz, ds)—f(z, s, us)lu (dz, ds, u,)
Z J0
+ L L [1c(2)f(z, s, us) — mlu (dz, ds, u)

which is a member of M ,(¥,, P™) applying [37, VT25] and Fubini’s theorem to
the second term. Hence

(5.8) PYC 1) = I

z

1c(2)f(z, s, u)u(dz, ds, uy).
0
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A calculation similar to that of P2, above gives us the expected value, given ¥,
of the increment of the instantaneous cost on the right hand side of (4.6). In terms
of the cost functional (5.5),

[
E"“ J ryc(z, s, u,)Pi(dz, ds)|@,l]
Z Y11

73
= Eu[J' I roc(z, s, u)f(z, s, u)p(dz, ds, u,)| o‘y"]
Z n

= E“[L J::zmu(dz, ds, uy)] @n]

so that, by (4.6),

0§E“[~AffW(u)+I

z

173
I roc(z, s, uy)f (z, s, ug)u(dz, ds, uy)| @n]
11

which means that the process

t

—
(5.9) a,=—A6W(u)+I J roc(z, s, u,)f (z, s, u;)u(dz, ds, u,)
Z J0

is a (%,, P“)-sub-martingale. It is evidently of class (D) and is right-continuous
since in (4.5) a right-continuous modification of AW (u) can be chosen and so by
Meyer’s decomposition theorem there is a unique predictable process (b,) €
AW, P*) and (m,) e M (Y,, P*) so that

a,=b,+m,

But from (5.9) we know that (a,) is also (%,)-predictable. Hence (m,) is a
predictable process with integrable variation. It must therefore vanish so that
a, = b,. Hence aq, itself is increasing so that (5.9) can be expressed as

t /\
(5.10) 0= -AffW(u)+I j roc(z, s, uy)f(z, s, u,)u(dz, ds, u;) a.s. P*
t1

z

for every admissible control u. Furthermore we have equality if and only if u is
optimal.

5.3. Optimality condition for partial information. Recall the following defin-
ition from [5]. A measurable function 8: Y X I x Q- R issaid to be in L' (P2) if for
fixed y, B(y, - ) is a (¥,)-predictable process, and E“[[,,|8(y, s)|P(dy, ds)] < .
Bis said to be in LL.(P)if thereisa sequence of (%¥,)-stopping times T 1T a.s. #*
such that (B1y=7}) €L Y(P?) for each k.

We have the following version of Theorem 4.2.
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THEOREM 5.1. There exists a constant J * and for every u € U there exist a
predictable process (A(u)) € (¥, P*) and a process B* € Lioo(P2) so that

510 Afw=] [ 8"0.9P @y, ds) =~ B |9

Y

_ n__—— T
612 —Anw+| [ .9 e s w s Duldz, ds, )

Z ‘11
=0

a.s. P* for (¥,)-stopping times 1, =1, with values in I. A control law u =u* is
optimal if and only if equality holds in (5.11) for deterministic times t, =t,, and
then, furthermore,

J(u*)=J*,
t
(5.13) oW, 0= 7= A+ [ [ B, )P (dy, ds).
Y Y0
Proof. Necessity. Let u € U. We have the representation (4.5),

(5.14) roWu, t)=J*—AeWu)+m"” (u, 1)
where A 2W(u) satisfies (5.10),

515 0=-AzWw+|

[+
I roc(z, s, uy)f(z, s, u)u(dz, ds, uy)
Z ‘1

with equality holding for u®*. By the martingale representation theorem [5,
Thm. 3.4] there exists B8“ € L,(P2) such that

m" (u, t)=J

Y ¢

X B“(y, s)Q:(dy, ds)

(5.16) = L ) B“(y, s)P’ (dy, dS)—L L B“(y, s)P(dy, ds)

- [ [ 8"t 5)P(ay, as)
Y 70 .

— T
-[ | B st s winaz, s, w)

by (5.8). Define

t

p— /\
61D Abw =AW+ | | BTG 95wz, ds, ).

Substitution for m " (u, t) and A oW(u) from (5.16), (5.17) into (5.14) and (5.15)
yields (5.11), (5.12) and (5.13).

Sufficiency. Now suppose (5.11), (5.12) holds. If we define m W(u,t) and
AW (u)via (5.16) and (5.17), then (5.14) and (5.15) hold and the optimality of u*
follows from Theorem 4.2. 0O



OPTIMAL CONTROL OF JUMP PROCESSES 105

Remark 5.1. (i) If we define A“(¢) = ﬂ, n(Z, ds, u,) then there exists a kernel
n(dz, t, u,) such that u(dz, dt, u,) = n(dz, t, u,)A"(dt). Then A“ can act as a time
rate and so exactly as in § 4.2 we can derive a local version of condition (5.12).

(ii) In many applications it is reasonable to suppose the existence of a
probability measure 2 on (Q, &) such that 2“ « 2 for all u. Then ?“ can be
described by specifying 2 and L (u) = E[d?"/dP | Z]. Suppose further that (x,, 2)
is a jump process with compensating processes (P*(B, 1), ?), B € & given by

P*(B,1)= J' L f(z, s)u(dz, ds)

B
where f(z,-) is (2,)-predictable for each z and (u (B, ?)) is a (%,)-predictable
increasing process. It can be shown then (see [6]) that for each u there is a process
¢": ZxIxQ - R such that

]

L(u)= 1] [1+¢“(xs,S)]eXp[—L J:¢“(z,S)f(z,S)u(dz,dS)]-

Xs—#Xs
s=t

dP*
aP

L,(u)=E[

is given by

Asamodel (which satisfies the various assumptions of § 2) we can propose that the
effect of a control u is determined by the process (L,(u)) above in which

¢“(z,t, 0)=D(z, t, u,, w)

where ®: ZxIx Ux Q- R is a fixed function. The processes (P%(B, 1), Z,, P*)
are then given by (see [6])

Pi(B,1)= L L [1+®(z, s, u,)1P* (dz, ds).

The function @ can be interpreted as the change in the rate at which jumps occur
for #* as compared with 2. In terms of this special model condition (5.12) reads as

_ 72_//\
Az | [ TG, ) +ricte s w1+ 80 s @z, udz, ds) 20,
Z ‘T

5.4. Complete information. We assume that y, =x,. Then, as observed in
§ 4.3, W(u, t) = W(t) does not depend on u. However, it may appear that in the
representation for W(u, ¢) obtained in (5.13), (5.16) and (5.17), the processes

Ab(u) and B* still depend on u. To see that this is not the case, consider any two
controls u, v. Then

r6W(t)=J*—A6(u)+I j B“(z, s)P*(dz, ds)

(5.18) "
=J*—Af)(v)+j I B*(z, s)P*(dz, ds).

z Jo
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Now (J*—Af{(u)) and (J*—A((v)) are (%,)-predictable processes whereas the
integrals in the equations above are piecewise constant with discontinuities at the
jump times of the (x,) process. It follows that

(5.19) J’z J:,B"(z, s)P*(dz, ds) = L J::B“(z, s)P*(dz, ds),

(5.20) Ab(u)=AgHv),

and so we have a considerably simpler version of Theorem 5.1.

THEOREM 5.2. Suppose y, = x,. Then u® is optimal if and only if there exist a
constant J*, a predictable process (A() € 4(%,, P") and a process B € L (P so
that

T

(5.21) AOT—J’ZL B(z, s)P*(dz, ds)=J*—roJr,

(5.22) ~A:¢+J

V4

j Z[B(z, s)+roc(z, s, u)lf (z, s, us)u(dz, ds, ug) =0

a.s. P" for all u € U with equality holding for u = u*. Then, furthermore,
J*¥=J(u*),

(5.23) rBW(t)=J*—AB+J

4

J'tﬂ(z, s)P*(dz, ds).

Suppose henceforth (see Remark 5.1) that P(dz, ds) has the form PX(dz, t) =
ﬁ) n(dz, s, u;)A, ds where n(B, t, u,) is a kernel satisfying the same assumptions as f
in (5.4) (not necessarily n(Z, t, u,) = 1) and (A,) is a nonnegative (%,)-predictable
process independent of u. Then as shown in § 4.2, we can represent

t t
(5.24) A6=J & roc(s, uA, ds =J ag - A, - ds
0 0

for some (X,)-predictable («,) (take predictable projection of ryc(s, u,) if neces-
sary). The local version of (5.21) now becomes

(5.25) [—a, +J' B(z, t)+rociz, t, u)n(dz, ¢, u,)] ‘A, =0
z

for all (¢, w) with respect to dt X d?" measure, with equality when u = u*. This
gives us a version of the dynamic programming equation,

(5.26) A,[-—a, +runeilr} L [B(z, t)+roc(z, t, u)]n(dz, t,u)=0,

and the :ninimum is achieved at u*(t, w) for almost all (¢, w) with respect to
dt X dP" measure.

We shall now use (5.23) and (5.24) to directly relate A (or equivalently & and
B) to the process (ro W(t)). The basic idea is to note that A{ on the right hand side
in (5.23) is continuous whereas the integral term is piecewise constant with
discontinuities occurring only at the jump times of the (x,) process. Thus the



OPTIMAL CONTROL OF JUMP PROCESSES 107

discontinuous changes in rW account for 8 and the continuous changes account
for a. To identify these changes we need a more detailed representation of rW. Set
To=0andlet T;<T,<- - - be the jump times of x defined by

Tk+1(w)=inf{t> Tk(ﬂ))lX,(O))#.ka(a))}, k :0> 11 tt .

It is shown in [5] that & =0(xp., Tx;0=k<0), Xr.=%r, =
o(xz,, Ti; 0=k =n). Since (roW(t)) is adapted to (Z,), therefore there exist
functions wy (2, to, zo, * * -, &, 2x), measurable in their arguments, so that

r:) W(t) = kZO 1(Tk§t<Tk+1}wk (ta TO’ XTos " " Tk> ka)
(5.27) - .
= ]* - Az)+k20 l{Tk =t<Tk+1} [21 ﬁk (ka> Tk> X Tine ﬁAt)

with the Stieltjes-integral in (5.23) replaced by a sum with appropriate functions
B

The discontinuities of rW, which occur only at the T ’s, can now be identified
as

ro*W(T)=ro* W(Ti-)

(5.28)
=wi(Ti, To, X1 * * > Ties X13.) = Wit (T, To, X105 * * * 5 Tic—1, X3 _,)-
Hence the function 8 can be relgted to rW by

(5'29) B(Z> t) = kzo 1(Tk<t§Tk+1}bk (Z, t)

where, from (5.28),

bk—l(z’ t) = Wk(t> T‘(b me Tt Tk‘—b ka_n ta Z)
(5.30)

_wk~1(t> T07 xTw Y Tk—l’ ka_.1)'

Using the uniqueness of the Doob—Meyer decomposition [18, VII T21] and
the absolute continuity of P,(B, t), a,A, can be identified by

(5.31) LirW]=—a(t)Ar(t)+ L B(z, )n(dz, t, u,)

where [18, VII T29] gives
(5.32) Li[rW]=weak lim %{E“[r6+"W(t+ )| Z]-roW (o)}

(Here weak lim means limit in the o(L", L™) topology). From (5.27) it is obvious
that the continuous part of roW(¢), described by wy(z, T, X1y T X13)
between jumps, behaves exactly like J* — A which is absolutely continuous. This
can also be stated as

1(Tk§t§t+h,Tk+1)[wk (t+h’ T07 XTgs " * " s Tka ka) _wk(t’ TO’ XTos " " ° s Tk’ ka)]

(5.33) A



108 R. BOEL AND P. VARAIYA

and the derivative of w, is minus the derivative of Af. We can now obtain a
formula for £;[rW] as follows. We observe that in the stochastic interval
T =t=Ti.y,

E“[ro""W(t+h)|2]-reW(0)
=[wk(t+h7 T07 T 7ka)_wk(t’ T07 c >ka)]

(5.34) ' @u[x doeS not jump in [t’ t+ h] | %Tka Tk+1 > t]

h
+I I [wk+1(t+s’ T09 T, Xp, LS, Z)
zZ J0
—wi(t, To, - * +, Ty, x13.)]
. @u[Tk-}-] - Tk Gds, X1 € dz '%Tk, Tk+1 > t]+0(h)

where absolute continuity of P}(B, t) (or Fi(B,t), see (5.36)) implies that the
probability of 2 or more jumps is o(h). Now,

(5.35) }ling P"[x does not jump in [¢, t +h]|Zr,, Tes1>1t]=1,

Fy(dz, ds)

(5,36) @u[Tk_H - Tk Gds, XTr i1 €dz ‘%Tk’ Tk+1>t] =m,

where, by definition,

(5.37) F{B,t)=P"“[Tyr1— Tx =t, X1, € B| %)
Finally, as shown in [7], [8] and [15],
t
P*“(B,t)= I I n(dz, s, u;)As ds
(5.38) v

for Tk =t
i=0

<Ti+1-

From (5.33)—(5.38) we obtain
U aWk
x,[rW]=3;‘(t, T07 T ’ka)+I [wk+l(t7 TO’ st 9ka> t, Z)

“ —Wg (t, TO, T, ka)]n(dZ’ [ ut)At
for Tk =< Tk+1.

(5.39)

Substituting from (5.31) and (5.39) into (5.26) gives the next result.
THEOREM 5.3. Suppose y, = x, and suppose that for u € U

(5.40) PX(dz, ds) = n(dz, s, u)\, ds.
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Then u* is optimal if and only if there exist measurable functions wy

(t to,* -+, t, 2 ), Which are absolutely continuous in t, so that
awk .
W(ta TO’ Ty ka)+1;‘rélq‘} At [wk+1(t, TO, Y ka’ t, Z)
zZ
(541) —wk(t, TO, R ka)

+roc(z, t,u)ln(dz, t,u) =0,
fOI’ Ti=t<Tii,
(5'42) wk(T; TO, e ,ka)—_—JT’ for Tk =T< Tk+1

and the minimum in (5.40) is achieved at u = u*(t, w) a.s. P*. Then, furthermore

(543) r:)W(t) zkzo I{Tk§t<Tk+1}wk (t’ To, -+, ka)-

Remark. Equation (5.41) will indeed give a predictable u* (¢, w), since in the
left-closed stochastic interval Ty (w)=t< T;+1(w) (in R, X)), its solution is a
function of x,, T;, i=0,1,---,k—1 and of T,.

We are now in a position to compare our results with those of Rishel [21].
First of all his model of the dynamics of the jump processes is a special case of the
one used in Theorem 5.3. Secondly, the observation o -fields, %,, that he permits
are much more general even than those of Theorem 5.1. For he only requires that
(%,) be “locally increasing”, i.e., for each ¢ there is >0 so that ¥, < %, for
s €[t, t+mn]. Thirdly, the structure of the cost functional is the same as the one
used here. For an admissible control u let J,(u) = E{cost incurred in [¢, T7] using
u|%,}. The process (J,(u), Z,P") can be expressed as

Jt(u) = kzo l{Tk§t<Tk+1}jl':(t, TO’ Y Tk, ka)

asin (5.27). Rishel derives differential equations for the jj similar to our equation
(5.39). Finally he compares J,(u*), for an optimal control u™* with J,(v) where v is a
control obtained from u* by a local perturbation. The necessary condition
E[J,(u*)—J,(v)|%,]=0is translated into a necessary condition on the j (see [21,
Thm. 6]). Since u™ is compared with controls obtained by a local perturbation,

therefore these necessary conditions are weaker as compared say with Theorem
5.3 above.

5.5. Markovian case. To simplify the discussion in this section we suppose
T<oo0 and r=1. Now suppose y, =x, and suppose as in (5.40) that
PX(dz, ds)=n(dz, s, u,)A, ds,
where n and A have the form

(5.44) n(dz, s, u, w)=n(dz, s, u, x,_(w)),
(5.45) A(s, w) = A(s, x;,_(w)).
Similarly, suppose that in the cost functional (5.5) we have
(5.46) c(z, s, u,w)=c(z,s, u, x,_(w)),

(5.47) Jr(w) = Jr(xr(w)).
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Next, call u € U a Markovian control if u, is of the form u,(w) = u,(x,—(w)). Let
U™ be the set of Markovian controls. Blumenthal and Getoor [33, p. 63ff] have
shown that (x,, X,, ") is a Hunt process under these conditions. Essentially, this is
a quasi-left continuous, strong Markov process. The martingale representation
results of Kunita~Watanabe then apply, and the integrand can be written as

B(Z’ S, w) = B(Z’ S, xs—(w))-

With these assumptions it is reasonable to expect that a Markovian control is
optimal in the class %, i.e.,
(5.48) A Ju)y= A J(u),
ueu™ uel

and it will then follow that the (complete information) value function W(¢) has a
representation W(z, w) = w(t, x,(w)).

To prove this assertion we begin by defining the Markovian value function.
For u, v in U™, as before let

T
v, 0,0 =B [ [ cle,s, 0Pz, do)+ 17| 7]

Z vt

(5.49) =E { L J: Tc (z, s, 0,)Pi(dz, ds)+Jr| x,}

=n(v, t,x,) say,

Vit,x)= A =n(v,tx,).
veyu™
To show that V(z, x,) = W(z) it is enough, as we will see, to prove a version of the
optimality principle, Theorem 4.1, for the function V and u € %™. It is here that
we face a difficulty because the proof of Theorem 4.1 relies on Lemma 4.1 and in
the proof of the latter critical use is made of the fact that i, can depend arbitrarily
on ¥, and that these are increasing ; whereas here u, can depend arbitrarily only on
o(x,-) and these are certainly rot increasing.

We shall circumvent this difficulty by assuming that it is possible to approxi-
mate the time-continuous optimal control problem by a time-discrete problem.
Since for the latter an optimality principle is available, we will be able to obtain
such a result for the original problem.

For each teI and integer N let t =¢,<t,<---<t,~ =T be equally spaced
instances of time and let % be the set of all (&), s =¢ of the form

us(w)=us(xtk(w)) for tk<S§tk+1-

We impose the following assumption of approximation.

A. Forall e >0, tel, ue U™ there exists K such that for all N=K there
exists v € UY with n(v, 1, x,)=n(u, t, x,) +&.

THEOREM 5.4. Suppose (5.44)—(5.47). Then for t,=t, in I and u e UM we
have

t
(5.50)  V(t;, x,,) éE“” I c(z, s, us)Pi(dz, ds)|x,l] +E"“[V(ty, x,,)| %41,
Z

n

(5.51) VT, x7)=Jr(x1).
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If equality holds in (5.50) for u = u* then u* is optimal in U™. Finally if A holds,
then this condition is necessary for optimality.
Proof. For uc U™ we have

Vty, x,) = E"“

z

i
I c(z, s, uy)Pidz, ds)]x,l]
15}
+ vej}uM Eu["l (U, t21 xtz) Ixtl]

with equality if and only if u is optimum. Since obviously

(552) vel}uMEu[n (U, t27 xtz)lxtl] ;Eu[velo}t”’ 7)(1-’, t2, xtl) Ixtl],

therefore the sufficiency part of the assertion follows. Now suppose assumption A
holds. To prove the final assertion it is enough to show that the reverse inequality
holds in (5.52). Fix & >0. We must show that there is v € 4™ so that

(5.53) E"“[n(v, tp, x,,)|x, )= E“[ Aum (0, ta, X,,) | X, ]+ €.
Using assumption A, we can find N such that

5.54) . . &
( E [vel}uN 1’(07 t21 xtz) |xt1]§E [ {O\HM 7’(0, t2, xtz) Ixtz] +§-

Next, we apply discrete backwards dynamic programming to obtain v’€ %} so
that

5.55 €
(5:53) N, t, xzz)éuefo}l,m(v, tz,xt2)+5.

Corresponding to this v’ € %Z, there exists a v € %™ such that v, = v/, s =1, s0
that

5.56 .
( ) 1’(07 t27 xtz) é uel}tN n(u, t2, xtz) +~2_

rewriting (5.55). From (5.54)—(5.56) we see that v satisfies (5.53). The assertion is
proved. O

Now let V, = V(t, x,). Fix u € 4™ and consider the process (V,, Z,, ?*). Then,
using the same argument which led to (4.5), we obtain the representation

(5.57) Vi=Ju—Asw)+m" (1),
where Jy, = inf {J(u)|u € U™}, m"¥ (u) e M, P*), and for 1, =t,

ty 1
A2 =weak lim I —E“[V, = Vo | Z.] ds.

h=0J, h

By the Hunt property E“[V,— V., |2%]1=E"[V,— Viun|x,] so that A is
measurable with respect to ¥2=0(x;t;=s=#t,). (This implies also that
m(u, t;)—m(u, t;) is Z;>-measurable; i.e., m(u) is an additive functional of the
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Markov process (x,, &, ?“).) We therefore obtain the following version of
Theorem 4.2.

THEOREM 5.5. Suppose (5.44)—(5.47). There exists a constant J, and for every
u € UM there exists a predictable process (A o(u)) € A (%, P*) such that

(5.58) E“Adu)=Jy—E"“Jp,

and such that for t, =t,, A(u) is X>-measurable and

(5.59) E“[—Aff(u)+J' I c(z, s, us)ﬁf,(dz,ds)|x,l]§0 a.s. P

Z

Suppose equality holds in (5.59) for some u = u* in U™. Then u* is optimal in U™,
JW*)=Jy and

(5.60) V,= E“TATu*)+Jr|x] as. P

Finally if A holds, then this condition is necessary for optimality.
We return to the representation (5.57). Since m Y (u) is an additive functional
it can be represented as (applying results of [32, § 5])

mY(u, t)= L J; B“(z, $)[P*(dz, ds) —P*(dz, ds)]

where B* € L1 (P%) is of the form

B“(z,s, 0)=B"(z,s, x,—(w)).
As before (cf. (5.17)) let

A=A+ || gz, 5)Pidz, d)

t
=A6(u)+j J B“(z, s)n(dz, s, us)A, ds
Z Y0
and we may conclude again (see (5.19), (5.20)) that for u, v in u™
Ao=Auv)=Ay say,
t t
j J B“(z,s)P*(dz, ds)= J' j B’ (z, s)P*(dz, ds).

Z Y0 Z 70

Furthermore there exists a predictable process («,) such that

t

Af= J' a\, ds.
o

But A2 is Z;>-measurable and A,(w) = A(t, x,_(w)) by (5.45). Hence a; is of the
form a,(w) = a(t, x,_(w)). The local version of (5.59) now becomes (cf. (5.26))

5.61) —als, x,_(w))+mi£I [(B(z,t)+c(z,t,u)ln(dz, t,u)=0
ue Z

and the m*inimum is achieved at u*(¢, x,_(w)) for almost all (¢, w) with respect to
dAXdP" measure. But from (5.61) it is evident that u* is now an optimal control
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in the class % of all controls and not just Markovian controls. It follows then that
V(t, x,) = W(t). Theorem 5.3 simplifies as follows.

THEOREM 5.6. Suppose (5.44)-(5.47). Suppose there exist u* € U™ and a
measurable function V(t, x) which is absolutely continuous in t, so that

v

(5.62) ot (t, ka)+g1€iD§} AL, x1,.) L [V(t, 2)—V(t, x1,) +c(t, z,u)In(dz, t, u) =0,

for Tk =< Tk+1,
(5.63) V(T, x1,) =Jr(xr(w)), for Ty =T < Tisq,

and the minimum is achieved at u™®(t, x,_(w)) a.s. with respect to P measure. Then
u* is optimal in the class of all control laws, and furthermore V(t, x,) = W(t). Finally
if A holds, then this condition is also necessary for optimality.

We can compare the result above with the main result of Stone [24,
Thm. 4.5]. Essentially our result is a special case of his result since the latter
applies to semi-Markov processes and not just to Markov processes as we have
insisted. Of course it is possible to obtain his result from ours by imbedding the
semi-Markov process into a Markov process (see [24, Thm. 2.1]). One difference
may be worth noting. Stone only considers controls which give rise to Markov
processes with stationary transition probabilities; he is then able to use the
infinitesimal generator of the process as the main tool of analysis. The martingale
theoretic approach followed here permits us to dispense with the stationarity
restriction.

6. Examples. We use the results derived above to solve some simple optimal
control problems.

6.1. Queues.

(i) The simplest case imaginable is that of controlling the rate of a counting
process over the interval I=[0, T], T<c0. Z is then the set of nonnegative
integers. Let U =[a, b] where b >a = 0. Let P*(¢)(w) = number of jumps of x,(w)
in the interval [0, ¢]. Suppose y, = x,, and for u € U let

Pi=u,

so that the controller can vary the rate of the process (x;) to any desired value in
[a, b]. Suppose ro=1and c(t) = c(t, u,, x,_), Jy = J(x7_). Then the optimal control
must be Markovian. The optimality criterion becomes

6.1) 0= rgigb {%:-{(t,z)+[V(t, z+1)-V( z2)+c(t, z, u)]u}, z=0,1,---,

with the boundary condition
6.2) V(T, z)=J(z).

One possible problem of this type, suggested by Professor D. Snyder, related
to minimizing the damage to a sample in electron microscopy, is to seek u to
maximize 2" (xr = k) where k is a fixed integer. Since

g)u(xT = k) = Eu(l{xr=k})’
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and since we are maximizing, the optimality criterion can be rewritten (setting
V=—-V)as

©.3) 0= max {%’(t, 2)+[V(t, z+1) - V(s z)]u},
(6.4) V(T, 2)= 1=

Equation (6.3) gives the optimal Markovian control,

b if V(t,z+1)—V(t,2)>0,

E3 = A 9
wi(s, z) {a if V(1,z+1)— V(£ 2) <0,

which upon substitution in (6.3) yields
v . .
0= E(t’ z)+b max[V(t, z+1)— V(¢ 2), 0]

+amin[V(t,z+1)—V(, 2),0]

for0=¢t=T,and =0, 1,2, - -, and which can be solved recursively.
The closed loop optimal control u™*(z, x,-) is given by

U*(t, x)=a- I{V(t,x,~+1)—\7(t,x.—)§0} +b - I{V(r,x,_+1)—V(t,x(_)>0}

which is a predictable process (V(t, z) are deterministic functions.)
Remark 6.1. Suppose there were a second, independent Poisson process (N;)
and suppose the objective was to maximize

g)u(xT+NT= k).

Suppose (N;) cannot be observed or controlled, whereas (x,) can, just as before.
This is now a problem with partial information. Nevertheless, it is easy to see the
optimality equation (6.3) is still valid here, with the boundary condition (6.4)
replaced by

T T
V(T, z)= (k—i)!

0 for z > k.

forz=1ii=0,-,---,k,

This follows from the fact that
k
P(x,+N,=k)= Y P"“(x,=i)P(N,=k—i).
i=0

Note that the problem becomes much more complicated as soon as x, and N, are
dependent. The problem is then one of partial information, V(u, t) depends on
past controls, and Markov controls are not necessarily optimal. Solving the
optimality equations of section then requires an unreasonable amount of calcula-
tions (as can be expected for a ‘“‘dual optimal control” problem).
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(ii) Consider the simplest problem of controlling a queue length by varying
the service rate (or number of servers). The (x,) process is now the queue length
(Q,) defined as follows. Let (A,), (D,) respectively represent the arrivals and
departures. Then Q, is defined by

t

Qt = At _I 1{01~>0} st:
0

where the integrand manifests the fact that no departure can occur when the
queue is empty. Now suppose that the arrival rate is a constant A which cannot be
controlled, but that the departure rate can be set to any ue U={0, 1, - -, N}.
Then, in the notation of § 5.5,

Pudz, dt, Q,-) = 1o, _+1canA dt + 110, _—1ca1 10, >0yl dt

where the first term on the right corresponds to a jump of +1 in Q and the second
term corresponds to a jump of —1.
Suppose the cost function is of the form

T
1@ =B [ et 0, ds+f0r)]
0
Then there is a Markovian optimal control and the value function V(¢, Q) satisfies

_. [V _
6.5) 0= min { = (6 Q)+c(t,u, Q)+[V(, Q+1)— V(, Q)r

IV Q= 1) V(5 Q)lliosoul,
with boundary condition
(6.6) V(T, Q)=£(Q).

Next, suppose that the cost is a linear function of the total waiting time and the
total service time, i.e.,

c(t,tu,Q)=au+Q, =0,

where a >0 is a constant. Hence from (6.5) the optimal control is “bang-bang”. It
can be exactly specified as

N1{0,~>0} forte [O, T——a],
0 forte[T—a, T].

This follows because in the interval [T —a, T},

u*(t, Q)= {

Vi, Q)= (T—t)o+§(T—z)2

so that
Vi, Q—-1)-V( Q) =—(T—t
67 ( )=V, Q)=—(T-1)
<a, forte(T—a,T)

and the fact that V(¢, O —1)— V(¢, Q) must increase with ¢.
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Remark. Since P,({+1},¢) =ﬂ, U, * ds =ﬁ, u,_ - ds, it is irrelevant in this
example whether controls are chosen predictable or not. However u*(¢, Q,-) of
(6.7) is predictable in accordance with § 5.5.

(iii) A somewhat more complicated problem is that in which only one of two
queues can be served at any given time (e.g. traffic light at an intersection). Each of
the two queues, Q ,1 s 0,2 say, are described as above, and the possible values of the
pair of service rates u = (u", u*) e U={(0, 1), (1, 0)}.

0=meilx} {ct,u',u? Q, QZ)+%¥(L Q', 0%
+[V(, Q' +1,Q%) - V(1, Q', Q)
+[V(, Q', Q*+1)- V(t, Q', QO)I*?
+[V(t, Ql—' 1, Qz)— V(t7 Ql, Qz)]1{01>0}u1
+[V(t, Q', Q*—1]- V(t, Q', Q) Li02-qyu’}

with the boundary condition

6.8)

V(T, Q', Q*)=0.
We are unable to derive an explicit form for the optimal control.

6.2. Investment. An example of a jump process with an infinite number of
sizes of jump is the following. Assume that there are N stocks with ;(f) as the
price of the ith stock. The ith price changes at random times with a rate A; and at
these times the price changes from 7;(t—) to m;(¢t) = m;(t—) + a;(t)7;(t—) where
a;(t)=—1 is a random variable with distribution function n;(da;, t). Then an
investor with wealth K (¢), who has invested a fraction k;(¢) in the stock i, faces the
accounting equation

mi(t=)’ igl ki()=1.

(K,) is therefore a jump process which has jumps of size k;Ka; occurring at
rates A;. Here, as before, the probability measure of the ‘“‘state” process (K,)
depends on the “control” (k;(t)), i=1,---, N. In a simpler setting it has been
shown [30] that the problem of choosing k = {(k;(¢))} to maximize E*(J(Ky)),
where J is the utility of wealth, can be reduced to a static optimization problem.
We solve here a more general problem. Suppose the investor also has a wage
income y, dt in [¢, t +dt], beyond his control, and can consume an amount ¢, dt of
his wealth in the interval [¢, ¢+ dt], where ¢, =0 can be chosen freely and is
therefore additional control. Then (6.9) is replaced by

6.9) dK, = g ki(H)K,-

(6.10) dm(1)

mi(t=)"

N
dK,=(y.—c) dt+ Y, ki(t)K,-
i=1
The investor’s objective is to maximize

(6.11) E“UOTJ(t, c,) dt +JT(KT)]
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where u ={(k,(t)), - - -, (kn(2)), (c(2))} is the control, J denotes utility from con-
sumption and Jr denotes utility from terminal wealth. In this formulation (K,) is
no longer a jump process, because of the first term in the right-hand side of (6.10).
A referee has pointed out that it is possible to regard (K;) as a jump process by
taking Z to be a space of continuous functions. The value between two successive
jump times would then be the trajectory of (K,) between these two instants of
time. However, if we assume that the rate process (A;(¢)) and the distributions (n;)
depend only upon K., then (K, 2,) is a still a Markov process for a Markov
control u, and it is easner to apply well-known results of Markov process theory.
The infinitesimal generator £*“(V)) of the value function

V(t, K,)=sup E““ J(, c) dt+JT(KT)]
u t
is, from (6.10),

w- np LEIV(+h, K| K- V0, KD}
(6.12) (Kb t)+ (Kb H(y.—cr)

+ 0K | [V [+ ak 01K ~ V(6 K)ln(ders £ K.

i=1

(We could have permitted a Brownian motion component in (6.10) as studied in
[17D.

The optimality criterion is

0= max {J(t c,)+ (t K)+(y,— c,) (t K)
(6.13) N -
+ Z A8, K) I [V, [1+ k1K) — V(t, K)ni(day, 1, K)}

with the boundary condition
(6.14) V(T, K)=Jr(K).

We can solve (6.13), (6.14) for the following spec1al case. Assume y, =0,
J(t,c)=c"]y, Jr(K)=a(K"/y), where a>0 and 0<y =1 are constants, and
Ai, n; independent of K and ¢ Then (6.13), (6.14) have the following solution

. K’
V(t, K)=f(t)7, 0=¢t=T, K=0,

where

f0= [(1_;1+a1/“‘7)> - exp (~A H>+1_j_1] 1=r
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The constant A and the optimal control are given by

* _ K‘ .
C; _W,

(k¥(2)) are optimal solutions of the static problem

max f )t,»joo [(1+k,a,~)7—1]n,~(da,~)}=A.

ki=0,2k;=1 {i—_—l
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CAUSAL REALIZATION FROM INPUT-OUTPUT PAIRS*
WILLIAM A. PORTER?

Abstract. Consider the finite subset {(x;, y;)} of input-output pairs. A common design objective is
to specify a system, S, such that y; = Sx; holds on the set in question. Moreover, S should also be well
behaved on a larger input space.

This rudimentary problem is typical of code block detectors, data transmission networks,
computer controllers and with some refinement, can be viewed as a prototype problem for control
compensator design. We note also that it is related to system identification. Indeed, having observed
the input-output pairs any construction of S is a viable form of system identification.

In a recent study, the author solved a synthesis problem of the above type. In that study the input
and output spaces are taken to be arbitrary Hilbert resolution spaces. A causal synthesis procedure was
developed within this framework.

In the present study the linear solution is considered in more detail. We focus attention also on the
Hilbert space L,(v). It is shown that the operator theoretic solution can be realized by a differential
equation-set of the form

Z(t)=A()z(t)+b(t)x(1),
y()=c(t)z(t), tey,

where {A, b, ¢} are explicitly specified from the input-output data.

()

1. Introduction. Let X, Y be respective input and output spaces. Consider
also the finite subsets {x;}= X and {y;}< Y. A common design objective is to
specify a system, S, such that y; = Sx; holds on the sets in question. Moreover, S
should also be well behaved on the larger input space X.

This rudimentary problem is typical of code block detectors, data transmis-
sion networks, computer controllers, and with some refinement can be viewed as a
prototype problem for control compensator design. We note also that it is related
to system identification: Indeed, having observed the input-output pairs {(x;, y;)}
any construction of S is a viable form of system identification.

The rudimentary problem takes on a more interesting form as constraints and
detail are added. Typical constraints take the form of causality, linearity, mul-
tilinearity, stationarity and continuity requirements. Typical detail would include
specifications of the input and output spaces and explicit choices for the input-
output pairs. Of course, the choice of input-output pairs partially determines
whether solutions exist satisfying the desired constraints.

In a recent study [1], the author solved, in rather general form, a synthesis
problem of the above type. In that study the input and output spaces were taken to
be arbitrary Hilbert resolution spaces. A causal synthesis procedure was
developed within this framework. It was also determined when a linear causal
solution exists and one such solution was provided. The entire development
generalizes to Banach spaces without great difficulty.

* Received by the editors September 24, 1975.

+ Computer, Information, and Control Program, University of Michigan, Ann Arbor, Michigan
48104. This research was sponsored in part by the United States Air Force Office of Scientific
Research under Grant 73-2427.
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In the present study the linear solution is considered in more detail. We focus
attention also on the Hilbert space L,(v). It is shown that the operator theoretic
solution of [1] can be realized by a differential equation set of the form

2() =AMz +b(1)x(1),

) y(&)=c()z(2), tev,

where {A, b, ¢} are explicitly specified from the input-output data. During the
development, an interesting connection with optimal control is exposed.

2. Some preliminaries. To facilitate the present development we shall
restrict attention to H = L,(v), the usual Hilbert space of real square integrable
functions. The inner product on L,(») is denoted by ( - , - ) and {P'} is the family of
projection operators defined by

x(B), B=t,

0. B>1 t,Bewv.

P =

Concerning the data set {(x;, y;)} = H>, we shall assume first that the set {x;} is
linearly independent. No loss of generality is incurred for if x, =}, ., a:x; then
either y, #Y, ., a;y;, in which case a linear solution is not possible, or y, =
Y.<k @:Yi» in which case we delete (xi, yi) from the set and meet its constraint
through linear extension.

It is convenient to make a stronger assumption, which can be removed later.
We shall say that the set {x;} is well-posed provided {P’x;} is linearly independent
for all >0, where » =[0, d] (or [0, 0]). We note, for instance, that the power
functions {x(¢) = #~'} and the sinusoids {x;(#) =ssin jt} have this property.

In summarizing the synthesis procedure of [1], some definitions are helpful.
For this we assume {x; : 1, - - -, n} is well-posed and let

(2) ni[t, B]= ”Ptxi”_I(Ptxi)(B)’ i= 1’ P (X

We note that ||n;[¢, - J|= 1 and that {n,[¢, - ]} are linearly independent for all ¢ > 0.
The n X n Grammian matrix, N, whose ijth element is computed by

(P'xi, x;)

(3) M](t) = ("’h‘[t, ) ]’ nj[t, ° ]> = "Ptx" R ||P'x-||’

is nonsingular for >0 and we let M(¢)=N"'(f). The row vector j(t)=
F1(8), - + +, Pa(2)) is computed by

) 5,0 =PIy o), i=Lm,
Finally we define the column vector

7’[[’3]__'001(' v ’nj[t’ﬁ]" ) '),

and construct the function

® w(t, B)=9(OM()nls,Bl,  tBevr.
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THEOREM 1 (see [1]). If {x;} is well-posed, then

(Su)(t) = j w(t, B)u(B) dp.

In the following section we convert this result to differential equation form.

3. Computing M. The first matter of practical interest is the computation of
M(t)=N""(t). This fortunately has an elegant solution which is indirectly iden-
tified in the theorem.

THEOREM 2. The matrix N(t) of (3) is the self-adjoint solution of the
differential equation

(6) N =IO -AXON@O+N@OX(@)}, tev—{0}.
In this theorem X(¢) is the diagonal matrix

(7) X()=diag[ -, x} /PP, - - -],

while I1(¢) is the symmetric matrix whose ijth element is given by

(8) IL; (1) = x: ()%, () /|1 P'x| - | P'x; .

We note also that the initial condition on (6) can be taken from (3) at any
t e v—{0}. In fact N is known to be continuous [1] and hence N(0) = lim,_, o+ N(¢)
can also be used.

Proof. Equation (6) can be established by differentiation of (3). We shall not
belabor these details but do list the following helpful intermediate identities
(d/dr){P'x, y)=x(t)y(1):

1PyIPx*(0) +IP*x[Fy*(2)
2Pl - Pyl

(P'x, y) { @)y }

d
P'xll - IP'vI =
AP - 1Pyl

d{ (P'x, y) }

e\l - I1P'yIl) Pl - Py P 1Py
x()y()
1P - [Py

The last identity is recognized as
Mj(t) = _%Mj(t){)(ii(t) + X ()} +11; ().

Using the diagonal form of X(¢) the theorem follows.
CoROLLARY. The matrix M is the self-adjoint solution of the equation

M(@t)= %{X(t)M(t) +M()X()}—M(OII()M(¢), tew,
M(@{)=N@E)"".

This corollary is an immediate consequence of (6) and the identity M =
~M(t)N(t)M(t). When v = [0, d], the choice ¢’ = d can be made with (9) solved in
reverse time.

The computation of M through (9) provides an easy implementation of the
operator S of Theorem 1. It suggests also that S might be realized in differential

9)
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form, and because (9) is of the Riccati type, an optimization problem may be
related to our development.

4. The state variable realization. By way of notation we shall let A(¢) denote a
diagonal matrix whose typical element is computed by

Ai(t)= ||P'x,~||"1, tev—{0},

and let x(#) denote the column vector formed by using the {x;} as entries. Our main
result in this section is the following theorem.
THEOREM 3. The equality z(t) = (Su)(t) holds if and only if

z(t)=y(OOM(t)p(¢),
p()=—3X(Op (1) + A)x(Du(?),
p(0)=0.

Proof. Let us first demonstrate that the asserted equation is a realization of S.
For this, note that the diagonal form of X means that

®(t, B) =exp {—-% J:X(s) ds}.

However
j' TG P P tn PP P
s Jox; () dA ! e
and hence

o, B)=AMAT'(B), tBewr

The integral form of the asserted differential system then is

2() = j HOMOD(, BYAB)X(B)u(B) dB

=L SOMOAWXBu(B) dB,  tev.

For B <t it is obvious that

nlt, Bl1= A()x(B),

which completes the argument.
To establish the converse we let ® be unknown and equate

(D, Bb(B) = Y (OM(DA(DX(B),  t=p.
We choose
c(t)=(OM(1),
with no loss of generality and then differentiate

A()x(B) = ®(t, B)b(B),
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resulting in
Ax(B)=A(D(, B)b(B) = ADAWDX(B).

Itis easily shown that when {x;} is well-posed, a 8 can be found to arbitrarily orient
x(B) and hence A(¢) = A (¢)A(t). However, differentiating A shows that, in fact,

(10) A(t)=—3X()AQ),

which completes the proof.

The realization of Theorem 3 is, of course, unique only to within a similarity
change of variables. One such change of variable, namely q(¢f)=M(t)p(¢), is
suggested by the form of the first realization. Noting that I1(¢) = A(£)x(¢)x* (¢£)A(¢),
it is easily verified that the following corollary holds.

CoROLLARY. The equality z(t) = (Su)(t) holds if and only if

z(=9(q(), tew,

4()=3X(Oq(O)+ MOAOXO0(),  tev,
v(t) = u(t)—x*(t)A(t)q(¢), tew,
q(0)=0.

This latter realization has an obvious feedback interpretation.

5. Relationship to optimal control. Equation (9) is recognized as the well-
known Riccati equation which is an integral part of certain optimal control and

filtering problems. In particular, if v =[0, d], F, Q, R symmetricand R(s)>0on »
and if

G()=ANq@O)+B(u(r), tev,

d
J(u)=[q(a), Fq(d)]+L {la(s), Q(s)q(s)1+[u(s), R(s)u(s)]} ds,

then the optimal control, uy, minimizing J is given by
uo(t)=—R(OB*)K(1)q(),  tev,
.where K(t)= K*(¢) and
K@)=—K@®)A@)—-A*(OKE)+K(@B(@{)R ()

11) B*()K(t)— Q(1), tevw,
K(d)=F.

Comparing (9) and (11) we see that

A@)=A*1t)=—3X(1), tev,
Q)=0, R()=1I, B@)B*(t)=II(t), tew.
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Noting that TI(¢) = A(£)x(£)x*(¢)A(t), we have

i) =—3X(Or@t) +AOx(Du(t), tew,
(12) uo(t) =—x*(OANM()r(1),  tevw,

J(w)=[r(d), M(d)r(d)]+|ull

The relationship between systems of (12) and Theorem 3 is quite easily

summarized. As we have depicted in Fig. 1, an open loop plant characterized by
{=3X(); A(t)x(t); M(¢)} is involved in both cases. With u arbitrary, zero initial
state and output constraint y(¢), the open loop plant is the system of Theorem 3.

With the input driven by the indicated feedback law and arbitrary initial state the
system is that of (12).

= {-3X, Ax} - M @) P—

Mr

—x*A

FiG. 1.

6. A numerical example. It is helpful to consider an example where a
complete numerical solution is possible. For this we select x.(¢) =1, x,(¢)=¢,
x3(¢) = £>. It has been noted in [1] that N, and hence M are constant for this
selection of inputs. Moreover [1] studies in some detail the characterizing
properties of function classes which give rise to constant N.

Example 1. With x,(t) =1, x2(t) = t, x3(t) = ¢, the matrix N is constant with
inverse (see [1]) given by

9 NN
M= |-12v3 64  —-12V15].
6v5 —12¥15 36

We note also that ||[P'x|* = ¢, |P'x,|f = /3, |[P'xs||* = £°/5. It is easily verified then
that

1 1 00
X(t)=7 0 3 0f, t>0,
0 0 5
1 1
A(t)x(t)=7 V3|, t>o0,
t
Vs

and hence the system of Theorem 3 is completely specified once the output
functions y;, y,, y3 are chosen.
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It is of interest to compute also the integral form of our system. For this it is
only necessary to compute

w(t, B)=J(OMA(OX(B), tBev.
Recalling that §;(¢) = y:(¢)/|P'x., it is easily verified that

3)’1(0

w(t, B)=—"2[3-128t '+108°t ]

12y2(t)

(13) 2 [-3+16B8t ' +—158%t77]

30)’3(‘)[1 68t +68% 2.

7. An alternative realization. The form of w(t, B) above suggests a second
differential realization that we now explore.

We note that in (13) the functions y, y,, y; can be taken as arbitrary elements
of L,(v). There are some practical limits, however, that we should note before
continuing. First we note that with a simple integrator the input x(¢) = 1 produces
an output y(¢) =1, and hence the ratio y(¢)/¢ in (13) resembles a comparative
output/input measure. If our system is to be lowpass, then the ratios y;(¢)/¢
should be bounded as ¢+ 0. If this does not hold, then the system will have direct
transmission and an adjustment in the model is called for.

For convenience we introduce the notation

)-)'(t)zyl(t)/t” i=1’ 2’ 3,

and assume that y; are bounded at ¢ - 0. Since 8 =¢, the kernel w(, 8) is otherwise
well-behaved and has the same continuity as the y;, whatever this may be.
Recall now the identity

(14) B =l—-B)T= 5 ()0 a-py n=0,
k=0

Using this identity on the terms in (13), we may express w as a function of
w(t, t — B), for instance,
3—-128t ' +108% >=1-8t'(t—B)+10¢ *(t—B)*>, B=t
Upon rearrangement, equation (13) takes the alternative form
w(t, B) =[3y1(t) +2763,(1) +30y5(1)]
(15) +[~247,() —4325,(1) — 18075())t ' (t = B)
+[307.(0) + 1207,(t) + 18035() 1t *(t—B)>, O0=B=t.

For convenience we introduce the functions «;, defining them in the obvious way
through the equation

w(t, B) = a1 (t) +ax(t)(t — B) + as(t)t(t — B)*/2.
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Recall now that if

p(t)=J (t=B) u(B)dB,

[} n!

then p, u satisfy the (n + 1)st order differential equation
p"O=u), 120,
p™(0)=p'(0)=p(0)=0.

Thus our operator can be synthesized as shown in Fig. 2.

F1G.2. Thedifferential realization

8. Other extensions. In our development we have restricted attention to the
single variate case which is typified by H = L,(»). Itis convenient now to point out
that extension to more general settings is easily accomplished. Consider first
L7 (v)andlet[ -, - ] denote the usual inner product on R™. We then have

(P'x, y) = j [xB), y(B))dB,  xyeLi®).

The computation of ||P’x;|| undergoes the usual adjustment.

Reviewing the development of §§2 and 3, we see that N, § and w of
equations (3), (4) and (5) are well-defined in the new context. Concerning X, I1 the
new expressions become '

(16) X(t)=diag[ -, [x(@), x@OVIP'xl, - -],
and
(17) IL;(6) = [x: (1), x; )V IP'xi|| - [P" I,

with (6) and (9) still holding for N and M respectively. Theorem 3 is still valid with
the proviso that the components of j and x are themselves m-tuples and that

x(t)u(t) = ([xl(t)’ u(t)], Y [xn(t)’ u(t)])’ tew.

We note that the order of the differential system of Theorem 3 is dependent only

on the cardinality of {(x;, y;)} and not on whether x; or y; is scalar or vector-valued.
In the same spirit as the above extension, consider the case where the

input-output pairs are derived from a distributive system. Let the spatial domain
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be [0, 1] and » denote the temporal domain. As a formalism we now define[ -, -]
as follows:

1

[0, yO) =[x )0 = | x(69)y(65) ds.

Using this formalism, equations (16) and (17) are well-defined and Theorem 3
once more is valid. The point to this particular extension is that a finite element
simulator results for a distributive system.

In another direction we note that extensive use is made of the “well-posed”
condition. However, the dimension of the linear span of {P’x;} is a monotone step
function of “#’, and, as such, nonwell-posed problems decompose into a finite
collection of well-posed problems.

Other adjustments, which require more detailed explanation than space
permits here, can be made which remove the well-posed assumption entirely.

9. Closure. It is interesting to note that the present study, together with [1],
demonstrates a complete solution in operator form to the synthesis problem.
Once the solution is in hand the concept of state is implicitly introduced as a
realization mechanism. This then is a graphic example of the subsidiary nature of
the state concept in system theory.

We note in closing that [1] also provides a polynomic solution to the
nonlinear case. The polynomic operators in question also have a state variable
realization. Our attention here has been centered on the linear case primarily
because the associated state variable realization is less direct and hence a more
richer and interesting topic.
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OPTIMAL CONTROL OF NONSYMMETRIC HYPERBOLIC SYSTEMS
IN n VARIABLES ON THE HALF-SPACE*

RICHARD B. VINTERt anp TIMOTHY L. JOHNSONi

Abstract. We study a quadratic control problem on the finite time interval with respect to the
system of hyperbolic partial differential equations

dy dy
==Y A;—+f,
ot ; lax,- f

Myﬂﬂ= u,

)’(0)=Y0,

on the spatial domain Q = {x € R"|x, >0}. For a special case it is shown that the control ¥ may be
synthesized in feedback form. The nonlinear operator equations involved in this synthesis are shown to
have unique solutions within an appropriate class of functions.

1. Introduction. We consider quadratic cost boundary control of hyperbolic
systems of partial differential equations. The development is built on recent
results of Rauch [7] concerning well-posedness of mixed initial boundary value
problems in L? for hyperbolic systems on the half-space which allow for varying
coefficients, apply for an arbitrary number of space dimensions and do not require
the systems to be symmetrizable.

This study is motivated by certain problems in distributed control where
nonsymmetric hyperbolic systems of partial differential equations in more than
one spatial variable arise [3]. Although quadratic cost control problems for
hyperbolic equations are studied in [5] and [9], Lions supplies only a heuristic
treatment for the boundary control problem and Russell limits attention to one
spatial variable.

The optimal control for a fairly general class of quadratic control problems is
first characterized through the solution of a two-point boundary value problem.
Thus far, the development is a routine application of methods in [5]. Interest
resides rather in the next step; that of realizing the control in feedback form in a
special, but nontrivial, case when only the terminal cost is present. Corresponding
to this special case we proceed to establish existence and uniqueness of the
solution to an operator Riccati differential equation through which the feedback
operators may be expressed. The general form of these results has previously been
indicated in [3].

We wish to emphasize that the results reported here are only the first step
towards a realistic study of engineering control problems. Problems of the type
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considered herein may result from linearization of fundamental equations of
continuum mechanics electrodynamics, and thermodynamics about equilibrium
points or other fixed trajectories. In particular, we cannot generally expect the
assumption of strict hyperbolicity imposed below to be met. Also, relevance of a
study involving spatial domains which are half-spaces rests largely on the insights
it may give into situations where the domains are more complicated yet the wave
propagation velocity and the time interval of interest are small compared with the
domain dimensions.

For one spatial variable (see [9]), existence and uniqueness in the large to
solutions of the Riccati partial differential equation characterizing the optimal
control may be directly studied through the classical construction of integrating
along characteristic chains and Picard iteration using optimality considerations to
establish an a priori inequality. This is possible because the Riccati partial
differential equation turns out to be a semilinear system which is diagonalizable
(even though it is in two spatial variables). The structure of the optimal control
may therefore be examined by verifying that conditions on the solution of the
Riccati partial differential equation under which the Riccati partial differential
equation may be set up are indeed valid.

For more than one spacial variable the classical construction fails, since each
step of the Picard iteration no longer in general reduces to solution of a system of
ordinary differential equations on the characteristic surfaces. In the present study
it becomes necessary, therefore, to undertake an indirect study of the operator
Riccati equation through consideration of the two-point boundary value problem
characterizing the optimal control. This is an approach associated with the name
of Lions.

The problem is considerably more difficult when we pass to more than one
spatial variable and the analysis is pushed through under conditions which are
more stringent than those required in Russell’s treatment. The reason is basically
this: The boundary control is expressed through the boundary value of the
“adjoint variable” p(¢). The method of characteristics is well-suited to handling
problems for which the data on the adjoint equation are not compatible. For, even
in this situation, the method establishes that p is piecewise continuous and this is
sufficient to assure that the boundary value of p(¢) is well-defined outside a null set
of the time interval. Abstract methods, such as are used here, are not so well suited
since they cannot readily exploit the property that p(¢) is piecewise continuous and
not merely a bounded measurable function. Therefore for the boundary value to
be defined, we need to make several additional assumptions assuring compatibil-
ity of the data on the adjoint equation.

2. Preliminary notations and definitions. Let V be an open, connected
subset of R” with smooth boundary aV. Cy(V; R¥) is taken to be the space of
infinitely differentiable maps V- R* with compact support. Cf,(V; R¥) is the
restriction of C3(R"; R¥) to the closure of V. L*(V; R*) has its usual meaning of
the space of Lebesgue square integrable functions (modulo null functions) with
natural inner product. For economy of notation, { -, - ); 2(v.g*, is often abbreviated
to < Tyt )V'
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We shall have occasion to use certain Sobolev spaces. For integral s =1,
H*(V; R*) is the completion of Cfg)(V; R*) with respect to the norm

1/2
1) W= (], 2 1Dy a)
(for a ={a;}, i=1, - ,n, nonnegatlve integers, D® is the differential operator
da1/dx$' -+ - 9" /axgrand || =Y, a;). The closed subset Hp of H® is taken to be

the completion of C3(V, R¥) w1th respect to (2.1).

We shall for the most part be concerned with H', writing « for the canonical
injection H' > L>.

On those occasions when we wish to emphasize merely the domains of
functions in L?, H*, etc., we write L%(V), - - -, for L*(V; R¥) -

We remind readers of the trace theorem (see [6] for a much more refined
statement): for n =2, s =1 integers, take ) < R", an open half-space. Then the
restriction of C5,(Q; R*) to 6 defines a bounded linear map from a dense subset
of H*(Q; R*) into H*'(3Q; R*) which may in consequence be lifted to all of
H*(Q; R).

For ¥ a real, separable Hilbert space, [, ;] an interval in R, L*([t,, t,]; %)
and C([¢y, t1]; %) have their usual meanings of square integrable, strongly con-
tinuous, respectively, maps [to, ;] . We also introduce H'([to, t1]; ), the
space of ¥-valued distributions on [#,, ¢,], such that 4, Dh define L? functions.’

3. Mixed boundary initial value problems for hyperbolic systems. Here we
present the results on mixed problems for hyperbolic systems which will be
required below. These results have been built up in a series of papers [2], [4], [7].
Rauch has provided the final step in establishing that the present class of problems
is well-posed in the L* sense for nonzero initial data and inhomogeneous
boundary conditions.

We consider the mixed problem

Lo Z)y+s, - z ‘()+K

3.1) boundary condition Myz g,
initial condition y(0) =y, y, real n-vector.
The following sets are identified:
T=[0,t],
Q={xeR™|x,>0}, N ={xeR™|x, =0}, m>1.
Q=10,44[xQ, ==]0, #[x.

! Equivalently, H([to, ,]; %) comprises #-valued functions A on [, ¢;] (modulo null functions)
such that & is a.e. strongly differentiable and

h(t)=h(t0)+J. Dh(r)dr allte(ty, t]

to

with h, Dh square integrable.
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K, M A,i=1,---,m, are C* matrix-valued functions with domain Rx ) or
R X 3Q (as appropriate) each of which may be expressed as the sum of a constant
function and a function of compact support.

We introduce:
Assumption 3.1 (Strict hyperbolicity). The determinant equation

Y(s)=det (—sI+ i": MA (8, x)) =0
ji=1

has n distinct real roots for all A e R™, A #0, all (¢, x) e RX Q.
Assumption 3.2 (Noncharacteristic boundary).

det (A(2, x))#0

for all (¢, x) € RX a(2.
Assumption 3.3 (Determinate boundary values). For each (¢, x)e RX(Q, A,
has the normal form?®

A" 0

0 A+], A—=diag (ab T, a‘r)s A+=diag (a'r+13 ttty, an)9

|

where a;<0, i=1,-+-,r; a;,>0, i=r+1,:--,n, and for each (¢, x) e RXd1),
M(t, x)is r Xn and rank M(¢, x) =r.

We need also to restrict the null space of the boundary operator M. For each
(7, ¥) € RX Q, define the C"*"-valued function A (-, -) by

A(s, k)=A7" (sI—i fz k,A,.),
i=
seC, k=(ky ", kn)eR™, /i, =A;(f, X) etc.
Take (s, k) to be the generalized eigenmanifold
M(s, k) ={x e C™|(A(s, k)—oI)"x = 0 some integer n, some o € C, Re {o} <0}.
Write M for M(f, ).
Assumption 3.4 (Condition on boundary space). For each (f, ¥) e RXoQ

there exists some & >0 such that, for all X n-matrices M’ with® |M—M'||,<e
and for all ke R™ ™', s e C,

ker {M'}N M (s, k)={0} (null element).

Partitioning the r X n matrix M(f, X) as [M (i, ¥) M*(i, x)], where M~ is
r X r, anecessary condition that Assumption 3.4 hold is that M~ (f, ¥) be nonsingu-
lar for each(f,%) € RX 3 [2]. We may assume therefore, without loss of general-
ity, that M~ is the identity

MG, %) =[IIM", %]

We shall be concerned with strong solutions to the mixed problem, defined as
follows.

2 Without loss of generality in view of the strict hyperbolicity assumption.
3 |MI = trace MM,
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DEeHNITION 3.1. For given f, g, yo€ L?, we define y € L*(Q; R") to be a strong
(L?) solution to the mixed problem (3.1) iff there exists a sequence {y"}, y" €
C)(Q; R™), and some ys e L*(Z; R") (termed the strong (L?) boundary value of y
on ) such that

n n a n
b=yl bg-ves |(S-ot)y 1] .
Q

IMys—glls, [ly"(0)—yo|>0 asn->co.
Forte T, y(t) e L*(Q; R") is called a strong (L?) solution at time t if additionally,

(3.2) Iy"(@®—y@®la->0.

We have the following fundamental result (see [7]).

THEOREM 3.1 (Well-posedness of the mixed problem). Under Assumptions
3.1-3.4, for givenf, g, yo€ L?, the mixed problem (3.1) has a unique strong solution
with unique strong boundary value ys € L* and the strong solution at time t, y (t), for
each t € T is uniquely defined by (3.2). Further we have the estimate

(3.3) ly ®lla+lylle +llyslls = const. {lfllo+lglls +Ilyolla}

uniformly in f, g, yoe L*, te T.

Assumptions 3.2-3.4 are in effect the weakest possible if the above mixed
problem for strictly hyperbolic systems is to be well-posed in L? (see [4]).

We make two important observations.

Remark 1. The mixed problem (3.1) has a smooth solution for smooth data.
More precisely, if

(a) Y€ Cs (), feCip(Q), geCi(2)
and
(b) f(t,x), gt o) vanishfort=0,

then y € Co)(Q) and ys, y(¢) are the restrictions of y to X, {t} X Q respectively (see
[7D.

Remark 2. Itis easily deduced that ¢+ y(¢) : T - L*(Q) is strongly continuous
for y(¢) as in Theorem 3.1: to see this we use estimate (3.3) (uniformly in ¢) and
Remark 1 to construct an equicontinuous family of smooth functions 7- L*(Q)
converging pointwise to y(#) (see [11]). Notice also that the strong solution y
defines an element in L*(T'; L*(Q); R")) which coincides with ¢+ y(¢) within a null
set.

Rauch has also supplied the following regularity result (see [7]).

THeOREM 3.2. Suppose in addition to the hypotheses of Theorem 3.1 that, for
some positive integer s, yo € Hy(Q), fe H*(Q), g € H*(2) with Dif|,—o=0, Dig|,-o,
0=j=s—1. Theny, y(t), ys are H® functions and (3.3) holds with respect to H®
norms uniformly inf, g, yo, t.

Under the added hypotheses of Theorem 3.2, we also have thatt—y(¢): T~
H'(Q) is strongly continuous.
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Study of the control problem will require introduction of the adjoint
problem:

(s

ar
m m AT
.52¢*=-Z A,-T—a—+(KT—— Z 6__,>’
(3.4) =1 0x; j=1 0%;
' M*p2=e,
p(t)=p1.

Here the matrix-valued function M* with domain X is defined by
M*=[~(A+) (M) T(AD)]

and A, p;, e are arbitrary elements in L*(Q;R"), L*(Q; R") and L*(Z;R"™)
respectively. Notice that the adjoint system “‘runs backwards in time” with data
given at time #,. We recognize &/* as the.formal adjoint of , i.e., for any C(,
functions a, 4 with Ma =0, M*d =0 on Q) we have (Hfa, d)={a, L*ad).

Strong (L?) solutions, strong solutions at time ¢, and strong boundary values
for the adjoint problem (3.4) are defined analogously to strong solutions, etc., for
the mixed problem.

Now it may be shown [7] that the adjoint problem satisfies Assumptions
3.1-3.4 backwards in time. It follows that analogues of Theorems (3.1), (3.2)
regarding existence and regularity of strong solutions to the adjoint problem
apply.

The appropriate version of the divergence theorem will be an essential tool in
characterization of the solution to the control problem.

ProrposiTiON 3.1 (divergence theorem). Suppose that Assumptions 3.1-3.4
hold. Let y, p be strong solutions to the mixed and adjoint problems respectively for
arbitrary L* data. Then*

(3.5) (f,p)o =y, Mo+ (ys, A1ps)s— (Yo, P(0)a+(y(t), P1)a.

For smooth solutions this follows immediately by parts integration. We
obtain the result, in general, by consideration of sequences of smooth functions
converging to y, p in L?, exploiting the property that y, p are strong solutions to
the mixed, adjoint, problems respectively (see [11] for details).

4. The control problem. We introduce the state equation

ay

= +
ot dy f’

4.1) Mys =u,

y(0) = yo.
4 Given a strong solution y to the mixed problem, here and in the sequel, ys, y(¢) always denote

the strong boundary value and the strong solution at time ¢. Similar meaning attaches to ps, p(¢) in
relation to the adjoint problem.
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Here of and M are as in § 3. f, u, y, are L? functions. We view y, and f as fixed.
We are free to choose u which is termed the control. We know from the previous
section that for each choice of u, (4.1) has a unique strong solution Q, a strong
boundary value and a strong solution at time ¢, t € T. We write these y”, y3, y“(f) to
emphasize the dependence on u.

The cost function u—J(u) is taken as

5= [ (=20, Q" =2 d

(= 2)(1), Ry = 2)(1))a+ L (), u()year dt.

Here, zeL*(Q;R"), z(t;)eL*Q;R") are given. ReL(L*Q;R")), t—
Q(t): T> L(L*(Q; R")) is measurable (with respect to the strong operator topol-
ogy) and essentially bounded. We assume that R, Q(¢) (for each te T) are
self-adjoint and nonnegative.

Control problem. Minimize J(u) over u € L*(Z; R").

It is a routine matter to modify the development below to accommodate a
“distributed control” term in the state equation and in the cost function, also to
introduce a fixed inhomogeneous term in the boundary condition of the state
equation and to penalize y¥ (see [11]).

5. Characterization of the optimal control through a two-point boundary
value problem. In view of the above assumptions,
J(w)=m(u, u)—2L(u)+const.,

where, as may be shown, 7(-, +): L?>X L?- R is a continuous, coercive, symmet-
ric, bilinear form and u+~> L (u) is a bounded linear functional on L>.

Standard results concerning minimization of quadratic forms (see, e.g., [5])
give us existence and uniqueness of the optimal control u, and its characteriza-
tion:

Uy is optimal <

6.1 L ((y*o—2)(®), Q(t)(y* — y* ) (t)a dt +{(y"—z)(t1), R(y" —y* ) (t1))a dt

+{uo, u —up)s=0 forallueL*;R).

We now pattern arguments in [5] to refine this characterization through
introduction of the adjoint equation:

PROPOSITION 5.1. For given uge L?, let p be the strong solution to the adjoint
problem

:a%e=.sz¢*p + > QD) —2)(1)},

(5.2) M*Pz=0,
p(t) =R(y“o—z)(ty).
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Then®

up is optimal & ug=A"ps.

Details of the proof are given in [11]. The essential step is application of the
divergence theorem (Proposition 3.1) to y“—y*“ and p (for arbitrary u € L?).

6. Feedback synthesis of the control for a special case. We should like
additionally to achieve a feedback synthesis of the optimal control, that is, show
that u, may be determined pointwise in time through a function dependence on
y"“o(¢) independent of the initial condition y,.

This we do for the following subclass of problems:

_ Terminal cost control problem. Minimize J(u) over ueL?*;R). Here,
Jw)=((y“=z)(t1), Ry —2)(t)a+{u, u)s  with z(t)eL*(;R"), Re
FL(L*(Q; R")) satisfying both

(a) R=R* R=0,

(b) R carries L*(Q; R") functions into H}(Q; R") functions and « 'R e
F(L?; H?) (recall «, the canonical injection Hg-> L?).

Example. Take S e Hy(QXQ; R™™"). Suppose that S(x,x')=S8"(x',x) a.e.
(x,x')€ QX Q and [faxa yT(x)S(x, x)y(x") dx dx'=0 all yeL>. Then the map
y(x') = [o K(x, x")y(x") dx' with domain L?({)) takes values in Hg and satisfies the
conditions (a), (b) above (see [11]).

Henceforth we limit attention to the terminal cost control problem. Here
treatment is greatly simplified by the property that the adjoint equation admits a
strong H" solution. This follows immediately from Theorem 3.2 and the assumed
properties of R (see Proposition 5.1)

PROPOSITION 6.1. Forgivenu € L*(Z; R"), let p be the strong (H") solution to

P _ g,
ot p

(6.1) M*Pz'——O,
p(t)=R(y* —z)(t).

Then u is optimal < u={t—>A p(t)}.

In Proposition 6.1, we have only to justify replacing ps by {t+>p,a(2)}, where
Ppoalt) is the trace on Q) of the strong H' solution at time ¢ of (6.1). But ps,
{t—> paa(t)} define the same L*(T; L*(3Q; R*)) functions, in view of the definition
of strong solutions and the trace theorem, being in effect the mean square and
pointwise limit of the same sequence of smooth functions (see [11] for details).

We now introduce the natural spaces %, #* in which to seek solutions to the
two-point boundary value problem associated with the terminal cost control
problem.

5 Here, and below, we partition the n vector p as [py,* -+, PriDes1, 5 Pal=[p" p*l
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Bearing in mind that the mixed problem is well-posed on [7; ¢,] regardless of
the time 7€[0,#,] at which initial data is supplied, we may define &,c
L*(r, t:{ X Q; R"): y € &, & y is the strong solution of

ay
Z=oly+f,
YRl f;

My2=g’
Y(T)=Y0,

for some f, g, yoe L*. F* < L*(Ir, t,{ X Q; R") is defined analogously in relation to
the adjoint problem.
LemMA 6.1. Forfixedr€[0, t,[ and fixed a € L*(Q; R"), the optimality system

%= Ay +f,
(6.2) Mys=(A")ps,
y(r)=a,
and
-9,
-67p= A*p,
(6.3) M*ps =0,

p(t))=R(y—z)(t)

has a unique strong solution in F, X F¥.

Existence of a solution to the optimality system is immediate from Proposi-
tion 5.1; uniqueness may be deduced from the uniqueness of the characterization
(5.1) (see [11] for details).

It follows from Lemma 6.1 that we may define a family of maps

P(7): LX(Q; R") > L*(Q; R"), €[00, t4f,

P(7)
a - p(r),

where for each 7 €[0, #1[, (y, p) is the strong solution (in & X F*) to the optimality
system (6.2), (6.3). We define 2(¢;) by
P )
a — R@a—z()), aeL*(Q).
Evidently 2(7) is affine, and
P(r)a=P(r)a+r(7).

P(7) is computed as a % p(7), where now we delete the terms f, z(¢#,) from the
optimality system; r(7) is simply 2 (7)6 (6, null-element).
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Again let u, be the optimal control for the terminal cost control problem. We
have from Proposition 6.1,

(6.4) uo(t) =(A)P(1)y*(1))sq,  teT.

This achieves the feedback synthesis of the control. The remainder of the paper is
given over to developing properties of the map 2(-).

7. Properties of the feedback operators. Here the main results are pre-
sented. We consider the terminal cost control problem throughout. The functions
P(¢), r(¢) are as in § 6.

Tueorem 7.1 (Properties of P(¢)). Suppose that A, i =1, - - -, n,Mand K are
independent of time, further that by adjustment on a null set f defines an element in
C(T; L*(Q; R")). Then P(-) is the unique map T > L(L*(Q; R")) satisfying

(a) range {P(t)} = kH"(Q; R") with k *P(t)c L(L*; H") each te T and

sup [lk T POl 2,11y < 0,
teT

(b) P(t;)=R, P(t)=P*(t), M*(P()a);a=0allte T, ac L*(Q; R"),

(¢) t—k'P(t): T>L(L* H") is strongly continuous from the right, and

(d) for each a, d € L*(Q; R"), t—>{a, P(t)d)q: T~ R is absolutely continuous
with

2 (P()a, &)= ~(£*P1)a, Ba~(A*P()d, a)n

(7.1) _ L o~
+HA(P()a)sa, A (P(t)d)sa)ea a.e.teT.
THEOREM 7.2 (Properties of r(¢)). Suppose again that A,i=1, - -, n,Mand
K are independent of time and that f defines an element in C(T; L*(Q; R")). Then
r(+) is the unique map T - L*(Q; R") such that
(a) r(t) takes values in kH (Q; R") and

sup [l =7 (1)]|r < o,
teT

(b) r(t))=—Rz(t)), M*r,o(t)=0each teT,

(¢) t—>k'r(t): T~ H" is strongly continuous from the right, and

(d) for each a € L*(Q; R"), t—>{a, r(t))a: T~ R is absolutely continuous and
satisfies

L4r(0), aYa=~(A*1(0), @)+ (A rsalt), A(P(DaYinhun

(7.2)
—(f(®), P(t)a)a a.e.teT,

with P(t) as in Theorem 7.1.

The proofs of Theorems 7.1, 7.2 are sketched in the next section. In outline,
we interpret ((0)yo, yo) as min J(u). This yields an identity which may be
“differentiated” to give (7.1) and (7.2). Thus, in general approach, we use the
methods of [S]. The novelty lies in the manner in which we use the regularity of the
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solution to the adjoint equation (assured by Theorem 3.2) to justify the differenti-
ation. We shall see also that proving uniqueness within the specified class presents
special difficulties.

The assumption of time invariance in Theorems 7.1, 7.2 is a technical
condition introduced to ensure that the constant in estimate (3.3) can be chosen
independently of the time ¢, € [0, #;[ at which initial data is supplied and can almost
certainly be dropped.

We remark that (7.1) may be interpreted as a partial differential equation in
distributions on Q (cf. [5, p. 157]): let & be the space of test functions on Q(Cy ()
functions equipped with the inductive limit topology) and let 2’ be the space of
R"-valued distributions on ) (space of continuous linear maps & - R", equipped
with its strong topology).® For each te T, P(t)e #(L?) in particular defines a
continuous map 2" - %'; by the kernel theorem [10] therefore, P(¢) has the
representation

(4, P(t)a)q = ”11 aT(x)P(x, x', a(x") dx dx’',

xQ
a={a;}, d={a;} alla,d e,

where P(-, -, 1) € 2'(QAxQ; R*™") is uniquely determined by P(¢).
We have then from Theorem 7.1,

%P(x, x', )=—AEP(x, x', )= P(x, x', t) L,
+J P(x,0,t) (AD(A)P(o,x',t)do  a.e.teT,
Q)

(7.3) M*(x)P(x,x',1)=0 forxedQ, x'eQ,
P(x,x',t1)=R(x,x") (R(x,x"), kernel of R),
P(x,x',t)=PT(x',x,t) eachteT.

j P(x, x', t)a(x") dx' defines an H' element for each a € 2".
Q

Of course, (7.3) is meaningful only in a distribution sense. In particular,
(d/dt)P(x, x', t) e D'(Q1 % ); R") such that for all a, d € P",

II d(x)—‘iP(x, x', a(x') dx dx’=-£1—”' aT(x)P(x, x', a(x') dx dx'.
QxQ dt QxXQ

dt
A¥P(x, x', t) is defined following the usual definition of differentiation on &',
likewise Px,x', t) A, is merely —2,0/3x))P(x, x', ) A;(x").

oo P(x,0,8)" (A 2)?P(o,x',t)" do is the unique kernel corresponding to the
continuous bilinear form 2" X 2" > R,

ad »Lﬂ Uﬂ iT(x)P(x, o, t)a_ﬂ(A;)2<L P(o, %', Ha(x) dx') }do-,

5See, e.g., [1].
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the traces being well-defined in view of the regularity assumptions on P(¢, x, x').
The regularity assumptions also assure that the boundary condition
M*(x)P(x, x', t) =0 is meaningful.

The foregoing establishes existence of solutions to the partial differential
equation (7.3) within the class of functions whose values define kernels of
continuous linear maps 2" > &'; the solution is unique in the sense of Theorem
7.1.

We may lend a similar interpretation to (7.2).

8. Proof of Theorems 7.1, 7.2. We compress routine steps in the material of
this section. For a much more expansive treatment, the reader is referred to [11].

We first take note of an identity which interprets (2(0)yo, yo)q as min J(u):

LemMma 8.1. Fix te[0, t,[. For a, 4 € L*(Q; R") let (y, p)(¥, p) be the unique
solution in F, X FF to the optimality system (6.1), (6.2) with y(t)=a (§(t)=a).
Then

51
8.1)  (a, P()a)a=(y(t), Ry (h))n"‘j (A7psa(7), A" Poa(7))aq dr.
t

Proof. The identity (8.1) follows by application of the divergence theorem
(Proposition 3.1) to y, p and the regularity of p, p which permits us to replace ps,
Ds by {t—paa()}, {t— Psa(t)} respectively (cf. remarks following Proposition 6.1).

Lemma 8.2 (A basic estimate). For t€[0, t,[, take (y,p) to be the unique
solution in F, X FF¥ to (6.2), (6.3). Then

ly (P2 +lIp (Ol +Ipaa(@l 200

= const. {ly (Dll2@ + I flle2@xtsnn + 12 D)2}

uniformly in t, re[t, t,), y (), f, z.

Proof. That y () is estimated as stated follows from the coercivity of J(u) and
Theorem 3.1; the estimate for p(7) is then an immediate consequence of the
regularity theorem (Theorem 3.2). Finally the trace theorem justifies inclusion of
lPsa(™)|lL20 in the left-hand side of (8.2).

Theorem 3.2 tells us nothing about the regularity of t— y(¢). We do have
though that y(¢) is weakly differentiable with respect to a certain class of bounded
linear functionals:

LemMmA 8.3 (Weak differentiability of y(¢)). Take t€[0, t,[. Let y, p be the
unique solutions in F,XF¥ to (6.2), (6.3). Suppose that pe H'(Q;R") and
M*p,0=0. Then for 0<8=t,—t,

(8.2)

G+8)=y@,50a=[ @, A= [ (A par), A b dr
(8.3) ’ '

t+8
[, ade

and

®.4)  [y(t+8)=y(®), plal=const. {ly O)l2+[flc+llz (t)ll2}- 5] - 6.
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Proof. If y, p were smooth functions, (8.3) would be given by parts integra-
tion. We demonstrate (8.3) in general by considering sequences of smooth
functions approximating y, p in L? H" respectively. The estimate (8.4) now
follows from the previous lemma, the property that &/* is a first order operator
(whence ||/*p||. 2= const. ||p||y1) and the trace theorem.

We may now deduce the following preliminary properties of P(¢), ().

LemMma 8.4.

(a) Foreachte T, r(t)e H'(Q; R") and P(t) takes values in H*(Q; R") with

sup [|P(O)lew2amy <o,  sup [Ir(e)ll.2<o.
teT teT

(b) M*(P()a)sa=0, M*(r(1));:a=0, te T, ac L*(2).

(c) The maps t—>P(t): T->L(L?*; H") and t—r(t): T>H"(Q; R") are con-
tinuous from the right with respect to the strong operator topology and the strong
topology respectively.

(d) P(t)e £(L?) is nonnegative and self-adjoint.

Proof. (a), (b) are consequences of Lemma 8.2 and the definition of P(¢), r(¢).
To prove (c), we make use of the properties that t—>y(z): T>L?; t+—>p(t): T>H"'
are strongly continuous (recall remarks following Theorems 3.1, 3.2) and the
boundedness of | P ()| ¢.2. 1) (see [11] for details). (d) follows from Lemma 8.1.

PROPOSITION 8.1. For each a, G € L*(Q), t—(P(t)a, @)o:T>R and t—
(r(®), a)o: T~ R are absolutely continuous with

@ 2P0 da= A POa, Do PO 2o
H(PWm, (AVPODidn ae.teT,

and

® 240, ada=~A*r(0), DDa+(A T, A (POaNiadon

—(f@®), P(t)a)q a.e.teT.

Proof. Consider (a). We first show that ¢t~ P(¢): T > £(L?) is Lipshitz con-
tinuous with respect to || -|| ¢, 2). This is an exercise in breaking up (with the help of
identity (8.1)) (a, (P(¢t+8)— P(¢))d)q into a sum of terms to which the estimate
(8.2) is applicable. Thus t—(a, P(¢)d)q is, in particular, absolutely continuous for
each a, d € L*(Q)). We conclude by using the identity (8.3) to prove that t—>
{(a, P(t)d)q is differentiable from the right at every ¢ € [0, ¢,[ to the value stated. It
follows that(a, P(t)d)q s a.e. differentiable to the value stated for every a, d € L.

(b) is similarly shown.

Referring back to Theorems (7.1), (7.2), we see that it remains to establish
that P, r are unique within the specified class.

Conclusion of proofs of Theorems 7.1, 7.2 (Uniqueness of P, r). Let P, r be
functions satisfying conditions (a)-(d) of Theorems 7.1, 7.2. Write 2(¢) for the

affine map a 4 P(t)a+r(t),each teT.
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Step 1. We show by Picard iteration that for a € L*(Q), there is a unique map
t—>y(t): T->L*Q) such that (£, x)-> (y(¢))(x) defines a strong solution to the
mixed problem

ay

Pyin sy,
Mys = (A" )t—>(P(t)y ()},
y(0)=a.

Step 2. Take y(¢) as in Step 1. For each te T, define p(t)e L*(Q)) by
p(t)=P()y(t). We verify that
(i) t—>«'p(t) defines an element in L®(T; H'(Q; R")),
(ii) ¢t~ p(¢) defines an element in H(T; L*(Q; R")) with

Dp(t)=—s*p(2),

(ili) M*p,a(t)=0, all te T.

Part (i) follows simply from the strong continuity of #—> y(¢) and the assumed
strong continuity from the right and boundedness of t—>« 'P(¢): T > £(L*; HY).
It is less straightforward to prove (ii); in outline we show that t—p(¢): T—>L? is
weakly differentiable to —*p(t) everywhere on [0, t;[ from the right. This
involves developing an identity’ similar to (8.3) for p(¢) as defined here. Since
—sf* is a first order operator and p(t) e L¥(T; H"), we have that {r——A"p(f)} e
L*(T; L?). But by a refinement of a result in [8] (see [12]), a square summable
function ¢+>¢q(t) which is everywhere® weakly differentiable from the right to a
square summable function lies in H'(T; L*(Q)) with Dq(t) =9, q(t) (3] = weak
right derivative). This establishes (ii). Part (iii) is immediate from the assumptions
on 2.

Step 3. Define u*e L*(Z; R") as u*(t) = A~ (P(t)y(t))sa a.e. te T. We next
show that

(8.5) ((y—2)(t), ROy"=y)t: o+ —u* u*)s=0, ueLl?*E;R").

Thus y is identified as the strong solution to the state equation corresponding
to the control u*. Equation (8.5) will be recognized as the variational equality
characterizing the optimal control.

We deduce (8.5) from the properties of p(¢) established in Step 2; the crucial
step (see [11]for details) is in justifying the use of the divergence theorem as in the
proof of Proposition 5.1 even though we do not know a priori that p(¢) is a strong
solution to the adjoint problem, or indeed even defines an element in %#*,

Step 4. It is immediate from (8.5) that u* is the optimal control. We must still
do some work, however, to establish that 2(¢) (not merely t— A~ (P(¢)y(£))s0) is
uniquely defined. This is accomplished by a Holmgren-type argument (see [11] for
details). The proof is completed by noting that 2(¢) has the unique representation

PM)a=Pt)a+r(1), aeL*Q).

71t is here that we require P(f) = P*(f).
81t is precisely because we cannot relax this condition to a.e. differentiability that we need to
hypothesize that ¢~ « " P(¢) is strongly continuous from the right.
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9. Concluding remarks. The Introduction indicates some respects in which
the present study is incomplete. Most notably we should like to synthesize the
boundary control in feedback form for such cost functions as

J(u)= j (y“(0), Q()y“ ()a dt +{y*(t1), Ry“(t:))a+ {u, u)s.
T
In this situation, results in [9] would indicate that we should replace (7.3) by

2 (e, ¥, )=~ Plx, x', )= P(x, ¥, D= Qx, ',
(7.3
+J‘ P(x, 0, 1) (A)*P(o, x', 1) do,
F:19)

where Q(x, x', t) is the kernel of Q(f). However, (7.3') is not meaningful as it
stands’ because with no assurance that P(¢) maps 9" into H*, neither the last term
in (7.3') nor the boundary condition M*P(t) =0 is well-defined.
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ORDERABLE SET FUNCTIONS AND CONTINUITY. II:
SET FUNCTIONS WITH INFINITELY MANY NULL POINTS*

URIEL G. ROTHBLUM{

Abstract. A set function (which is not necessarily additive) on a measurable space I is called
orderable if for each measurable order 2 there is a measure ¢ *v on I such that for all initial segments
J, ((pglv)(.l )=v(J). Properties of orderable set functions v which have infinitely many null points are
investigated in this paper. We show that such set functions are continuous and that a set A is v-null if
and only if [¢*v|(A)=0 for all measurable orders %. A characterization of orderable nonatomic
set functions as well as a characterization of weakly continuous set functions which have a mixing value
are given. It is also shown that if a set function is weakly continuous with respect to a measure, then it is
weakly equivalent to some measure.

1. Introduction. Let & be an order on a measurable space I. An initial
segment of R is a set of the form {t € I|sRt}. The order R is measurable if the
o-field generated by the initial segments of & is the o-field of all measurable sets.
A (not necessarily additive) set function v on I is orderable if for each measurable
order R there is a measure ¢”v such that for all subsets J of I that are initial
segments in the order &, we have (¢%v)(J) = v(J).

To understand orderability intuitively, think of I as consisting of an
(inhomogeneous) liquid, and of v(S) as representing some (not necessarily
additive) measure of the ‘“‘worth” of a particular part S of I. Think of this liquid as
flowing from one place to another, the drops arriving in the order . As it arrives,
each drop of the liquid contributes to (or detracts from) the worth of that portion
of the liquid already at the destination. Intuitively, (¢”v)(S) is the total increment
contributed in this way by all the drops in a set S. Since v is ingeneral not additive,
¢”v will depend strongly on %; and in fact, it may not even exist for all %.
Orderable v’s are those for which it does. The reader is referred to [2, Chap. I1I]
for an explanation of how these notions are motivated by game-theoretic
considerations

This is one of a series of studies (cf. [1], [2], [6]) in which orderability and
various continuity notions of set functions are investigated and related to each
other.

A subset A of I is called v-null if v(S\A)=v(S) for all subsets S of I. A
point ¢ in I is v-null if {¢} is v-null. The set of set functions which have infinitely
many null points is denoted INP." Properties of orderable set functions in INP are
investigated in this paper.” It is shown (Theorem 1) that such set functions are
continuous;’ i.e., for an increasing (or decreasing) sequence {B;} of measurable
sets whose union (or intersection) is B, lim,.. v(B;)=v(B). It is also shown

* Received by the editors August 14, 1975.

T School of Organization and Management, Yale University, New Haven, Connecticut 06520.
This work was supported by the National Science Foundation under Grant GS-3269 at the Institute for
Mathematical Studies in the Social Sciences, Stanford University, Stanford, California, and under
Grant GP-37069 at the Courant Institute of Mathematical Sciences, New York, New York.

! In the game theoretical motivation INP means infinitely many null players.

2 We remark that the assumption that v € INP appeared in a footnote in [2, § 2] as a condition
under which any value of a set function gives zero to null sets.
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(Theorem 2) that for orderable set functions in INP, A < I is v-null if and only if A
is ”v-null for all measurable orders . These, and some other properties which
we shall prove for orderable set functions in INP, seem to be essential for any
solution concept in the game theoretical motivation.

A set function v is nonatomic if there exists no S which is not v-null, such that
for every T < S either T or S\ T is v-null. It is shown (Theorem 3 of this paper
due to Aumann) that an orderable set function is nonatomic if and only if every
tel is v-null. Using this result we shall prove that an orderable set function is
nonatomic if and only if ¢”v is nonatomic for every measurable order R.

Another result (§ 6) is as follows: we say that v is weakly continuous with
respect to a measure u (see [6]) if

(1.1) w(A)=0=>A is v-null,
and that v is weakly equivalent to p if
(1.2) wn(A)=0& A isv-null.

The result (Theorem 4) then says that an orderable set function is weakly
continuous with respect to some measure if and only if it is weakly equivalent to
some measure (not necessarily the same one). A Lebesgue decomposition of
orderable set functions which are weakly continuous with respect to some
measure follows as an immediate corollary.

Finally (Theorem 5), we characterize set functions in MIX (see [2, Chap. 2])
which are weakly continuous with respect to some nonatomic measure.

2. Notations and definitions. Composition will usually be denoted by °; thus
if f is defined on the range of u, then the function whose value on S is f(u (S)) will
be denoted f o u. Set theoretic subtraction will be denoted by \\. A measure is a
o-additive real-valued set function defined on a field, which vanishes on &J. The
total variation of a measure u on a measurable set S is denoted |u|(S). Absolute
continuity between measures will be denoted by « (see [3]).

We next summarize some definitions, conventions and results from [2].

Let (I, ) be the measurable space consisting of the unit interval and the
Borel subsets.* A set function is a real valued function v on € such that v(&) =0.
A set S€ € is null (or v-null) if v(T\S)=v(T) for all Te €. An atom of a set
function v is a nonnull measurable set S, such that for every measurable set T < S,
either T or S\ T is v-null. If v has no atoms it is called nonatomic. Restricted to
measures, this definition coincides with the usual concept on nonatomicity of
measures.” A set function is monotonic if T < S implies v(T) = v(S). The differ-
ence between two monotenic set functions is said to be of bounded variation. The
set of all set functions of bounded variation forms a linear space, which is called

3 Cf. [2, Ex. 33.11).

* This is assumed for simplicity only. All the results remain true if (Z, 6) is only assumed to be a
countably generated and separated Borel space.

® The definition of nonatomicity in this paper is different from the one used in [5]. It coincides with
that of [2]. Theorem 3 of this paper shows that the two definitions coincide for orderable set functions.
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BV. The linear subspace of BV consisting of all totally finite measures on (I, €) is
denoted M. The linear subspace of M consisting of nonatomic measures is
denoted NA. The set of monotonic elements in M (resp., NA) will be denoted M™
(resp., NA™).

An order on the underlying space I is a relation ® on R that is transitive,
irreflexive, and complete.® Let “sZ ¢” denote “sRt or s =1". If for A, B< 1 it
holds that x%y whenever x € A, y € B we will write AZB. If A contains a single
element z, we write BRz (resp., z&B) rather than BR{z} (resp., {z}%B). An
initial segment is a set of the form I (s, R) = {t|sRt} where s € I. An initial set is a set
J which fulfills the condition s € J, s®s’ implies s’ € J. The entire space and the
empty set will also be considered as initial segments, and as such will be denoted
I(co, R), I(— 0, R) respectively; it will be understood c0ZRsR — oo for each s € I
and we will denote {—oo}UIU{oo} by I. (Formally we extend & to I. This
however is a notational device; we are not adding anything to the underlying
space, and all set functions and measures continue to be defined on subsets of 1
only.) For s, x I let E(s, R) ={t|tRs} be called a final set and let [s, x]={t|x £,
Z 5} be called a closed order interval.

Denote by F(%) the o-field generated by all the initial segments. An order #
is measurable if F(R)=+€. A subset Q of I will be called R -dense if for all s, te I
such that s%t there is a member q € Q such that sZ gZ ¢. By Lemma 12.5 of [2],
for any measurable order & there exists a denumerable #-dense set. A set
function v is called orderable if for each measureable order & there is a measure
qog'!v such that for all initial segments I(s, ), we have

2.1) (@”0)UI(s, R)) = v(I(s, R)).

Since (2.1) determines ¢”v on all the initial segments, and by the measurability
of & the initial segments generate %, it follows that there can be at most one
measure ¢ v satisfying (2.1). Thus for orderable set functions there is exactly one
measure ¢ ”v satisfying (2.1). The set of all orderable set functions in BV will be
denoted ORD.

Let v, w € BV; then v is said to be weakly continuous with respect to w (written
v<w) [6, §§ 3 and 4] if for any Se€ &,
(2.2) S is w-null=> S is v-null.

Note that if v<Su and u 5w, where v, u, we BV then v gw. Of course if
v=fe°u BV where u € M" and f maps the range of u into the reals, then v u.
A set function in BV is said to be weakly continuous if there is a measure u € NA*
such that v < u. The set of all weakly continuous set functions is a linear subspace
of BV [6, Prop. 4.2] which is denoted WC.

3. Continuity of set functioning in INP N ORD.

LEMMmA 1. Let {B,}, n = 1, be an increasing sequence of measurable sets, with
B = U, _1B,. Then there exists a measurable order R such that B and all the B,’s
are R-initial sets.

S A relation R is complete if for all s, t € I one and only one of the three statements s, (Rs, s =t
holds. We shall interpret “s?¢” as ‘s is greater than ¢.”
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Proof. Let R, be a measurable order such that I\ B)Z(B\ B;)%B;. The
existence of &, follows from [6, Cor. 5.2.]. Define, inductively, a sequence of
measureable orders by

x,y € B, and xR, y, or

X,y € B,+1\B, and x&,y, or
ARy 11y &< x,y € INB,+1 and xRy, or
y€eB,andx eI\ B,, or
y€B,.1\B,and x eI\ B, .;.

This means that B, .; \ B, is put just beyond B,, I\ B, beyond B, .\ B,, and
the order &, is preserved on B,, B,,.1\ B, and I\ B, .. By [6, Lem. 5.1] all the
orders &, are measurable; moreover, for all n =1, and 1=i{=n, B; and B are
R -initial sets. Of course, for m = n all R,,, coincide on I\ (B \\ B,,). Let us define
an order & as follows: Let s, ¢ be in I; then there clearly exists an #n such that
s, tZ B\ B,,; let s%t if and only if s&,,,¢ for all m = n. Clearly & is well defined and
all the B;’s are Z -initial sets. We shall now show that & is a measurable order, i.e.,
F(R) = €. Thedirection F(R) < € is trivial. To verify that € < F(2R) note first that
AR has a denumerable dense set, e.g., the union of the denumerable R, -dense sets.
This implies that all &2 -initial sets are in F(%) (compare with the proof of Lemma
5.1 of [6]). Now, for x € I, the decomposition

16, 92:) = (G, ) N B} UL Z)NBYU U {15, RV (Boen \Bo)}

shows that I(x, #,) € R). Since € = F(%R,) this completes the proof of Lemma 1.

CoroLLARY 1. Let {B,.}, n =1, be an increasing sequence of measurable sets,
such that B = U, B,. Then there exists a measurable order R such that B and all
the B,’s are R-initial segments.

Proof. Without loss of generality assume that B, ’s are strictly incréasing. For
nz1let x, € B, \B,. Define C,, =B, U{x,.}, C,,,_; = B,. Applying Lemma 1
after reordering I\ B so that it will have an %;-initial element completes the
proof.

CoroLLARY 2. Letv € ORD, and let {B, }, n Z 1, be an increasing sequence of
measurable sets with B = U;,_,B,. Then v(B,)-> v(B) as n > .

Proof. By Corollary 1 we know the existence of a measurable order & such
that B and all the B,’s are R-initial segments. Hence (¢ ”v)(B) = v(B), and for
nz1, (¢”v)(B,)=v(B,). Since ¢”v is a o-additive measure (¢”v)(B,)->
(¢”v)(B) as n -, completing the proof.

CoroOLLARY 3. Letv € ORD. Then a countable union of v-null sets is v-null.

Proof. Let A,, n=1, be v-null and let Be €. Forevery i =1,

o B\ U A,,)=v{(B\n§1 A,,)u kL;Jl (AkﬂB)}.

n=1
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Letting i > 0 and using Corollary 2 implies that

v(B\ U A,,) = fim u{ (B\ El A,,) u kL;J1 (A ﬂB)}

n=1 i—>00
- v{ (B\ El A,,) U El (A nB)} ~v(B).

Remark. It {B,}, n = 1, is a decreasing sequence of measurable sets we may
build an order such that all the B,,’s are % -initial segments. This would be done by
steps analogous to those leading to the conclusion of Lemma 1 and Corollary 1.
One can easily verify that B = (-, B, is not an & -initial segment unless there is
some n such that for i > n all the B;’s coincide; hence the proof used in Corollary 2
would not be sufficient to show that v(B,,) > v(B) as n - o0, Indeed, in general we
cannot assure that v(B,)-> v(B) as n > . Let v be defined by

1 if0eS andS#{0},
0 otherwise.

3.1) v(S)={

Note that v is monotonic; hence v € BV. Moreover, v € ORD; indeed, for a
measurable order & in which 0 is not an & -smallest element, ¢ ”v is the measure
which is concentrated on {0}; the same is true if 0 is an Z-smallest element and
there is no & -smallest element in E(0, %2). In the case when b is an #-smallest
element in E(0, R), then ¢”v exists and is equal to the measure which is
concentrated on {b}. Let now B, =[0, 1/n); then (B,} is clearly decreasing and
Ny=1B, ={0}.Foralln =1, v(B,) =1, but v(B) =0; hence lim,,v(B,) # v(B).

LeEMMA 2. Let v € ORD, & a measurable order, and J an R-initial set. Then J
is measurable. Moreover, if J is infinite or if v € INP, then

(3.2) (@) =0().

Remark. The infiniteness requirement of J is a surprising condition. To verify
its necessity look at the example given in (3.1) of the previous remark. Let & be
the usual order on [0, 1] which is clearly measurable; then (¢”v)({0}) =1 but
v({0}) =0.

Note also that (3.2) need not hold for infinite J’s if we do not assume
v € ORD, even if we do assume that for the & in question, there is a o--additive
totally finite measure ¢ ”v satisfying (2.1)! For example, let

w =f0/\’

where A is the Lebesgue measure and

1
X§2’

rw-{r 33

and let R be the usual order; it is clear that ¢ ”v exists and equals the measure
concentrated on {1/2}. Hence (¢”v)([0, 1/2])=1 but v([0, 1/2]) = 0. It might
easily be shown that v€ ORD. Let R’ be the order that throws {1/2} beyond [0, 1]
and coincides with the usual order on [0, 1]\ {1/2}. By Lemma 5.1 of [6] this
order is measurable. If ¢”v existed, then for n=3, (¢%v)(1/2—1/n,
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1/2+1/n]a) =1, in spite of the fact that[1/2—1/n, 1/2+1/n]4 is a decreasing
sequence with a void intersection.

Proof of the lemma. The measurability of J follows from Lemma 12.14 of [2].
If J is an 2 -initial segment, then the conclusion of Lemma 2 is trivial. If J is not an
R-initial segment, let Q be a countable %-dense set and denote Q=
QU{—0}U{0o} and J=JU{—00}. Clearly J = N{I(g, R)lg € O\J}. Since the
I(g, R)’s are linearly ordered under inclusion, each finite intersection of those sets
is equal to one of the I(g, 2)’s. Hence we can write J = ;2 I(g;, R), where {g;} is
an R-decreasing sequence of points in Q\J, i.e., {I(g, R)} is a decreasing
sequence of sets. Note that {I(g;, #)} is not a finite sequence since J is not an
R -initial segment.

Assuming J is not finite let us choose a sequence {x;|i =1} of elements in J.
Let #* be a measurable order for which

ANDR* -+ B*x JR* - - - RMxJR* I \{xili =1})

and #* coincides with 2 on J\{x;)i = 1} and on I \\J. Similar arguments to those
used in the proof of Lemma 1 imply that 2* is measurable. Now

(¢™0)(I) = lim ("0)(U(g;, ) = lim (™ 0) U, 7))

=(e™ 0)() =lim (¢™ v)I (x;, R*))

=lim o (I(x;, Z*)) = v(J)

We have used Corollary 2 and the fact that I(x;, #*) is an increasing sequence
whose union is J.

Assume now that J is finite and that v € INP. Let {x;}, i = 1, be a sequence of
v-null elements which are allin I\\J. Let  * be the measurable order for which

INUU{x i 21D R*IR* - - - R*x,R* -+ - R* x,R* x4

and which coincides with £ on J and on I\ (J U{x;|i = 1}). Note that by Corollary
3 {x;]i = 1} is v-null (as a countable union of v-null sets). Now,

(¢”v)(J) = lim (¢”v)(I (g}, R)) = lim v(I(q;, R))

j>oo j=>00

= lim v (I(q, ) U{x.li = 1})
= lim (o™ 0)(I(q, R)U{xili 21}

= (™ v)(JU{xliz1})

=o(JU{xli=z1)=0o().

We used the facts that {x;/i =1} is v-null, and the fact that since (for j =
DI(g;, R)U{x;li =1} and JU{x,i =1} are infinite &*-initial sets, v and ¢” v
coincide on them. Thus the proof of Lemma 2 is completed.
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LeMmMA 3. Let v e ORD NINP, and let {B,}, n =1, be a decreasing sequence
of measurable sets whose intersections is B. Then lim,,_,, v(B,) = v(B).

Remark. Look at the remark following the proof of Corollary 3 to verify the
necessity of the requirement that v € INP.

Proof. By similar arguments to those used in the proof of Lemma 1 there
exists a measurable order & such that B and all the B,’s are initial sets (not
necessarily initial segments). Using Lemma 2 and the o--additivity of ¢ %v we get
that

lim v(B,) = lim (¢”v)(B,) = (¢”v)(B) =v(B),
which completes the proof of Lemma 3.
TueorewM 1. If v e ORD NINP, then v is continuous.
Proof. The proof of Theorem 1 follows directly by Corollary 2 and Lemma 3.

4. Nullness of sets with respect to v and the ¢*v’s.
LeMMmA 4. Let v € ORDNINP, and let A be a v-null set. If R and R’ are two
measurable orders such that for s, t e IN A

4.1) SRt=> sR't,
then
4.2) v =0"0.

Remark. If ve INP, then (4.1) becomes a very restrictive condition, since
the v-null sets are only subsets of some finite set; hence # and R’ are “almost” the
same. However, we cannot assure (4.2) for those simple cases. Indeed, let v be
defined by (3.1), and let w be defined by w(S) = v(S\{1}). One can easily verify
that w isorderable and that {1}is a v-null set. Let R be the regular order and let R’
be defined by

s>tands,t#1,or

SRt {t=1ands #0,or
t=0ands=1;

ie., {1}is p}lt between {0} and (0, 1) and the usual order is preserved on (0, 1).
Clearly ¢*'w is the measure concentrated on {1} and ¢%*w is the measure

concentrated on {0}, though (4.1) holds whenever s, t€[0, 1]\{1}, and {1} is
w-null.

Proof. 1t is clearly sufficient to prove our lemma for the case when %'
“throws” A beyond I\ A and preserves Z on A and on I\ A. We shall first show
that ¢”w and ¢%w coincide on Z-initial segments; i.e.,

(4.3) ("W (x, R)) = (" W)U (x, R))

forall xel
LetxeIN\A;then I(x, R')=1(x, )\ A and

(@™ 0)I(x, R)) =v(I(x, R))
(4.4) =o(I(x, BNA) = v(I(x, R'))
= (e 0)U(x, B) — (¢™ v)I(x, R)N A).
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Now, note that I(x, #) N A is the set subtraction of two % '-initial sets on which v
coincides; hence, by Lemma 2 we get that

(4.5) (e®v)I(x, B)NA)=0.

The above and (4.4) complete the proof of (4.3) for all x e I\ A.
Let now x € A. By applying Lemma 2 on ' we get that

(¢”0)I(x, R)) = v(I(x, R))
(4.6) =o(I(x, AINA) = (" v)U(x, R)\A)
= (") (x, B) ~ (0™ 0)U(x, B)NA).

Again, I(x, )N A is the set subtraction of two Z'-initial sets on which v
coincides. By Lemma 2 it follows again that (4.5) holds, hence (4.3) follows easily
from (4.6). This completes the proof of (4.3) for all x € I.

The I(x, R)’s generate all the measurable sets, and o7, cpg’/v are two
measures which coincide on all the I(x, &)’s; hence (¢%v)(S) = (¢ 7 v)(S) for all
S e € as was to be proved.

THEOREM 2. Let v € ORDNINP, and let A € €. Then

4.7 A isv-nullif and only if A is ¢ "v-null for all measurable orders.

Remark. If v ¢ INP, then v-null sets are only subsets of some finite set.
However (4.7) need not hold for these simple sets. Indeed, look at the first
example preceding the proof of Lemma 4 and verify that (¢” w)({1}) = 1 though
{1} is v-null.

If v € INP but v € ORD, then the conclusion of Theorem 2 need not hold,
even if we do assume that for the & in question there is a o--additive totally finite
measure ¢”v satisfying (2.1). See the second example preceding the proof of
Lemma 2 and verify that (¢ %v)({1/2}) =1 though {1/2} is v-null.

Proof. Note that A is ¢ “v-nullif and only if |¢ ?v|(A) = 0. First assume that A
is ¢ ®v-null for all measurable orders %&. Assume there exists a B € € such that
v(B)#v(B\\A). By Corollary 1 there exists a measurable order # for which

INB)R(BNA)R(B\A).
Hence, by Lemma 2,

(e"v)(BNA)=(¢”v)(B\(B\A))=0v(B)—v(B\A) #0.
The above contradicts the fact that |¢*v|(A) #0.
Assume now that A is v-null. Let B< A and let 2 be a measurable order.
Let &' be the measurable order that “throws” B beyond I'\ B and preserves & on
B and on I\ B. Since I\ B is an %'-initial set it follows by Lemma 2 that
(e”0)(B) = (¢* v)T)— (™ v)I \.B)
=p(I)—v(I\B)=0.

By Lemma 4, ¢”v = ¢* v, hence (¢%v)(B) = 0. Since (¢%v)(B)=0for all B€ A
it follows that |¢”v|(A) = 0 which means A is ¢ *v-null.
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Remark. We point out that the requirement in Theorems 1 and 2 that the set
functions in question be in INP could be removed if one changed the definition of
orderability by requiring that (¢ ”v)(J) = v(J) for initial segments and in addition
for sets of the form J = {t|sZ¢}.

5. Nonatomicity of orderable set functions.

THEOREM 3 (Aumann). Let v be an orderable set function. Then v is nonatomic
if and only if every s € I is v-null.

Proof. If v is nonatomic then clearly {s} is v-null for every s € I (else {s} would
be an atom).

Assume now that s is v-null for every s € I. We shall prove, by contradiction,
that v has no atoms. Let E € € be an atom of v; i.e., E is not v-null and for every
F < E either F or E\\ F'is v-null. Since every pointis v-null it follows by Corollary
5.4 that every denumerable set is v-null; hence E is nondenumerable.

Assume first that I\ E is nondenumerable. It is known (cf. [5, Thms. 2.8
and 2.12]) that any uncountable Borel subset of any Euclidean space, and indeed
of any complete separable metric space when considered as a measurab<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>